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Wetting boundaries for a ternary high-density-ratio lattice Boltzmann method
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We extend a recently proposed ternary free-energy lattice Boltzmann model with high density contrast [Phys.
Rev. Lett. 120, 234501 (2018)] by incorporating wetting boundaries at solid walls. The approaches are based
on forcing and geometric schemes, with implementations optimized for ternary (and, more generally, higher-
order multicomponent) models. Advantages and disadvantages of each method are addressed by performing
both static and dynamic tests, including the capillary filling dynamics of a liquid displacing the gas phase and
the self-propelled motion of a train of drops. Furthermore, we measure dynamic angles and show that the slip
length critically depends on the equilibrium value of the contact angles and whether it belongs to liquid-liquid or
liquid-gas interfaces. These results validate the model capabilities of simulating complex ternary fluid dynamic
problems near solid boundaries, for example, drop impact solid substrates covered by a lubricant layer.
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I. INTRODUCTION

Understanding the flow properties of ternary fluid systems
is key in many natural phenomena and technological applica-
tions. In microfluidics, combinations of immiscible liquids are
employed to produce multiple emulsions [1]. In food sciences
and pharmacology, collisions between immiscible drops [2]
and liquid streams [3] can be exploited to encapsulate liquids.
Collisions are also particularly relevant in combustion en-
gines, where encapsulation of water drops by fuel can induce
microexplosions enhancing the burning rate [4]. Furthermore,
in advanced oil recovery, the water-alternate-gas (WAG) tech-
niques are frequently employed to enhance the recovery [5].
The oil-water interaction in dynamic conditions also poses
environmental challenges. For example, the spilling of an oil
layer at the surface of sea water strongly affects the production
of marine aerosol when rain drops impact on the oil layer [6].
In contrast, placing a lubricant layer on a rough solid is the
key idea behind the recent development of slippery lubricant
impregnated surfaces (SLIPS), allowing us to virtually elim-
inate contact line pinning [7,8], with applications in coatings
and packaging.

Several numerical schemes have been proposed in recent
years to simulate ternary and higher-order fluid systems,
including immersed boundary [9], level-set [10], and phase-
field methods [11–15]. In this work we employ the lattice
Boltzmann (LB) method [16,17]. Multiphase and multicom-
ponent LB models are characterized by a diffuse interface,
which has the advantage that the interface does not need to
be tracked explicitly [18,19]. This makes diffuse interface
models particularly convenient to study problems involving
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coalescence or break-up of liquids [20,21], drop collisions
[22–25], drop impact on solid walls [26–31], and on topo-
graphic or chemically patterned surfaces [32,33].

Several LB models have been proposed to study ternary
fluid systems. Travasso et al. proposed a free-energy model
to study phase separation of ternary mixtures under shear
[34]; Spencer et al. proposed a color model to study N >

2 component systems [35]; Ridl et al. proposed a model
combining N Van der Waals equation of states to study the
stability of multicomponent mixtures [36]; Semprebon et al.
proposed a ternary free-energy approach [37] to model liquids
with equal density, showing that the method can simulate drop
morphologies on SLIPS [38] and their dynamic properties
[39] for a wide range of surface tensions and contact angles.

To model effects of inertia, the large density ratio between
liquids and the gas phase needs to be accounted [40,41], but
only recently ternary models for high density ratio have been
proposed. Shi et al. [42] extended the binary Cahn-Hilliard
model for high density ratio proposed by Want et al. [43]
to three components. Wöhrwag et al. proposed a free-energy
functional combining multiphase and multicomponent terms
[44], and employing the entropic collision approach [45]
could simulate density contrast up to 103. The model could
capture the salient features of head-on collisions between
immiscible drops, reproducing the bouncing, adhesion, and
encapsulation mechanisms previously observed experimen-
tally [2].

In this work we extend this high-density ternary approach
to model wetting of solid boundaries. The paper is organized
as follows: In Sec. II we summarize the ternary model in-
troduced in Ref. [44]. In Sec. III we perform an extensive
analysis of the interfacial properties as function of the free-
energy parameters. In Sec. IV we describe our implementation
of three methods for wetting of solid boundaries, namely
force, geometric extrapolation, and geometric interpolation,
and benchmark the accuracy of contact angles in mechanical
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equilibrium. In Sec. V we compare the accuracy of the force
and geometric interpolation methods in simulating the cap-
illary filling of a two-dimensional (2D) channel. In Sec. VI
we perform a ternary-specific benchmark, simulating a self-
propelled bislug. This will enable us to evaluate the slip
properties of the three fluid interfaces and assess the impact of
different slip mechanisms. Finally, in Sec. VII, we summarize
and discuss our results.

II. LATTICE BOLTZMANN FORMULATION

In this section, we summarize the derivation of the
multiphase-multicomponent lattice Boltzmann model pro-
posed in Ref. [44].

A. Ternary multiphase-multicomponent free energy

The ternary free-energy model is conveniently expressed in
terms of a combination of bulk fBulk and the interfacial terms
fInter in the free-energy functional:

F =
∫

[ fBulk + fInter]dV, (1)

where

fBulk = λ1

2
[�eos(ρ) − �0] (2)

+λ2

2
C2

2 (1 − C2)2 + λ3

2
C2

3 (1 − C3)2,

fInter = κ1

2
(∇ρ)2 + κ2

2
(∇C2)2 + κ3

2
(∇C3)2. (3)

The first term in Eq. (2) tunes the coexistence of high-
density (ρl ) liquid with a low-density (ρg) gas. The term
�eos(ρ) is derived by integrating any suitable nonideal
equation of state, peos = ρ(d�eos/dρ) − �eos. In our pre-
vious work [44] we have shown that the model can host
various equations of state [46], including van der Waals,
Peng-Robinson, and Carnahan-Starling. Here we employ the
Carnahan-Starling equation of state:

�eos = ρ

[
C − aρ − 8RT (−6 + bρ)

(−4 + bρ)2
+ RT log(ρ)

]
, (4)

where the constants C and �0 enforce �eos(ρg) = �eos(ρl ) =
�0. This condition ensures that the common tangent construc-
tion is valid for all coexisting phases. Unless otherwise stated,
we employ the following values a = 0.037, b = 0.2, and R =
1, for which the critical temperature is Tc = 0.3373 a

bR . The
critical temperature describes the temperature below which
coexistence between the two liquids and the gas is possible
and above which the liquid and gas phases are indistinguish-
able. The reduced temperature Tr = T/Tc is employed to set
the density contrast between the gas and the liquid phases,
as shown in the coexistence curve reported in Ref. [44]. We
define the relative concentration of the gas phase as

C1 = ρ − ρl

ρg − ρl
, (5)

for which C1 = 0 when ρ = ρl and C1 = 1 when ρ = ρg.
The second and third terms in Eq. (2) represent a double-

well potential, as function of the relative liquid concentra-
tions: C2 and C3. Each concentration has two minima at

C2,3 = 0 and C2,3 = 1, corresponding to the presence or ab-
sence of the liquid. For convenience we introduce the phase
field φ = χ (C2 − C3) which, together with the density ρ,
describes the system state. The parameter χ usually takes the
value χ = 5 in our model, and is employed to rescale the field
φ such as the distance between minima is similar in both the
ρ and φ fields. The variable transformations

C2 = 1

2

[
1 + φ

χ
− ρ − ρl

ρg − ρl

]
(6)

and

C3 = 1

2

[
1 − φ

χ
− ρ − ρl

ρg − ρl

]
, (7)

enforce the constraint

C1 + C2 + C3 = 1 (8)

and allow us to map the density and phase fields to the
concentration fields.

