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SUMMARY
We present a consensus atlas of the human brain transcriptome in Alzheimer’s disease (AD), based onmeta-
analysis of differential gene expression in 2,114 postmortem samples. We discover 30 brain coexpression
modules from seven regions as the major source of AD transcriptional perturbations. We next examine over-
lap with 251 brain differentially expressed gene sets from mouse models of AD and other neurodegenerative
disorders. Human-mouse overlaps highlight responses to amyloid versus tau pathology and reveal age- and
sex-dependent expression signatures for disease progression. Human coexpression modules enriched for
neuronal and/or microglial genes broadly overlap with mouse models of AD, Huntington’s disease, amyotro-
phic lateral sclerosis, and aging. Other human coexpression modules, including those implicated in proteo-
stasis, are not activated in AD models but rather following other, unexpected genetic manipulations. Our re-
sults comprise a cross-species resource, highlighting transcriptional networks altered by human brain
pathophysiology and identifying correspondences with mouse models for AD preclinical studies.
INTRODUCTION

Alzheimer’s disease (AD) is a progressive and incurable neuro-

degenerative disorder, with rapidly increasing prevalence due

to population aging and no disease-modifying interventions

(Scheltens et al., 2016). At autopsy, AD is characterized by extra-

cellular amyloid plaques and intraneuronal neurofibrillary tan-
This is an open access article und
gles, composed of misfolded and aggregated amyloid-beta

(Ab) peptide and microtubule-associated protein tau (MAPT or

tau), respectively. The mechanisms by which this AD pathologic

cascade is triggered and propagated remain incompletely

defined and are likely influenced by heterogeneous and dynamic

perturbations involving multiple biological pathways. Besides

synaptic and neuronal loss, AD pathology is also accompanied
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by changes in astrocytic and microglial cells, and human

genome-wide association studies (GWASs) support a causal

role for immune mechanisms (Jansen et al., 2019; Kunkle

et al., 2019; Raj et al., 2014). Results from RNA sequencing

(RNA-seq) of human postmortem brain tissue further reinforce

the importance of microglial and inflammatory mechanisms in

AD pathogenesis, among other pathways (Allen et al., 2018;

Conway et al., 2018; McKenzie et al., 2017; Patrick et al.,

2017; Wang et al., 2016, 2019; Zhang et al., 2013).

Comparedwith transcriptome profiles in human brains, mouse

models allow controlled experimental manipulations that can be

used to establish causation, isolate the effects of specific molec-

ular lesions, and investigate for dynamic, age-dependent

changes. A large number of ADmouse models have been exten-
2 Cell Reports 32, 107908, July 14, 2020
sively characterized, and these systems have contributed to our

understanding of disease pathogenesis (Götz et al., 2018; Jan-

kowsky and Zheng, 2017; LaFerla and Green, 2012). The most

widely used transgenic models express mutant forms of the am-

yloid precursor protein (APP) gene, with or without presenilin-1/2

(PSEN1/2), which are associated with autosomal-dominant,

early-onset AD, or, alternatively, MAPT mutations, which cause

familial frontotemporal dementia (FTD). These models recapitu-

late features of AD neuropathology, including plaques or tangles,

along with variable degree of neuronal dysfunction or loss and

progressive behavioral impairment (Ballatore et al., 2007; Es-

querda-Canals et al., 2017). More recently, gene expression

profiling, including RNA-seq, has been applied to elucidate brain

transcriptome signatures in mousemodels. These investigations

mailto:zhandonl@bcm.edu
mailto:joshua.shulman@bcm.edu
mailto:lara.mangravite@sagebionetworks.org
mailto:ben.logsdon@sagebionetworks.org
mailto:ben.logsdon@sagebionetworks.org
https://doi.org/10.1016/j.celrep.2020.107908


Table 1. AD Cases and Controls Included in This Study

Study Total Subjects Tissue

AD Control

Total SamplesFemale Male Female Male

Mayo 179 CBE 47 32 35 37 151

TCX 49 31 35 36 151

MSSM 164 FP 63 27 23 22 135

IFG 55 24 17 20 116

PHG 47 18 18 20 103

STG 57 28 20 17 122

ROSMAP 241 DLPFC 109 46 47 39 241

Total 584 318 160 148 152 778

Counts (n) of AD case and control subjects and derived samples used for differential expression analysis. CBE, cerebellum; TCX, temporal cortex; FP,

frontal pole; IFG, inferior frontal gyrus; PHG, parahippocampal gyrus; STG, superior temporal gyurs; DLPFC, dorsolateral prefrontal cortex. See Table

S1 for details of the 2,114 samples included in the coexpression network analyses.
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have similarly highlighted the potential importance of immune or

inflammatory and neuronal or synaptic changes (Boisvert et al.,

2018; Castanho et al., 2020; Cummings et al., 2015; Gjoneska

et al., 2015; Matarin et al., 2015; Rothman et al., 2018; Stephen-

son et al., 2018; Swartzlander et al., 2018). Although some

studies have identified selected overlaps in expression changes

between AD mouse models and human brains (Bennett et al.,

2018; Castillo et al., 2017; Mostafavi et al., 2018; Neuner et al.,

2019; Rojo et al., 2017), other studies have questioned the over-

all degree of conservation (Burns et al., 2015; Galatro et al., 2017;

Hargis and Blalock, 2017).

The Accelerating Medicines Partnership-Alzheimer’s Disease

(AMP-AD) Consortium has generated RNA-seq profiles from

more than 1,200 human brains and is applying systems biology

approaches toward the goal of elucidating AD mechanisms

and potential therapeutic targets. Here, we perform ameta-anal-

ysis including all available AMP-AD RNA-seq datasets and sys-

tematically define correspondences between gene expression

changes associated with AD in human brains and those caused

by controlled experimental manipulations in mouse models,

including studies relevant to AD, other neurologic disorders,

brain health, and aging. Our results constitute a powerful refer-

ence of transcriptome perturbations in AD, highlight sex as an

important driver, and identify strengths and limitations among

currently available mouse models.

RESULTS

A Consensus Atlas of AD-Associated Transcriptional
Modules from Human Brain
Because transcript abundance is highly influenced by multiple

sources of technical and biological variation, we first evaluated

the consistency and robustness of findings across three inde-

pendent human brain transcriptome studies (ROSMAP [Reli-

gious Orders Study and the Memory and Aging Project],

MSSM [Mount Sinai School of Medicine], and Mayo), consisting

in total of 2,114 samples from 1,234 subjects (Table S1). Human

postmortem brain RNA-seq data were obtained from seven

distinct regions: dorsolateral prefrontal cortex (DLPFC), tempo-

ral cortex (TCX), inferior frontal gyrus (IFG), superior temporal gy-
rus (STG), frontal pole (FP), parahippocampal gyrus (PHG), and

cerebellum (CBE). We applied a stringent definition of AD (n =

478 cases), requiring both a clinical diagnosis and neuropatho-

logic confirmation (Table 1). All control brains (n = 300) were

devoid of significant AD pathology, and in two of the three co-

horts, control subjects were clinically confirmed as non-

demented. To identify transcriptional modules associated with

AD, we integrated differential expression and network coexpres-

sion analyses. First, we performed both random- and fixed-ef-

fects meta-analyses (DerSimonian and Laird, 1986; Mantel and

Haenszel, 1959) of differential expression across the brain re-

gions, defining as many as 2,355 upregulated and 2,130 down-

regulated transcripts in AD brains (Table 2; Supplemental Infor-

mation). Next, we performed coexpression analysis using five

distinct algorithms (see STAR Methods), generating 2,978 brain

region-specific coexpression modules (CBE, n = 498; DLPFC,

n = 450; FP, n = 393; IFG, n = 429; PHG, n = 370; STG, n =

336; TCX, n = 502) (Supplemental Information). As expected,

similar overall coexpression was observed in each brain region

dataset independent of the algorithm used, based on gene over-

lap among modules (padj < 0.05, Fisher’s exact test). In order to

define consensus modules that were differentially expressed in

AD, we first restricted our analysis to individual modules that

were significantly enriched for the differentially expressed genes

(DEGs) from the meta-analysis (padj < 0.05, Fisher’s exact test

from either the fixed- or random-effects model results). We

next applied graph clustering (Pons and Latapy, 2005) to define

brain region-specific consensus modules based on patterns of

shared module gene membership. This analysis culminated in

30 AD-associated modules across the seven tissue types

(CBE, n = 4; DLPFC, n = 4; FP, n = 4; IFG, n = 4; PHG, n = 5;

STG, n = 4; TCX, n = 5), with module sizes ranging from 504 to

4,673 genes (mean 2,090) (Figures S1A–S1E).

