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Abstract: Supraharmonics emitted by electrical equipment have caused a series of electromagnetic
interference in power systems. Conventional supraharmonic analysis algorithms, e.g., discrete Fourier
transform (DFT), have a relatively low frequency resolution with a given observation time.
Our previous work supplied a significant improvement on the frequency resolution based on multiple
measurement vectors and orthogonal matching pursuit (MMV-OMP). In this paper, an improved
algorithm for supraharmonic analysis, which employs Bayesian compressive sensing (BCS) for further
improving the frequency resolution, is proposed. The performance of the proposed algorithm on the
simulation signal and experimental data show that the frequency resolution can be improved by about
a magnitude compared to that of the MMV-OMP algorithm, and the signal frequency estimation
error is about 20 times better. In order to identify the signals in two adjacent frequency grids with
one resolution, a normalized inner product criterion is proposed and verified by simulations. The
proposed algorithm shows a potential for high-accuracy supraharmonic analysis.

Keywords: supraharmonic; Bayesian compressive sensing (BCS); multiple measurement vectors
(MMV); relevance vector machine (RVM); high-resolution

1. Introduction

With the popularity of power electronic equipment, such as photovoltaic (PV) inverters,
electric vehicle chargers, switching power supplies, new lighting devices and household devices,
more and more supraharmonics [1] in a frequency range of 2 kHz to 150 kHz are emitted into the power
systems. Supraharmonics can cause a series of electromagnetic interference issues [2], e.g., it can affect
the power line communications, such as automatic meter readers, lower the measurement accuracy of a
power meter [3], generate undesired noise in electrical equipment, etc. In recent years, more and more
research has been focusing on supraharmonics. For example, the IEC SC 77A, a technical committee for
standardization in the field of electromagnetic compatibility with regards to low frequency phenomena,
formed four working groups engaged in compatibility, emission, immunity and measuring method
for supraharmonics. The European Committee for Electrotechnical Standardization (CENELEC) has
gathered many electromagnetic interference cases in this frequency range. Related international
conferences have set up innovation forums or special sessions for supraharmonics, such as the
International Conference on Electricity Distribution (CIRED) and the IEEE Power and Energy Society
Conference. Undoubtedly, supraharmonics have become a new research hot-spot.

In order to research the propagation property, interaction mechanism, emission limits,
and mitigation for supraharmonics, it is necessary to measure them accurately. In the newly
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revised standard IEC 61000-4-30 [4], annex C, three supraharmonic measurement methods are
recommended. One method is the International Special Committee on Radio Interference (CISPR)
16-1-2 [5]. This method uses a frequency-scan strategy. It assumes the supraharmonic distribution does
not change during the measurement, which, however, in reality is not always true and could mislead
the measurement result. The other two methods are DFT-based methods. This kind of method has the
fastest calculation speed, but is limited by the spectrum leakage, the DFT-based method typically has
a low frequency resolution and measurement accuracy. The pros and cons of the three methods are
given in Table 1.

Table 1. The pros and cons of the three methods.

Method Pros Cons

CISPR 16-1-2 high accuracy long measurement interval
IEC 61000-4-7 gapless low frequency resolution and measurement accuracy
IEC 61000-4-30 fast measurement speed low frequency resolution and measurement accuracy

In order to improve the frequency resolution and mitigate the spectrum leakage, [6] proposed
a supraharmonic algorithm based on a single measurement vector (SMV) model [7–9] and OMP
algorithm [10–12], which can improve the frequency resolution by an order of magnitude for a single
measurement vector at a time. To fulfill the multiple measurement occasions, ref. [13] proposed an
enhancement supraharmonic algorithm combined MMV and OMP. The MMV-OMP [14,15] algorithm
can achieve high-resolution analysis for multiple spectra vectors simultaneously and the frequency
resolution can be improved by one order of magnitude. However, the MMV-OMP algorithm needs to
estimate the sparsity of the measured signal in advance [13], and it requires the orthogonality between
the basis functions in any subset of the sensing matrix. As a result, when high frequency resolution is
desired, the orthogonality becomes difficult to be satisfied, and the interpolation factor is not much
larger than an order of 10 [10].

A recent study on the compressive sensing technique shows a potential for accurate signal
frequency analysis. Shihao Ji et al. applied the relevant vector machine (RVM) [16] and Sparse Bayesian
Learning (SBL) [16] to the compressive sensing reconstruction, a Bayesian compressive sensing
(BCS) [17,18] reconstruction method is proposed from the perspective of Bayesian statistical learning.
Furthermore, by exploiting the joint sparsity between multiple tasks, a multi-task BCS algorithm
for the need to reconstruct multiple measurement vectors is proposed also [19]. However, the BCS
algorithms are only suitable for reconstructing the sparse real-valued signals, and are not suitable for
analyzing the sparse complex signals, such as the spectrum.

In recent years, some new BCS sparse reconstruction algorithms for MMV problems have
been proposed, i.e., in [20], to recover the joint sparse MMV signals with impulsive noise,
Zhuhong Zhang et al. proposed a variational Bayesian method with two three-level hierarchical
Bayesian models to characterize the joint sparsity and the impulsive noise respectively. In [21,22],
Mohammad Shekaramiz et al. proposed a new Sparse Bayesian Learning (SBL) method with a
binary vector, which was modeled as a hierarchical Bernoulli-Beta distribution, to characterize the
supports for solving the MMV joint sparse reconstruction with unknown clustering patterns. In [23],
Jian A. Zhang et al. proposed a MMV based implementation for SMV-SBL problems by converting
a SMV model to a MMV one to reduce the computational complexity. In [24], Xiaolin Huang et al.
proposed a re-weighted Bayesian method for multiple vectors, and a block coordinate decent technique
was used to reconstruct the joint sparse vectors sequentially. In [25], Hang Xiao et al. introduced a MMV
pattern-coupled sparse Bayesian learning algorithm to reconstruct block-sparse signals simultaneously,
in which a pattern-coupled hierarchical Gaussian prior model was proposed to characterize both the
block-sparsity of the coefficient and the statistical dependency between neighboring coefficients.

