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ABSTRACT
The geological processes that create fluid storage capacity and connectivity in global 

fractured basement reservoirs are poorly understood compared to conventional hydro-
carbon plays. Hosting potentially multibillion barrels of oil, the upfaulted Precambrian 
basement of the Rona Ridge, offshore west of Shetland, UK, gives key insights into how 
such reservoirs form. Oil presence is everywhere associated with sub-millimeter- to meter-
thickness mineralized fracture systems cutting both basement and local preseal cover se-
quences. Mineral textures and fluid inclusion geothermometry suggest a low-temperature 
(90–220 °C), near-surface hydrothermal system, as does the preservation of clastic sediments 
in the same fractures. These fills act as permanent props holding fractures open, forming 
long-term fissures in the basement that permit oil ingress and storage. Calcite-fill U-Pb 
dating constrains the onset of mineralization and contemporaneous oil charge to the Late 
Cretaceous. The additional preservation of oil-stained injected sediment slurries and silica 
gels along basement faults suggests that rift-related seismogenic faulting initiated lateral oil 
migration from Jurassic source rocks into the adjacent upfaulted ridge. Subsidence below 
sea level in the latest Cretaceous sealed the ridge with shales, and buoyancy-driven migra-
tion of oil into the preexisting propped fracture systems continued long after the cessation of 
rifting. These new observations provide an explanation for the viability of sub-unconformity 
fractured basement reservoirs worldwide, and have wider implications for subsurface fluid 
migration processes generally.

INTRODUCTION
Fractured basement hydrocarbon reservoirs 

are recognized worldwide, but they are rela-
tively poorly understood and underexploited 
(Trice, 2014). In such plays, oil migrates lat-
erally from an organic-rich source rock into a 
subsurface paleohigh of fractured crystalline 
basement, forming a so-called “buried hill” trap 
(Biddle and Wielchowsky, 1994). The seal is 
provided by a blanketing sequence of clay-rich 
mudstone.

Given the very low matrix permeability of 
most crystalline basement rocks, oil and other 

associated fluids are transported and stored via 
well-connected fracture systems. The geological 
characteristics of these fracture systems are not 
well understood because they are poorly imaged 
in seismic reflection data, and core samples are 
sparse. Critically, the processes involved in fluid 
transport and storage are also uncertain, although 
it is often assumed that migration into the base-
ment high is primarily a passive process driven 
by the relative buoyancy of hydrocarbons follow-
ing maturation at the source (e.g., Trice, 2014).

We used geological observations, U-Pb 
calcite geochronology, and fluid inclusion 

geothermometry to explore the nature, age, 
trapping temperatures, and significance of 
widespread fracture fills (minerals, clastic 
sediment) associated with oil observed in 
basement cores along the ~200-km-long Rona 
Ridge, west of Shetland, UK. We argue that 
these fracture fills act as permanent natural 
props, which allowed gradual charging of the 
basement ridge with oil once it was sealed by 
shales following regional subsidence. We show 
that seismicity related to rifting may have ini-
tiated migration of oil from nearby organic-
rich source rocks into the ridge. These findings 
have general implications for our understand-
ing of the fluid storage capacity and connec-
tivity of fracture systems developed below re-
gional rift-related unconformities worldwide, 
including those related to hydrocarbon plays, 
aquifers, and geothermal systems.