The bulk free-energy density in Eq. (2) describes three
distinct energy minima in the (ρ, φ) space, corresponding to
(ρ, φ) = (ρg, 0) (gas phase) and (ρl ,+χ ), (ρl ,−χ ) (liquid
phases). The set of lambdas (λ1, λ2, and λ3) tunes the mag-
nitude of the energy barriers between each pair of phases.

Equation (3) contains gradient terms of the density field
and the concentration of the two liquid components, describ-
ing the energy penalty in the formation of the interfaces,
tuned by the set of kappas (κ1, κ2, and κ3). Summarizing, this
free-energy model depends on six independent parameters to
fully determine the thermodynamic properties of the system.

B. Derivation of the pressure tensor

The chemical potentials μρ and μφ are obtained directly
from the free energy

μρ (r) = δF

δρ(r)
= μBulk

ρ + μInter
ρ , (9)

μφ (r) = δF

δφ(r)
= μBulk

φ + μInter
φ . (10)

For convenience we express the chemical potentials in terms
of the relative concentrations and, to simplify the notation, we
define the auxiliary function g(x) = x(x − 1/2)(x − 1):

μBulk
ρ = λ1

2

d�eos

dρ
− λ2

	ρ
g(C2) + λ3

	ρ
g(C3), (11)

μBulk
φ = λ2

χ
g(C2) − λ3

χ
g(C3), (12)

μInter
ρ = −κρρ∇2ρ − κρφ∇2φ, (13)

μInter
φ = −κρφ∇2ρ − κφφ∇2φ. (14)

In Eq. (11) d�eos/dρ is the first derivative by the density
of the nonideal equation of state, and 	ρ = ρl − ρg. For the
Carnahan-Starling equation of state (eos) the first derivative
of Eq. (4) is

d�eos

dρ
= C − 2aρ + RT (1 + log ρ) + 16RT (bρ − 12)

(−4 + bρ)3
.

(15)
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Furthermore, in Eqs. (13) and (14) the mixing coefficients for
the gradient terms are

κρρ =
[
κ1 + κ2 + κ3

4(ρg − ρl )2

]
, (16)

κφφ = κ2 + κ3

4χ2
, (17)

κρφ = − κ3 − κ2

4χ (ρg − ρl )
. (18)

The pressure tensor can be inferred from the relation ∇ ·
P = ρ∇μρ + φ∇μφ and takes the form

Pαβ = p0δαβ

+ κρρ

{
(∂αρ)(∂βρ) −

[
ρ(∂γγ ρ) + 1

2
(∂γ ρ)2

]
δαβ

}

+ κφφ

{
(∂αφ)(∂βφ) −

[
φ(∂γγ φ) + 1

2
(∂γ φ)2

]
δαβ

}
+ κρφ{(∂αρ)(∂βφ) + (∂αφ)(∂βρ)

−[ρ(∂γγ φ) + φ(∂γγ ρ) + (∂γ ρ)(∂γ φ)]δαβ}, (19)

where p0 is the pressure in the fluid bulk

p0 = ρμBulk
ρ + φμBulk

φ − fBulk. (20)

C. Entropic lattice Boltzmann implementation

The dynamic evolution of the isothermal ternary sys-
tem follows the continuity, Navier-Stokes, and Cahn-Hilliard
equations:

∂tρ + ∇ · (ρv) = 0, (21)

∂t (ρv) + ∇ · (ρv ⊗ v) = −∇ · P + ∇ · [η(∇v + ∇vT)],

(22)

∂tφ + ∇ · (φv) = M∇2μφ, (23)

where v is the fluid velocity, η is the dynamic viscosity, and
M represents the mobility in the Cahn-Hilliard model for the
order parameter φ.

To solve the equations of motion we introduce two sets of
distribution functions, evolving the density ρ and the order
parameter φ. For the density ρ, we employ the entropic
lattice Boltzmann method (ELBM) [40,47], as it provides an
enhanced numerical stability when there is a large density
ratio between the liquid and gas phases,

fi(x + ci	t, t + 	t )

= fi(x, t ) + αβ
[

f eq
i (ρ, u) − fi(x, t )

] + Fi. (24)

We implement the exact form for the equilibrium distribution
function f eq

i (ρ, u), which for a D-dimensional system (de-
scribed by the lattices D1Q3, D2Q9, or D3Q27) can be written
in the product form [48,49],

f eq
i = ρwi�

D
α=1A(uα )[B(uα )]ciα . (25)

The wi’s are the lattice weights and ciα is the α component
of the cith lattice vector. The functions A(u) and B(u) are
given by

A(u) = 2 −
√

1 + 3u2 (26)

and

B(u) = 2u + √
1 + 3u2

1 − u
. (27)

The forcing term Fi in Eq. (24) [23] is implemented via the
exact differences scheme

Fi = [
f eq
i (ρ, u + δu) − f eq

i (ρ, u)
]
, (28)

where ρu = ∑
i fici = ∑

i f eq
i ci is the bare fluid velocity and

δu = (F/ρ)	t is the correction to the fluid velocity arising
from the force

F = ∇ · (
ρc2

s I − P
)
. (29)

In Eq. (29) c2
s = 1/3 is the speed of sound in the lattice

Boltzmann scheme.
In ELBM the parameter β tunes the kinematic viscosity

ν = η/ρ = (β−1 − 1)/6, and the parameter α is the nontrivial
root of

H ( f ′ + α[ f eq(ρ, u + δu) − f ′]) = H ( f ′). (30)

In Eq. (30)

f ′
i = fi + [

f eq
i (ρ, u + δu) − f eq

i (ρ, u)
]

(31)

represents the mirror state, and

H ( f ) =
∑

i

fi ln( fi/wi ) (32)

is the entropy.
To evolve the order parameter φ, we employ a standard

lattice Bhatnagar-Gross-Krook (LBGK) scheme

gi(x + ci	t, t + 	t ) = gi(x, t ) +
[
geq

i (φ, v) − gi(x, t )
]

τ
.

(33)

The parameter τ is related to the mobility M = �(τ − 1/2)
in Eq. (23), where the constant � tunes the diffusivity and is
chosen to be � = 1 unless otherwise stated. The equilibrium
distribution function, geq

i (φ, v), can be written as

geq
i (φ, v) = wi

[
�μφ

c2
s

+ φvαciα

c2
s

+φvαvβ

(
ciαciβ − c2

s δαβ

)
2c4

s

]
, (34)

geq
0 (φ, v) = φ −

∑
i �=0

geq
i , (35)

where the actual fluid velocity, v = u + δu/2, is required.

III. SURFACE TENSIONS

In free-energy models based on double-well potentials
[50,51], the shape of the concentration profile against the
spatial coordinates takes the form of a hyperbolic tangent.
This feature is inherited in our ternary model but only for
the liquid-liquid interface between phases C2 and C3, which
is characterized by the parameter

α23 =
√

κ2 + κ3

λ2 + λ3
. (36)
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TABLE I. Parameters of four selected sets and the relative sur-
face tensions and Neumann angles. The last row reports the global
energy minimum configuration of a double emulsion. The white
region corresponds to the gas phase (C1), while the blue and red
regions correspond to the liquids C2 and C3.

