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Abstract: The chemical challenge of economically splitting water into molecular hydrogen and
oxygen requires continuous development of more efficient, less-toxic, and cheaper catalyst materials.
This review article highlights the potential of iron sulfide-based nanomaterials as electrocatalysts for
water-splitting and predominantly as catalysts for the hydrogen evolution reaction (HER). Besides
new synthetic techniques leading to phase-pure iron sulfide nano objects and thin-films, the article
reviews three new material classes: (a) FeS2-TiO2 hybrid structures; (b) iron sulfide-2D carbon
support composites; and (c) metal-doped (e.g., cobalt and nickel) iron sulfide materials. In recent
years, immense progress has been made in the development of these materials, which exhibit
enormous potential as hydrogen evolution catalysts and may represent a genuine alternative to more
traditional, noble metal-based catalysts. First developments in this comparably new research area are
summarized in this article and discussed together with theoretical studies on hydrogen evolution
reactions involving iron sulfide electrocatalysts.

Keywords: iron sulfide; nanomaterials; electrocatalysts; hydrogen evolution; water-splitting

1. Introduction

On our planet, atomic hydrogen H predominantly exists chemically bonded in natural molecules
and products such as water, petroleum, and coal. In contrast, molecular hydrogen H2 does not occur
naturally in large amounts on Earth and is only produced by certain microorganisms [1] in small
quantities, which escape Earth’s gravity into the atmosphere due to the low molecular weight. Despite
the low natural abundance of hydrogen gas H2 on Earth, it has indisputably been identified as a major
energy carrier of the future as H2 has the highest gravimetric energy density of all known substances
(lower heating value of ~120 kJ/g) [2], is non-poisonous and, most importantly, hydrogen gas can be
derived from water. Using water, which is often termed as “the renewable fuel”, as a sustainable and
abundant energy source has been a dream of novelists and scientists for a long time [3] and for several
decades researchers of various disciplines have been working on energetically favorable and cheap
processes to catalyze the decomposition reaction of water into clean molecular hydrogen and oxygen.
The “Steam-Iron” process (3Fe + 4H2O→ Fe3O4 + 4H2) is one of the oldest commercial methods for
producing hydrogen from water and was practiced at the beginning of the 20th century to generate
small quantities of pure hydrogen [4]. Remarkably, a recent study has found that traces of HS− in the
process forming FeS on the iron catalyst surface, can significantly enhance the hydrogen evolution
reaction (HER) [5].

In general, the water-splitting process consists of two half-reactions: the water oxidation (oxygen
evolution reaction, OER) and the water reduction (hydrogen evolution reaction, HER). Regardless
of the pH of the solution, the voltage required for the splitting of H2O into H2 and 1

2 O2 is 1.23 V
(25 ◦C, 1 atm). However, in reality one must apply voltages higher than the theoretical value of 1.23
V to achieve electrochemical water-splitting. This excess potential (overpotential, η) is required to
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overcome intrinsic activation barriers at the electrodes and solution resistance [6]. Consequently,
an energy-efficient water-splitting system should have a low η value and much effort is made towards
developing powerful electrode materials with low overpotential.

A key step in hydrogen gas formation from an aqueous solution is the reduction of H+ on a
catalyst’s surface with an electron to form surface-adsorbed hydrogen. Subsequently, for the catalyst
to be efficient, fast liberation of the hydrogen gas from the catalyst surface is essential. In this context,
the free energy of hydrogen adsorption, ∆GH, is a significant measure for the catalytic activity of
a hydrogen-evolving electrocatalyst [7]. Ideally, for a catalyst this energy (which must be invested
to release molecular hydrogen from the catalyst surface) should be nearly zero. Such ideal ∆GH

values are observed for elemental platinum and consequently, platinum-based materials have been
found to be the most efficient hydrogen evolution catalysts [8]. Due to the high cost and low natural
abundance of platinum in the Earth crust (3.7 × 10−6%), which is orders of magnitudes lower than that
of non-precious metals such as Ni (0.0089%) or Fe (6.8%), much effort is devoted to find alternative,
noble metal-free hydrogen evolution catalysts [6].

In recent years, significant progress has been made in developing innovative, less-expensive
catalysts for HER whereby especially new nanomaterial-based catalysts exhibit remarkable HER
efficiencies [9]. Inspired by natural photosynthesis, in which water and carbon dioxide are converted
into molecular oxygen and carbohydrates, a significant research focus has been on the development of
artificial photocatalysts, which could facilitate the light-driven generation of hydrogen from water.
Significantly, also the biochemical processes taking place during photosynthesis in photosystems I and
II are based on the redox chemistry of non-noble metals such as manganese and calcium or the Rieske
iron sulfur protein, which contains a [2Fe-2S] cluster [9]. Other prominent examples from nature are
hydrogenases, a group of metalloenzymes that catalyze the oxidation of H2 into protons and electrons
as well as the reverse reaction, the generation of H2 [10]. Inspired by these enzymes, researchers also
work on the development of molecular iron sulfur compounds to employ them as “artificial enzymes”
in catalysis [11]. Even though significant progress is made in this research area, often such molecular
species are prone to decomposition in solution.

Thus, in line with these systems, there has been a growing interest in the biosynthesis of related
nanomaterials and the most extensive research has been focused on metal sulfides. For example,
bacteria, fungi, or other microorganisms can convert sulfate into reduced sulfide species, which react
with metal cations to generate metal sulfide structures [12]. However, typically during these processes
it is difficult to control the purity and shape of the forming nanostructure.

Therefore, mimicking such biological processes and developing more sophisticated artificial
synthetic procedures for transition metal oxide or sulfide nanostructures has been the aim of many
research studies. In this context, in particular the development of transition metal dichalcogenide
(TMDC) materials (MX2, M: e.g., Mo, Co, Fe, Ni; X = O, S, Se, Te) has attracted the attention of many
research groups. Due to superior electrochemical performance, high stability in acid conditions and
low fabrication costs TMDC materials exhibit excellent properties as water-splitting catalysts [13–17].
The performance of TMDC catalyst materials heavily depends on their electronic structure and to
reach superior catalytic properties it is essential to pull down the Fermi level or decrease the band
gap of the structures. Typical strategies to do this include doping of the TMDC lattice with impurity
atoms or compounds and intentional creation of structural defects. Theoretical studies show that
the performance of TMDC-based HER electrocatalysts severely depends on the hydrogen adsorption
energy and that ∆GH is an indicator to predict the catalytic activity based on the materials’ electronic
structure [18].

Due to the high natural abundance, very low cost and low toxicity of iron and sulfur, the TMDC
FeS2 and other iron sulfide structures are very desirable catalyst materials. However, while iron
sulfide structures have been thoroughly studied and have been shown to be good semiconductors
for photovoltaic devices [14,19,20], iron sulfide-based catalysts for HER are much less developed.
Compared to benchmark precious metal-free HER catalysts such as MoS2 [21] or transition metal
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phosphides [22], typically iron sulfide catalysts are less efficient and prone to corrosion. For example,
a reactivity study on FexSy films shows their tendency to transform to oxidation products [23]. Thus,
regarding the obvious benefits of iron sulfide materials there is an urgent need to develop more efficient
and stable iron sulfide catalyst materials for HER. It is to be hoped that the stability of new iron sulfide
catalysts can be increased through rational design of nanostructured materials and surfaces.

The chemistry of iron sulfides is very complex, with the formation of diverse iron sulfide phases
such as FeS, Fe1−xS, FeS2, Fe3S4, etc. being very sensitive to factors such as temperature, pressure or
pH, and is still not fully understood [24]. The recent discovery of an entirely new nanoparticulate iron
sulfide phase, FeSnano, illustrates the complexity of the field. FeSnano contains tetrahedral iron sites
and is balanced by monosulfide and polysulfide sulfur species, which together dramatically affect
the stability and enhance the reactivity of FeSnano making it highly desirable as a potential catalyst
material [25]. Moreover, FeSnano has been identified as a crucial precursor for the iron sulfide material
mackinawite (FeS), a metastable intermediate structure, which itself can be a precursor to the formation
of the more stable Fe3S4 and FeS2 phases. Due to the small size of constituent particles and highly
disordered domains, mackinawite nanostructures can be highly reactive and therefore useful for the
design of new catalyst materials [26].

In general, the fabrication of effective iron sulfide-based catalysts requires the synthesis of
materials exhibiting defined iron sulfur ratios (phase purity) and well-defined shapes (spheres, cubes,
wires, etc.) [27]. Regarding catalysis, both phase purity and morphology are of major significance for
controlling and improving the performance of the catalyst material. The chemistry and syntheses of
iron sulfide nanostructures [28] and thin-films [29,30], with their enormous potential for photovoltaic
devices [31,32] and electrode materials [33] have been extensively reviewed in the literature. Therefore,
the following article does not provide a comprehensive collection of research developments in this area,
but rather highlights the latest milestones to spark the scientific communities’ interest for iron sulfide
electrocatalysts. While the main focus is on iron sulfide-catalyzed HER, some examples of OER and
iron sulfide-catalyzed overall water-splitting processes will be discussed. The first part of the article
highlights new synthetic approaches to various iron sulfide nanostructures (e.g., FeS2, Fe3S4, etc.) and
reflects how much their electrochemical activity depends on the structure and phase purity of the
materials. In the next section, the concept of iron disulfide-doped titanium dioxide structures and the
impact of FeS2-doping on the photocatalytic performance of TiO2 will be discussed. Furthermore, the
review summarizes recent milestones in the area of iron sulfide-2D carbon nanomaterial hybrid HER
catalysts and concludes with a few examples of metal-doped iron sulfide electrocatalysts. Appendix A
of this review contains Table A1 of all discussed iron sulfide materials, summarizing experimental
procedures and HER performance data.