Evaluation across tissues demonstrated that these 30 mod-

ules fell into five distinct ‘‘consensus clusters’’ that were highly

preserved across study and tissue type and demonstrated min-

imal overlap (henceforth denoted clusters A–E) (Figure 1A; Fig-

ure S1). Indeed, further analysis of the consensus clusters re-

vealed significant conservation across brain regions, with

clusters A, B, and C each demonstrating a mean gene overlap
Cell Reports 32, 107908, July 14, 2020 3



Table 2. Differential Gene Expression Meta-Analysis Results

Sex

Meta-Analysis

Model

Upregulated

Genes

Downregulated

Genes

All fixed 2,355 2,130

random 1,773 1,577

Females fixed 3,114 2,847

random 2,211 2,036

Males fixed 1,450 1,210

random 845 567

The total number of AD-associated up- or downregulated genes are

noted (false discovery rate [FDR] < 0.05 and mean expression fold

change > 0.2) from joint and sex-stratified meta-analysis.
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of 83% (SE 0.035) among the constituent modules (i.e., propor-

tion of genes that are shared at least once across modules in the

cluster). Consensus clusters D and E had a slightly lower mean

overlap of 77% (SE 0.030) in gene set membership among the

constituent modules. Compared with the 30 AD-associated

modules, other non-associated coexpression modules were

less conserved across brain regions (see Figure S2A; Supple-

mental Information). Modules also included a minority of ‘‘pri-

vate’’ genes (not seen in other modules within clusters), identi-

fying potential unique regional signatures across the brain.

Coexpression modules derived from CBE showed the highest

number of private genes, potentially consistent with its distinct

cellular architecture (Figure S1).

We next evaluated consensus clusters for enrichment of cell

type-specific gene signatures (Figure 1B), using expression-

weighted cell type enrichment analysis (Skene and Grant,

2016) and a human single-cell RNA-seq reference dataset

(Lake et al., 2018). Consensus clusters were enriched for astro-

cytes and pericytes (clusters A and B), endothelial cells (B), mi-

croglia (B), neurons (C and E), oligodendroglia (D), and oligoden-

droglial precursors (A and D). We obtained consistent results for

overlaps using Fisher’s exact test (Figure S2B) and leveraging a

complementary cell type reference dataset from mouse brains

(Zhang et al., 2014) (Figure S2C). Despite the significant over-

laps, we note that cell type-specific signatures constitute a mi-

nority of genes within each large cluster. Clusters A–E are also

enriched for a diversity of biological processes (Figure 1C; Sup-

plemental Information). Notably, consensus cluster E was en-

riched for multiple gene sets involved in the regulation of proteo-

stasis, including both the heat shock and unfolded protein

responses (Table S2). Last, based on linkage disequilibrium

(LD) score regression method in MAGMA (de Leeuw et al.,

2015), multiple cluster B modules were significantly enriched

for AD GWAS loci (Kunkle et al., 2019) (Figure 1D).

As expected, several of the consensus clusters generated by

our meta-analysis recapitulate molecular networks reported in

prior analyses restricted to the constituent datasets. For

example, independent analyses of RNA-seq from the Mayo

and MSSM cohorts previously identified AD-associated coex-

pression modules enriched for oligodendrocyte expression sig-

natures (Allen et al., 2018; McKenzie et al., 2017), and these

gene sets significantly overlappedwith consensus cluster D (Fig-

ure 1C).We also examined a coexpressionmodule (m109) signif-
4 Cell Reports 32, 107908, July 14, 2020
icantly associated with both AD pathology and rate of cognitive

decline based on an independent analysis of RNA-seq data from

the ROSMAP cohort (Mostafavi et al., 2018). Interestingly, m109

showed significant overlap with four of the five consensus clus-

ters (Figure 1C), suggesting that it may represent a coordinated

brain transcriptional response involving multiple cell types. Last,

we examined an AD-associated coexpression module enriched

for RNA-binding proteins that was previously nominated from

human brain proteomics (Johnson et al., 2019). This gene set

significantly overlapped with cluster C, suggesting that it may

be coregulated with neuronal genes.

Overlaps with AD Mouse Models
To enable cross-species comparisons, we uniformly reproc-

essed brain RNA-seq data from 96 distinct mouse studies rele-

vant to AD, other neurodegenerative disorders, aging, and

related mechanisms (Figure 2; Table S3). We next curated 376

unique experimental comparisons (genetic manipulation versus

control condition). After applying quality control filters (gene

membership > 10, fold change > 1.2, false discovery rate <

1%; see also STAR Methods), we define 251 sets of significant

DEGs comprising brain ‘‘gene expression signatures’’ (mean

1,385 genes, range 10–12,393) characteristic of each mouse

model comparison (Table S4; Supplemental Information). These

expression profiles encompass 25,181 unique transcripts

among 52,873 total in the mouse transcriptome. The curated

expression signatures capture a combination of disease-specific

and overlapping features characteristic of the heterogeneous

mouse models included in this study, on the basis of t-weighted

stochastic neighbor embedding (t-SNE) plots (Figure 2C). Even

among mouse models within the same disease category, the

overall extent of gene overlap among the corresponding sets

of DEGs was modest (Figure S3A); therefore, the included com-

parisons sample a wide spectrum of brain transcriptional re-

sponses. We next evaluated the overlap between each mouse

expression signature and the 30 human AD-associated brain

consensus coexpression modules defined by our meta-analysis.

Overall, we detected 1,569 significant overlaps (padj < 0.01), with

the majority (68%) of experimental comparisons having gene

expression changes that corresponded to multiple human mod-

ules (mean 6 overlapping modules per mouse model DEG set)

(Figure 3; Table S5). As expected,mostmouseDEG sets showed

consistent overlaps with human modules that fell within

consensus clusters A–D. We next assessed whether the direc-

tion of gene expression changes in mouse and human brains

was concordant, that is, whether transcriptional perturbations

are phased in the same direction (both up- or downregulated).

Indeed, the majority (77%) of overlapping gene expression sig-

natures were concordant in direction across species (Figure 3).

For example, cluster B genes were consistently upregulated in

humanADbrain transcriptomes andmouse ADmodels, whereas

cluster C genes were predominantly downregulated. The excep-

tional discordant modules (e.g., FPturquoise and DLPFCyellow

in clusters B and C, respectively) may highlight coregulated

gene sets with greater temporal or regional fluctuations over

the disease course. Last, 28 of 30 human coexpression modules

significantly overlapped (padj < 0.01) with at least one mouse

model expression signature. In sum, our results support broad



Figure 1. Human Consensus RNA-Seq Coexpression Modules
(A) Gene set overlap (Fisher’s exact test p value) was examined among 30 AD-associated coexpression modules, highlighting five consensus clusters (A, B, C, D,

and E).

(B) Coexpression modules were evaluated using expression-weighted cell type enrichment analysis based on human single-cell RNA-seq.

(C) Coexpression modules were examined for overlap (Fisher’s exact test) with curated AD gene sets from GeneCards, Panther, the Database of Genotypes and

Phenotypes (dbGaP), IGAP, Online Mendelian Inheritance in Man (OMIM), Biocarta, Wikipathways, and the Kyoto Encyclopedia of Genes and Genomes (KEGG).

We also evaluated overlap with coexpression modules derived from the constituent cohorts, including oligodendroglial modules identified by Mayo and MSSM,

module 109 from ROSMAP, and an RNA-binding protein rich module from Emory.

(D) Coexpression module enrichment for AD susceptibility gene candidates from GWAS, based on MAGMA. Consensus cluster B modules appear strongly

enriched for AD risk loci.
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conservation of gene regulatory systems in the mammalian

brain, highlighting that many AD-associated brain expression

patterns are recapitulated in mouse experimental models.