Set 1 2 3 4

λ1 0.6 0.6 0.01 0.1
κ1 0.01 0.01 0.01 0.01
λ2 1.0 1.1 1.5 1.0
κ2 1.0 1.1 1.5 1.6
λ3 1.0 0.5 1.5 0.2
κ3 1.0 0.5 1.5 −0.4
γ12 0.414 0.431 0.333 0.321
γ13 0.414 0.334 0.333 0.120
γ23 0.323 0.259 0.485 0.180
θ1 134.1 143.1 86.3 —
θ2 112.9 129.2 136.8 —
θ3 112.9 87.6 136.8 —

We can assume that the density does not vary at the interface
between C2 and C3 and set C1 = 0 along the interface. Follow-
ing Ref. [37], if the coordinate x measures the distance from
the interface along its normal direction, then the concentration
profiles of the components C2 and C3 vary according to

C2,3(x) = 1 ± tanh x
2α23

2
. (37)

Integrating of the concentration profiles along x we derive a
simple expression for the surface tension [37],

γ23 = α23

6
(λ2 + λ3). (38)

For the liquid-gas interfaces, it is not possible to assume a
priori that the ρ and φ fields vary with the same functional
form. Indeed, the minimization of the free energy seeks a
path which cannot be described analytically. To illustrate this
aspect, we study in detail four cases, represented by the pa-
rameter sets reported in Table I. For each set we independently
compute for all interfaces the surface tension γ = 	PR by
measuring the pressure jump 	P across the interface of 2D
drop of radius R (bubble test).

The four sets are listed in order of increasing mismatch
between the interfacial profiles. The first set represents two
liquids with symmetric properties, where the liquid-liquid
surface tension is slightly lower than both the liquid-gas
ones. The second set describes three fluids with different
properties. The third set also describes two equal liquids but
λ1 is much smaller than in the first set, leading to a liquid-
liquid surface tension significantly larger than the liquid-gas
ones. The fourth set describes also three fluids, but in this
case the parameter κ3 is negative, leading to a spontaneous
encapsulation of liquid C2 by liquid C3. Negative values
of lambdas or kappas are generally allowed in the ternary
model, as long as the three minima in the [ρ, φ] space are
well defined.

In Fig. 1 we inspect the properties of the diffuse interfaces
for the parameter sets described in Table I. The color maps
illustrate the contours of the bulk free energy in the [φ, ρ]
space. As expected, the bulk free energy is symmetric in φ for
sets 1 and 3 and nonsymmetric for sets 2 and 4.

Introducing the variable transformation Eqs. (5), (6), and
(7) into Eq. (8) we can easily see that the absence of the third
component at any interface leads to a linear relation between
ρ and φ connecting the corresponding minima, represented
by straight lines in the [ρ, φ] space in Fig. 1. However, the
minimization of the free energy does lead to different paths,
depicted by connected dots. As Eq. (8) must be satisfied, the
inverse variable transformation will produce a certain fraction
of the minor component at the interface.

For set 1, the paths in the [φ, ρ] space are close to
straight lines. The deviations in the remaining sets increase
with the increasing mismatch between the profiles of ρ and
φ. To quantify these mismatches we define the “concentra-
tion deviation coefficient” D as the difference between the
maximum and minimum values of the minority phase in a
region � near the interface between the two majority phases.
Figure 2 illustrates a typical example of the spatial variation
of the minority concentration C3 at the interface between C1

and C2. The concentration deviation coefficient D3 is then
defined as

D3 = max
x∈�

(C3) − min
x∈�

(C3) (39)

and similarly for the other interfaces. For an ideal system, D1,
D2, D3 → 0.

In our model the surface tensions cannot be computed ana-
lytically. Thus, we have performed a systematic investigation
into how the liquid-liquid and liquid-gas surface tensions de-
pend on the six-dimensional parameter space formed by λ =
(λ1, λ2, λ3) and κ = (κ1, κ2, κ3). However, since exploring
the full six-dimensional parameter space is too demanding,
here we have identified eight relevant subspaces. In all cases,
we set Tred = 0.61, which leads to an effective density ratio
ρl/ρg 	 103.

Each subspace is described by two coordinates, X and Y ,
and it is mapped using a 20 × 20 = 400 points grid, where
each point represents a given parameter set. For each point,
we have performed three independent drop (or bubble) tests
in order to measure the surface tensions of the three fluid-fluid
interfaces. The spatial variations of the concentrations are also
measured along the radial direction from the center of the
drop (or bubble) to the boundary of the simulation domain.
This allows us to characterize the concentration deviation
coefficient for the minority phase, as defined in Eq. (39).

The maps λ(X,Y ) and κ(X,Y ) are summarized in Table II.
In Subspace 1 we consider immiscible liquids with identical
properties λ2 = λ3 = κ2 = κ3 = X and explore the relative
effect of the variation in the liquid-gas contribution to the bulk
free energy λ1 = Y . Subspace 2 is similar, but the choice of
λ2 = λ3 = κ2 = κ3 produces a larger width of liquid-liquid
interface, resulting in lower Neumann angles for the gas phase
θ1 (more repelling liquids). In Subspace 3 we fix λ3 = κ3 =
0.5, and explore the interplay between the gas phase and
the first liquid. This set is useful to simulate system with
nonsymmetric interfacial properties for the two liquids. In
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

x x x x

FIG. 1. Upper row: Color maps of the bulk free energy for the parameter sets 1, 2, 3, and 4 [panels (a), (b), (c), and (d)]. The dashed lines
connecting the three energy minima represent the path in the of [φ, ρ] space of an ideal interface, where the third components is completely
absent. Data points represent the path of the numerically computed interface profiles in mechanical equilibrium. Deviations from the dashed
lines reveal the creation of a fraction of concentration the third component. Middle row [panels (e), (f), (g), and (h)]: Profiles of ρ and φ along
interfaces between fluids, placed in the sequence 1,2,3,1. Bottom row [panels (i), (j), (k), and (l)]: Profiles of C1, C2, and C3 along interfaces
between fluids in the corresponding sequence 1,2,3,1.

Subspaces 4, 5, and 6 we fix the the contributions of the
bulk term for the equation of state to three values, λ1 =
0.01, 0.6, 1.0. These lead respectively to a small, medium,
and large contribution to the liquid-gas surface tensions from
the bulk term. In all three subspaces we then systematically
explore parameter combinations for the two liquids λ2 =
κ2 = X and λ3 = κ3 = Y , allowing us to realize systems with
enhanced asymmetry in the surface tension properties of the

D3

x
FIG. 2. Example of profile of the concentration C3 at the inter-

face between C1 and C2 illustrating the definition of the concentration
deviation coefficient (D3).

liquids. In Subspaces 7 and 8 we consider cases with negative
values of κ2, which are necessary to achieve spontaneous
encapsulation of liquid 3 by liquid 2. The parameters can
be tuned in order to compare systems where the spreading
parameters S2 continuously shifts from positive to negative.