2. Iron Sulfide Phases as Electrocatalysts

2.1. Iron Monosulfide, FeS

Recently Zhang and co-workers discovered the potential of iron monosulfide FeS as a low-cost
pre-electrocatalyst for water-splitting [34]. Through treatment of an iron foam (IF) with thiourea under
hydrothermal conditions they obtained FeS nanosheets, which grew on the iron foam. This material
FeS@IF alone (just like FeS or IF) shows only very poor catalytic activity for HER. (In this article X@Y
denotes material composites or core–shell particles consisting of two different phases X and Y, whereby
X is covering the inner phase Y). Once “electrochemically activated” at the beginning of the electrolysis
process, Fe@Fe oxysulfide nanoparticles are generated in situ on the FeS nanosheets. Remarkably, this
Fe@FeOxSy material exhibits a high activity to catalyze both HER and OER simultaneously (Figure 1).
At small current densities, the water-splitting output of Fe@FeOxSy is comparable with that of the
benchmark system Pt/C-IrO2 and at larger current densities it exhibits even better outputs.

Air-stable FeS nanoparticles dispersed on Nafion films, invented by Giraud, Tard and
co-workers [35,36], have attracted much attention for HER reactors. FeS nanoparticles are prepared
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by solvothermal decomposition of the single-source precursor Fe2S2(CO)6 at 230 ◦C in the presence
of octylamine. Subsequently, vitreous carbon rotating disk electrodes are coated with the catalyst
ink, which is prepared by dispersion of the FeS nanoparticles in Nafion. The system achieves HER
electrocatalysis of neutral water at room temperature with a mild over potential, and no structural
decomposition of the catalyst material or decrease in activity is observed for at least six days. A decrease
in overpotential occurs during the first 24 h indicating a rise in hydrogen evolution activity, which is
likely due to some modifications of the catalyst surface. Remarkably, with no particular storage care
these electrodes were found to be stable for electrochemical studies for more than 6 months.
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Figure 1. FeS nanosheets grown on iron foam act as pre-catalyst for generation of Fe@FeOxSy, which is
a highly active electrocatalyst and splits water simultaneously into molecular hydrogen and oxygen.
Reprinted with permission from reference [34].

2.2. Iron Disulfide, FeS2

Iron disulfide (pyrite, FeS2) is the most prominent phase among the iron sulfides. Due to its unique
properties (suitable band gap of E = 0.95 eV and extremely high absorption coefficient α > 105 cm−1) it
has been extensively investigated as a photovoltaic semiconductor [19] and high-performance electrode
material [37]. The physiochemical properties of FeS2 depend critically on its purity and shape; therefore,
much effort has been devoted to controlling these factors. Various synthetic procedures for pyrite and
applications of pyrite materials have been comprehensively reviewed in the literature [19,28,38,39].
These works show that a major challenge remains the access to single crystalline, high-purity FeS2

materials with a precise stoichiometric ratio, as Fe1−xS impurities are commonly observed in FeS2

structures. Structural defects coming along with these impurities (S vacancies and interstitial atoms)
significantly diminish the photoelectric conversion efficiency of FeS2-based devices [28].

2.2.1. FeS2 Wires and Discs

Besides phase purity also the shape of FeS2 catalysts effects their performance and Ren, Leonard
and co-workers demonstrate in a study how strong the HER activity indeed depends on the morphology
of the nanomaterials. Following a hot-injection procedure and starting from FeI2, elemental sulfur
and octadecylamine (which acts as reducing and capping agent), they describe the synthesis of
low-dimensional, hyperthin 1D FeS2 wires, and 2D FeS2 discs. Notably, both FeS2 nanomaterials can
be obtained following the same synthetic pathway by only changing the ratio of iron precursor and
sulfur [40,41] (Figure 2A). The authors determined the exchange current density (a measure of kinetics
for HER) of the 1D FeS2 wires and 2D FeS2 discs and remarkably, 2D FeS2 discs clearly exhibit the
higher electrocatalytic activity for HER compared to 1D FeS2 wires and other tested FeS2 morphologies
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(Figure 2B). In fact, the electrochemical performance of the investigated 2D FeS2 discs is comparable to
that of platinum in neutral pH conditions [40].
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Figure 2. (A) Schematic representations of 1D and 2D FeS2 structure formation. a: Fe nanoparticles
(formed in the absence of sulfur), b: FeS2 wires (formed in a 1:6 Fe/S ratio reaction) and c: FeS2 discs
(formed in a 1:24 Fe/S ratio). (B) Experimental linear sweep voltammograms at 1 mV/s for different
FeS2 morphologies (solid lines) and the corresponding best-fit single-electron Butler-Volmer equations
(dashed lines). Reprinted with permission from reference [40].

2.2.2. Mesoporous FeS2 Nanoparticles

The activity of any heterogeneous catalyst depends on its surface area, which should be as large as
possible to reach maximum catalytic effects. In this context, mesoporous materials (materials containing
pores with diameters between 2 nm and 50 nm) [42] have reached much attention. Suib and co-workers
succeeded in synthesizing mesoporous FeS2 nanoparticles by sulfidation of iron oxide nanoparticles.
In a first reaction step Fe2O3 nanoparticles are produced via an inverse micelle sol-gel method and then
heated to 150 ◦C to yield a mesoporous Fe2O3 structure. Subsequently, this oxide substrate is converted
with hydrogen sulfide and elemental sulfur into mesoporous FeS2 nanoparticles [43]. Theoretical
calculations indicate that the exposed (201) facets of this mesoporous pyrite material are key for its
excellent HER activity at pH 13 (low over potential of 96 mV (10 mA cm−2), Tafel slope of 78 mV dec−1).

2.2.3. FeS2/C Electrode Coating

While several studies found FeS2 electrocatalysts with significant HER activity, reports on FeS2

materials for OER or overall water-splitting are very limited. Li, Wang and co-workers published
a rare example and demonstrated FeS2/C nanoparticles as efficient bifunctional catalysts for overall
water-splitting [44]. These FeS2/C nanoparticles were prepared by suspending FeS2 nanoparticles
(obtained in a hydrothermal process from FeCl3·(H2O)6 and diethy-dithio-carbamate trihydrate) and
carbon powder in a water/ethanol mixture containing 5% Nafion. Immobilized on nickel foam,
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this FeS2/C electrode material can serve as electrocatalyst towards both OER and HER. For OER,
excellent activity was obtained (240 mV overpotential at 10 mA cm−2), which is lower than that of IrO2

(~310–320 mV [45,46]). Similarly, and with nearly no activity loss after 1000 cycles, 202 mV at 10 mA
cm−2 overpotential was measured for the hydrogen evolution. An overall water-splitting process with
this FeS2/C electrode is achieved with 1.72 V at 10 mA cm−2.

2.2.4. FeS2 Thin-Films

Chi and Liu developed a combined physical vapor deposition (PVD) and thermal vapor
sulfurization technique to produce FeS2 thin-films. In this process, Fe3S4 thin-films are deposited
together with elemental sulfur in a tube furnace system and Fe3S4 is sulfurized and converted
into pure FeS2 thin-films without any crystal phase incorporation [47]. Such traditional vapor
deposition methods (chemical vapor deposition (CVD) or PVD) for thin-film substrates generally
have limitations in film purity, roughness, and process controllability. In contrast, a new powerful
technique, Atomic Layer Deposition (ALD) facilitates access to high-quality and high-purity thin-film
substrates [48]. ALD provides a layer-by-layer growth process of substrates enabling precise control
of both film composition and thickness. In this way, Guo and Wang recently achieved the first
ALD synthesis of FeS2 thin-films [49]. During the ALD process an iron amidinate precursor
[iron-bis(N,N′-di-tert-butylacetamidinato)] is treated with a hydrogen sulfide plasma to generate
well-crystallized, pyrite FeS2 thin-films (Figure 3). The so-produced pyrite (cubic lattice) FeS2 thin-films
can contain traces of marcasite (orthorhombic FeS2 lattice). Noteworthy, this orthorhombic FeS2

structure has recently been reported by Hofmann and co-workers to enhance the photoresponse of
cubic pyrite FeS2 films [50].
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2.2.5. Resistance of FeS2 Catalysts to Sulfide Poisoning

Traditional HER electrocatalysts such as platinum materials or other transition metal structures
are usually susceptible to poisons such as arsenide or sulfur resulting in a substantial decrease in
catalytic activity [51]. To investigate the sulfide-resistance of FeS2 HER catalysts, the poisoning effect
of sulfide on a FeS2 surface was examined by Chua and Pumera by linear sweep voltammetry [52].
Remarkably, the authors found that FeS2 electrocatalysts are extremely resistant to sulfide poisoning.
The degradation effect of additional sulfide species on the FeS2 surface is not as severe as observed for
platinum-based catalyst materials and results only in a slight increment of overpotential.