Our reprocessed dataset includes 53 expression signatures

from 12 distinct AD transgenic models, including multiple APP

and MAPT transgenic strains (Figure 4A). Human microglial-
and neuronal-enriched clusters (B and C, respectively) strongly

overlapped with expression signatures from mouse models of

AD (Figures 4A–4C). For example, module FPturquoise from

cluster B significantly overlapped (padj < 1 3 10�5) with the ma-

jority of expression signatures from both APP (66%) and MAPT

(67%) mouse models. Although overlaps with cluster C modules
Cell Reports 32, 107908, July 14, 2020 5



Figure 2. Cross-Species Study Design and Data

(A) Analytic design for examining overlaps between 30 Alzheimer’s disease (AD)-associated human coexpression modules and differentially expressed gene sets

from 376 experimental comparisons in mouse models.

(B) Ninety-six mouse studies were selected based on relevance to AD and other neurodegenerative disorders. Distribution of keywords is shown among all

studies. RNA-seq was reprocessed using a standard pipeline. See Table S3 for details on all included mouse studies.

(C) The differentially expressed gene sets represent mouse models of AD, Huntington’s disease (HD), frontotemporal dementia-amyotrophic lateral sclerosis

(FTD-ALS), spinocerebellar ataxia 1 (SCA1), Rett syndrome (RETT), Parkinson’s disease (PD), Creutzfeldt-Jakob disease (CJD), neurofibromatosis (NF), or other

neurodegenerative mechanisms. A t-distributed stochastic neighbor embedding (t-SNE) plot including all mouse differential expression signatures highlight both

disease-specific and overlapping features among heterogeneous neurodegenerative models.

See also Figure S3.
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(e.g., PHGbrown) weremore restricted, significant overlaps were

still observed in a substantial proportion of AD mouse models

(22% and 25% of APP and MAPT models, respectively). In

most cases, attenuation of cluster C gene expression and activa-

tion of cluster B appeared to be mutually exclusive (Figures 4A

and 4C). Interestingly, coincident changes in both cluster B

and cluster C module genes (Figure 4A, circles) were character-

istic of selected MAPT strains and were also seen in the CDK5-

P25 mouse, which similarly develops extensive tau pathology

and brain atrophy (Cruz et al., 2003). This overlap pattern was

only rarely seen among the APP models (1 of 34 DEG sets).

Potentially consistent with late microgliosis, APP and MAPT

mouse expression signatures demonstrated stronger overlaps

with cluster B modules at more advanced stages of brain pathol-

ogy (Figure 4A). Reciprocally, the human cluster Cmodules over-
6 Cell Reports 32, 107908, July 14, 2020
lapped expression signatures from mouse models with compar-

atively mild pathologic burden, suggestive of early-stage

synaptic and neuronal dysfunction. RNA-seq profiles generated

from multiple aged time points allow examination of dynamic

changes in human overlap patterns for selected ADmodels (Fig-

ure 4C). For example, in the TgCRND8 APP transgenic mouse,

cluster B module activation was seen by 6 months, and this

signature was sustained at 12 months. In contrast, in the

rTg4510 MAPT mouse model, transient gene expression

changes overlapping cluster C human modules either preceded

or accompanied the appearance of cluster B expression signa-

tures (M239–M244; Figure 4A, arrowheads, and Figure 4C, bot-

tom). Compared with cluster B and C modules, overlaps be-

tween AD mouse model expression signatures and clusters A,

D, and/or E were more sparsely detected (Figure 4A). For



Figure 3. Overview of Human-Mouse Overlaps and Concordance

Heatmaps show overlap (top) and concordance (bottom) among 30 human coexpression modules (rows) and 251 sets of differentially expressed genes (DEGs;

columns) from mouse model comparisons. The average sample size is 8.4 (range 4–28 total samples). Mouse-human overlap significance, calculated using the

hypergeometric test, is represented in grayscale (�log10[padj]). Direction (red/blue) and extent of concordance (intensity) for gene expression changes are also

indicated (bottom). The color bar at the top annotates all DEGs based on whether they derive from Alzheimer’s disease (AD) models (pink), other neurode-

generativemodels (purple), or other experimentalmanipulations potentially relevant to ADmechanisms (orange). The color bar at left denotes cluster membership

(A–E). Cluster E modules (brown, asterisk) show sparse overlap with AD mouse model DEGs. See Tables S4, S5, and S6 for details on all experimental com-

parisons and comprehensive results.
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example, TCXyellow and STGyellow—two cluster D modules

similarly enriched for oligodendroglial expression signatures

including genes with roles in sphingolipid metabolism—showed

selective overlap with aged APP transgenic models (e.g.,

TgCRND8 [M247], 5xFAD [M223, M224], and PS2APP [M145])

(Figure 4A, squares; Figure S4).

Sex-SpecificExpressionSignatures inHumans andMice
Prior observations in ADmousemodels (Jiao et al., 2016) and hu-

man epidemiology (Altmann et al., 2014; Li and Singh, 2014;

Mayeux and Stern, 2012) have implicated sex as a modifier of

AD manifestation and progression. In selected cases, our

cross-species analyses provided consistent evidence of a sex-

by-age interaction. Compared with males, female rTg4510

mice demonstrated overlaps with human coexpression modules

consistent with accelerated progression in brain transcriptional

changes (Figure 4C, bottom). Specifically, compared with male

mice, for which downregulated genes (M242) do not show over-

laps with cluster Cmodules until 4.5 months, genotype-matched

female mice (M239) exhibited similar changes at 2.5 months.

Furthermore, beginning at 4.5 months, upregulated genes from

females also showed a strong overlap with cluster B modules.

These results suggest that sex may modify age- and AD pathol-

ogy-dependent progression of brain expression changes.

We next repeated our differential expression meta-analysis of

human RNA-seq data and stratified by sex (Table 1). Strikingly,

we observed �2.5 times more DEGs in women than in men,

consistent with other recently published work (Mathys et al.,

2019). Sex-specific DEGs also showed evidence of heteroge-

neous overlaps among the coexpression modules (Figure 4D).

For example, clusters C and D were significantly and selectively

enriched for female-specific DEGs. Although clusters A and B

overlapped with DEGs from either sex, approximately 3-fold

increased enrichment was seen for female DEGs compared
with male DEGs. In contrast, male-specific DEGs exhibited pref-

erential overlapping with cluster E. Specifically, upregulated

transcripts from male subjects selectively overlapped cluster E

modules, whereas downregulated cluster E transcripts showed

stronger enrichment for female DEGs. Overall, results from

both human brains and mouse models suggest that sex has a

strong influence on brain gene expression changes in AD.

Overlaps with Aging and Other Disease Expression
Signatures
Numerous mechanistic parallels have been recognized between

AD and other neurodegenerative disorders, including similar pro-

tein aggregate pathologies, proteostatic and oxidative stress,

neuroinflammation, and the critical role of aging in disease risk

and/or progression (Block and Hong, 2005; Bucciantini et al.,

2002; Guo and Lee, 2014; Haass and Selkoe, 2007; Nixon,

2005; Ross and Poirier, 2004). We therefore examined for over-

lap between human AD coexpression modules and expression

signatures from mouse experimental models for other neurode-

generative disorders, including Huntington’s disease (HD), FTD-

amyotrophic lateral sclerosis (ALS), Parkinson’s disease, spino-

cerebellar ataxia 1 (SCA1), Creutzfeldt-Jakob disease (CJD) and

Rett syndrome, along with data from aged, wild-type mice

mouse strains (Figure 5; Figure S5). Similar to APP/MAPT trans-

genic mice, most other neurodegenerative disease mouse

models strongly activated expression signatures overlapping

with the cluster B and cluster C modules from human brain.