In Fig. 3 we report, as an example, our analysis of the
subspace 4. The first row of panels depicts the surface tensions
γ12, γ13, and γ23, respectively. As expected, γ12 and γ13 mainly
depend on the variation of X = λ2 and Y = λ3, respectively,
while γ23 is function of X + Y = λ2 + λ3. The nonperfect
alignment of the contour lines with the main axes for γ12

and γ13 is an indication of the nonconstant contribution of
the liquid-gas component, even if λ1 is fixed throughout the
subspace. The variation of γ23 instead is more regular, because

TABLE II. Summary of surface tension tests. Details for each
case are in the Supplemental Material [52].

Subspace λ1 λ2 λ3 κ1 κ2 κ3

1 Y X X 0.01 X X
2 Y X X 0.01 0.5X 0.5X
3 Y X 0.5 0.01 X 0.5
4 0.01 X Y 0.01 X Y
5 0.5 X Y 0.01 X Y
6 1.0 X Y 0.01 X Y
7 Y X 0.5 0.01 2X − 0.5 1 − X
8 0.1 X 1.0 0.01 Y 1 + X − Y
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d) e)

f)

(a) (b) (c)

(g) (h () i)

(d) (e) (f)

D

X X X

Y

Y

Y

12 13 23

123

D1D2D3

FIG. 3. Color maps of relevant quantities as function of the coordinate X = λ2 and X = λ3. Upper row [(a), (b), and (c)]: surface tensions
(λ12, λ13, and λ23); middle row [(d), (e), and (f)]: Neumann angles (θ3, θ2 and θ1); Lower row [(g), (h), and (i)]: concentration deviation
coefficient (D3, D2, and D1).

no variation of the density field occurs at this interface and
closely follows the values of surface tension predicted by
Eq. (38) (comparison not shown).

The second row of panels in Fig. 3 reports the Neumann
angles θ1, θ2, and θ3 computed as functions of the surface
tensions:

cos θ1 = γ 2
23 − γ 2

12 − γ 2
13

2γ12γ13
, (40)

cos θ2 = γ 2
13 − γ 2

12 − γ 2
23

2γ12γ23
, (41)

cos θ3 = γ 2
12 − γ 2

13 − γ 2
23

2γ13γ23
. (42)

For the full range of parameters explored in this subspace,
the Neumann angles are always well defined, indicating that

the spreading parameter Sk = γi j − γik − γ jk < 0. The third
row of panels in Fig. 3 reports the “concentration deviation
coefficient” D, measured for each interface. As expected,
D1 	 0 throughout the whole map. In contrast, D2 and D3 vary
up to 25% of the concentration interval ([0,1]).

Similar analysis to Fig. 3 for all other subspaces in
Table II are provided in the Supplemental Material [52]. We
have also fitted the maps of surface tension with a two-variable
polynomial function.

γ = A(X ) + B(X )Y + C(X )Y 2, (43)

A(X ) = a1 + a2x + a3x2 + . . . ,

B(X ) = b1 + b2x + b3x2 + . . . ,

C(X ) = c1 + c2x + c3x2 + . . . .
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i i+1 i+2i-1i-2
k-2

k-1

k

k+1

k+2

i i+1 i+2i-1i-2
k-2

k-1

k

k+1

k+2
(b)(a)

FIG. 4. Sketch in 2D of the stencils employed for the computa-
tion of gradients. (a) The stencil for ∇ρ, ∇φ, ∇2ρ, and ∇2φ is the
same as in the fluid bulk and relies on the quantities stored in the
ghost nodes in the solid layer. (b) The stencil for ∇P‖ excludes solid
nodes, where P is not defined.

The values of the ai, bi, and ci coefficients for the three fluid-
fluid interfaces are tabulated in the Supplemental Material
[52]. Thus, the database can be used to choose the target
combinations of surface tensions and correspondingly the
free-energy parameters in our model. Typically, to choose the
parameter sets for our simulations, we perform the following
steps:

(1) Identify a suitable subset out of the eight presented
here, considering (i) whether the two liquid-gas surface ten-
sions are the same or different, (ii) whether the liquid-liquid
surface tension should be larger or smaller than the liquid-gas
tensions, and (iii) whether a positive spreading parameter (for
spontaneous encapsulation to occur) is required.

(2) Each subset is described in terms of two coordinates
X and Y , as summarized in Table II. Identify the values of X
and Y that match the required surface tension properties. The
fitting functions provided in the Supplemental Material [52]
for each subset map the free-energy parameters (in terms of
the coordinates X and Y ) to the liquid-liquid and liquid-gas
surface tensions. A compromise may be needed to minimize
the concentration deviation coefficient as defined in Eq. (39).

IV. SOLID BOUNDARIES

In this section we describe and benchmark our implemen-
tation of solid boundaries. For simplicity we consider only
flat walls, aligned with the domain axis and located at half
distance between lattice nodes, but all methods can be easily
extended to solid structures with corners and wedges.

In all methods we treat the first layer of solid nodes as ghost
nodes to store values of ρ and φ. These values are employed
in the finite-difference stencils to compute ∇ρ, ∇φ, ∇2ρ,
and ∇2φ in order to evaluate the chemical potentials and the
pressure tensor [Eqs. (13), (14), and (19)] of the fluid near the
solid boundaries, as illustrated in Fig. 4(a).

Throughout the whole fluid domain, the forces are com-
puted by numerically differentiating the pressure tensor in
Eq. (29). As P is not defined on the solid nodes, its partial
derivatives in the first fluid layer are computed differently.
Specifically, near the solid boundaries we impose ∇P⊥ = 0
(perpendicular to the solid), while a one-sided biased gradient
[27] is employed for the gradient ∇P‖ (parallel to the solid),

i i+2i-2
Solid layer

Fluid layer 1

Fluid layer 2

gasliquid

i+4 i+6i-4
k

k+ 1

k+ 2

FIG. 5. Sketch of the forcing terms acting near the liquid-liquid
interface in contact to a solid boundary. The arrows represent the
direction and magnitude of the local force Eq. (44).

as illustrated in Fig. 4(a). After the collision and streaming
steps, standard bounce-back rules are applied [53].

A. Method 1 (force)

The forcing method [47,54] is inspired by pseudopotential
models for multicomponent fluids, where the liquid-solid
interaction is introduced through a forcing term. In our im-
plementation, the values of ρ and φ in the ghost nodes at the
solid layer are constantly updated by copying the values in the
first fluid layer. This procedure alone gives to the solid neutral
wetting properties. In this method, higher or lower affinity of
the fluid phases to the solid are obtained by adding a local
force term:

Fs(x, t ) = ρrel(x)
[
κw

ρ + φrel(x)κw
φ

] ∑
i

wis(x + ciδt )ci,

(44)

where s is a function that takes a value of 1 on fluid nodes
connected two lattice vectors away from solid nodes. In
practice, for a flat substrate as in the sketch in Fig. 5, s takes
value 1 on the second layer of fluid nodes only. We apply
the force to the second fluid layer instead of the first one (as
proposed in other works [47]) to improve the stability of the
algorithm. One can easily verify that force terms of smaller
magnitude are necessary at the second fluid layer to obtain the
same target contact angle.

The prefactor ρrel(x)[κw
ρ + φrel(x)κw

φ ] accounts for the
variation of the interaction strength as function of the fields
ρ and φ, tuned by the parameters κw

ρ and κw
φ . We em-

ploy the rescaled fields ρrel(x) = [ρ(x) − ρg]/(ρl − ρg) and
φrel(x) = φ(x)/χ , which vary in the interval [0,1] and [−1.1],
respectively.