RVM is the simplified model for Bayesian model selection and has a relatively high computation
efficiency [17]. In this paper, a Bayesian compressive sensing algorithm for multiple DFT vectors
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is proposed, denoted as MMV-BCS, which uses the extended RVM model [19] and can achieve
high-resolution analysis for multiple spectrum vectors of supraharmonics simultaneously from
the Bayesian viewpoint. Specifically speaking, by introducing an interpolation factor F, a MMV
compressive model for multiple DFT vectors is constructed. The likelihood function is considered
as a Gaussian distribution and a Gaussian-Gamma hierarchical prior model, with hyperparameters
introduced to promote sparsity for the multiple high-resolution spectrum vectors. Then, a robust
Student-t posterior distribution, according to the Bayesian rule, is obtained. Accordingly, an iteration
algorithm is proposed to reconstruct multiple high-resolution spectrum vectors simultaneously,
which can improve the DFT frequency resolution by F times while significantly suppressing the
spectrum leakage. The MMV-BCS algorithm can provide some distinct advantages over the
MMV-OMP algorithm, such as providing the posterior distribution of high-resolution spectrum
vectors, automatic determination of joint sparsity and automatic estimation of model parameters,
etc. The analysis shows that the proposed MMV-BCS algorithm has a good robustness with high
interpolation factors. The frequency resolution and the accuracy of estimation can be improved at
least one order of magnitude compared to the MMV-OMP algorithm, and at least two magnitudes
compared to DFT-based methods.

The rest of the paper is organized as follows: In Section 2, the principle of the MMV-BCS algorithm
is presented. Section 3 introduces numerical simulations to check the performance of the proposed
algorithm in analyzing supraharmonics. The evaluation is compared to our previous work, i.e.,
MMV-OMP method. In Section 4, we discuss the presented algorithm based on experimental data.
In Section 5, the conclusion is drawn.

2. Principle of MMV-BCS Algorithm

2.1. MMV Compressive Sensing Model

According to IEC 61000-4-30, for a 200 ms power signal containing supraharmonics, a digital
high-pass filter is used to remove the fundamental component (50 Hz or 60 Hz) and conventional
harmonics below 2 kHz, and then the filtered data is uniformly divided into 400 sets of small data
blocks with ∆T = 0.5 ms by applying a rectangular window function. Supraharmonic components in
a small data block can be expressed as a multi-tone signal, i.e.,

x(n) = ∑
sh

Ash cos(2π fshnTs + θsh) n ∈ (1, N), (1)

where Ash, fsh and θsh are respectively the magnitude, frequency and initial phase of each
supraharmonic component, and in this case stationary parameters are assumed. Ts = 1/ fs is the
sample interval and the data length is N = fs∆T. The DFT of x(n) can be expressed as

y(k) = ∑
sh

Ashejθsh DN

(
k
N
− fshTs

)
k ∈ (1, N), (2)

where frequency resolution is defined as ∆ f = fs/N, and DN(·) is the Dirichlet kernel function, i.e.,

DN(τ) =
1
N

N−1

∑
n=0

e−j2πnτ =
sin(πNτ)

N sin(πτ)
e−jπ(N−1)τ . (3)

In order to improve the frequency resolution, an interpolation factor F is introduced.
Therefore, the frequency resolution is refined to ∆

′
f = ∆ f /F and the total spectrum grid is changed

from N to M = NF . The final spectrum expression in the new frequency resolution can be written as

y(k) = ∑
r

Ashejθsh DN

(
k
N
− r

M

)
k ∈ [1, N], r ∈ [1, M], (4)
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where fshTs ≈ r/M. Equation (4) is a SMV compressive sensing model, and it can be written in the
form of vectors, i.e.,

y ≈ Da + w, (5)

where y is the original DFT vector with a dimension N × 1, D is the sensing matrix of dimension
N × M, a is a K sparse high-resolution spectrum vector to be reconstructed of dimension M × 1,
w is an independent-identically distributed (i.i.d.) and zero-mean Gaussian noise vector N(0, δ2).
Because Equation (5) is under-determined, by exploiting the sparsity of a, it can be solved by an
l1-regularized formulation [8], i.e.,

â = arg min
a
{‖y−Da‖2

2 + κ ‖a‖1}, (6)

where the parameter κ(κ > 0) controls the importance of the Euclidian error and the sparseness term
in (6). Equation (6) is the basic framework of several CS inversion algorithms.

2.2. Sparse Bayesian Model

In order to analyze multiple spectrum vectors simultaneously, L sets of DFT vectors are assembled
into a spectrum matrix {yi}i=1,L, and in such a way the MMV compressive sensing model is
constructed, i.e.,

yi = Dai + wi i ∈ [1, L], (7)

where yi denotes the i-th DFT vector, ai the i-th high-resolution spectrum vector to be reconstructed, wi
the corresponding noise vector with an unknown noise inverse variance β0 = δ−2. Note that {ai}i=1,L
is joint sparse, and {wi}i=1,L is a zero-mean Gaussian noise. Through the central limit theorem,
the likelihood function can be obtained as a multi-parameter Gaussian likelihood model, i.e.,

p(yi|ai, β0) = (2π/β0)
−N/2 exp

(
− β0

2
‖yi −Dai‖2

2

)
. (8)

For the prior distribution of {ai}i=1,L, [17] chose a Laplace prior function, and it is demonstrated
to comply with Equation (6) by using the maximum a posteriori (MAP) estimation for a SMV in
{ai}i=1,L. The major drawback of using Laplace prior is that it is not conjugate to the Gaussian
likelihood and hence the analytical solutions cannot be obtained. In [17], the RVM was adopted,
a hierarchical Gaussian-Gamma prior is applied to a SMV in {ai}i=1,L, which works for Gaussian
likelihood estimation and also promotes the sparsity of {ai}i=1,L. The hierarchical Gaussian-Gamma
prior, however, requires a large scale of calculations during the iteration. In order to accelerate
the calculation, in [19], a fast algorithm is introduced, but the model is sensitive to initialization of
the hyperparameter β0, and an inappropriate initial value could significantly lower the algorithm
accuracy. Aiming to solve the above issues, a fast marginal likelihood maximization for the sparse
Bayesian model, proposed in [19], is applied to extend the RVM in this paper. The prior distribution of
{ai}i=1,L is defined as a Gaussian distribution function with double hyperparameters β0 and β while
the hyperparameter β0 of the noise is defined as a Gamma distribution and is called a hyper-prior.
The main advantage of the model is that the distribution function is conjugate to the posterior function
and likelihood function, β0 can be integrated out conveniently, and has better robustness.