Regional Setting
Significant oil discoveries have been made 

in basement rocks of the Rona Ridge, west of 
Shetland (Fig. 1A). The basement high that 
under lies the giant Clair Field (6–7 billion bar-
rels stock tank oil in place) is associated with 
more conventional Devonian–Carboniferous 
sandstone reservoirs (Clair Group, Fig. 1B; 
Coney et al. 1993). Other assets, such as the 
Lancaster Field and associated discoveries in 
the southwest Rona Ridge, are hosted almost 
entirely within fractured basement (Trice, 2014; 
Belaidi et al., 2018; >18 billion barrels of oil 
initially in place).
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Geochemical studies of oils suggest a Late 
Jurassic Kimmeridge Clay source rock (Holmes 
et al., 1999; Finlay et al., 2011), thought to oc-
cur on the downfaulted flank of the ridge in the 
Faroe-Shetland Basin to the northwest (Ritchie 
et al., 2011). Basin modeling and radioisotopic 
dating of oils suggest that oil maturation in 
the region of Clair Field occurred at ca. 68 ± 
13 Ma (Late Cretaceous; Finlay et al., 2011). 
The oil then migrated via fracture systems from 
its Jurassic source into the adjacent basement 
ridge and cover sequences such as the Devo-
nian Clair Group.

The ~200-km-long, 15-km-wide Rona Ridge 
is composed of series of northeast-southwest–
trending footwall blocks of Precambrian base-
ment bounded by large Mesozoic normal faults 
with kilometer-scale offsets (Figs. 1A and 1B; 
Ritchie et al., 2011). Regional studies of base-
ment cores west of Shetland have revealed vari-
ably deformed upper-amphibolite-facies grano-
dioritic-dioritic plutons and orthogneisses that 
have yielded a narrow range of Neoarchean zir-
con ages (ca. 2.83–2.73 Ga; Holdsworth et al., 
2018). These are broadly the same age as the 
Lewisian Complex in Scotland, and they form 
part of the larger Faroe-Shetland terrane located 
west of Shetland.

The basement ridge is immediately overlain 
by late Paleozoic–Mesozoic cover sequences, 
with many lateral thickness variations and lo-
cal unconformities (Ritchie et al., 2011). This 
reflects the long-term persistence of the Rona 
Ridge as an emergent topographic high from Tri-
assic to Cretaceous time. Regional sub sidence 
and burial occurred in the Late Cretaceous, 
blanket ing the ridge in deep-marine mudstones 
and forming a regional seal.

GEOLOGY OF OIL-BEARING 
FRACTURE SYSTEMS

Where oil is present, the main host fractures 
form the youngest and dominant set of brittle 
structures seen in basement cores, overprinting 
a variety of earlier ductile and brittle structures 
(see Holdsworth et al., 2018). Interpretation of 
seismic reflection profiles, well data, and ori-
ented cores in Clair and Lancaster suggest a pre-
dominance of northeast-southwest fractures par-
allel to the trend of the ridge (Coney et al., 1993; 
Pless, 2012; Belaidi et al., 2018). The most con-
tinuous sample of these fractures comes from 
six 10-m-long core sections in the subhorizontal 
northwest-southeast 206/7a-2 well through the 
Clair Ridge (drilled by Elf U.K. Ltd. in 1991; 
Fig. 1B). In cores closest to the Ridge fault to 
the southeast, fracture intensities and kinematic 
apertures (thickness including fill; Ortega et al., 
2006) are nearly an order of magnitude higher 
than in cores furthest away from the fault (Figs. 
1B and 1C).

The oil-bearing fracture systems in both 
basement and well-cemented parts of the De-
vonian to Jurassic cover sequences all along 
the Rona Ridge show characteristic geological 
features (Fig. 2). Opening mode (tensile) frac-
tures filled with minerals and/or clastic material 
dominate (Fig. 2A), and while most are mil-
limeters to centimeters thick, examples up to 
several meters wide have been recognized (Fig. 
2B). Fine- to coarse-grained mineral fills com-
prise quartz/cryptocrystalline silica- adularia-
carbonate-pyrite veins and microbreccias rang-
ing from <1 mm to decimeters in thickness 
(Figs. 2A and 2D). Quartz or cryptocrystalline 
silica fills and cements are only widely seen in  
basement-hosted fractures. Cockade-style 