Furthermore, for the stability of the algorithm it is es-
sential that no large forcing terms are applied in the gas
phase ([ρ, φ] = [ρg, 0]), which is achieved by multiplying
both κw

ρ and κw
φ by ρrel(x) in our approach. In absence of this

precaution, large forcing terms would cause strong deviations
of the gas density from the equilibrium thermodynamic value.

When defining a contact angle between two phases we
indicate with the first index the phase in which a contact angle
is measured and with the second index the other phase. In our
work we adopt the convention of measuring the angles in the
liquid phase at liquid-gas interfaces, while at the liquid-liquid
interface we measure the angle in the liquid with index 2. The
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FIG. 6. Color maps of equilibrium contact angles measured from
sessile drops, as functions of κw

ρ and κw
φ . Panels (a)–(c) refer to the

interfaces [1,2], [1,3], and [2,3], respectively. Panel (d) reports the
quantity 	γ [Eq. (45)]. The combinations of surface tensions are
given by the first set in Table I. The black dots labeled by letters
(i)–(iv) refer the the double emulsions depicted in Fig. 7.

following relations are implied: θ12 = π − θ21, θ13 = π − θ31,
and θ32 = π − θ23.

A typical dependence of θ21, θ31, and θ23 from the pa-
rameters κw

ρ and κw
φ is reported in Figs. 6(a)–6(c) for the

parameter set 1 in Table I. Contact angles are measured after
equilibrating 2D sessile drops for each interface and fitting the
drop interfaces with circular profiles. To keep the accuracy of
the contact angle, across the whole parameter range, the drop
area is fixed to 	1002 l.u.2 while the size and aspect ratio of
the simulation domain is adjusted to accommodate drops of
different shapes.

(ii) kρ=0.15, kφ=0.15 

(iv) kρ=0.15, kφ=-0.15 

(i) kρ=-0.15, kφ=0.15 

C2
C3

C1

(iii) kρ=-0.15, kφ=-0.15 

C2 C3

C1

C2 C3

C1

C2 C3

C1

FIG. 7. Double emulsions in contact with a solid surface in
mechanical equilibrium. The combination of surface tensions are
given by the first set in Table I, while the wetting properties are
introduced using the force method by setting: (i) κw

ρ = −0.15 and
κw

φ = 0.15, leading to θ21 = 94.35, θ31 = 113.19, and θ23 = 57.89;
(ii) κw

ρ = 0.15 and κw
φ = 0.15, leading to θ21 = 64.96, θ31 = 85.26,

and θ23 = 56.15; (iii) κw
ρ = −0.15 and κw

φ = −0.15, leading to θ21 =
113.19, θ31 = 94.35, and θ23 = 122.34; and (iv) κw

ρ = 0.15 and κw
φ =

−0.15, leading to θ21 = 85.26, θ31 = 64.96, and θ23 = 124.15.

The maps, as shown in Fig. 6, are specific for each set of
free-energy parameters. For example, the inclination of the
diagonal contour lines of θ21, θ31 depends on the value of the
surface tension for each interface. θ23 instead is predominantly
a function of κw

φ , with only a residual dependence on κw
ρ in the

region of small κw
φ .

On ideal surfaces the combinations of contact angles are
not independent but obey the Girifalco-Good relation [55],
which, according to our convention, reads

0 = 	γ = γ23 cos θ23 − γ13 cos θ31 + γ12 cos θ21. (45)

This condition is automatically satisfied by the force method,
as can be deduced from Fig. 6(d), which reports the variation
of 	γ on a scale set by the largest value surface tension in
the system (γmax 	 0.5). Small deviations identified by the
contour lines can be attributed to the uncertainties in the mea-
surement of the contact angles. The Girifalco-Good relation is
a good test for benchmarking the thermodynamic consistency
of wetting boundary conditions for ternary systems.

To further emphasize that our approach does translate to
wetting phenomena involving ternary systems, we show four
examples of double liquid emulsions in contact with a solid
substrate, where the wetting properties are given by κw

ρ =
±0.15 and κw

φ = ±0.15. We note that the contact angles
measured in these double emulsion examples are essentially
the same as the values measured when only binary systems
are simulated (Fig. 6). The Good-Girifalco relation is also
satisfied.

B. Methods 2 and 3 (geometric approaches)

We now introduce the two geometric approaches employed
in our model. The key idea in both models is to manipulate the
values of the fields in the ghost nodes at the solid boundaries
according to a geometrical criterion in order to reproduce a
prescribed contact angle. In both cases, the ternary implemen-
tation requires us to identify in advance the correct interface
in order to select the correct target contact angle. This step
is performed by implementing a set of rules that combine the
local value of ρ and φ and of their gradients parallel to the
solid ∇‖ρ and ∇‖φ:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

if |∇‖ρ|/|∇‖φ| < 0.01(ρl − ρg)/χ set interface 2-3

if ∇‖ρ · ∇‖φ < 0 set interface 1-3

if ∇‖ρ · ∇‖φ > 0 set interface 1-2

if ρ > ρl/2 and φ < −0.95χ set interface 1-3

if ρ > ρl/2 and φ > 0.95χ set interface 1-2

.

This set of rules proves to be accurate in all our tests, even if
the variation of ρ and φ is not strictly monotonous near the
interface. An alternative approach consists in weighting the
contact angles based on the local concentration fields [13].

1. Geometric extrapolation

We now introduce our ternary implementation of the
method proposed by Ding and Spelt [56]. The key idea is
to compute the normal vector of a fluid interface in contact
with the solid surface from the gradient of a field: ns =
∇c/|∇c|. We employ c = ρ at any liquid-gas interface and
c = φ for the liquid-liquid interface. Referring to the sketch
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FIG. 8. Sketch of the main vectors defined by fluid interface near
the contact line.

of the contact line geometry in Fig. 8, n defines the vector
normal to a plane solid surface, while the perpendicular and
parallel components of a field gradient can be expressed as
∇c⊥ = n · ∇c and ∇c‖ = |∇c − (n · ∇c)n|.

In the algorithm, first the parallel component of the gradi-
ent ∇c‖ is measured along the surface, and then it is employed
to reconstruct the perpendicular component of the gradient
∇c⊥. For a diffuse interface forming an angle θ with the
solid surface, the relation between components of the field
gradients is given by

∇c⊥ = tan
(π

2
− θ

)
∇c‖. (46)

For example, in a 2D lattice addressed by the indices i, k,
let us assume the layer k represents a solid surface for any
i, while the layer k + 1 represents the first fluid layer. The
values of the field ci,k are computed by extrapolating the from
the field value in the above layer

ci,k = ci,k+1 + ∇c⊥, (47)

where c represents either ρ or φ. For this reason, we denote
this method as geometric extrapolation.

The 3D implementation differs from the 2D case only
by replacing the component parallel to the surface of the
concentration gradients with the norm of the two components
in the plane. For example, if x and y define the coordinates
in the plane, then we have |∇‖c| = √

(∇xc)2 + (∇yc)2 for a
solid plane at z = const. The correction applies both in the
determination of the interface and in the reconstruction of the
perpendicular component ∇⊥c.