The zero-mean Gaussian prior distribution with double hyperparameters is defined for each
element of {ai}i=1,L, and the Gamma hyper-prior is defined for the noise inverse variance β0 [19,21],
as follows.

p(ai|β, β0) =
M

∏
j=1

N(ai,j|0, β−1
0 β−1

j ), (9)

p(β0|a, b) = Γ(β0|a, b), (10)
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where β = {β j}j=1,M is composed of M independent hyperparameters, and each hyperparameter
independently controls the corresponding elements of the vectors {ai}i=1,L. a and b are the shape
parameter and scale parameter of the Gamma distribution, respectively.

Since the hyper-parameter β = {β j}j=1,M is shared by all L sets of vectors, {yi}i=1,L will contribute
to the estimation of hyperparameters β, meaning the inter-relationships among the multiple spectrum
vectors can be fully utilized. According to Equations (8)–(10), the MMV hierarchical Bayesian model
is shown in Figure 1, and the dependence among different parameters in the probability model is
also shown.

Figure 1. Diagram of the hierarchical Bayesian MMV model.

Following the Bayesian rule, the posterior distribution of {ai}i=1,L can be written as

p(ai|yi, β) =
∫

p(ai|yi, β, β0)p(β0|a, b)dβ0

=
∫ p(yi|ai, β0)p(ai|β, β0)∫

p(yi|ai, β0)p(ai|β, β0)dai
p(β0|a, b)dβ0 (11)

=
Γ(a + M/2)[1 + 1

2b (ai − µi)
HΣ−1

i (ai − µi)]
−(a+M/2)

Γ(a)(2πb)M/2|Σi|1/2

with the mean and covariance of {ai}i=1,L given by

µi = ΣiDHyi i ∈ [1, L], (12)

Σi = (DHD + B)−1 i ∈ [1, L]. (13)

with B = diag{β1, β2, · · · , βM}. (·)H denotes the conjugate transpose of a matrix or vector.
As expressed in Equation (7), the noise is modeled as a zero-mean Gaussian noise with inverse

variance β0. By employing a Gamma prior on the inverse variance β0 and then marginal integrating
out the hyper-parameter β0, the noise structure in Equation (7) is not changed. After integrating
out the hyperparameter β0, the posterior distribution function of {ai}i=1,L is transformed from a
multi-parameter Gaussian distribution into a multi-parameter Student-t distribution. Compared with
the Gaussian distribution, the Student-t distribution is a heavy-tailed distribution that can capture the
data trend of variables accurately and eliminate the outlier interference.
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2.3. Marginal Likelihood Maximization

The unknown hyperparameters β in Equations (12) and (13) need to be estimated. Here, a strategy
for seeking hyperparameters β to maximize the logarithm joint marginal likelihood is employed, i.e.,

L(β) =
L

∑
i=1

logp(yi|β)

=
L

∑
i=1

log
∫ ∫

p(yi|ai, β0)p(ai|β, β0)p(β0, a, b)daidβ0 (14)

= −1
2

L

∑
i=1

[(N + 2a)log(yH
i C−1

i yi + 2b) + log|Ci|] + const,

where
Ci = I + DB−1DH . (15)

When the iterative method is used to estimate the hyperparameters β directly, it requires an
O(M3) operation per iteration, because a matrix with a dimension of M×M needs to be inverted in
solving Equation (13). In order to promote sparsity and to decrease the computation amount, a fast
marginal likelihood maximization algorithm is derived. The Ci in Equation (15) is decomposed as

Ci = I + ∑
k 6=j

β−1
k dkdH

k + β−1
j djdH

j = Ci,−j + β−1
j djdH

j (16)

where Ci,−j is the result of Ci, excluding the contribution of β j. In order to simplify Equation (14),
the determinant and inverse matrix of Ci are rewritten as

|Ci| = |Ci,−j||1 + β−1
j dH

j C−1
i,−jdj, (17)

C−1
i = C−1

i,−j −
C−1

i,−jdjdH
j C−1

i,−j

β j + dH
j C−1

i,−jdj
. (18)

Substituting Equations (17) and (18) into Equation (14), L(β) is rewritten as

L(β) = −1
2

L

∑
i=1

[(N + 2a)log(
1
2

yH
i C−1

i,−jyi + b) + log|Ci,−j|] + const

− 1
2

L

∑
i=1

[log(1 + β−1
j si,j) + (N + 2a)log(1−

q2
i,j/gi,j

β j + si,j
)] (19)

= L(β−j) + l(β j),

where L(β) is decomposed into L(β−j) and l(β j). L(β−j) is independent of β j, while l(β j) is a function
of β j. si,j, qi,j and gi,j are respectively defined as

si,j = dH
j C−1

i,−jdj, qi,j = dH
j C−1

i,−jyj and gi,j = yH
j C−1

i,−jyj + 2b. (20)

At the maximum value of L(β), the differential form of the joint marginal likelihood with respect
to β j should be zero, i.e.,

∂L(β)

∂β j
=

L

∑
i=1

si,j(si,j − q2
i,j/gi,j)/β j − (N + 2a)q2

i,j/gi,j + si,j

2(β j + si,j)(β j + si,j − q2
i,j/gi,j)

= 0. (21)
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To simplify the zero-finding of (21), β j << si,j is assumed (typically si,j > 20β j [19]). Then the
first and second derivatives of L(β) with respect to β j are can be solved as

∂L(β)

∂β j
≈ L

2β j
−

L

∑
i=1

(N + 2a)q2
i,j/gi,j − si,j

2si,j(si,j − q2
i,j/gi,j)

, (22)

∂2L(β)

∂β2
j
≈ − L

2β2
j
< 0. (23)

When
L

∑
i=1

(N + 2a)q2
i,j/gi,j − si,j

si,j(si,j − q2
i,j/gi,j)

> 0, (24)

L(β) has a maximum value, where β j is solved as

β j ≈
L

L

∑
i=1

(N + 2a)q2
i,j/gi,j − si,j

si,j(si,j − q2
i,j/gi,j)

. (25)

Otherwise, β j → ∞. In fact, it can be easier if we maintain and update values of the following
variables during iteration,

si,j =
β jSi,j

β j − Si,j
, qi,j =

β jQi,j

β j − Si,j
, gi,j = Gi +

Q2
i,j

β j − Si,j
. (26)

where

Si,j = dH
j dj − dH

j DΣiDHdj, Qi,j = dH
j yj − dH

j DΣiDHyj, Gi = yH
j yj − yH

j DΣiDHyj + 2b. (27)

dj is the j-th basis function, and D is the basis function set contained in the present calculation. In such
a way, the number of basis functions included in the iteration is relatively small, so the computation
amount is greatly reduced and a faster algorithm can be achieved. The computation complexity of the
MMV-BCS algorithm is about O(LMK2) [19].