For example, PHGbrown (cluster C) overlaps with mouse brain

expression signatures from models of HD (M94, padj = 2.5 3

10�10), FTD-ALS (FUS) (M173, padj = 4.8 3 10�6), SCA1 (M155,

padj = 1.53 10�18), and CJD (M200, padj = 6.03 10�32). Similarly,

FPturquoise (cluster B) significantly overlaps with DEGs from

models of FTD-ALS (TDP43) (M24, padj = 2.0 3 10�42),

CJD (M199, padj = 3.7 3 10�18), and Rett syndrome (M198,
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Figure 4. Human Coexpression Module Overlaps with AD Mouse Models

(A) Heatmaps show overlap (top, hypergeometric test) and concordance (bottom) among human coexpression modules and sets of differentially expressed

genes (DEGs) from Alzheimer’s disease (AD) mouse models. Mouse-human overlap significance, calculated using the hypergeometric test, is represented in

grayscale (�log10[padj]). The color bar at the top denotes APP (pink), MAPT (orange), or other (purple) model comparisons. The estimated pathologic burden

(plaques/tangles and neuronal loss) in APP andMAPTmodels is also annotated in green. Cluster Emodules (brown, asterisk) show sparse overlap with ADmouse

models. Selected overlaps are denoted as follows: squares, APP models with oligodendrocyte-enriched module overlaps; cross-hatches, CRND8-APP models

showing sustained activation of microglial modules from 6 months onward; arrowhead, transient activation of neuronal modules in TG4510-MAPT model pre-

ceding microglial module overlap; circles, co-activation of neuronal and microglial modules. See Tables S4 and S5 for details on all experimental comparisons,

including sample sizes and genotypes, alongwith comprehensive results. See Figure S4 for duplicated panel including detailedmodel annotations. See Figure S6

for additional analysis of overlap specificity.

(B) Representative overlaps of human modules with mouse DEGs. The hypergeometric test was applied to assess significance. Gene counts are noted in black,

including for overlapping and non-overlapping regions. To assess concordance between human brains and mouse models, gene counts are shown, noting

increased (red) or decreased expression (blue), including for the human coexpression module and the overlapping mouse gene set. M147 was derived from

Srinivasan et al. (2016).

(C) Mousemodel overlaps highlight age- and sex-dependent changes. Increasing (red) or decreasing (blue) gene expression andmagnitude of changes shown as

overlap (%) between the mouse DEG set and module. Cell type module clusters are denoted by colors at panel bottom, as in (A).

(D) Enrichment of human sex-specific DEGs from random-effects meta-analysis among coexpression modules. Consensus cluster C shows downregulation in

AD among females.
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padj = 3.1 3 10�3) and more selectively in HD (M81, padj = 1.1 3

10�4) and SCA1 (M151, padj = 5.3 3 10�5) models. Therefore,

these signatures likely represent common brain transcriptome

responses induced by diverse neurodegenerative triggers.

Indeed, we found that genes implicated in immune biology and

inflammation constitute those recurring most frequently among

the 251mouse gene expression signatures included in this study

(Figure S3B), consistent with the overlaps seen for cluster B,

which is significantly enriched for microglial expression signa-

tures. Importantly, expression signatures from aged, wild-type

mice also show significant overlaps with human coexpression

modules from clusters B (M56, M219), C (M194), or both B and

C concurrently (M220, M221) (Figure 5). For example, compared

with 3 month controls, hippocampal tissue from 24-month-old
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mice (M56) exhibited expression signatures overlapping with

cluster B module FPturquoise (padj = 2.9 3 10�17). Overall, our

results suggest that these patternsmay not be specific for neuro-

degenerative disease, but rather may accompany brain aging

more generally. We next examined for any human coexpression

modules with overlaps showing relative specificity for ADmouse

models. Although none showed absolute specificity, we found

that FPblue and TCXyellow, both from the oligodendroglial-en-

riched cluster D, are strongly activated in selected AD models

(e.g., M145, M247, M223, M65 in Figure 4) but show compara-

tively sparse or weak overlap with expression signatures from

the majority of other neurodegenerative disease models. Thus,

these modules may encompass transcriptional programs that

are preferentially activated by AD pathophysiology.



Figure 5. Overlaps with Other Mouse Models

(A) Heatmaps show overlap among human coexpression modules and sets of differentially expressed genes (DEGs) from mouse models, including pure aging,

neurodegenerative disorders, and other experimental manipulations. HD, Huntington’s disease; FTD-ALS, frontotemporal dementia-amyotrophic lateral scle-

rosis; SCA1, spinocerebellar ataxia 1; CJD, Creutzfeldt-Jakob disease. Mouse-human overlap significance, calculated using the hypergeometric test, is rep-

resented in grayscale (�log10[padj]). Overlaps between HD model expression signatures (Langfelder et al., 2016) and neuronal gene-enriched human coex-

pressionmodules recapitulate polyglutamine length (M100, Q92 versusM94, Q175) and brain region dependence (M100/M94, striatum versusM72/M81, cortex).

Other manipulations generate signatures similar to AD models, including PTCH1 knockout (M183) (Ung et al., 2018), nmf205 (M182) (Ishimura et al., 2016), and

neuroserpin mutant (M205) (Guadagno et al., 2017). Modules poorly enriched for cell type signatures (asterisk, right) show selected overlaps with FTD-ALS

models (M28, M43; Ibrahim et al., 2013, and Lagier-Tourenne et al., 2013, respectively) and other, unexpected genetic manipulations (M158, M111, M54, and

M156; Vied et al., 2016, Maze et al., 2015, Narayanan et al., 2014, and Holmes et al., 2016, respectively). See Tables S5 and S6 for comprehensive results,

including sample sizes for all comparisons. See Figure S5 for comprehensive heatmaps representing overlaps with HD, FTD-ALS, SCA1, and aging models.

(B) Representative overlaps of human modules with mouse DEGs, as in Figure 4B. The hypergeometric test was applied to assess significance.
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In order to further assess AD specificity of the consensusmod-

ules defined in our analysis, we examined pairwise overlaps with

published RNA-seq coexpression modules among 700 human

brains from subjects with neuropsychiatric disorders (autism,

schizophrenia, bipolar disorder, depression, and alcoholism)

(Gandal et al., 2018). Interestingly, virtually all cluster D modules

failed to overlap with modules showing significant associations

with neuropsychiatric disorders (Figure S6A) and were therefore

‘‘AD specific.’’ Similar but less extreme evidence for specificity

was seen for cluster E modules. In contrast, AD consensus clus-

ters B and C strongly overlapped with several neuropsychiatric

coexpression modules similarly enriched for microglial and

neuronal expression signatures, respectively. For example,

module CD11, whichwas increased in autism, overlapped signif-

icantly with AD cluster B module FPturquoise (padj = 1.3 3

10�136) (Figure S6B). As expected, the genes in CD11 overlap-

ped with DEGs from multiple mouse models (M241, padj =

5.4 3 10�29; M24, padj = 5.3 3 10�12; M219, padj = 8.1 3

10�12), consistent with overlaps seen for consensus cluster B.
Thus, rather than representing specific disease pathophysi-

ology, these modules more likely represent a shared response

pattern to diverse forms of brain injury, consistent with their over-

laps with expression signatures from heterogeneous mouse dis-

ease models and aging. In contrast, other modules show pat-

terns of overlap with mouse AD models that are strikingly

divergent from those of the AD consensus clusters. For example,

although CD12 strongly overlaps with cluster B, the overlaps

with mouse models are more sparse than those seen in CD11.

As the modules from Gandal et al. (2018) are much smaller

than the AD consensus modules, they may represent subnet-

works within the larger consensus clusters that are less strongly

activated in AD mouse models.

Non-obvious Mouse Models of AD
Our analyses also included many additional mouse genetic ma-

nipulations relevant to neurodegenerative mechanisms (Fig-

ure 2). Indeed, several non-AD mouse models showed overlaps

with human AD modules mimicking those of canonical AD mice
Cell Reports 32, 107908, July 14, 2020 9
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(Figure 5). For example, the C57BL6/J (B6J)-nmf205 mouse

(M182) overlaps significantly with modules from consensus clus-

ters B and C (FPturquoise, padj = 6.4 3 10�6, and PHGbrown,

padj = 9.6 3 10�39, respectively), behaving similarly to MAPT

transgenics (M230, M243) and CDK-P25 mice (M64, M65). The

C57BL6/J (B6J)-nmf205 mouse model has mutations in both

the translation GTPase GTPBP2 and the neuronal tRNAArg
UCU

genes that cause neurodegeneration through ribosomal stalling

(Ishimura et al., 2014, 2016). In another example, expression of

a mutant form of neuroserpin in mouse neural progenitor cells

(Guadagno et al., 2017) activates a transcriptional signature

(M205) that significantly overlapped with cluster A module IF-

Gyellow (padj = 8.1 3 10�17) as well as FPblue (Figure 5B;

padj = 4.7 3 10�6), a cluster D module showing some selectivity

for AD transgenic models (above). Autosomal-dominant muta-

tions in neuroserpin cause familial encephalopathy with

Neuroserpin inclusion bodies, a rare, early-onset neurodegener-

ative dementia caused by protein aggregation within the endo-

plasmic reticulum (ER) and associated ER stress (Roussel

et al., 2013).