2. Geometric interpolation

This third method is inspired by the algorithm proposed by
Lee and Kim [57]. Here the key idea is to interpolate the field
values from the upper layer, where the interpolating point is
shifted according to the slope of the liquid interface.

For a few special values of contact angles the slope of the
interface connects to lattice nodes, and the required values of
the field correspond exactly to the values already stored. Let
us consider a 2D example: For the three nearest lattice nodes
along the direction i of the solid surface we can simply assign

ci,k|θ	18.43◦ = ci−3,k+1

ci,k|θ	26.56◦ = ci−2,k+1

ci,k|θ=45◦ = ci−1,k+1

(a)

i i+1 i+2

l||
k+1

k

uid node

solid nodei (x) 

k (y) 

i i+1 i+2

j+1

j

j+2
l||

lx

ly

(x2,y2,c2) (x3,y3,c3)

(x1,y1,c1)

(b)

i (x) 

k (z) 

j (y) 

FIG. 9. Sketch of the geometry interpolation boundaries:
(a) Two-dimensional implementation: The selected interval for the
linear interpolation is highlighted. (b) Three-dimensional imple-
mentation: The selected triangle for the planar interpolation is
highlighted.

ci,k|θ=90◦ = ci,k+1

ci,k|θ=45◦ = ci+1,k+1

ci,k|θ	153.43◦ = ci+2,k+1

ci,k|θ	161.56◦ = ci+3,k+1. (48)

For any other slope, instead we linearly interpolate the
values of the two closest nodes. For this reason we denote
this method as geometric interpolation. As shown in Fig. 9(a),
in the 2D implementation we compute the distance of the
interpolating point from the node i as l‖ = tan(θ − π/2). In
a local coordinate system centered in the node (i, k), the
interpolating points are located at l0 = floor(l‖) and l1 =
floor(l‖) + 1, and their lattice indices are i0 = i + l0 and i1 =
i + l1. Considering that l1 − l0 = 1, the linear interpolation
scheme is

ci,k = (
ci1,k+1 − ci0,k+1

)
l‖ + (

l1ci0,k+1 − l0ci1,k+1
)
. (49)

The 3D implementation requires the selection of an ap-
propriate support for the interpolation in the plane. As in the
previous case, let us assume a solid surface defined by the
plane plane z = const, where solid nodes have constant index
k and the first fluid layer is at k + 1. Also, the lattice nodes
in the planes parallel to the solid surface are addressed by
the indices i and j. The location of the interpolating points
is determined by the gradients of the concentration field in the
plane lx = l‖∇xc/|∇c‖| and ly = l‖∇yc/|∇c‖|. The simplest
interpolation scheme for a plane in 3D requires three points.
In our implementation we select the three furthest points (of
four) from the location (i, j) in a planar square lattice (cfr. the
sketch in Fig. 9(b).

Once the three points are selected, we consider the three
triplets (x1, y1, c1), (x2, y2, c2), and (x3, y3, c3), describing a
plane, where the third coordinate represents the value of the
concentration c in each point. The following interpolation
scheme is employed to compute the field values in the ghost
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FIG. 10. Deviation of contact angles θ21, θ31 and θ23, measured
on sessile drops in mechanical equilibrium from the prescribed
values. Results for the geometric extrapolation method (left column)
and the geometric interpolation method (right column). The interfa-
cial properties correspond to set 1 (first row), set 2 (second row), and
set 3 (first row) listed in Table I.

node located in (i, j, k):

ci, j,k = Alx + Bly + C

D
, (50)

where A, B,C, D are the polynomials

A = y2c1 − y3c1 − y1c2 + y3c2 + y1c3 − y2c3

B = − x2c1 + x3c1 + x1c2 − x3c2 − x1c3 + x2c3

C = − x3y2c1 + x2y3c1 + x3y1c2

− x1y3c2 − x2y1c3 + x1y2c3

D = − x2y1 + x3y1 + x1y2 − x3y2 − x1y3 + x2y3. (51)

We have assessed the accuracy of both geometric methods
by simulating sessile drops in mechanical equilibrium for each
fluid-fluid interface and comparing the parameter sets 1, 2, and
3 in Table I. The simulation setup and analysis are the same as
previously employed to validate the force method, as shown in
Fig. 10. In the intermediate range of angles [60◦, 120◦] both
methods show good agreement, with deviations below 1◦,
while for larger and smaller angles the geometry interpolation
method is to be preferred. In view of this result, we discard
the extrapolation in favour of the interpolation method for the
remaining tests.

At this point, it is also useful to note that the Girifalco-
Good relation in Eq. (45) is not immediately satisfied for
the geometric approaches. This is because the contact angle
between any two fluids and a solid surface can be arbitrarily
assigned, unlike the force method where the thermodynamic
consistency is guaranteed. To respect thermodynamic con-
sistency, one should therefore ensure the choice of contact
angles in the implementations of geometric approaches should
satisfy the Girifalco-Good relation, Eq. (45). We will take ad-
vantage of the freedom of choosing arbitrary combinations of

(d
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x

H

L

(d
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)

x
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Analysis Window

(b)

time (l.b units)

FIG. 11. Capillary filling: (a) Sketch of the simulation setup;
(b) dynamic contact angle vs. simulation time for the Geometric
Interpolation method and θ21 = 80◦. The analysis window consists
of the last 10% of the simulation time, over which the dynamic
contact angle is averaged.

contact angles to simulate self propelled bislugs in a channel
in Sec. VI.

V. CAPILLARY FILLING

To assess the dynamic properties of fluid interfaces, we
simulate the capillary filling of a channel by a liquid. The
problem was studied independently by Richard Lucas [58]
and Edward Washburn [59]. It represents a classical bench-
mark for wetting boundary conditions in lattice Boltzmann
implementations [60–62], as it provides analytical or semi-
analytical expressions to compare.

Let us now consider the system sketched in Fig. 11, con-
sisting in a 2D channel of height H , initially containing a gas
phase only, and filled by liquid. The liquid-gas surface tension
is denoted by γ , while the liquid forms a contact angle θ with
the solid.

In a 2D geometry, the driving capillary force is applied at
the two contact points of the liquid interface with the channel
walls:

F cap = 2γ cos θ. (52)

Except for the initial transient time, the resisting force is
mainly provided by viscous dissipation. In virtue of the high
density ratio in our model, we neglect the dissipation in the
gas phase [63]. For a liquid of viscosity μ = ρlν forming a
column of length x, and assuming a fully developed Poiseuille
velocity profile, we have a resisting force,

F visc = −12ρlνxẋ

H
, (53)

where ẋ is the mean velocity of the fluid column, correspond-
ing to the velocity of the liquid-gas interface. Equations (52)
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FIG. 12. Capillary filling: [(a) and (b)] Length of the liquid
column vs. simulation time for contact angles θ = 40◦, 50◦, 60◦, 70◦,
and 80◦. Dots represent numerical results, while continuous lines
data fits. [(c) and (d)] Prefactor K for the Lucas-Washburn law. Dots
represent fits to the numerical results, and the continuous line is the
model prediction [Eq. (55)]. Left panels [(a) and (c)] are obtained
employing the force method, while right panels [(b) and (d)] are
obtained employing the geometric interpolation method.

and (53) lead to the so-called Washburn law,

x(t ) = K
√

(t − t0), (54)

where t0 is a time constant. The prefactor

K =
√

γ cos θH

3νρl
(55)

is function of material and geometric parameters only: the sur-
face tension γ , the equilibrium contact angle θ , the kinematic
viscosity ν of the liquid, and channel height H .