2.4. Flow for MMV-BCS Algorithm

The procedure for the MMV-BCS algorithm is summarized in Table 2.

Table 2. Procedure of the MMV-BCS algorithm.

Algorithm MMV-BCS

1. Inputs: D, {yi}i=1,L, a,b and ε, t = 0
2. Outputs:{âi}i=1,L and index
3. while convergence criterion false do
4. Choose a hyperparameter β j (or equivalently choose a basis function dj for each task), t = t + 1
5. if β j > 0 according to (25) AND dj is not in the model then
6. Add dj in the model according to (A1)–(A6) in Appendix A, update the support set index
7. else if β j > 0 AND dj is in the model then
8. Re-estimate dj in the model according to (A7)–(A12) in Appendix A
9. else if β j < 0 AND dj is in the model then
10. Remove dj from the model according to (A13)–(A18) in Appendix A, update the support set index
11. end if
12. Update si,j, qi,j and gi,j according to (26)
13. end while
14. return {âi}i=1,L ← {µ̂i}i=1,L, index
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When |L(βt)− L(βt−1)|/|L(βt−1)| < ε, the algorithm will terminate.
At Step 4, the hyperparameter β j calculated in each iteration should result in the greatest increase

in the joint marginal likelihood L(β) in (19), which can yield a faster convergence. The updates of
{Σi}i=1,L , {µ̂i}i=1,L , Si,j, Qi,j and Gi in the add, re-estimate and delete operations are given in the
Appendix A. In order to realize the calculation of a complex spectrum, and the matrix power in all the
equations are changed into the Hadamard product of the original matrix and its conjugate matrix, i.e.,
Q2 = Q ∗Q∗ = [Qi,j ∗Q∗i,j].

Note that β0 can be estimated using the maximum margin likelihood method, however, due to
the compressive sensing reconstruction being a under-determined problem, the estimation of β0 is
unreliable at early iterations and an inappropriate estimate value of the hyperparameter β0 could
affect the algorithm accuracy significantly. Therefore, the value of the hyperparameter β0 here is
fixed during iterations, i.e., β0 = 102/std(abs(y))2 [17,19]. In order to make the mean of the Gamma
prior Γ(β0|a, b) consistent with the fixed value of β0 and to promote sparsity of priors, based on
experiments, the parameters a and b in the Gamma prior Γ(β0|a, b) are set a = 102/std(abs(y))2 and
b = 1 respectively [19,21].

The supraharmonic frequency is obtained as

f = (index− 1)× ∆
′
f . (28)

The mean values {µ̂i}i=1,L are assigned to the estimated values {âi}i=1,L . Since the estimated
values of {âi}i=1,L are complex, the magnitude matrix of supraharmonics are obtained by

{Ami}i=1,L = abs({âi}i=1,L). (29)

Note that as the phase of supraharmonic is independent of the fundamental [26], the phase
accuracy of the supraharmonic analysis is not considered in this paper.

The algorithm does not need to know the sparsity of {ai}i=1,L in advance, which, in fact, is done
automatically during the iteration. This can be considered as an advantage over the greedy and convex
compressive sensing algorithm. In addition, because the algorithm does not require the orthogonality
between the basis functions in any subset of the sensing matrix D, there is no limit on the interpolation
factor F, and frequency resolution can hence be improved sufficiently.

As given in [10,13], the minimum frequency interval between two supraharmonic components that
the MMV-OMP algorithm can reconstruct accurately is about 1.5 times the DFT frequency resolution ∆ f .
When the frequency of a supraharmonic component is not integer multiples of the improved frequency
resolution ∆

′
f , it will be reconstructed on the closest frequency grid by the MMV-OMP algorithm,

and hence a frequency estimation error, within ±(∆′ f /2) [10], is caused in the MMV-OMP algorithm.
In order to overcome the above issue of the MMV-OMP algorithm, the MMV-BCS algorithm

employs a reconstruction technique, which allows representation of the component not aligned to the
integer multiples of ∆

′
f . The magnitude decomposition diagram for the supraharmonic components

that are not on the spectrum grid is shown in Figure 2.
In the analysis, it is found that the sum of the magnitude of the two spectrum

grids is approximately equal to the true magnitude of the supraharmonic component.
Furthermore, the magnitude of the two spectrum grids are inversely proportional to their distance to
the true frequency. Therefore, the magnitude and frequency of the supraharmonic component can be
estimated by the following two equations, i.e.,

Mag = Magm + Magm+1, (30)

f = m∆
′
f +

Magm+1

Mag
· ∆′ f or f = (m + 1)∆

′
f − Magm

Mag
· ∆′ f , (31)
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where ∆
′
f is the improved frequency resolution, Magm and Magm+1 are the corresponding magnitudes

of the m-th grid and (m + 1)-th grid in the high-resolution average spectrum, Mag and f are
the estimated magnitude and frequency of the true supraharmonic component, that is not on the
spectrum grid.

Figure 2. Magnitude decomposition diagram for the supraharmonic component is not on spectrum grid.

3. Numerical Verification

It is found in [13] that the PV inverter emits supraharmonics at the switching frequency of around
10 kHz and its integer multiples. Besides, the magnitude of each supraharmonic component has
a periodic fluctuation. In order to check the performance of the MMV-BCS algorithm proposed
in this paper, two simulation models, a supraharmonic stationary model and a supraharmonic
magnitude-modulated model, are constructed similar to the supraharmonic spectrum characteristic of
the PV inverter.