Of the 30 human AD-associated coexpression modules, a mi-

nority showed virtually no overlap with AD mouse model brain

expression signatures (Figure 4A, asterisk). These modules,

largely corresponding to consensus cluster E, are strong candi-

dates to represent features of AD pathobiology that are poorly

recapitulated by existing AD mouse models. As discussed

earlier, these modules showed comparatively poor enrichment

for cell-type expression signatures (Figure 1B; Figure S2) and

were similarly not well represented among curated AD pathways

(Figure 1C), based on gene set enrichment analyses. Interest-

ingly, our cross-species analyses highlight a number of other,

unexpected mouse model expression signatures that overlap

these modules (Figure 5). For example, conditional knockout of

the DNA methyltransferase, DNMT1 (M54), in the mouse brain

(Narayanan et al., 2014) activates a set of DEGs that significantly

overlapped (padj = 1.4 3 10�11) with a human module, IFGblue,

enriched for unfolded protein response and DNA repair pathway

genes. In another example, brain RNA-seq from a Gnasxl-defi-

cient mouse (Holmes et al., 2016) (M156) overlapped with

FPbrown, a coexpression module (padj = 5.4 3 10�9) enriched

for genes involved in oxidative phosphorylation and mitochon-

drial translation. Interestingly, Gnas, which encodes a G-protein

alpha stimulatory subunit, is a complex, imprinted genomic locus

implicated in hypothalamic control of energy balance. Loss of

the Gnasxl isoform causes a hypermetabolic mouse phenotype,

resulting in growth retardation, hypoglycemia, and reduced

adiposity (Nunn et al., 2013).

DISCUSSION

Weprovide a systems-level molecular model of the AD transcrip-

tional state in human brains. Our results highlight five dominant

consensus clusters representing robust and reproducible pat-

terns of coexpression patterns in brains affected by AD. These

signatures are consistently observed across multiple cohorts

and several brain regions and were identified by multiple inde-

pendent coexpression algorithms. We further define correspon-

dences between 30 humanADbrain consensus gene expression
10 Cell Reports 32, 107908, July 14, 2020
networks and 251 mouse experimental comparisons, including

models relevant to AD, other neurologic disorders, and aging.

Overall, our meta-analysis of AD-associated gene dysregulation

in human brains, along with the complementary cross-species

comparisons in mouse models, provides a powerful resource

to guide target selection and validation strategies.

Mouse genetic models have contributed enormously to our

understanding of AD pathophysiology (Ballatore et al., 2007; Es-

querda-Canals et al., 2017); however, the utility of these mice as

robust preclinical models for AD has been challenged (Drum-

mond and Wisniewski, 2017; Onos et al., 2016; Sasaguri et al.,

2017). First, most AD mouse models are based on rare forms

of familial autosomal-dominant AD, which are caused by single,

highly penetrant gene mutations. In contrast, late-onset AD

arises from dozens of other risk variants, including many with

modest effect sizes (Karch et al., 2014; Kunkle et al., 2019),

perhaps in combination with non-genetic risk factors. Second,

unlike mouse models, most brain autopsies from individuals

with AD show evidence of heterogeneous, mixed pathologies

that likelymodify disease onset, manifestations, and progression

(Kapasi et al., 2017). Third, it has been suggested that widely

used mouse behavioral assays may be poor predictors of clini-

cally relevant outcomes in humans.

We find that many transgenic mice, including both APP and

MAPT models, manifest gene expression signatures that signif-

icantly overlap with AD-associated coexpression modules from

human brains. The most robust overlaps were detected among

modules enriched for microglial and neuronal genes (clusters B

and C). These findings are consistent with prior reports of similar

expression signatures detected from human postmortem AD

brain tissue (Conway et al., 2018; Grubman et al., 2019; Mathys

et al., 2019; Mostafavi et al., 2018; Zhang et al., 2013) or from AD

mouse models (Cummings et al., 2015; Gjoneska et al., 2015;

Matarin et al., 2015). However, consensus clusters B and C ac-

count for only 14 of 30 coexpression modules (47%) and do

not appear to be specific for AD pathophysiology. In contrast,

a substantial minority of human AD coexpression modules had

little to no detectable overlap with available AD mouse models.

Among these, consensus cluster E includes signatures for

certain inhibitory and excitatory cortical neuronal subtypes and

was enriched for genes that regulate proteostasis. The overlaps

we define highlight those molecular features of AD biology reca-

pitulated by current mousemodels. In contrast, non-overlapping

modules may identify dimensions of AD pathophysiology that

are poorly captured. We conclude that most AD mouse models

show overall poor correspondence to human disease, based

on brain transcriptomes, with the exception of neuronal and mi-

croglial-enriched coexpression modules. This is an important

caveat for the interpretation of studies using these animal

models and may explain in part their poor predictive power as

preclinical models for AD. Our findings are consistent with a

complementary study of mouse data from gene expression ar-

rays (Hargis and Blalock, 2017).

Our analyses also highlight the value of experimental models

for interpretation of human brain transcriptome profiles. Ana-

lyses considering either cross-sectional or longitudinal datasets

similarly suggest that transcriptional changes overlapping hu-

man brain neuronal-enriched modules (cluster C) may represent
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an earlier, transient stage of AD. In contrast, our results suggest

that cluster B modules, strongly enriched for microglial expres-

sion signatures, constitute a subsequent and more sustained

AD endophenotype. Nevertheless, cluster B genes significantly

overlap with candidate susceptibility loci from AD GWASs

(Kunkle et al., 2019), which, along with other studies (Sala Fri-

gerio et al., 2019), strongly suggests that although these

changes may occur subsequent to disease onset, they are

likely causal, perhaps affecting progression. Transition points

between human-mouse overlaps can be linked to the manifes-

tation of disease-relevant mouse phenotypes. For example,

CRND8 APP mice reveal reduced synaptic markers and hippo-

campal neuronal loss at 6 months, when overlaps are first de-

tected with cluster B modules (Adalbert et al., 2009; Brautigam

et al., 2012). Similarly, in Tg4510 MAPT transgenics evaluated

at 4 and 6 months, respectively, memory task impairment

and neurodegenerative pathology correspond to sequential

activation of neuronal and microglial expression patterns

(Blackmore et al., 2017; Ramsden et al., 2005). As human brain

RNA-seq can be evaluated only at the time of death, there are

significant challenges to resolve age-dependent changes or to

definitively establish links with clinical-pathologic progression.

Collection of mouse RNA-seq from additional time points

may therefore accelerate discovery of improved AD progres-

sion biomarkers and ultimately pinpoint critical windows for

therapeutic interventions. Our cross-species approach also

highlights the significant impact of sex on the AD brain tran-

scriptome. Based on gene expression profiles, female AD

mice progress more rapidly than males, and in a sex-stratified

analysis of human brain gene expression, females demon-

strated quantitatively greater transcriptional changes. Our re-

sults are consistent with prior observations in both mice (Jiao

et al., 2016) and humans (Altmann et al., 2014; Li and Singh,

2014; Mayeux and Stern, 2012; Mathys et al., 2019; Sala Fri-

gerio et al., 2019).

Aging is the strongest known AD risk factor. Using a distinct

analytic design and largely independent datasets, Hargis and

Blalock (2017) reported that DEGs were concordant between

aging in humans and rodent models, a conclusion supported

by our analysis. Strikingly, the majority of AD-associated human

brain coexpression modules overlapping with APP and/orMAPT

transgenic mouse models were also seen in aged, wild-type

mice, aswell asmany other diseasemodels. This result suggests

that many human brain gene expression changes associated

with AD, including neuronal- and microglial-enriched modules

reported in other studies (Conway et al., 2018; Mostafavi et al.,

2018; Zhang et al., 2013), may represent common transcriptional

programs activated by the aging process itself. Rather than rep-

resenting a specific signature of AD pathophysiology (e.g., Ab- or

tau-mediated mechanisms), these pathways appear to be acti-

vated by heterogeneous triggers, including those manipulated

in mouse models of HD, ALS, SCA1, and other neurodegenera-

tive disorders. Interestingly, several module overlap patterns still

revealed possible disease-specific signatures. For example,

several modules enriched for oligodendroglial markers

(consensus cluster D) showed relatively specific overlap with

AD mouse models, particularly APP transgenic models, and

related human brain coexpression networks have previously
been implicated in AD in multiple studies (Allen et al., 2018;

McKenzie et al., 2017; Mostafavi et al., 2018). Alternatively, coin-

cident activation of both neuronal- andmicroglial-enrichedmod-

ules was seen preferentially in models characterized by signifi-

cant tau pathologic burden. In contrast to AD and other

neurodegenerative diseasemodels, nearly all differential expres-

sion signatures from HD mice (35 of 37) (Langfelder et al., 2016)

failed to overlap with microglial-enriched coexpression modules

(Figure S5).