2.3. pH Dependence of Iron Sulfide Electrocatalysts

The performance of iron sulfide electrocatalysts does not only depend on the phase composition
and morphology of the catalyst material, but also on the pH of the electrolyzed solution. Importantly,
the pH range of a solution can change drastically during electrolysis processes. Since this effect is
primarily observed directly at the electrodes on the catalyst surface, a locally high concentration of
H+ or OH− ions can chemically change the phase composition of a catalyst. As an example, Holt,
de Leeuw and co-workers observed a pH-dependent effect with greigite (Fe3S4) electrocatalysts [53].
During their studies on Fe3S4-catalyzed HER they observed a large increase of the pH at the electrode
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surface from pH 7 to pH 12. Fe3S4 is thermodynamically unstable under these basic conditions, being
transformed to goethite (iron hydroxide) [24]. Consequently, iron hydroxide covers the electrode
surface and must be considered to be a catalytic species for the HER process. Similarly, Giraud, Tard
and co-workers monitored the pH dependence of a FeS2-catalyzed hydrogen evolution process [54].
The FeS2 nanoparticles used in this process (synthesized from FeCl3 and thiourea in a polyol process)
show remarkable robustness and stability at very broad pH range (0.3–13). During this electrochemical
reaction, at lower pH values a pH-dependent catalytic activity is observed, while above pH 5 the
catalytic performance appears to be pH-independent. This observation indicates two entirely different
electrochemical reaction mechanisms at low and high pH ranges, respectively.

2.4. HER Activity of Iron Sulfides in Comparison

Peron, Giraud, Tard, and co-workers carried out a detailed study to compare the performance
of FeS2, Fe3S4 and Fe9S10 electrocatalysts for proton exchange membrane (PEM) electrolyzers [35,55].
Electrochemical experiments led to the conclusion that FeS2 is more active for HER than Fe3S4, which
itself is more active than Fe9S10. It has been ascertained in other studies on sulfide materials that a
high density of sulfur atoms at the material surface and in particular the presence of disulfide S2

2−

moieties causes a high catalytic activity (see [55] and references cited therein). A higher density of S2
2−

active sites in FeS2 compared to Fe3S4 and Fe9S10 becomes obvious from the different sulfur-iron ratios
changing in the order 2 (FeS2) > 1.33 (Fe3S4) > 1.11 (Fe9S10). Furthermore, in pyrite FeS2 the formal
oxidation states of Fe+II and S−I as well as the structural motive Fe3−S−S−Fe3 (with S2

2− dumbbells
connecting six iron centers) explain the high natural occurrence of S2

2− moieties in FeS2 [55]. The
modest catalytic activity of Fe3S4 is also the subject of a theoretical study by Roldan and de Leeuw.
The authors show that Fe3S4-catalyzed water dissociation is indeed thermodynamically unfavorable
and molecular adsorption of water on the Fe3S4 surface is occurring instead [56].

3. FeS2-TiO2 Composite Materials

Titanium dioxide is a powerful photocatalyst (high photoactivity, non-toxic, chemically stable and
inexpensive); however, due to its rather large band gap (3.2 eV for anatase TiO2 [57]) it only responds
to UV (ultraviolet) light. The decoration of TiO2 nanomaterials with transition metal photocatalysts
is a promising approach to extend the absorption of TiO2 to the visible and even infrared regions of
the electromagnetic spectrum [58]. A potential candidate for this application is FeS2, which exhibits a
large optical absorption coefficient (>105 cm−1) and a narrow band gap of 0.95 eV [59].

Lee and Kang followed this approach and verified that the loading of FeS2 nanoparticles on TiO2

enhances the production of hydrogen from methanol/water mixtures [60]. The authors performed
cyclic voltammetric and UV-Vis spectrometric measurements and explain the superior photoactivity of
FeS2/TiO2 hybrid catalysts compared to that of pure TiO2 with a smaller band gap of the former (2.89 eV
for FeS2/TiO2 hybrid catalyst vs. 3.1 eV for TiO2). As a result, in FeS2/TiO2 catalysts electrons are more
easily promoted from the valence band to the conduction band, resulting in a higher photocatalytic
activity. Similarly, Kuo, Li, Lin, Wang and co-workers prepared FeS2-TiO2 nanocrystals, whose
absorption range is even extended from the UV-visible to the near-infrared region [61]. As a part of
this work, they studied the FeS2-TiO2-catalyzed HER from a 50% aqueous methanol solution and
tested FeS2-TiO2 composites with different FeS2 loadings. Similar to the work by Lee and Kang, these
FeS2-TiO2 heterostructures show remarkably enhanced hydrogen production rates in comparison
with pure FeS2 nanoparticles and pure TiO2 (see Figure 4A). Figure 4B depicts a schematic action
mechanism of the FeS2-TiO2 hybrid catalysts: when the material is irradiated with a broadband light
source (covering UV, visible and IR (infrared) irradiation), photo-induced electrons are simultaneously
promoted into the conduction bands of TiO2 and FeS2 by UV light and visible-NIR light, respectively.
Subsequently, electron transfer occurs from the conduction band of FeS2 to that of TiO2, where protons
are reduced to hydrogen. In this process it is the heterostructure between TiO2 nanoparticles and FeS2

nanocrystals which is key for the enhanced photocatalytic activity since it enables fast electron transfer
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from FeS2 to TiO2. Zhang and co-workers developed a comparable FeS2/TiO2 hybrid photocatalyst
to use near-infrared light for photoelectrical water-splitting and demonstrate that TiO2 nanotubes
decorated with infrared light responsive FeS2 exhibit excellent water-splitting performance under
illumination of day light (Figure 4C) [62]. Under irradiation by solar light these FeS2/TiO2 nanotube
catalysts cause a photocurrent enhancement, which is more than three orders of magnitude higher
than that reached with pristine TiO2 nanotube electrodes under illumination of infrared light.
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4. Iron Sulfide-2D Carbon Hybrid Materials

The deposition of catalyst components on a support material is a common strategy in heterogeneous
catalysis, which helps minimize the agglomeration of the catalyst particles and hence increases the total
catalytically active surface area. Particularly for the design of electrocatalysts the right choice of support
material is of great significance to target catalyst composites with high electron transport capacity,
which helps avoid recombination of photogenerated charge carriers to guarantee good electrocatalytic
performance. In this context, 2D materials such as graphene, reduced graphene oxide, h-boron nitride,
monolayer MS2 (M = Mo, W) or monolayer MoCh (Ch = Se, Te) [63] are commonly used support
media for electrocatalysts. For instance, Chen, Lee et al. have shown that platinum nanoparticles
supported on reduced graphene oxide exhibit a higher electrocatalytic activity and superior stability
than bare platinum nanoparticles [64] and other studies reveal the high efficiency of Mo2C/rGO hybrid
catalysts for hydrogen evolution [65]. The number of reported iron sulfide-carbon hybrid structures is
surprisingly small and this section highlights the value of such materials for HER, with a focus on
composites involving the 2D substrates Graphene (G), Graphene Oxide (GO) and reduced Graphene
Oxide (rGO) [66–68].
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4.1. FeS2/rGO Hybrid Catalysts

Hu and co-workers report the synthesis of nano-FeS2-rGO, a material with FeS2 nanoparticles
embedded in rGO, which has great potential as a high-performance electrocatalyst for HER [69].
Crucial is the high-temperature-assisted synthetic procedure delivering this nano-FeS2-rGO hybrid
catalyst, which comprises the in situ synthesis of FeS2 nanoparticles from microscopic FeS2 powder in
an rGO matrix (Figure 5). In the first reaction step microscopic FeS2 powder is obtained from bulk
iron pyrite with a hammer and then mixed with GO, which has previously been exfoliated from
graphite using an improved Hummers’ method [68,70]. Subsequently, the obtained micro-FeS2-rGO
material is exposed to a thermal shock (2470 K, 12 ms) initiating the decomposition of FeS2 into Fe
and S atoms, which diffuse between the rGO layers. As rapid cooling takes place, the Fe and S atoms
renucleate around the defects of the rGO sheets to form FeS2 nanoparticles. The authors envisage
that this synthetic strategy could also be applied to target other transition metal multicomponent
composites. Nano-FeS2-rGO exhibits an excellent HER activity achieving 10 mA cm−2 at 139 mV
overpotential. Importantly, the rGO matrix does not only act as a physical support for the pyrite
nanoparticles, but (1) leads to an outstanding chemical stability of the pyrite particles under acidic
conditions, (2) increases the electronic conductivity of the catalyst material and (3) hinders the loss of
pyrite nanoparticles from the material during the water-splitting process [69].
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A similar FeS2-rGO hybrid catalyst has been synthesized by Jiang and co-workers through a
hydrothermal synthesis from rGO, Fe(NO3)3 and thioacetamide. This FeS2-rGO material consists of
hexagonal FeS2 nanoclusters embedded in a lamellar rGO matrix and its electrochemical performance
is superior to that of several iron-based catalysts [71]. The excellent electrical conductivity of rGO
ensures a high electron transport capacity and small impedance (Rct = 7.94 Ω). Furthermore, the hybrid
catalyst has a smaller Tafel slope (61 mV dec−1) than FeP nanosheets (67 mV dec−1) [72] or disk-shaped
FeS2 nanoparticles (76 mV dec−1) [40].