3.1. Supraharmonic Stationary Model

The supraharmonic stationary model is set as the form in Equation (1). As listed in Table 3,
the signal contains 6 supraharmonic components, ranging from 10 kHz to 150 kHz. The initial phase of
each supraharmonic component is set randomly in [0, 2π).

Table 3. Supraharmonic components of the stationary model for experiments.

No. Frequency (Hz) Magnitude (a.u.)

1 10,000 1.0
2 10,200 0.5
3 29,900 0.6
4 50,100 0.8
5 70,200 0.4
6 90,200 0.3

The sampling frequency is set to 500 kHz and then a 0.5 ms rectangular window is applied to
the 200 ms sampled data to generate 400 data blocks. All the data blocks are transformed to the
spectrum vectors by DFT with a 2 kHz frequency resolution. In order to improve the frequency
resolution of the 400 sets of DFT spectrum by 10 times and compare the results with the MMV-OMP
algorithm [13], the interpolation factor F is set to 10. According to Equation (7), a MMV model
is constructed. Before high-resolution analysis for this MMV model, some parameters should be
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initialized, i.e., the noise standard deviation σ is set to 0.02 a.u. and initial values of a and b in the
Gamma prior Γ(β0|a, b) are set to a = 102/std(abs(y))2 and b = 1 respectively, such that the Gamma
prior will promote sparsity [19], and the convergence threshold ε is set to 10−8.

By applying the proposed MMV-BCS algorithm, 400 sets of supraharmonic spectrum vectors are
reconstructed with an enhancement frequency resolution of ∆

′
f =200 Hz, 10 times better than the DFT

analysis. The frequency and magnitude of each supraharmonic are solved following (28) and (29).
The average spectrum of the 400 sets of supraharmonic spectra is shown in Figure 3.

(a) (b)

(c) (d)

Figure 3. High-resolution spectrum results with F set to 10. (a) Original high-resolution spectrum
obtained by the MMV-BCS algorithm, (b) Processed high-resolution spectrum obtained by the
MMV-BCS algorithm, (c) An amplitude-modulation waveform comes from the two supraharmonic
components of 10 kHz and the 10.2 kHz by the MMV-OMP algorithm, (d) Error bar comparison for the
MMV-OMP algorithm and MMV-BCS algorithm.

In this example, the 10 kHz, 10.2 kHz, 70.2 kHz and 90.2 kHz supraharmonic components are
integer multiples of the reconstruction frequency resolution ∆

′
f = 200 Hz. The 29.9 kHz and 50.1 kHz

supraharmonic components are not integer multiples of ∆
′
f . Besides, the 10 kHz, 10.2 kHz components

are close in the spectrum, and have only a frequency difference of 200 Hz.
From Figure 3a, it can be seen that the spectrum represented by DFT has a considerable spectrum

leakage. The spectrum leakage can be mitigated significantly using the MMV-OMP algorithm
and MMV-BCS algorithm and the frequency resolution is enhanced by an order of magnitude.
As discussed in Section 2, the MMV-OMP algorithm cannot recognize the two supraharmonic
components of 10 kHz and 10.2 kHz. Instead, the two supraharmonic components are combined into a
new magnitude-modulated signal with a 10 kHz frequency, as shown in Figure 3c. The magnitude
fluctuates between 0.5 a.u. and 1.5 a.u., and the mean magnitude is 1.060 a.u. The MMV-BCS algorithm
proposed in this paper can well reconstruct the two supraharmonic components of 10 kHz and 10.2 kHz.
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The 70.2 kHz and 90.2 kHz supraharmonic components are integer multiples of the reconstruction
frequency resolution ∆

′
f = 200 Hz, and both the MMV-OMP algorithm and the MMV-BCS algorithm

can reconstruct them on grids with high accuracy. However, for the 29.9 kHz and 50.1 kHz
supraharmonic components, which are not integer multiples of the reconstruction frequency resolution
∆
′
f = 200 Hz, the MMV-OMP algorithm reconstructs them on a 30.0 kHz grid and 50.2 kHz grid,

respectively, with a 100 Hz frequency estimation error, and the mean magnitudes are 0.597 a.u.
and 0.796 a.u., respectively. The MMV-BCS algorithm can represent the two components on the
nearest two grids with one ∆

′
f : the 29.9 kHz supraharmonic component is reconstructed on 29.8 kHz

and 30.0 kHz grids, and the 50.1 kHz supraharmonic component is reconstructed on 50.0 kHz and
50.2 kHz grids.

As we know, in the spectrum obtained by the MMV-BCS algorithm, the 29.8 kHz and 30.0 kHz
grids belong to the 29.9 kHz supraharmonic component, and the 50.0 kHz and 50.2 kHz grids belong to
the 50.1 kHz supraharmonic component. The four grids are processed by Equations (30) and (31),
and the estimated frequencies and magnitudes for the 29.9 kHz and 50.1 kHz supraharmonic
components are shown in Figure 3b. From Figure 3b, it can be seen that the estimated frequencies
for the 29.9 kHz and 50.1 kHz supraharmonic components are the same as the set values, and the
mean magnitudes for them are 0.603 a.u. and 0.803 a.u., respectively. Compared with the MMV-OMP
algorithm, the frequency estimation errors are improved by a factor of 100.