Our study has several notable limitations. First, as the overall

correlation of the brain transcriptome and proteome is modest

(Seyfried et al., 2017), it will be important in future work to

consider whether human-mouse gene expression overlaps are

improved at the protein level. Second, although our meta-ana-

lytic approach was designed to identify signatures of disease

that are robust to technical and study-specific heterogeneity,

it is possible that we could miss relevant gene sets with more

modest coexpression or uneven representation across studies

because of sample ascertainment differences. Furthermore,

the resulting large size of the human consensus modules may

limit sensitivity to detect significant overlaps using the hyper-

geometric test, especially for functional pathways represented

by smaller gene sets. Compared with the laboratory preparation

of mouse mRNA, the extraction and processing of human brain

tissue is likely more susceptible to postmortem artifact,

although our analyses adjusted for sample variability in post-

mortem interval. Moreover, the human RNA-seq data, along

with the majority of included mouse studies, derive from bulk

brain tissue, which includes mixed cell types. Indeed, most of

the human coexpression modules are strongly enriched for

cell type-specific signatures, which may therefore reflect global

changes in cell proportions, such as neuronal loss or microglio-

sis. The growing availability of single-cell expression profiles

can definitively address this concern. In addition, as the extent

and tempo of neurodegeneration, including in both human and

mouse models, can vary widely across different brain regions,

RNA-seq profiles from whole brain might obscure more local-

ized transcriptome overlaps. Last, although we selected nearly

100 independent mouse RNA-seq studies for inclusion in our

analyses, prioritizing those most relevant to AD and neurode-

generation, we omitted many others with the potential to pro-

vide additional insights. In the future, our approach can thus

be generalized to an even broader sample of available mouse

data.

The strengths of our study include coexpression modules

based on more than 2,000 human brain samples and consider-

ation of a large and diverse number of mouse studies. All

mouse RNA-seq data were reprocessed using a single, com-

plementary pipeline to facilitate cross-species and cross-model

comparisons. Importantly, unlike comparisons based on pa-

thology or behavioral phenotypes, brain expression profiles

likely represent more proximal endophenotypes, potentially af-

fording greater sensitivity and reliability for detection of cross-

species overlaps. In fact, we highlight several overlaps with

transcriptomic endophenotypes from completely unexpected

mouse experimental manipulations that manifest brain expres-

sion changes that mimic human AD and in some cases

even overlap coexpression modules better than currently
Cell Reports 32, 107908, July 14, 2020 11
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available AD mouse models. Such ‘‘AD transcriptologs’’—

mouse models based on transcriptome homology—may

pinpoint non-obvious experimental models for future investiga-

tion of AD pathophysiology.
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Python v.2.7.12 N/A https://www.python.org/

HGNC Comparison of Orthology Predictions

(HCOP)

N/A https://www.genenames.org/tools/hcop
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for data or other resources should be directed to and will be fulfilled by the Lead Contact, Benjamin

A. Logsdon (ben.logsdon@sagebionetworks.org).

Materials Availability
This study did not generate new unique reagents.

Data and code availability
All study data is available on the AMP-AD Knowledge Portal (https://doi.org/10.7303/syn2580853). The complete list of deposited

data (with links), software, and relevant algorithms is provided in the Key Resources Table. Specifically, all original and re-processed

RNA-seq data for the ROSMAP, MSBB, and Mayo clinic cohorts are available, along with the results of our differential expression

meta-analysis across the three cohorts and 7 brain regions. Comprehensive results for coexpression analysis (2978modules) gener-

ated using 5 algorithms across 7 brain regions in the three cohorts are also provided, along with the resulting aggregate AD coex-

pression modules (30 modules). Lastly, we also have deposited all data from the reprocessing of mouse model RNA-seq, along

with the associated differential expression analysis, and complete results of mouse-human overlaps. An R package with all code

for the metanetwork algorithm is available at https://github.com/Sage-Bionetworks/metanetwork, and a toolkit for integrating meta-

network with AWS high performance compute cluster cfncluster, and Synapse is also made available (https://github.com/

Sage-Bionetworks/metanetworkSynapse). All code used to generate aggregate modules and figures are available in this R package:

https://github.com/Sage-Bionetworks/AMPAD, with the following notebook collating the primary results: https://github.com/

Sage-Bionetworks/AMPAD/blob/master/manuscript.Rmd.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subject data
Details of sample collection, postmortem sample descriptions, tissue and RNA preparation, library preparation and sequencing, and

sample QC are provided in previously published work (Allen et al., 2016; De Jager et al., 2018; Wang et al., 2018). Overall, the com-

bined cohort consisted of 2,114 total samples from 1,234 subjects (Table 1; Table S1), including 478 AD cases, 300 controls (without

AD pathology), and 456 subjects with progressive supranuclear palsy or other neurodegenerative pathologies. Sub-samples were

selected to harmonize the late onset AD (LOAD) case - control definition across the three studies for all differential expression ana-

lyses. To compare analysis results across studies and to get an understanding of LOAD biology across different tissues, we harmo-

nized the LOAD definition across three studies. The motivation was to define LOAD cases as those with both clinical and neuropath-

ological evidence for definitive late onset Alzheimer’s disease - i.e., a high burden of neurofibrillary tangles, neuritic amyloid plaques,

and cognitive impairment with little evidence of other pathology (Jack et al., 2018). Controls were concordantly defined as patients

with a low burden of plaques and tangles, as well as no evidence of cognitive impairment if available. As such, for the ROSMAP study,

we had individuals with a Braak neurofibrillary tangle (NFT) score (Braak et al., 2006) greater than or equal to 4, CERAD score less than

or equal to 2, and a cognitive diagnosis of probable AD with no other causes as LOAD cases, Braak less than or equal to 3, CERAD

score greater than or equal to 3, and cognitive diagnosis of ‘no cognitive impairment’ as LOAD controls. For MSBB, we analogously

defined LOAD cases as those with CDR score greater than or equal to 1, Braak score greater than or equal to 4, and CERAD neuritic

and cortical plaque score greater than or equal to 2 as LOADcases, andCDR scores less than or equal to 0.5, Braak less than or equal

to 3, and CERAD less than or equal to 1 as LOAD controls. It is to note here that the definitions of CERAD differs between ROSMAP

andMSBB studies. For theMayoClinic RNASeq study, cases were defined based on neuropathology, with LOAD cases being based

on Braak score greater than or equal to 4 and CERAD neuritic and cortical plaque score greater than 1 whereas LOAD controls being

those defined as Braak less than or equal to 3, and CERAD less than 2. Further details concerning the diagnosis in theMayo RNASeq

study have been previously published (Allen et al., 2018). Summary of sample sizes of AD cases and controls are shown in Table 1.

Mouse Experimental Model Data
Figure 2 depicts the overall analysis pipeline for collecting and processing mouse studies, and examining overlaps with human coex-

pression modules. A total of 96 studies, encompassing data from 2279 mouse tissue samples, were analyzed (Table S3). These data
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were collected from three sources: the Gene Expression Omnibus (GEO) database (83 studies), the AMP-AD Knowledge portal

(syn5550383) (6 studies), and through personal communication (7 studies). We searched the GEO database on September 12,

2017 using the keywords ‘‘brain,’’ ‘‘mouse,’’ and ‘‘expression profiling by high throughput sequencing,’’ identifying 881 studies for

initial consideration. All studies were next indexed using high frequency terms, and secondary filtering was based on manually

curated keywords relevant to AD pathophysiology (Karch et al., 2014) (Table S3). Lastly, the filtered list of 349 studies was reviewed

by the study team.We excluded studies, or in some cases specific samples, involving (1) tissue source other than nervous system, (2)

organisms other than mouse, or (3) non-coding RNA. From the remainder, 79 GEO studies were selected for inclusion based on rele-

vance to AD, neurodegeneration, or related mechanisms. All included studies had publicly available RNA-seq data derived from

either mouse brain or brain-derived cell lines. Following these initial searches, we discovered only a single eligible RNA-seq study

for analysis of aging-associated expression changes (GSE61915). Given the importance of aging in AD, we identified and included

an additional 5 expression array profiling studies related to brain aging. Table S4 details all studies included in this analysis, including

data source, citations, and relevant keywords.