4.2. MoS2 and Ni Doped FeS2/rGO Hybrid Catalysts

Taking the idea of FeS2-rGO composites a step further, Wang and co-workers have developed
a three-tiered hybrid catalyst FeS2@MoS2/rGO [73]. This electrocatalyst is fabricated from FeCl3,
phosphomolybdic acid hydrate and l-cysteine and exhibits excellent HER activities as well as
outstanding electrochemical durability. The rGO sheets provide the catalyst with excellent electrical
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conductivity and lead to high dispersion of both MoS2 sheets and FeS2 particles guaranteeing
a high abundance of active sites. Furthermore, rGO triggers strong interactions between the
other two components MoS2 and FeS2 endowing the catalyst composite with a high mechanical
stability. Besides MoS2 also nickel doping of iron sulfide-rGO composites can have a positive effect
on the hydrogen evolution activity. Jiang, Han and co-workers studied different nickel-doped
FeNixS2-rGO electrocatalysts (x = 0.05–0.3) and found that the incorporation of nickel into iron sulfide
nanostructures yields electrocatalysts with lower Tafel slope, smaller electrochemical impedance and
reduced overpotential [74].

4.3. Fe1−xS/GO Hybrid Catalyst

Non-stoichiometric Fe1−xS nanoparticles have been introduced into a sulfur-doped graphene
oxide structure (S-GO) to produce nano–micro Fe1−xS@S-GO. This catalyst material was synthesized
by a one-pot solvothermal approach in which aqueous solutions of FeCl3, GO, and thioacetamide
are heated in an autoclave for 15 h at 200 ◦C [75]. Hereby, thioacetamide decomposes to the parent
sulfide H2S, which firstly reacts with FeCl3 to form Fe1−xS nanoparticles and secondly converts GO to
sulfur-doped GO (S-GO). The so-obtained Fe1−xS@S-GO hybrid catalyst was used as cathode material in
a dye-sensitized solar cell and achieves a high solar-to-electrical conversion efficiency up to 7.23% [75].
The Fe1−xS@S-GO composite has not yet been tested for HER; however, Wang, Zhou, and co-workers
highlight its potential for solar water-splitting.

4.4. Fe4S4/Graphene Hybrid Catalyst

To finish this section about iron sulfide-carbon hybrid catalysts, one example of a molecular iron
sulfide compound immobilized on graphene shall be highlighted. Begum and co-workers report
Fe4S4 cubane clusters on graphene as high-performance H2 evolution catalyst in acidic water [76].
[PPh4]2[Fe4(µ3-S)4(DMET)4] (A) (DMET = cis-1,2-dicarbomethoxyethylene dithiolate) was prepared
from [PPh4]4[Fe2S12], dimethylacetylene dicarboxylate, and lithium sulfide. Subsequently, cluster
compound A was ultrasonicated with functionalized graphene for 10 h under an argon atmosphere
to yield A@graphene (Figure 6). A itself catalyzes the hydrogen evolution from tosylic acid (TON,
400); however, the hybrid catalyst A@graphene shows enhanced catalytic activity (TON, 3200) and
higher stability in water compared to the naked complex A. Likely, the remarkable catalytic activity of
A@graphene can be explained by continuous in situ reduction of A through the graphene support: A is
oxidized during the proton reduction process and then immediately reduced by the graphene matrix,
which acts as an external sacrificial electron donor. In extension to this work, research by Kanatzidis
and co-workers shows that redox active Fe4S4 clusters incorporated in dye-functionalized gels are
capable of producing hydrogen under photochemical conditions [77,78].
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5. Metal Doping of Iron Sulfide Nanomaterials

It has been shown in the previous section how the right choice of support material can significantly
enhance the activity of iron sulfide electrocatalysts. A different approach to further improve these
materials for electrochemical applications is their combination with other metallic elements or metal
compounds. Most notably, the incorporation of elemental cobalt or cobalt phases into iron sulfide
structures delivers new materials with remarkable HER activity.

5.1. Cobalt-Doped FeS2 Structures

Huang, Luiso, Fedkiw and co-workers synthesized and investigated cobalt-doped iron sulfides
FexCo1−xS2 (x = 0.98–0.32) on a carbon black support (Ketjenblack) and carried out a systematic
study on the role of cobalt dopant for the hydrogen evolution activity of these materials [79]. Indeed,
electrochemical measurements indicate a significant enhancement in HER activity of the Co-doped FeS2

structures in comparison to un-doped FeS2. Among the catalysts examined, Fe0.50Co0.50S2 (on HNO3

oxidized Ketjenblack) exhibited the highest HER activity. The overpotential necessary to reach a current
density of 10 mA/cm2 was 150 mV (229 mV for un-doped FeS2) and only decreased by 1 mV after
500 catalytic cycles, indicating a long-term durability of the catalyst material in acidic environment.

A cobalt-doped iron pyrite catalyst with a phosphide surface modification (P/Co-FeS2) has
been prepared by Chen, Wang and co-workers via solvothermal and chemical vapor deposition
approaches [80]. In a hydrothermal process cobalt-doped iron oxide is grown on carbon fiber paper
by reaction of iron nitrate and cobalt nitrate. This material is then treated with elemental sulfur at
450 ◦C to form the cobalt-doped iron pyrite structure Co-FeS2. Finally, annealing of this material with
sodium hypophosphite results in the formation of P/Co-FeS2, a phosphide-modified nanocomposite
of Co-FeS2. This catalyst material exhibits high HER activity with a low overpotential of 90 mV (at
100 mA cm−2) and a high durability in acidic solutions.

Cobalt-doped FeS2 nanosheets hybridized with carbon nanotubes (CNT) Fe1−xCoxS2/CNT also
hold great potential for efficient HER in acidic solutions. Hwang, Chen, Dai, and co-workers report
a scalable solvothermal synthesis of such Fe0.9Co0.1S2-CNT structures and performed DFT (density
functional theory) calculations to elucidate the role of cobalt doping for HER activity [81]. The theoretical
investigations showed that the reaction in acidic solution first proceeds via proton adsorption and
reduction on the catalyst surface to form hydrogen atoms, which are adsorbed on catalyst edges.
Subsequently, H2 is formed and finally released in a desorption step, which also occurs on the catalyst
edges (Figure 7). Notably, sulfur atoms on the edge of the catalyst were found to be the HER active
sites. Comparison of the kinetic energy barrier profiles of the Fe0.9Co0.1S2-CNT (Figure 7B top) and
FeS2-CNT (Figure 7B bottom) catalyzed HER reveals a significant difference in the activation barrier of
hydrogen atom adsorption leading to transition state 1 (TS1). In case of the Fe0.9Co0.1S2-CNT catalyzed
HER, this energy barrier is 1.23 eV and significantly lower than that for the FeS2-CNT catalyst (1.62 eV).
Most likely, this substantial difference (0.39 eV) explains the higher catalytic activity of Fe1−xCoxS2/CNT
hybrid catalysts compared to that of FeS2-CNT composites.

5.2. FeS2-CoS2 Hybrid Structures

Xi and co-workers demonstrated that even overall water-splitting is possible with cobalt-doped
pyrite FeS2 heterostructures. They developed FeS2/CoS2 interface nanosheets with abundant defects;
a bifunctional electrocatalyst, which exhibits superior catalytic properties for both HER and OER in
alkaline conditions [82]. A water-splitting device equipped with such FeS2/CoS2 electrodes requires
at 25 ◦C only a voltage of 1.47 V to drive a current density of 10 mA cm−2. At elevated temperature
(60 ◦C) the activity of the catalyst is even superior, and a lower voltage of 1.37 V is needed to
afford the same current density. Remarkably, the performance of this FeS2/CoS2 catalyst is better
than that of most reported non-noble metal overall water-splitting catalysts (see Figure 8). This
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example highlights the significance of interface engineering for developing highly efficient and stable
water-splitting electrocatalysts.

1 
 

 

A"

B"

Figure 7. (A) Schematic reaction of hydrogen evolution occurring on a sulfur atom of Fe0.9Co0.1S2.
(B) Kinetic energy barrier profiles of HER on Fe0.9Co0.1S2-CNT (top) and FeS2-CNT (bottom) catalysts.
Reprinted with permission from reference [81].
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5.3. Cobalt-Doped FeS2-CoS2 Hybrid Structures

Yan, Shi and co-workers merged the two concepts of cobalt doping and the hybridization
of CoS2 and FeS2 pyrite structures (vide supra 5.1 and 5.2) to produce heterostructures of the
type Co-FeS2/CoS2, which can be prepared from cobalt-doped FeS2 and CoS2. Benefitting from
a three-dimensional hierarchical nanoarchitecture, which maximizes the exposure of accessible active
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sites, these Co-FeS2/CoS2 electrocatalysts exhibited excellent activity for hydrogen and oxygen evolution
reactions [83]. The materials’ distinctive nanostructure not only endows the catalyst with a large
surface area, but also assists the release of hydrogen and oxygen from the electrode surface. The
superior oxygen evolution performance of Co-FeS2/CoS2 heterostructures (278 mV overpotential at
10 mA cm−2 in 1 M KOH) is mainly explained by the presence of the CoS2 phase and its co-existence as
heterostructure with Co-FeS2. The overpotential for HER in 0.5 M H2SO4 solution is 103 mV (10 mA
cm−2) and both overpotential values of OER and HER change only marginally after 1000 catalytic
cycles by 5 mV and 3 mV, respectively.