The estimation error is evaluated by ∆y = |y− ŷ|, y is the set value, ŷ is the estimated average
value. The error bar obtained by the MMV-OMP and MMV-BCS algorithm is shown in Figure 3d.
It can be seen from Figure 3d that the frequency estimation error obtained by the MMV-OMP algorithm
is approximately within ±(∆′ f /2) [10], and for the supraharmonic components that the MMV-OMP
algorithm cannot recognize, the frequency estimation error reaches to one ∆

′
f at least, because the

10.2 kHz supraharmonic component is combined into a new magnitude-modulated signal with the
10 kHz supraharmonic component. For the MMV-BCS algorithm proposed in this paper, the frequency
estimation error for all six supraharmonic components is zero. As for the magnitude estimation error,
the MMV-BCS algorithm is also much better than the MMV-OMP algorithm. When the frequency
interval between the 10 kHz supraharmonic component and the 10.2 kHz supraharmonic component
is only one ∆

′
f , the MMV-BCS algorithm can also reconstruct them, which improves the accuracy by a

factor of 15 when the interpolation factor is set to 10.
As discussed above, when one supraharmonic component is not at the high-resolution spectrum

grid, the supraharmonic component is reconstructed on the nearest two spectrum grids by the
MMV-BCS algorithm with one frequency interval ∆

′
f . However, when the frequencies of two

supraharmonic components are integer multiples of the improved frequency resolution ∆
′
f and

with just one frequency interval ∆
′
f under a certain interpolation factor, the MMV-BCS algorithm

can also reconstruct them with high accuracy. How to distinguish the two types of spectrum grids is
important. Here, the normalized inner product (NIP)-based decision criterion is introduced. The NIP
coefficient is defined as

ρ = | < a, b >

||a||2||b||2
|, (32)

where a = [an,1, an,2, · · · , an,L] and b = [an+1,1, an+1,2, · · · , an+1,L] are the spectrum vectors on the left
and right grids respectively with one frequency interval ∆

′
f .

When the NIP coefficient is bigger than 0.5, the two spectrum vectors belong to one supraharmonic
component, whose frequency is not integer multiples of the improved frequency resolution ∆

′
f .

Otherwise, the two spectrum vectors belong to two independent supraharmonic components that are
on the spectrum grids with just one frequency interval ∆

′
f . Using (32), it is found in this example that,

the NIP coefficient between the 10 kHz spectrum vector and the 10.2 kHz spectrum vector is 0.0152.
The NIP coefficient between the 29.8 kHz spectrum vector and the 30 kHz spectrum vector is 0.9963,
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and the NIP coefficient between the 50 kHz spectrum vector and the 50.2 kHz spectrum vector is 0.9978.
The results support the above NIP criterion well.

From the above discussion, under the interpolation factor F set to 10, the MMV-BCS algorithm
can improve the frequency resolution by an order-of-magnitude compared with DFT, and can mitigate
the spectrum leakage significantly. The minimum frequency interval between two supraharmonic
components that the MMV-BCS algorithm can reconstruct accurately is reduced from 1.5∆ f to just
one frequency resolution interval ∆

′
f , i.e., 200 Hz. The frequency estimation error obtained by the

MMV-BCS algorithm is zero and is independent of the supraharmonic component frequency location.
The magnitude error obtained by the MMV-BCS algorithm is also much better than that of the
MMV-OMP algorithm.

In order to further check the performance of the MMV-BCS algorithm, the reconstruction errors
versus the number of spectrum vectors L and noise standard deviation δ at different b values are
shown in Figure 4. Note the calculation is made with a fixed frequency of 10 kHz. The reconstruction
error is evaluated by ‖y− ŷ‖2 / ‖y‖, y is the set vector, ŷ is the reconstructed vector obtained by the
MMV-BCS algorithm.

(a) (b)

Figure 4. Reconstruction error for 10 kHz suparharmonic component resulting from different values of
parameter b. (a) Number of spectrum vectors L vs. Reconstruction errors, (b) Noise standard deviation
δ vs. Reconstruction errors.

From Figure 4a, when the number of spectrum vectors increases, the reconstruction error is
stable, and the reconstruction error is proportional to b. It can be seen from Figure 4b that the
reconstruction error increases with the noise standard deviation δ. When the value of b is set below 10,
the reconstruction error will not be affected by the parameter b.

As discussed, the MMV-OMP algorithm requires the orthogonality between the basis functions
in any subset of the sensing matrix D. As a consequence, increasing the interpolation factor to
improve the frequency resolution will lead to non-orthogonality and hence an incorrect signal
reconstruction. Therefore the interpolation factor F cannot be much larger than an order of 10.
To further verify the frequency resolution improvement capability of the MMV-BCS algorithm, the
stationary model is modified correspondingly. As the interpolation factor F increases, the frequency
of the 10 kHz suparharmonic component is changed to 10 kHz plus ∆

′
f under different interpolation

factor F. Therefore, the suparharmonic components are always on the grid in the high-resolution
spectrum. The frequency of the 50.1 kHz suparharmonic component is randomly assigned in
(50 kHz, 50 kHz + ∆

′
f ) under different interpolation factor F, therefore the suparharmonic component

is off the grid in the high-resolution spectrum. The reconstruction errors, estimation errors are shown
in Figure 5.

From Figure 5a, with the interpolation factor F increasing to 100, the on-grid reconstruction
error for the 10 kHz plus ∆

′
f suparharmonic component is basically unchanged. For the off-grid
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suparharmonic component randomly in (50 kHz, 50 kHz + ∆
′
f ) in the high-resolution spectrum,

the reconstruction error decreases as the interpolation factor F increases. The off grid reconstruction
error is slightly larger than the on grid reconstruction error. This proves that by increasing the
interpolation factor F to 100, the MMV-BCS algorithm can improve the frequency resolution by a factor
of 100 compared to the DFT, and by an order of magnitude compared to the MMV-OMP algorithm.
The magnitude estimation errors and the frequency estimation errors for the off-grid suparharmonic
component randomly in (50 kHz, 50 kHz + ∆

′
f ) are shown in Figure 5b. The magnitude estimation

errors and the frequency estimation errors are relatively small, i.e., the maximum magnitude estimation
error is 0.0112 a.u., the minimum magnitude estimation error is zero. For the frequency estimation
error, the maximum error is 6 Hz, the minimum error is 0 Hz, which is about 20 times better than the
MMV-OMP algorithm.

(a) (b)

Figure 5. Frequency resolution improvement resulting from different interpolation factor F.
(a) Interpolation factor F vs. Reconstruction errors, (b) Interpolation factor F vs. Estimation errors.

3.2. Supraharmonic Magnitude-Modulated Model

In this subsection, a magnitude-modulated model is constructed with six supraharmonic
components, written as

x(n) = ∑
sh

Ash[1 + km cos(2π fmnTs)] cos(2π fshnTs + θsh) (33)

where Ash, fsh and θsh are the magnitude, frequency and initial phase of each supraharmonic
component, respectively. km is the magnitude modulation factor and fm is the modulation frequency.