METHOD DETAILS

As our study exclusively involves the analysis of previously generated data, all relevant further method details are described below.

Human RNA-Seq Reprocessing, library normalization and covariates adjustment
To avoid some of the technical variabilities arising due to RNA-seq alignment and quantification, and also to account for some of the

technical variabilities we reprocessed and realigned all the RNA-Seq reads from the source studies (Allen et al., 2016; De Jager et al.,

2018;Wang et al., 2018). The reprocessingwas done using a consensus set of tools with only library type-specific parameters varying

between pipelines. Picard (https://broadinstitute.github.io/picard/) was used to generate FASTQs from source BAMs. Generated

FASTQ reads were aligned to the GENCODE24 (GRCh38) reference genome using STAR (Dobin et al., 2013) and gene counts

were computed for each sample. To evaluate the quality of individual samples and to identify potentially important covariates for

expressionmodeling,wecomputed twosets ofmetrics using theCollectAlignmentSummaryMetrics andCollectRnaSeqMetrics func-

tions in Picard. To account for differences between samples, studies, experimental batch effects and unwanted RNA-Seq specific

technical variationsweperformed library normalization and covariate adjustments for each study separately using fixed/mixed effects

modeling. Theworkflow consists of the following steps: (i) gene filtering: Genes that are expressedmore than 1CPM (readCounts Per

Million total reads) in at least 50%of samples in each tissue and diagnosis category was used for further analysis, (ii) conditional quan-

tile normalization was applied to account for variations in gene length and GC content, (iii) sample outlier detection using principal

component analysis and clustering, (iv) Covariates identification and adjustment,where confidence of sampling abundancewere esti-

mated using aweighted linearmodel using voom-limmapackage in bioconductor (Ritchie et al., 2015). Formost analyses, we perform

a variant of fixed/mixed effect linear regression as shown here: gene expression �Diagnosis + Sex + covariates + (1| Donor) or gene

expression�Diagnosis x Sex + covariates + (1|Donor), where each gene is linearly regressed independently with Diagnosis, a variable

explaining the AD status of an individual, identified covariates, and donor information as a random effect. Observation weights (if any)

were calculated using the voom-limma (Ritchie et al., 2015) pipeline such that observationswith higher presumedprecisionwill be up-

weighted in the linear model fitting process. All workflows were applied separately for each of the three studies.

Network Inference and Module Identification
We apply 5 distinct network module identification methodologies to each of the 7 tissue specific expression datasets. This includes

MEGENA (Song and Zhang, 2015), WINA (Wang et al., 2016), metanetwork, rWGCNA (Parikshak et al., 2016), speakEasy (Gaiteri

et al., 2015), and a novel ‘‘metanetwork’’ algorithm to characterize a comprehensive landscape of transcriptomic variation across

the seven brain regions and three studies. Briefly, MEGENA (Song and Zhang, 2015) is a method that infers a sparse graph based

on a distance to define multiscale module definitions from coexpression data. Speakeasy is a label propagation method to identify

robust coexpression modules that are identified both top up and bottom down (Gaiteri et al., 2015), rWGCNA is a version of WGCNA

(Langfelder and Horvath, 2008) that includes bootstrapping to identify robust modules, WINA is also a variation on WGCNA that in-

cludes a modified tree cutting method to identify modules (Wang et al., 2016).

The metanetwork inference methodology is inspired by the DREAM5 method (Marbach et al., 2012), where ensemble inference

methodologies were identified as more robust for identification of gene-gene interactions from coexpression data. We constructed

a statistical network of gene co-expression using an ensemble network inference algorithm. Briefly, we apply nine distinct gene co-

expression network inferencemethodologies ARACNE (Margolin et al., 2006a), Genie3 (Huynh-Thu et al., 2010), Tigress (Haury et al.,

2012), Sparrow (Logsdon et al., 2015), Lasso (Krämer et al., 2009), Ridge (Krämer et al., 2009), mrnet (Meyer et al., 2007), c3net (Altay

and Emmert-Streib, 2010) and WGCNA (Langfelder and Horvath, 2008) and rank the edge lists from each method based on the

method specific edgeweights, identify amean rank for each edge acrossmethods, then identify the total number of edges supported

by the data with Bayesian Information Criterion for local neighborhood selection with linear regression. We identify metanetwork

modules in each tissue type based on the inferred network topology with a consensus clustering algorithm (Wilkerson and Hayes,

2010) applied to multiple individual module identification methods. We ran individual network clustering methods applied to each

of the seven network topologies. These methods included CFinder (Adamcsek et al., 2006), GANXiS (Gaiteri et al., 2015), a fast
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greedy algorithm (Clauset et al., 2004), InfoMap (Rosvall and Bergstrom, 2008), LinkCommunities (Ahn et al., 2010), Louvain (Blondel

et al., 2008), Spinglass (Traag and Bruggeman, 2009), andWalktrap (Pons and Latapy, 2005), methods. All implementations are from

the igraph package (Csardi et al.) in R.

Aggregate human coexpression module identification
For all 2978modules identified across tissues, we first identify whichmodules are enriched for > = 1 AD specific differential expressed

gene set from the DEG meta-analysis (see below). This restricts the total number of individual modules to 660 that show evidence of

differential expression as a function of disease status. Next, we construct a within tissue module graph using a Fisher’s exact test for

pairwise overlap of gene sets between each pair of these 660 individual modules. We then apply the edge betweenness graph clus-

tering method (Pons and Latapy, 2005) to identify aggregate modules from these module graphs that represent meta modules that

are both differentially expressed and identified bymultiple independentmodule identification algorithms.With this approachwe iden-

tify 30 aggregate module definitions across the seven tissue types and three studies (see Data and code availability).

In order to test the cross-region andcross-study robustnessof theseADassociated consensusclusters,webuilt aggregatemodules

fromall of the individual modules generated for each brain region then compared thesemodules to the AD associated aggregatemod-

ules (Figure S2A). We find that there is significant overlap between the AD associated aggregate modules (AD) and the modules con-

structed with all individual modules (All) into the five consensus clusters. Those modules non-associated with AD do not show similar

conservation across brain region, increasing confidence that the AD-associated modules are robust to technical and study artifacts.

Mouse RNA-seq re-processing
A unified RNA-seq analysis pipeline was used for reprocessing of all datasets, with the exception of 2 HD studies where count files

were downloaded directly from GEO. Data processing leveraged the cloud formation cluster at Amazon Web Services. We first

created one EC2 master instance (m3.xlarge) which was used to launch hundreds of EC2 computing nodes (c3.8xlarge). Next,

each computing node was assigned to process one sample using our customized RNA-seq pipeline, as implemented using Snake-

make v.4.8.0 (Köster and Rahmann, 2012). For samples in AMP-AD studies, the pipeline begins with downloading BAM files from the

AMP-ADKnowledge Portal using the Synapse python client. The BAMfiles are then converted to fastq files using Picard SamToFastq

command v.2.18.2 (http://broadinstitute.github.io/picard). For GEO studies, SRA files were downloaded from the database using the

GEOquery R package v.2.42.0 (Davis and Meltzer, 2007), and fastq files were generated using the fastq-dump command from the

NCBI SRA toolkit v2.8.2.1 (Andrews, 2010). Alignment to the mouse reference genome GRCm38 (mm10) was implemented using

STAR v.2.5.1b (Dobin et al., 2013), and BAM file reads were subsequently sorted by coordinate using samtools v0.1.5 (Li et al.,

2009). Genes were quantified using either HTSeq v0.6.0 (Anders et al., 2015) or using the ‘quantMode’ option from the STAR aligner

which utilizes HTSeq algorithm and produces similar results. Results were uploaded to the Synapse portal using the python client.