In our simulations the channel length is L = 2000 l.u. and
the height H = 70 l.u. The channel is preceded and followed
by reservoirs filled with liquid and gas, respectively. This
geometry has been previously employed [63] to minimize
the viscous drag of the fluid outside the channel. Throughout
all simulations we employ the first parameter set in Table I,
for which γ = 0.414 in both liquid-gas interfaces, and set
β = 0.5, giving a kinematic viscosity ν = 1/6 = 0.16667.

In Figs. 12(a) and 12(b) we report the time evolution of
the front of the liquid column for contact angles varied in
the range of [30◦, 80◦], comparing the force and geometric
interpolation methods. The initial stage of the invasion is
not well described by Washburn’s law [63]. As shown in
Fig. 11(b), during the filling process the dynamic angle varies
over time and approaches the equilibrium value only asymp-
totically. Consequently, Washburn’s law [Eq. (54)] describes

accurately only the asymptotic regime, while for the initial
and transient regimes inertia and viscous bending should also
be considered.

As in this specific test our main interest is comparing the
accuracy of the force and geometric interpolation methods,
we analyze the last 10% of the simulation time, where the
variation of dynamic angles are below one degree, and we
can assume Eq. (54) to be sufficiently accurate. To eliminate
systematic sources of errors, we compute the average dynamic
angle 〈θ〉 within the analysis window and replace with it
the angle θ in Eq. (55). Furthermore, we perform a para-
metric fit of the numerical data within the analysis window
with Eq. (54) and compute the time constant t0 and the
prefactor K .

In Figs. 12(c) and 12(d) we compare the values of K to
the model [Eq. (55)]. The data for the force method show
small deviations between predicted and measured values of
the prefactor. The deviations increase proportionally with
the magnitude of the forcing term, which increases as θ

decreases. This suggests that the discrepancy is related to
spurious velocities near the walls, due the force term in the
force method. In contrast, we observe no deviations for the
geometric interpolation.

VI. SELF-PROPELLED SLUGS

In this section we focus on a ternary-specific benchmark,
consisting in a self-propelled train of drops (bislug) in a 2D
channel.

In experiments, a bislug with three finite contact an-
gles cannot self-propel, unless the Girifalco-Good relation,
Eq. (45), is broken. This may be done by introducing a step or
gradient of wettability on the channel surfaces [64,65]. Alter-
natively, at least one liquid phase must be completely wetting.
This last condition was exploited by Bico and Queré to study
experimentally in detail self propelled bislugs [66,67]. Taking
advantage of the geometric interpolation method, we can
numerically introduce arbitrary contact angles in the system
providing a controlled mechanism for self-propulsion.

The simulation geometry, sketched in Fig. 13(a), consists
of a periodic channel of height H = 39 l.u. It contains a train
of drops having equal volumes. For simplicity, we assume
the length L1 = L2 of each liquid drop, approximated by the
length of the equivalent rectangle having the same area and
height H . The total length of the periodic channel is adjusted
in each simulations to allow the presence of at least 200 lattice
units of gas at the two sides of the bislug.

A. Bislug dynamics

In long trains of drops the driving force is almost com-
pletely dissipated in the liquid bulk. Consequently, the ve-
locity is small and the contact angles remain close to the
equilibrium value. According to the convention for contact
angles employed in this work, the surface tension unbalance
is expressed by

	γ = γ23 cos θ23 − γ13 cos θ31 + γ12 cos θ21, (56)

and the driving force is

F cap = 2	γ , (57)

013308-11



NEERU BALA et al. PHYSICAL REVIEW E 100, 013308 (2019)

(b)

H

(c)

(d) (e)

L1 L2

Δθ
(d

eg
)

time (l.b.u.) time (l.b.u.)

x

(a)

1/L

(b)

L1

x

(c)

L2

(d)

1/L

time (l.b.u.)

(e)

time (l.b.u.)

Δθ
(d

eggg
)))))

ẋ∞

ẋ

50
60
70
80

50
60
70
80

50
60
70
80

50
60
70
80

θ23 

θ31 

θ21 

0.004

FIG. 13. Self-propelled bislugs: (a) Sketch of the simulation
setup. The other panels report data for bislugs defined by the first
parameter set in Table I. We set β = 0.5 and contact angles θ23 =
θ21 = θ31 = 50◦, 60◦, 70◦, 80◦. [(b) and (c)] Transient regime in the
motion of the bislugs of length L = 1500 l.u., showing (b) the
position and (c) the velocity of the center of mass. (d) The measured
steady velocity ẋ∞ as function of 1/L. (e) The dynamic contact
angles for the three interfaces as function of ẋ∞.

Assuming a Poiseuille flow profile in the bislug and liquids
with equal viscosity, the viscous force is

F visc = −12ρlνLẋ

H
, (58)

where ẋ is the mean fluid velocity, associated to the velocity
of the center of mass of the bislug.

In the limit of long trains (L = L1 + L2 � H) the viscous
bending can be neglected, and the equation of motion for the
center of mass is [63,64]

ρlLHẍ = F cap + F visc. (59)

By introducing Eqs. (57) and (58) into Eq. (59), we obtain

ẍ + 12ν

H2
ẋ − 2	γ

ρlLH
= 0. (60)

Integrating once with time and imposing ẋ(0) = 0, we obtain
an exponential relaxation of the bislug velocity to the steady
velocity v∞,

ẋ(t ) = v∞
(
1 − e

−t
τrel

)
, (61)

where the steady velocity is

v∞ = H	γ

6ρlνL
(62)

and the relaxation time is

τrel = H2

12ν
. (63)

Integrating Eq. (61) once again with time we obtain the
displacement of the center of mass with respect to its initial
position x(0)

x(t ) = x(0) + τrelv∞

(
e

−t
τrel + t

τrel
− 1

)
. (64)

In the simulation we initialize the bislug as two rectangular
liquid drops in the beginning of the channel. Typically, during
the first 103 steps of the simulation, the liquid interfaces
quickly deform to approach the contact angle of the steady-
moving bislug and initiate the self-propulsion mechanism. In
Fig. 13 we compare the trajectory [Fig. 13(b)] and velocity
[Fig. 13(c)] of a long train of drops (L = 1500 l.u.), with
Eqs. (64) and (61) for contact angles θ23 = θ21 = θ31 varied
in the range [50◦, 80◦]. Equations (61) and (64) capture ac-
curately the bislug dynamics after the first 103 time steps. A
close inspection of Fig. 13(c) shows that after 104 time steps
the bislug speed has fully reached the steady value v∞.

In Fig. 13(d) we report the steady velocity ẋ∞ of the bislug
as function of L−1 for the same combinations of contact
angles. We observe that ẋ∞ 	 v∞ (dotted lines) in the limit
of long bislugs, while, as the bislugs shorten, ẋ∞levels off,
implying the importance of additional channels for energy
dissipation.

To assess whether in our numerical model the additional
dissipation originates predominantly from the viscous bend-
ing of the fluid interfaces, we measure dynamic angles for all
the fluid interfaces, fitting the fluid interfacial profiles with cir-
cles [68]. In Fig. 13(e) we report the contact angle difference
	θ = θ (ẋ∞) − θ (0) and observe a linear dependence with the
bislug speed ẋ∞.