In this model, the frequencies of the six supraharmonic components are 10 kHz, 20.2 kHz, 29.8 kHz,
50.2 kHz, 70.2 kHz and 90.2 kHz, and the magnitude of each supraharmonic component corresponds
to the magnitude listed in Table 3. The modulation frequency is set to fm = 300 Hz and the magnitude
modulation factor is set to km = 0.1. To simulate the intermittent characteristics of a PV inverter,
the 50.2 kHz supraharmonic component outputs only one quarter of the time in 200 ms.

As normal, the 200 ms signal is divided into 400 small data blocks, and then all the data blocks are
transformed into spectrum vectors using DFT with the frequency resolution of 2 kHz.

The interpolation factor F is set to 10. The noise standard deviation δ is set to 0.02 a.u., and the
parameters a and b are set as a = 102/std(abs(y))2, b = 1. The convergence threshold ε is set to
10−8. The MMV-BCS algorithm is applied to enhance the frequency resolution for the 400 sets of
spectrum vectors and to mitigate spectrum leakage. The reconstructed frequency and magnitude of
each supraharmonic component are calculated by (28) and (29). The reconstructed 3-D spectrogram
and magnitude fluctuating characteristics of three supraharmonic components with time are shown in
Figure 6.
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(a) (b)

(c)

Figure 6. Reconstructed high-resolution spectrum with interpolation factor F set to 10. (a) 3-D
spectrogram reconstructed by MMV-BCS algorithm, (b) Fluctuating characteristic of supraharmonic
components with time, (c) DFT spectrum of the 200 ms signal with 5 Hz frequency resolution.

Figure 6a is the 3-D spectrogram reconstructed using the MMV-BCS algorithm with a 200 Hz
frequency resolution, and the reconstructed results are consistent with the set values. From Figure 6a,
the supraharmonic components contained in the signal and fluctuating characteristics of each
supraharmonic component with time can be clearly represented. In Figure 6b, the fluctuating
characteristics of three supraharmonic components in the model are presented, and the 50.2 kHz
supraharmonic component has an intermittent characteristic. The DFT spectrum of the 200 ms
signal is shown Figure 6c. Although the frequency resolution is 5 Hz, it is impossible to reflect
the fluctuation characteristics of the supraharmonic components, and there is also a serious spectrum
leakage. Since the spectrum calculates the average value of 200 ms, for the 50.2 kHz supraharmonic
component, the magnitude is a quarter of the set magnitude in Figure 6b, only about 0.2 a.u. Obviously,
if DFT analysis is used, it could yield a misleading supraharmonic amplitude estimation when the
signal is not continuous. This could cause unexpected interference and malfunction for the electrical
device if the supraharmonic source is not located and filtered. The MMV-BCS algorithm can address
such issues successfully.

4. Applications

Taking a typical supraharmonic emission source-PV inverter as an example, the MMV-BCS
algorithm proposed in this paper is used to perform supraharmonic analysis on the output signal.
The switching frequency of the PV inverter is about 10 kHz, and the PV inverter emits supraharmonic
components at the switching frequency and its integer multiples. The current of the PV inverter is
recorded by a YOKOGAVA DL850E recorder and a CAE3N current clamp with a sampling frequency
of 500 kHz.
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To avoid contributions from the fundamental component of the current signal in the PV inverter,
the intercepted 200 ms sampling signal is filtered to remove the fundamental component with a
Chebyshev II high-pass digital filter recommended by IEC 61000-4-30, as shown in Figure 7, which is
the magnitude frequency response characteristic curve of the Chebyshev II high-pass digital filter.
The cut-off frequency is set to 2 kHz, and the stop-band attenuation is −60 dB. Using this filter, 99.9 %
of the fundamental component is filtered out.

Figure 7. Magnitude frequency response curve of the Chebyshev II high-pass digital filter.

The filtered signal is divided into 400 small data blocks with 0.5 ms, and then an array of 400
sets of spectrum is obtained using the DFT. In order to balance frequency resolution and calculation
accuracy, the interpolation factor is set to 20. Then the DFT frequency vectors are analyzed using the
MMV-BCS algorithm proposed in this paper. The spectrogram of the PV inverter is shown in Figure 8.

(a) (b)

Figure 8. Reconstructed high-resolution spectrum for a PV inverter with interpolation factor F set to
20. (a) 3-D spectrogram reconstructed by MMV-BCS algorithm, (b) The average spectrum of 400 sets of
high-resolution spectrum.

Figure 8a is the 3-D spectrogram of the supraharmonics obtained by the MMV-BCS algorithm
with a 100 Hz frequency resolution. The spectrum leakage can be mitigated significantly. It can
be seen that the PV inverter emits supraharmonics at the switching frequency of 10 kHz and its
integer multiples, and the magnitude of each supraharmonic component still has a common periodic
fluctuating characteristic, which is a resonance phenomenon caused by an LC filter at the output
unit of the PV inverter. From the 3-D spectrogram of the displayed 200 ms, it can be seen that the
modulation frequency is about 300 Hz, and the magnitude modulation factor is about 0.1. Figure 8b is
the average spectrum of 400 sets of high-resolution spectra. The frequency and magnitude of the main
supraharmonic components obtained by the MMV-BCS algorithm are listed in Table 4.
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Table 4. Calculation results of the PV inverter.

No. Frequency (Hz) Magnitude (A)

1 10,000 0.9126
2 20,000 0.1090
3 30,000 0.2640
4 39,000 0.1206
5 50,000 0.3758
6 59,700 0.0395
7 60,900 0.0699
8 70,000 0.1138
9 90,000 0.0984

10 109,900 0.0793
11 130,000 0.0570
12 150,000 0.1366

It can be seen that the PV inverter emits supraharmonics at the switching frequency of 10 kHz
and its integer multiples. Furthermore, the magnitude of the supraharmonic components gradually
decreases as the frequency increases. Besides that, there are also some side-band components around
each supraharmonic component.