5.4. FeS2-Doped MoS2 Nanoflowers

Instead of doping iron disulfide with metals or metal compounds, FeS2 itself can be employed as
dopant and be incorporated in trace levels into a guest crystal lattice. MoS2 nanomaterials are known
to be efficient catalysts for hydrogen evolution [17] and to further enhance the HER efficiency of MoS2,
Yang and co-workers have prepared MoS2 nanoflowers (predominately 1T-MoS2) and doped them
with FeS2 [84]. Due to a unique morphology and electronic structure this FeS2-doped molybdenum
sulfide material exhibits exceptional performance as HER electrocatalyst, which is superior to that of
pure MoS2 and pure FeS2.

6. Conclusions and Outlook

The development of iron sulfide catalysts for electrochemical hydrogen evolution is a rapidly
growing research field, of which selected milestones are summarized in this article. Even though
iron sulfide electrocatalysts are still less developed and typically less effective HER catalysts than
noble metal systems, numerous examples of well-designed iron sulfide materials exhibit surprising
catalytic performance. In particular, the presence of disulfide moieties S2

2− causes a high catalytic
HER activity and thus especially FeS2 materials are attractive electrocatalysts for hydrogen evolution.
Importantly, iron sulfide catalysts seem to be less prone to sulfide poisoning than noble metal catalysts.
Composite materials of iron sulfide structures with 2D-carbon nanomaterials exhibit frequently better
electrocatalytic performance and chemical robustness than pure iron sulfides. Comparably, doping of
iron sulfide phases with other metals or other transition metal compounds delivers highly reactive
HER catalysts. All in all, these examples show that the development of new iron sulfide containing
electrocatalysts and further improvement of existing materials is urgently needed to exploit the
maximum potential of a hitherto overlooked catalyst family for hydrogen evolution.
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Appendix A. Summary Table of Discussed Iron Sulfide Materials

Synthetic procedures for all discussed iron sulfide nanomaterials and specific characteristic data
such as HER overpotential and Tafel slope (the slope of a curve of overpotential in Volts versus the
logarithm of current density) are collected in this appendix of the review and provide a summary of
their activity and performance as HER electrocatalysts. Importantly, quantitative comparison of the
catalysts’ HER performance is a challenging task and care should be taken because of differences in the
electrode preparation, the amount of employed catalyst material and the electrolyte (pH conditions).
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Table A1. Synthetic procedures and HER performance data (Tafel slope (mV dec−1), over potential η
(mV)) for discussed iron sulfide materials.

Catalyst Synthetic Procedure Electrolyte Tafel
Slope

η HER
(X mA cm−2)

Ref.

Iron sulfides

Fe@FeOxSy
FeS nanosheets on iron

foam 1 M KOH 77 243 (100) [34]

FeS NPs on Nafion Decomposition of
Fe2S2(CO)6

pH 7 150 ~450 (0.71) [35]

FeS2 discs
FeS2 wires
FeS2 cubes

Hot-injection procedure
with FeI2 and S8 in

different rations
pH 7

76
91

200
- [40]

FeS2/C NPs

Hydrothermal process
from FeCl3·(H2O)6 and

diethyl- dithio-carbamate
trihydrate

1 M KOH 98 202 (10) [44]

Mesoporous FeS2

Conversion of
mesoporous Fe2O3 with

H2S and S8 into
mesoporous FeS2

pH 13 78 96(10) [43]

FeS2 thin-films Atomic Layer Deposition - - - [49]

Cathode in PEM
electrolyzer Polyol method from

FeCl3 and thiourea pH 7 - [55]FeS2/C
Fe3S4/C
Fe9S10/C

204
224
234

pH dependence of
FeS2-catalyzed HER

Polyol method from
FeCl3 and thiourea

pH

- [54]

0.3
1
2
3
4
5
6
7
9

11
13

85
127
170
290
306
340
287
280
274
329
192

FeS2-TiO2 materials

FeS2/TiO2 core–shell
composites

Deposition of FeS2 NPs
(solvothermal from FeCl3

and Na2S2O3) on
nano-sized TiO2

MeOH/H2O
(1:1) - - [60]

FeS2-TiO2 heterostructures

Injection of S8-oleylamine
mixture in solution

containing
TiO2-octadecene and

Fe-oleic acid precursors

MeOH
EtOH
H2O

Na2S aq.
Na2S/Na2SO3

solution

- - [61]

FeS2 sensitized TiO2
nanotubes

Deposition of FeS2 (from
FeCl3 and thiourea) on

TiO2 nanotubes
pH 7.4 - - [62]
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Table A1. Cont.

Catalyst Synthetic Procedure Electrolyte Tafel
Slope

η HER
(X mA cm−2)

Ref.

Iron sulfide-2D carbon hybrid materials

nano-FeS2-rGO
Current-induced

high-temperature thermal
shock process

0.5 M H2SO4 66 139 (10) [69]

FeS2-rGO Hydrothermal reduction
process 0.5 M H2SO4 61 226 (10) [71]

FeS2@MoS2/rGO

Autoclave reaction of
FeCl3, phosphomolybdic

acid hydrate and
l-cysteine

0.5 M H2SO4 38.4 123 (10) [73]

FeNi0.05S2-rGO
FeNi0.10S2-rGO
FeNi0.15S2-rGO
FeNi0.20S2-rGO
FeNi0.25S2-rGO
FeNi0.30S2-rGO

High-temperature
hydrothermal method
from GO, FeCl3, NiCl2,

and thioacetamide

0.5 M H2SO4

74.46
71.96
76.96
78.36
82.82
79.19

232
225
198
183
209

260 (10)

[74]

nano-micro Fe1−xS@S-GO

Autoclave reaction of
aqueous solutions of

FeCl3, GO, and
thioacetamide

- - - [75]

[PPh4]2[Fe4(µ3-
S)4(DMET)4]@graphene

Ultrasonication of Fe4S4
cubane type cluster with
functionalized graphene

p-toluene
sulfonic acid - - [76]

Metal-doped iron sulfide materials

Fe0.50 Co0.50S2 on
Ketjenblack oxidized with

10 N nitric acid

Chemical sulfurization of
metal precursors using

H2S
0.5 M H2SO4 52 150 (10) [79]

P/Co-FeS2

Hydrothermal process of
iron nitrate and cobalt

nitrate followed by CVD
treatment with S8

0.5 M H2SO4 41.5 90 (100) [80]

Fe0.9Co0.1S2/CNT Solvothermal approach 0.5 M H2SO4 46 120 (20) [81]

FeS2/CoS2 interface
nanosheets

Annealing of CoFe2O4
NPs with sulfur 1 M KOH 44 78.2 (10) [82]

Co-FeS2/CoS
Hydrothermal process
from FeSO4, Co(NO3)2,

thiourea, and sulfur
0.5 M H2SO4 56 103 (10) [83]

FeS2-doped MoS2

Autoclave process of
Na2Mo4·2H2O, thiourea,
and Fe3O4 microspheres

0.5 M H2SO4 82 136 (10) [84]

References

1. Nandi, R.; Sengupta, S. Microbial production of hydrogen: An overview. Crit. Rev. Microbiol. 1998, 24, 61–84.
[CrossRef]

2. Møller, K.T.; Jensen, T.R.; Akiba, E.; Li, H.W. Hydrogen—A sustainable energy carrier. Prog. Nat. Sci. Mater.
2017, 27, 34–40. [CrossRef]

3. Ryabchuk, V.K.; Kuznetsov, V.N.; Emeline, A.V.; Artem’ev, Y.M.; Kataeva, G.V.; Horikoshi, S.; Serpone, N.
Water Will Be the Coal of the Future-The Untamed Dream of Jules Verne for a Solar Fuel. Molecules 2016, 21,
1638. [CrossRef]

http://dx.doi.org/10.1080/10408419891294181
http://dx.doi.org/10.1016/j.pnsc.2016.12.014
http://dx.doi.org/10.3390/molecules21121638


Inorganics 2019, 7, 75 16 of 19

4. Hacker, V.; Fankhauser, R.; Faleschini, G.; Fuchs, H.; Friedrich, K.; Muhr, M.; Kordesch, K. Hydrogen
production by steam–iron process. J. Power Sources 2000, 86, 531–535. [CrossRef]

5. Wang, Y.Q.; Jin, F.M.; Zeng, X.; Yao, G.D.; Jing, Z.Z. A novel method for producing hydrogen from water
with Fe enhanced by HS− under mild hydrothermal conditions. Int. J. Hydrogen Energy 2013, 38, 760–768.
[CrossRef]

6. Zou, X.X.; Zhang, Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015,
44, 5148–5180. [CrossRef]

7. Kang, J.; Hwang, J.; Han, B. First-Principles Computational Screening of Highly Active Pyrites Catalysts
for Hydrogen Evolution Reaction through a Universal Relation with a Thermodynamic Variable. J. Phys.
Chem. C 2018, 122, 2107–2112. [CrossRef]

8. Zhang, L.; Doyle-Davis, K.; Sun, X.L. Pt-Based electrocatalysts with high atom utilization efficiency: From
nanostructures to single atoms. Energy Environ. Sci. 2019, 12, 492–517. [CrossRef]