Nomenclature for annotation of mouse differentially expressed gene sets
To facilitate ease of use and repurposing of the data, each mouse DEG set was assigned a unique identifier (M###), and we also

developed a descriptive nomenclature for annotation. Each gene set received a label taking the form: category_experimental con-

dition_sex_age_brain region_cell type_ transgene. In this standardized annotation, ‘‘category’’ denotes the relevant neurologic dis-

ease (e.g., AD, HD, SCA, ALS) or ‘‘other’’ for gene manipulations not directly linked to human disease, along with the specific ‘‘exper-

imental condition’’ describing the mouse genotype or treatment condition. We also note ‘‘sex’’ (M or F), ‘‘age’’ (months), and where

applicable, ‘‘brain region’’ (e.g., hippocampus), ‘‘cell type’’ (e.g., neuron, microglia). In the case of AD mouse models, we also anno-

tate ‘‘transgene,’’ to differentiate ‘‘APP,’’ ‘‘Tau’’ (MAPT), or ‘‘other’’ models. If unknown or not applicable, the relevant field(s) are re-

placed with ‘‘na.’’ These annotations and conventions are used throughout our supplementary tables and files. The estimated path-

ologic burden (plaques/tangles and neuronal loss) in APP and MAPT models was annotated based on Alzforum (https://www.

alzforum.org/research-models/) (Table S4).

QUANTIFICATION AND STATISTICAL ANALYSIS

Meta-Differential expression analysis on human expression profiles
All the differential and meta-differential expression analysis were performed as weighted fixed/mixed effect linear models using the

voom-limma (Ritchie et al., 2015) package in R. For each gene, linear regression was fit with biological and technical covariates that

were associated with the top principal components of the expression data, as identified above. Two of the three studies - MSBB and

Mayo RNaseq - obtained more than one tissue from the same donors. Therefore, except the ROSMAP study, donor-specific effects

were explicitly modeled as random effects. Different models were built for understanding the effects of diagnosis and sex-specific

diagnosis effects. Depending on the model, coefficients related to either diagnosis or diagnosis times sex was statistically tested for

being non-zero, implying an estimated effect for the primary variable of interest is above and beyond any other effect from the co-

variates. This test produces a t-statistic (then moderated in a Bayesian fashion) and corresponding p value. P values were then

adjusted for multiple hypothesis testing using false discovery rate (FDR) estimation, and the differentially expressed genes were

determined as those with an estimated FDR below, or at, 5% with a corresponding absolute expression and fold-change cutoffs.

To identify genes with evidence for change in expression across studies, we next performed a meta-analysis using a random effect
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and fixed effect models using rmeta r package (https://cran.r-project.org/web/packages/rmeta/index.html). The random effect

model was selected as a conservative approach to correct for variation across studies. Sample size and characteristics of data

included in the differential expression analyses are detailed in Table 1.

Human coexpression module enrichment analysis
Aggregate modules were interpreted using functional and cell type enrichment analysis. We performed a battery of enrichment tests

to understand biological functionality, including evaluating primary hypotheses previously implicated by genetic findings in AD

research, performing exploratory analyses of a large number of gene sets, and performing enrichment for brain tissue specific cell

types. Among gene sets, we considered curated AD genes from GeneCards (Safran et al., 2010), Panther (Mi et al., 2017), dbGaP

(Tryka et al., 2014), IGAP (Lambert et al., 2013), OMIM (Amberger et al., 2015), Biocarta (Nishimura, 2001), Wikipathways (Kutmon

et al., 2016), and KEGG (Kanehisa et al., 2017). We also examined cell type markers from a mouse bulk brain tissue RNaseq atlas

(Zhang et al., 2014) and human single-cell RNaseq (Lake et al., 2018). AMP-AD specific gene sets were constructed by taking the

union of gene set definitions reported in each of the following reports: RNA-binding protein modules (Johnson et al., 2018), oligoden-

droglial modules from MSSM (McKenzie et al., 2017), AD versus Control oligodendroglial modules in the Mayo RNaseq study (Allen

et al., 2018), and Module 109 from the ROSMAP study (Mostafavi et al., 2018). Genes not measured in our data are filtered from the

annotated gene sets. Annotated gene sets with less than 10% of genes expressed in our datasets were removed. Fisher’s exact test

was used to test enrichment of each gene set with the annotated set. Resulting p values were corrected independently for each set

using Benjamini-Hochberg method for significance testing, owing to the differences in their hypothesis. Gene sets that had a min-

imum overlap of at least 3 genes were considered for further interpretation.

Differential expression analysis of mouse RNA-seq/microarray
Differential gene expression analysis was conducted using DESeq2 v1.18.1 (Love et al., 2014). For the limited number of microarray

studies, pre-processed intensities available from the series matrix files were downloaded from GEO and normalized using quantile

normalization, followed by differential expression analysis using the limma package v3.4.2 (Ritchie et al., 2015). For each study

(Tables S3 and S4), experimental and control pairs were manually curated. We required a minimum of n = 2 samples for each group

(experimental and control); the average for all samples included in each comparison was n = 8.4 (range = 4-28 total samples). Overall,

376 mouse experimental comparisons were curated for computation of differentially expressed gene sets (DEGs), applying a false-

discovery rate (FDR) threshold of 1% and minimum fold-change of 1.2. The t-distributed Stochastic Neighbor Embedding (t-SNE)

algorithm (van der Maaten and Hinton, 2008) was applied to DEGs from all studies (logarithm-transformed fold-change), using the

Rtsne function in R. We excluded all DEG sets from consideration consisting of fewer than 10 conserved mouse genes, resulting

in 251 sets of DEGs for consideration in our subsequent analyses. All analysis was done using R v3.4.2, and Python v.2.7.12. Table

S4 details all DEG sets meeting these criteria, including data sources, and also enumerates the sample size (n) for all comparisons.

Statistical analysis of mouse-human overlaps
Mouse orthologs for all human genes were extracted using the HCOP tool available from the HUGO Gene Nomenclature Committee

(see Data and code availability). Due to wide diversity of potential AD mechanisms, along with the number and heterogeneity of

mouse models included in our analyses, it is not possible to confidently select the specific human gene-ortholog pairs in most cases

where human genes map to multiple mouse orthologs. Therefore, in our primary analysis, we considered all possible human-mouse

ortholog pairs (Table S5 and all results reported in manuscript). In a secondary analysis (Table S6), we performed a sensitivity test

by restricting to human-mouse gene ortholog pairs with 1:1 relationships. In cases with multiple homologs, we selected the high-

est-confidence mouse ortholog for each human gene based on HCOP. Using the hypergeometric test, we determined the signifi-

cance of overlap between each of 251 mouse DEG sets (above) and the 30 human gene coexpression modules (mouse orthologs)

using the phyper function in R. The Benjamini-Hochberg method was applied to adjust for multiple comparisons, using the p.adjust

function. All p values reported in the text were adjusted in this manner. Overall, out of 1569 significant module-DEG set overlaps

(padj < 0.01) detected in our primary analysis, 1306 (83%) are recovered by the more the stringent sensitivity test using 1:1 hu-

man-mouse ortholog mapping. Consistency is even higher among 1058 highly significant overlaps (padj < 0.00001) from our primary

analysis, for which 1014 (95.8%) are recapitulated using the more stringent 1:1 ortholog definition. Overlap significance was visual-

ized using heatmaps, implemented with pheatmap function in R, using Manhattan distance (for both rows and columns) and Ward

clustering. In order to determine whether mouse-human overlapping genes also shared expression changes in the same

direction, we computed the concordance score for each overlap. Specifically, the concordance score is the percentage of genes

in the concordant direction weighted by the significance based on the hypergeometric test, which is computed as follows:

WeightedConc= � log10ðpadjÞ3 ðConcUp + ConcDownÞ;
where

ConcUp=
# overlapped genes up in both mouse and human

# overlapped genes up in mouse
;
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ConcDown=
# overlapped genes down in both mouse and human

# overlapped genes down in mouse

The overlap was considered concordant when the weighted concordance is greater (or less) than half standard deviation from the

median, and padj % 0.01 for the up- or down- differential expression. All computation and calculations were carried out in the R lan-

guage for statistical computing (version 3.3.0 - 3.5.1) and Python v.2.7.12.
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