Motivated by this observation, we perform linear fits and
introduce the correction 	θ in the evaluation surface tension
unbalance 	θ , Eq. (56). The corrected model is depicted by
solid lines in Fig. 13(d) and shows excellent agreement with
the measured values of ẋ∞.

B. Contact line slip

We now further employ the numerical experiment of self-
propelled bislugs to quantify the slip properties of our ternary
model. While a similar analysis could be carried out also for
the capillary filling, the bislug geometry has the advantage
that trains of drops approach a steady motion with constant
velocity, which can be measured more accurately. Further-
more, by tuning the length of the bislugs, it is possible to vary
accurately the velocity in a wide range.

As shown by Briant [50,51], in multiphase lattice Boltz-
mann models, the main slip mechanism relies on evaporation-
condensation of the liquid interface, while in multicomponent
models the contact line advances in virtue of the diffusion
of the phase field [68,69]. When coupling multiphase and
multicomponent models, both evaporation-condensation and
diffusion mechanisms occur at the liquid-gas interface. In
contrast, at the liquid-liquid interface, only the diffusion
mechanism is important, as the density ρ does not vary.
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Following Cox’s analysis [70,71], the viscous bending of a
fluid interface is described by

g(θ, λ) − g(θw, λ) = Ca ln(Lc/Ls), (65)

where θ is a dynamic contact angle measured at a macro-
scopic distance from the surface and θw is the equilibrium
contact angle at the solid boundaries. The capillary number
Ca = μẋ∞/γ represents the nondimensional velocity of the
interface, where the viscosity μ = μadv refers to the invading
fluid. In our simulation we identify the macroscopic distance

Lc with the channel height H and interpret the microscopic
length Ls as an estimate for the slip length. The parameter λ =
μadv/μrec describes the ratio between the dynamic viscosity of
the invading μadv and resisting μres fluids.

For liquid with equal density we have λ = νadv/νrec.
Specifically, for the bislug simulations λ = 1 at the liquid-
liquid interface, λ 	 103 for a liquid displacing the gas phase
and λ 	 10−3 for the gas displacing a liquid phase. The
function g(θ, λ) = ∫ θ

0 1/ f (φ, λ)dφ is a known function of θ

and λ, given in Refs. [70] and [71]:

f (θ ) = 2 sin θ{λ2(θ2 − sin2 θ ) + 2λ[θ (π − θ ) + sin2 θ ] + [(π − θ )2 − sin2 θ ]}
λ(θ2 − sin2 θ )[(π − θ ) + sin θ cos θ ] + [(π − θ )2 − sin2 θ ](θ − sin θ cos θ )

. (66)

To systematically explore the slip properties, we perform
simulations for two sets of contact angles. In the first set we
fix θ23 = 60◦ and vary systematically θ21 = θ31 in the range
[50◦, 120◦]. In the second set we fix θ21 = θ31 = 90◦ and vary
systematically θ23 in the range [30◦, 150◦]. The first set allows
us to extract information for the liquid-gas interfaces, while
the second set for the liquid-liquid interface.

For each combination of contact angles we simulate the
motion of bislugs for a wide range of lengths and speeds.
Furthermore, we compute the capillary length Ca of the
advancing fluid (which can be either a liquid or the gas phase,
depending the interface considered) and evaluate the Cox
function g(θ ) in Eq. (65) for the appropriate value of viscosity
contrast λ. Due to the limited variation of the dynamic contact
angles (in a range of a few degrees), for simplicity we perform
a linear regression to evaluate the slope m = ∂g(θ )/∂Ca =
ln(Lc/Ls). Finally, introducing the geometric parameter Lc =
H = 39, we estimate the slip length as Ls = Lc exp(−m).

In Fig. 14, we compare Ls for the three interfaces as a
function of the equilibrium contact angle. More specifically,
for our geometry we obtain θ21 (receding), θ31 (advancing),
and θ23 (advancing for θ23 < 90◦ and receding for θ23 >

90◦). The slip length for the liquid-liquid interface shows a

ls 

(deg) 

21

31

23

FIG. 14. Estimated slip length vs. equilibrium contact angle for
the liquid-liquid and the liquid-gas interfaces.

minimum for θ23 = 90◦ (the data point is not present, because
for this combination of angles we have no net driving force
	γ = 0) and increases symmetrically for larger and smaller
angles. In contrast the slip length for the liquid-gas interfaces
shows a monotonic decrease as the equilibrium contact angle
increases. For the last available data point, at θ = 120◦, Ls is
similar for all three interfaces, while for smaller angles Ls is
significantly larger for the liquid-gas interfaces.

These results show that the slip properties in the system
strongly depend on the nature of the fluid-fluid interface. In
our tests the liquid-gas interfaces present a larger slip length
(up to a factor 4) compared to the liquid-liquid interface,
likely due to the combined effect of two distinct mechanisms
operating on the density ρ and the field φ.

VII. DISCUSSION AND CONCLUSIONS

In this work we have thoroughly benchmarked our ternary
high-density-ratio free-energy model and provided guidelines
to select the free-energy parameters for obtaining a wide range
of surface tension combinations. We have quantified the devi-
ations of the interface profile by measuring the “concentration
deviation coefficient” and systematically investigated eight
subspaces, covering relevant combinations of parameters. All
data are reported in the Supplemental Material [52], including
fitting functions to estimate the surface tensions.

We have compared three methods for wetting of solid
boundaries, namely force, geometric extrapolation, and ge-
ometric interpolation. Of the two geometric methods, geo-
metric interpolation is significantly more accurate. The force
method provides a useful alternative to geometric methods, as
it does not require us to detect the fluid interface a priori and
automatically satisfies the Girifalco-Good relation, Eq. (45).

The benchmark on the dynamics of capillary filling shows
that the force method is slightly less accurate than the geomet-
ric methods. The deviations in the measured prefactor of the
Washburn law increase as the material contact angles depart
from neutral wetting. Because the additional force terms also
increase, we expect that the deviations are related to additional
spurious velocities generated by the forcing terms. At the
same time no spurious velocities are observed in the geometric
methods.
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Furthermore, we have performed a ternary specific bench-
mark and studied the motion of self-propelled bislugs forming
three finite and unbalanced contact angles. The analytic model
for the bislug motion, derived by assuming equilibrium values
for the contact angles, accurately captures the linear depen-
dence of steady-state velocities from the inverse of the bislug
length for long trains of drops and small velocities. The level-
off of the velocity experimentally observed for shorter bislugs
is captured in our simulations by accounting for the dynamic
angle correction in the driving force. The agreement shows
that the viscous bending of the liquid interfaces represents the
main correction in the model.

Finally, we have shown that coupling multiphase and mul-
ticomponent models leads to significant differences in the slip
properties of liquid-liquid and liquid-gas interfaces. While for
liquid-liquid interfaces the only slip mechanism is related to
the diffusion of the field φ, for liquid-gas interfaces the slip
mechanism combines the diffusion of the field φ and the
evaporation-condensation of the density ρ.

In our tests, at parity of interfacial properties, the slip
length varies with the material contact angle and is generally
larger for the liquid-gas interfaces than for the liquid-liquid
interfaces. A more detailed analysis of the slip properties of
the system will be the subject of a future investigation.
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