9. Tachibana, Y.; Vayssieres, L.; Durrant, J.R. Artificial photosynthesis for solar water-splitting. Nat. Photonics
2012, 6, 511–518. [CrossRef]

10. Lubitz, W.; Ogata, H.; Rüdiger, O.; Reijerse, E. Hydrogenases. Chem. Rev. 2014, 114, 4081–4148. [CrossRef]
11. Simmons, T.R.; Berggren, G.; Bacchi, M.; Fontecave, M.; Artero, V. Mimicking hydrogenases: From

biomimetics to artificial enzymes. Coord. Chem. Rev. 2014, 270, 127–150. [CrossRef]
12. Hosseini, M.R.; Sarvi, M.N. Recent achievements in the microbial synthesis of semiconductor metal sulfide

nanoparticles. Mater. Sci. Semicond. Process. 2015, 40, 293–301. [CrossRef]
13. Kong, D.; Cha, J.J.; Wang, H.; Lee, H.R.; Cui, Y. First-row transition metal dichalcogenide catalysts for

hydrogen evolution reaction. Energy Environ. Sci. 2013, 6, 3553–3558. [CrossRef]
14. Fu, H. Environmentally friendly and earth-abundant colloidal chalcogenide nanocrystals for photovoltaic

applications. J. Mater. Chem. C 2018, 6, 414–445. [CrossRef]
15. Faber, M.S.; Lukowski, M.A.; Ding, Q.; Kaiser, N.S.; Jin, S. Earth-Abundant Metal Pyrites (FeS2, CoS2, NiS2,

and Their Alloys) for Highly Efficient Hydrogen Evolution and Polysulfide Reduction Electrocatalysis.
J. Phys. Chem. C 2014, 118, 21347–21356. [CrossRef]

16. Gao, M.R.; Zheng, Y.R.; Jiang, J.; Yu, S.H. Pyrite-Type Nanomaterials for Advanced Electrocatalysis. Acc.
Chem. Res. 2017, 50, 2194–2204. [CrossRef]

17. Zhang, Y.; Zhou, Q.; Zhu, J.X.; Yan, Q.Y.; Dou, S.X.; Sun, W.P. Nanostructured Metal Chalcogenides for
Energy Storage and Electrocatalysis. Adv. Funct. Mater. 2017, 27. [CrossRef]

18. Wang, J.S.; Liu, J.; Zhang, B.; Ji, X.; Xu, K.; Chen, C.; Miao, L.; Jiang, J.J. The mechanism of hydrogen
adsorption on transition metal dichalcogenides as hydrogen evolution reaction catalyst. Phys. Chem. Chem.
Phys. 2017, 19, 10125–10132. [CrossRef]

19. Khalid, S.; Ahmed, E.; Khan, Y.; Riaz, K.N.; Malik, M.A. Nanocrystalline Pyrite for Photovoltaic Applications.
Chemistryselect 2018, 3, 6488–6524. [CrossRef]

20. Bi, Y.; Yuan, Y.B.; Exstrom, C.L.; Darveau, S.A.; Huang, J.S. Air Stable, Photosensitive, Phase Pure Iron Pyrite
Nanocrystal Thin Films for Photovoltaic Application. Nano Lett. 2011, 11, 4953–4957. [CrossRef]

21. Zhang, G.; Liu, H.; Qu, J.; Li, J. Two-dimensional layered MoS2: Rational design, properties and
electrochemical applications. Energy Environ. Sci. 2016, 9, 1190–1209. [CrossRef]

22. Su, J.Z.; Zhou, J.L.; Wang, L.; Liu, C.; Chen, Y.B. Synthesis and application of transition metal phosphides as
electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644. [CrossRef]

23. Sosa, E.; Cabrera-Sierra, R.; Oropeza, M.T.; Gonzalez, I. Stability study of iron sulfide films, electrochemically
grown on carbon steel, in different electrolytic media. Corrosion 2002, 58, 659–669. [CrossRef]

24. Rickard, D.; Luther, G.W. Chemistry of Iron Sulfides. Chem. Rev. 2007, 107, 514–562. [CrossRef]
25. Matamoros-Veloza, A.; Cespedes, O.; Johnson, B.R.G.; Stawski, T.M.; Terranova, U.; de Leeuw, N.H.;

Benning, L.G. A highly reactive precursor in the iron sulfide system. Nat. Commun. 2018, 9, 3125. [CrossRef]
26. Matamoros-Veloza, A.; Stawski, T.M.; Benning, L.G. Nanoparticle Assembly Leads to Mackinawite Formation.

Cryst. Growth Des. 2018, 18, 6757–6764. [CrossRef]
27. Heift, D.; Lacroix, L.-M.; Lecante, P.; Fazzini, P.-F.; Chaudret, B. Controlling the Sulfidation Process of Iron

Nanoparticles: Accessing Iron−Iron Sulfide Core-Shell Structures. ChemNanoMat 2018, 4, 663–669. [CrossRef]
28. Qin, H.; Jia, J.; Lin, L.; Ni, H.; Wang, M.; Meng, L. Pyrite FeS2 nanostructures: Synthesis, properties and

applications. Mater. Sci. Eng. B 2018, 236, 104–124. [CrossRef]

http://dx.doi.org/10.1016/S0378-7753(99)00458-9
http://dx.doi.org/10.1016/j.ijhydene.2012.10.033
http://dx.doi.org/10.1039/C4CS00448E
http://dx.doi.org/10.1021/acs.jpcc.7b09294
http://dx.doi.org/10.1039/C8EE02939C
http://dx.doi.org/10.1038/nphoton.2012.175
http://dx.doi.org/10.1021/cr4005814
http://dx.doi.org/10.1016/j.ccr.2013.12.018
http://dx.doi.org/10.1016/j.mssp.2015.06.003
http://dx.doi.org/10.1039/c3ee42413h
http://dx.doi.org/10.1039/C7TC04952H
http://dx.doi.org/10.1021/jp506288w
http://dx.doi.org/10.1021/acs.accounts.7b00187
http://dx.doi.org/10.1002/adfm.201702317
http://dx.doi.org/10.1039/C7CP00636E
http://dx.doi.org/10.1002/slct.201800405
http://dx.doi.org/10.1021/nl202902z
http://dx.doi.org/10.1039/C5EE03761A
http://dx.doi.org/10.1016/j.scib.2016.12.011
http://dx.doi.org/10.5006/1.3287695
http://dx.doi.org/10.1021/cr0503658
http://dx.doi.org/10.1038/s41467-018-05493-x
http://dx.doi.org/10.1021/acs.cgd.8b01025
http://dx.doi.org/10.1002/cnma.201800027
http://dx.doi.org/10.1016/j.mseb.2018.11.003


Inorganics 2019, 7, 75 17 of 19

29. Raturi, A.K.; Waita, S.; Aduda, B.; Nyangonda, T. Photoactive iron pyrite films for photoelectrochemical
(PEC) cells. Renew. Energy 2000, 20, 37–43. [CrossRef]

30. Valand, T.; Burchardt, T.; van der Meer, S.F. The hydrogen evolution and corrosion of amorphous FeSx films.
Corros. Sci. 2001, 43, 147–156. [CrossRef]

31. Ennaoui, A.; Fiechter, S.; Pettenkofer, C.; Alonso-Vante, N.; Bueker, K.; Bronold, M.; Hoepfner, C.; Tributsch, H.
Iron disulfide for solar energy conversion. Sol. Energy Mater. Sol. Cells 1993, 29, 289–370. [CrossRef]

32. Dasbach, R.; Willeke, G.; Blenk, O. Iron sulfide for photovoltaics. MRS Bull. 1993, 18, 56–60. [CrossRef]
33. Rui, X.; Tan, H.; Yan, Q. Nanostructured metal sulfides for energy storage. Nanoscale 2014, 6, 9889–9924.

[CrossRef]
34. Zou, X.; Wu, Y.; Liu, Y.; Liu, D.; Li, W.; Gu, L.; Liu, H.; Wang, P.; Sun, L.; Zhang, Y. In Situ Generation of

Bifunctional, Efficient Fe-Based Catalysts from Mackinawite Iron Sulfide for Water Splitting. Chem 2018, 4,
1139–1152. [CrossRef]

35. Di Giovanni, C.; Wang, W.-A.; Nowak, S.; Grenèche, J.-M.; Lecoq, H.; Mouton, L.; Giraud, M.; Tard, C.
Bioinspired Iron Sulfide Nanoparticles for Cheap and Long-Lived Electrocatalytic Molecular Hydrogen
Evolution in Neutral Water. ACS Catal. 2014, 4, 681–687. [CrossRef]

36. Tard, C.; Giraud, M. Iron Sulfide Based Catalyst for Electrolytic Water Reduction into Hydrogen Gas.
WO2014207156A1, 31 December 2014.