Here, we use another supraharmonic emission source, a wireless electric vehicle (WEV) charger.
The input current of the WEV charger is recorded by a HIOKI MR8875 recorder and CT9692 current
clamp with a sampling frequency of 100 kHz. Similarly, a high-pass filter is used to remove the
fundamental and harmonic components below 2 kHz, and the signal after filtering is divided into 100
small data blocks with 2 ms data length. All the data blocks are transformed to a spectrum domain
by DFT with a frequency resolution of 500 Hz. The interpolation factor F is set to 20, and hence the
frequency resolution is improved to 25 Hz. The parameters of the MMV-BCS algorithm are set the same
as above PV example. By applying the MMV-BCS algorithm to the multiple DFT spectrum vectors,
100 sets of high-resolution supraharmonic spectrum vectors are reconstructed with an enhancement
frequency resolution of 25 Hz. The spectrogram and the average spectrum are shown in Figure 9.

(a) (b)

Figure 9. Reconstructed high-resolution spectrum for a wireless electric vehicle charger with the
interpolation factor F set to 20. (a) 3-D spectrogram reconstructed by MMV-BCS algorithm, (b) The
average spectrum of 100 sets of high-resolution spectra.

Figure 9a is the 3-D spectrogram of the supraharmonics obtained by the MMV-BCS algorithm
with a 25 Hz frequency resolution, and it can be seen that the spectrum leakage can be suppressed
significantly compared to the DFT algorithm. There are two main supraharmonic components,
and the magnitude of each supraharmonic component has a fluctuating characteristic. Figure 9b
is the average spectrum of the reconstructed 100 sets of high-resolution spectra. Two major peaks are
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obtained: at 15.97 kHz, the magnitude of the supraharmonic component is 0.7134 A, and at 31.93 kHz,
the magnitude of the supraharmonic component is 0.7925 A. Some adjacent small supraharmonic
components are also successfully detected.

5. Conclusions

In this paper, using the RVM and a hierarchical Bayesian model, a new supraharmonic
high-resolution reconstruction algorithm, MMV-BCS, is proposed. The new algorithm can
simultaneously achieve high-resolution reconstruction for multiple spectrum vectors.

Experiments and applications show that the MMV-BCS algorithm can improve the frequency
resolution by two order-of-magnitude compared with DFT and by one order-of-magnitude compared
with the MMV-OMP algorithm without increasing the observation time. The MMV-BCS algorithm has
zero frequency estimation error when the supraharmonics are on the high-resolution spectrum grid.
While the supraharmonics are off-grid in the high-resolution spectrum grid, the algorithm can also
reconstruct them with high accuracy. The frequency estimation error is about 20 times less than the
frequency estimation error of the MMV-OMP algorithm. The minimum frequency interval between
two supraharmonic components that the MMV-BCS algorithm can reconstruct with high accuracy is
only one frequency resolution interval, which is at least 15 times better than the MMV-OMP algorithm.
Besides, tests show the MMV-BCS algorithm can also handle the analysis of a magnitude-modulated
supraharmonic signal.

The MMV-BCS algorithm can measure supraharmonic accurately and shows good application
prospects in troubleshooting, emission limit setting and mitigation of supraharmonics. Since the
iterative process of the algorithm is still complicated, it is the next research direction to study a more
efficient and fast Bayesian compressed sensing reconstruct algorithm.
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Appendix A.

For convenience, we define the following variables. D is used below only to comprise the basis
functions in the current model, the number of the basis functions in D at the current step is denoted as
Mt, j ∈ [1, M] is used to index the single basis for which β j is to be updated, k ∈ [1, Mt], and l ∈ [1, M]

ranges over all basis functions. We define Ki = N + 2a, and updated quantities are denoted by a
tilde. In order to realize the calculation of complex spectrum using the algorithm, the matrix power
in the following equations are changed into the form of the Hadamard product of the matrix and its
conjugate matrix.

Appendix A.1. Add a Basis Function to the Model

2∆Li = log
β j

β j + si,j
− Kilog(1−

q2
i,j/gi,j

β j + si,j
) (A1)

Σ̃i =

[
Σi + Σi,(jj)ΣiDHdjdH

j DΣi −Σi,(jj)ΣiDHdj

−Σi,(jj)(ΣiDHdj)
H Σi,(jj)

]
(A2)

µ̃i =

[
µi − µi,jΣiDHdj

µi,j

]
(A3)

S̃i,l = Si,l − Σi,(jj)(d
H
l ei,j)

2 (A4)
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Q̃i,l = Qi,l − µi,j(dH
l ei,j) (A5)

G̃i = Gi − Σi,(jj)(y
H
i ei,j)

2 (A6)

where Σi,(jj) = (β j + Si,j)
−1 is the j th diagonal element of Σi, µi,j = Σi,(jj)Qi,j and ei,j = dj −DΣiDHdj

Appendix A.2. Re-Estimate a Basis Function in the Model

2∆Li = (Ki − 1)log(1 + Si,j(β̃−1
j − β−1

j )) + Kilog
[(β j + si,j)gi,j − q2

i,j]β̃ j

[(β̃ j + si,j)gi,j − q2
i,j]β j

(A7)

Σ̃i = Σi − γi,kΣi,kΣH
i,k (A8)

µ̃i = µi − γi,kµi,kΣi,k (A9)

S̃i,l = Si,l + γi,k(Σ
H
i,kDHdl)

2 (A10)

Q̃i,l = Qi,l + γi,kµi,k(Σ
H
i,kDHdl) (A11)

G̃i = Gi + γi,k(Σ
H
i,kDHyi)

2 (A12)

where Σi,k is the k th column of Σi , and γi,k = (Σi,(kk) + (β̃ j − β j)
−1)−1 .

Appendix A.3. Delete a Basis Function from the Model

2∆Li = −Kilog(1 +
Q2

i,j/Gi

β j − Si,j
)− log(1−

Si,j

β j
) (A13)

Σ̃i = Σi −
1

Σi,(kk)
Σi,kΣH

i,k (A14)

µ̃i = µi −
µi,k

Σi,(kk)
Σi,k (A15)

S̃i,l = Si,l +
1

Σi,(kk)
(ΣH

i,kDHdl)
2 (A16)

Q̃i,l = Qi,l +
µi,k

Σi,(kk)
(ΣH

i,kDHdl) (A17)

G̃i = Gi +
1

Σi,(kk)
(ΣH

i,kDHyi)
2 (A18)
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