37. Yersak, T.A.; Macpherson, H.A.; Kim, S.C.; Le, V.-D.; Kang, C.S.; Son, S.-B.; Kim, Y.-H.; Trevey, J.E.; Oh, K.H.;
Stoldt, C.; et al. Solid State Enabled Reversible Four Electron Storage. Adv. Energy Mater. 2013, 3, 120–127.
[CrossRef]

38. Murphy, R.; Strongin, D.R. Surface reactivity of pyrite and related sulfides. Surf. Sci. Rep. 2009, 64, 1–45.
[CrossRef]

39. Huerta-Flores, A.M.; Torres-Martinez, L.M.; Moctezuma, E.; Singh, A.P.; Wickman, B. Green synthesis of
earth-abundant metal sulfides (FeS2, CuS, and NiS2) and their use as visible-light active photocatalysts for
H2 generation and dye removal. J. Mater. Sci. Mater. Electron. 2018, 29, 11613–11626. [CrossRef]

40. Jasion, D.; Barforoush, J.M.; Qiao, Q.; Zhu, Y.; Ren, S.; Leonard, K.C. Low-Dimensional Hyperthin FeS2

Nanostructures for Efficient and Stable Hydrogen Evolution Electrocatalysis. ACS Catal. 2015, 5, 6653–6657.
[CrossRef]

41. Ren, S.; Leonard, K.C.; Barforoush, J.M.; Jasion, D. Low-dimensional Hyperthin FeS2 Nanostructures for
Electrocatalysis. US20180222767A1, 9 August 2018.

42. Rouquerol, J.; Avnir, D.; Fairbridge, C.W.; Everett, D.H.; Haynes, J.H.; Pernicone, N.; Ramsay, J.D.F.;
Sing, K.S.W.; Unger, K.K. Recommendations for the Characterization of Porous Solids. Pure Appl. Chem.
1994, 66, 1739–1758. [CrossRef]

43. Miao, R.; Dutta, B.; Sahoo, S.; He, J.; Zhong, W.; Cetegen, S.A.; Jiang, T.; Alpay, S.P.; Suib, S.L. Mesoporous Iron
Sulfide for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Am. Chem. Soc. 2017, 139, 13604–13607.
[CrossRef]

44. Li, Z.; Xiao, M.; Zhou, Y.; Zhang, D.; Wang, H.; Liu, X.; Wang, D.; Wang, W. Pyrite FeS2/C nanoparticles as an
efficient bi-functional catalyst for overall water splitting. Dalton Trans. 2018, 47, 14917–14923. [CrossRef]

45. Anantharaj, S.; Karthik, P.E.; Kundu, S. Self-assembled IrO2 nanoparticles on a DNA scaffold with enhanced
catalytic and oxygen evolution reaction (OER) activities. J. Mater. Chem. A 2015, 3, 24463–24478. [CrossRef]

46. McCrory, C.C.L.; Jung, S.H.; Peters, J.C.; Jaramillo, T.F. Benchmarking Heterogeneous Electrocatalysts for the
Oxygen Evolution Reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987. [CrossRef]

47. Liu, H.F.; Chi, D.Z. Synthesis of iron sulfide and iron oxide nanocrystal thin films for green energy applications.
Procedia Eng. 2016, 141, 32–37. [CrossRef]

48. Dasgupta, N.P.; Meng, X.; Elam, J.W.; Martinson, A.B.F. Atomic Layer Deposition of Metal Sulfide Materials.
Acc. Chem. Res. 2015, 48, 341–348. [CrossRef]

49. Guo, Z.; Wang, X. Atomic Layer Deposition of the Metal Pyrites FeS2, CoS2, and NiS2. Angew. Chem. Int. Ed.
2018, 57, 5898–5902. [CrossRef]

50. Wu, L.; Dzade, N.Y.; Gao, L.; Scanlon, D.O.; Öztürk, Z.; Hollingsworth, N.; Weckhuysen, B.M.; Hensen, E.J.M.;
de Leeuw, N.H.; Hofmann, J.P. Enhanced Photoresponse of FeS2 Films: The Role of Marcasite–Pyrite Phase
Junctions. Adv. Mater. 2016, 28, 9602–9607. [CrossRef]

51. Protopopoff, E.; Marcus, P. Poisoning of the Cathodic Hydrogen Evolution Reaction by Sulfur Chemisorbed
on Platinum (110). J. Electrochem. Soc. 1988, 135, 3073–3075. [CrossRef]

http://dx.doi.org/10.1016/S0960-1481(99)00085-3
http://dx.doi.org/10.1016/S0010-938X(00)00059-7
http://dx.doi.org/10.1016/0927-0248(93)90095-K
http://dx.doi.org/10.1557/S088376940003832X
http://dx.doi.org/10.1039/C4NR03057E
http://dx.doi.org/10.1016/j.chempr.2018.02.023
http://dx.doi.org/10.1021/cs4011698
http://dx.doi.org/10.1002/aenm.201200267
http://dx.doi.org/10.1016/j.surfrep.2008.09.002
http://dx.doi.org/10.1007/s10854-018-9259-x
http://dx.doi.org/10.1021/acscatal.5b01637
http://dx.doi.org/10.1351/pac199466081739
http://dx.doi.org/10.1021/jacs.7b07044
http://dx.doi.org/10.1039/C8DT02927J
http://dx.doi.org/10.1039/C5TA07075A
http://dx.doi.org/10.1021/ja407115p
http://dx.doi.org/10.1016/j.proeng.2015.08.1104
http://dx.doi.org/10.1021/ar500360d
http://dx.doi.org/10.1002/anie.201803092
http://dx.doi.org/10.1002/adma.201602222
http://dx.doi.org/10.1149/1.2095492


Inorganics 2019, 7, 75 18 of 19

52. Chua, C.K.; Pumera, M. Susceptibility of FeS2 hydrogen evolution performance to sulfide poisoning.
Electrochem. Commun. 2015, 58, 29–32. [CrossRef]

53. Zakaria, S.N.A.; Hollingsworth, N.; Islam, H.U.; Roffey, A.; Santos-Carballal, D.; Roldan, A.; Bras, W.;
Sankar, G.; Hogarth, G.; Holt, K.B.; et al. Insight into the Nature of Iron Sulfide Surfaces During the
Electrochemical Hydrogen Evolution and CO2 Reduction Reactions. ACS Appl. Mater. Interfaces 2018, 10,
32078–32085. [CrossRef]

54. Villalba, M.; Peron, J.; Giraud, M.; Tard, C. pH-dependence on HER electrocatalytic activity of iron sulfide
pyrite nanoparticles. Electrochem. Commun. 2018, 91, 10–14. [CrossRef]

55. Giovanni, C.D.; Reyes-Carmona, Á.; Coursier, A.; Nowak, S.; Grenèche, J.M.; Lecoq, H.; Mouton, L.; Rozière, J.;
Jones, D.; Peron, J.; et al. Low-Cost Nanostructured Iron Sulfide Electrocatalysts for PEM Water Electrolysis.
ACS Catal. 2016, 6, 2626–2631. [CrossRef]

56. Roldan, A.; de Leeuw, N.H. Catalytic water dissociation by greigite Fe3S4 surfaces: Density functional theory
study. Proc. R. Soc. A 2016. [CrossRef]

57. Scanlon, D.O.; Dunnill, C.W.; Buckeridge, J.; Shevlin, S.A.; Logsdail, A.J.; Woodley, S.M.; Catlow, C.R.A.;
Powell, M.J.; Palgrave, R.G.; Parkin, I.P.; et al. Band alignment of rutile and anatase TiO2. Nat. Mater. 2013,
12, 798–801. [CrossRef]

58. Xu, H.; Ouyang, S.X.; Liu, L.Q.; Reunchan, P.; Umezawa, N.; Ye, J.H. Recent advances in TiO2-based
photocatalysis. J. Mater. Chem. A 2014, 2, 12642–12661. [CrossRef]

59. Wan, D.; He, Q.; Zhang, L.; Jia, Q.; Zhang, R.; Zhang, H.; Wang, B.; Wei, L. Study on pyrite FeS2 films
deposited on Si(100) substrate by synchrotron radiation surface x-ray diffraction method. J. Cryst. Growth
2004, 268, 222–226. [CrossRef]

60. Lee, G.; Kang, M. Physicochemical properties of core/shell structured pyrite FeS2/anatase TiO2 composites and
their photocatalytic hydrogen production performances. Curr. Appl. Phys. 2013, 13, 1482–1489. [CrossRef]

61. Kuo, T.R.; Liao, H.J.; Chen, Y.T.; Wei, C.Y.; Chang, C.C.; Chen, Y.C.; Chang, Y.H.; Lin, J.C.; Lee, Y.C.; Wen, C.Y.;
et al. Extended visible to near-infrared harvesting of earth-abundant FeS2-TiO2 heterostructures for highly
active photocatalytic hydrogen evolution. Green Chem. 2018, 20, 1640–1647. [CrossRef]

62. Xin, Y.M.; Li, Z.Z.; Wu, W.L.; Fu, B.H.; Zhang, Z.H. Pyrite FeS2 Sensitized TiO2 Nanotube Photoanode
for Boosting Near-Infrared Light Photoelectrochemical Water Splitting. ACS Sustain. Chem. Eng. 2016, 4,
6659–6667. [CrossRef]

63. Meng, X.C.; Zhang, Z.S. Two dimensional graphitic materials for photoelectrocatalysis: A short review.
Catal. Today 2018, 315, 2–8. [CrossRef]

64. Xu, G.R.; Hui, J.J.; Huang, T.; Chen, Y.; Lee, J.M. Platinum nanocuboids supported on reduced graphene
oxide as efficient electrocatalyst for the hydrogen evolution reaction. J. Power Sources 2015, 285, 393–399.
[CrossRef]

65. Wang, S.N.; Liao, L.; Shi, Z.P.; Xiao, J.J.; Gao, Q.S.; Zhang, Y.H.; Liu, B.H.; Tang, Y. Mo2C/Reduced-Graphene-
Oxide Nanocomposite: An Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Chemelectrochem
2016, 3, 2110–2115. [CrossRef]

66. Johnson, D.W.; Dobson, B.P.; Coleman, K.S. A manufacturing perspective on graphene dispersions. Curr. Opin.
Colloid Interface Sci. 2015, 20, 367–382. [CrossRef]

67. Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S.P. Charged Carbon
Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118,
7363–7408. [CrossRef]

68. Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis,
Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [CrossRef]

69. Chen, Y.N.; Xu, S.M.; Li, Y.C.; Jacob, R.J.; Kuang, Y.D.; Liu, B.Y.; Wang, Y.L.; Pastel, G.; Salamanca-Riba, L.G.;
Zachariah, M.R.; et al. FeS2 Nanoparticles Embedded in Reduced Graphene Oxide toward Robust,
High-Performance Electrocatalysts. Adv. Energy Mater. 2017, 7, 1700482. [CrossRef]

70. Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M.
Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [CrossRef]

71. Jiang, J.; Zhu, L.; Chen, H.; Sun, Y.; Qian, W.; Lin, H.; Han, S. Highly active and stable electrocatalysts of
FeS2–reduced graphene oxide for hydrogen evolution. J. Mater. Sci. 2019, 54, 1422–1433. [CrossRef]

72. Xu, Y.; Wu, R.; Zhang, J.F.; Shi, Y.M.; Zhang, B. Anion-exchange synthesis of nanoporous FeP nanosheets as
electrocatalysts for hydrogen evolution reaction. Chem. Commun. 2013, 49, 6656–6658. [CrossRef]

http://dx.doi.org/10.1016/j.elecom.2015.05.016
http://dx.doi.org/10.1021/acsami.8b08612
http://dx.doi.org/10.1016/j.elecom.2018.04.019
http://dx.doi.org/10.1021/acscatal.5b02443
http://dx.doi.org/10.1098/rspa.2016.0080
http://dx.doi.org/10.1038/nmat3697
http://dx.doi.org/10.1039/C4TA00941J
http://dx.doi.org/10.1016/j.jcrysgro.2004.05.014
http://dx.doi.org/10.1016/j.cap.2013.05.002
http://dx.doi.org/10.1039/C7GC03173D
http://dx.doi.org/10.1021/acssuschemeng.6b01533
http://dx.doi.org/10.1016/j.cattod.2018.03.015
http://dx.doi.org/10.1016/j.jpowsour.2015.03.131
http://dx.doi.org/10.1002/celc.201600325
http://dx.doi.org/10.1016/j.cocis.2015.11.004
http://dx.doi.org/10.1021/acs.chemrev.8b00128
http://dx.doi.org/10.1002/adma.201001068
http://dx.doi.org/10.1002/aenm.201700482
http://dx.doi.org/10.1021/nn1006368
http://dx.doi.org/10.1007/s10853-018-2913-0
http://dx.doi.org/10.1039/c3cc43107j


Inorganics 2019, 7, 75 19 of 19

73. Guo, Y.X.; Shang, C.S.; Zhang, X.Y.; Wang, E.K. Electrocatalytic hydrogen evolution using the MS2@MoS2/rGO
(M = Fe or Ni) hybrid catalyst. Chem. Commun. 2016, 52, 11795–11798. [CrossRef]

74. Jiang, J.; Zhu, L.; Chen, H.; Sun, Y.; Lin, H.; Han, S. Effect of nickel-doped FeS2 nanoparticles-reduced
graphene oxide electrocatalysts for efficient hydrogen evolution. J. Alloys Compd. 2019, 775, 1293–1300.
[CrossRef]

75. Li, Y.; Yin, J.; Chu, C.; Sui, N.; Shi, S.; Wei, J.; Di, F.; Guo, J.; Wang, C.; Xu, W.; et al. Earth-abundant Fe1−xS@S-
doped graphene oxide nano–micro composites as high-performance cathode catalysts for green solar energy
utilization: Fast interfacial electron exchange. RSC Adv. 2018, 8, 4340–4347. [CrossRef]

76. Begum, A.; Sheikh, A.H.; Moula, G.; Sarkar, S. Fe4S4 Cubane Type Cluster Immobilized on a Graphene
Support: A High Performance H2 Evolution Catalysis in Acidic Water. Sci. Rep. 2017, 7, 16948. [CrossRef]

77. Yuhas, B.D.; Smeigh, A.L.; Samuel, A.P.S.; Shim, Y.; Bag, S.; Douvalis, A.P.; Wasielewski, M.R.; Kanatzidis, M.G.
Biomimetic Multifunctional Porous Chalcogels as Solar Fuel Catalysts. J. Am. Chem. Soc. 2011, 133, 7252–7255.
[CrossRef]

78. Shim, Y.; Young, R.M.; Douvalis, A.P.; Dyar, S.M.; Yuhas, B.D.; Bakas, T.; Wasielewski, M.R.; Kanatzidis, M.G.
Enhanced Photochemical Hydrogen Evolution from Fe4S4-Based Biomimetic Chalcogels Containing M2+

(M = Pt, Zn, Co, Ni, Sn) Centers. J. Am. Chem. Soc. 2014, 136, 13371–13380. [CrossRef]
79. Huang, S.Y.; Sodano, D.; Leonard, T.; Luiso, S.; Fedkiw, P.S. Cobalt-Doped Iron Sulfide as an Electrocatalyst

for Hydrogen Evolution. J. Electrochem. Soc. 2017, 164, F276–F282. [CrossRef]
80. Kuo, T.-R.; Chen, W.-T.; Liao, H.-J.; Yang, Y.-H.; Yen, H.-C.; Liao, T.-W.; Wen, C.-Y.; Lee, Y.-C.; Chen, C.-C.;

Wang, D.-Y. Improving Hydrogen Evolution Activity of Earth-Abundant Cobalt-Doped Iron Pyrite Catalysts
by Surface Modification with Phosphide. Small 2017, 13, 1603356. [CrossRef]

81. Wang, D.Y.; Gong, M.; Chou, H.L.; Pan, C.J.; Chen, H.A.; Wu, Y.P.; Lin, M.C.; Guan, M.Y.; Yang, J.; Chen, C.W.;
et al. Highly Active and Stable Hybrid Catalyst of Cobalt-Doped FeS2 Nanosheets-Carbon Nanotubes for
Hydrogen Evolution Reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. [CrossRef]

82. Li, Y.X.; Yin, J.; An, L.; Lu, M.; Sun, K.; Zhao, Y.Q.; Gao, D.Q.; Cheng, F.Y.; Xi, P.X. FeS2/CoS2 Interface
Nanosheets as Efficient Bifunctional Electrocatalyst for Overall Water Splitting. Small 2018, 14, 1801070.
[CrossRef]

83. Wang, K.; Guo, W.L.; Yan, S.C.; Song, H.Z.; Shi, Y. Hierarchical Co-FeS2/CoS2 heterostructures as a superior
bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691. [CrossRef]

84. Zhao, X.; Ma, X.; Lu, Q.Q.; Li, Q.; Han, C.; Xing, Z.C.; Yang, X.R. FeS2-doped MoS2 nanoflower with
the dominant 1T-MoS2 phase as an excellent electrocatalyst for high-performance hydrogen evolution.
Electrochim. Acta 2017, 249, 72–78. [CrossRef]

© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C6CC06180J
http://dx.doi.org/10.1016/j.jallcom.2018.10.261
http://dx.doi.org/10.1039/C7RA13225E
http://dx.doi.org/10.1038/s41598-017-17121-7
http://dx.doi.org/10.1021/ja111275t
http://dx.doi.org/10.1021/ja507297p
http://dx.doi.org/10.1149/2.0761704jes
http://dx.doi.org/10.1002/smll.201603356
http://dx.doi.org/10.1021/ja511572q
http://dx.doi.org/10.1002/smll.201801070
http://dx.doi.org/10.1039/C8RA05237A
http://dx.doi.org/10.1016/j.electacta.2017.08.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Iron Sulfide Phases as Electrocatalysts 
	Iron Monosulfide, FeS 
	Iron Disulfide, FeS2 
	FeS2 Wires and Discs 
	Mesoporous FeS2 Nanoparticles 
	FeS2/C Electrode Coating 
	FeS2 Thin-Films 
	Resistance of FeS2 Catalysts to Sulfide Poisoning 

	pH Dependence of Iron Sulfide Electrocatalysts 
	HER Activity of Iron Sulfides in Comparison 

	FeS2-TiO2 Composite Materials 
	Iron Sulfide-2D Carbon Hybrid Materials 
	FeS2/rGO Hybrid Catalysts 
	MoS2 and Ni Doped FeS2/rGO Hybrid Catalysts 
	Fe1-xS/GO Hybrid Catalyst 
	Fe4S4/Graphene Hybrid Catalyst 

	Metal Doping of Iron Sulfide Nanomaterials 
	Cobalt-Doped FeS2 Structures 
	FeS2-CoS2 Hybrid Structures 
	Cobalt-Doped FeS2-CoS2 Hybrid Structures 
	FeS2-Doped MoS2 Nanoflowers 

	Conclusions and Outlook 
	Summary Table of Discussed Iron Sulfide Materials 
	References