(fracture fills in which individual clasts are 
completely surrounded by concentric layers of 
cement) mineralization textures, textural/com-
positional zoning, and the presence of mineral-
lined vuggy (containing vugs, which are voids 
or large pores in a rock that are commonly lined 
with mineral precipitates) cavities up to many 
centimeters across are ubiquitous (Figs. 2A, 
2C, and 2D). The same fracture systems also 
host distinctive clastic infillings of three kinds: 
chaotic breccias dominated by local wall-rock 
clasts (Fig. 2B); fine laminated siltstone-sand-
stone fills with delicate way-up criteria (e.g., 
graded bedding; Fig. 2A); and fine irregular 
networks of homogeneous siltstone thought 
to represent injected slurries (Fig. 2C). Where 
way-up indi cators are preserved, they always 
young up toward the local top-basement un-
conformity surface. Clastic and mineral fills are 
texturally contemporaneous, with the former 
commonly partially cemented by calcite, quartz, 
or pyrite; geopetal structures are also preserved 
(Fig. 2A). Clastic fills are almost always heav-
ily oil-stained, while calcite and quartz mineral 
fills and cements carry widespread oil inclu-
sions; vuggy cavities are invariably occupied 
either by oil or oil-stained clastic material (Figs. 
2A–2D). These observations suggest that min-
eralization and sediment ingress overlapped 
with oil migration.

Larger faults are less commonly well-pre-
served, but in one case, an oil-stained 1–2 mm 
layer of cryptocrystalline silica occurs along a 
slip plane with fine slurry-filled injections ema-
nating out into the wall rocks (Figs. 2D–2G). 
This silica film is interpreted to be a natural gel 
generated during rapid seismogenic slip (see 
Kirkpatrick et al., 2013).

Figure 1. A: Simplified 
map showing location of 
Rona Ridge basement, oil 
fields, and wells referred 
to in this study (offshore 
Shetland, UK). SCO—
Scotland. Mapped extent 
of the Clair Field includes 
the Devonian part of the 
reservoir (Clair Group). 
B: Northwest-southeast 
seismic reflection profile 
through the Clair Field 
(line of section shown 
in A) showing location 
of basement ridge, Clair 
Group, and base-Cre-
taceous unconformity 
(BCU; after Holdsworth 
et al., 2018). Position of 
206/7a-2 well (drilled by 
Elf U.K. Ltd. in 1991) and 
associated cores shown 
in C are also shown. Note 
that the main Ridge fault here lies on the southeast side of the basement ridge; in other areas, such as Lancaster, equivalent structures lie 
on the northwest side (Trice, 2014); i.e., polarity of faulting changes along strike. C: Plot using approach of Ortega et al. (2006) showing how 
both fracture intensity (no. fractures/m) and kinematic aperture increase by almost an order of magnitude in the 206/7a-2 cores closer to Ridge 
fault. Slopes of distributions are consistently close to –1.
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The mineral fill textures are typical of low-
temperature, near-surface hydrothermal systems, 
and they suggest that fractures remained open 
for protracted periods of time (e.g., Wright et al., 
2009; Lander and Laubach, 2015). The ubiqui-
tous presence of breccia, sandstone, and siltstone 
fills also indicates that the fractures formed open 
fissure systems connected to the surface, with ma-
terial introduced downward by either gravity or 
flowing surface waters (e.g., Walker et al., 2011). 
The poorly cemented nature of these fills suggests 
that oil ingress began soon after fissure filling, 
ultimately flooding the fracture system and in-
hibiting further mineralization and cementation.

U-Pb GEOCHRONOLOGY AND FLUID 
INCLUSION STUDIES

Calcite U-Pb geochronology was conducted 
using in situ laser ablation–inductively coupled 
plasma–mass spectrometry (LA-ICP-MS; see 

the GSA Data Repository1 for analytical proto-
cols and data). Calcite from the Clair Field 
206/7a-2 well locally postdates early laminated 
sediment and hydrothermal quartz, and it formed 
synchronous with pyrite (Figs. 1 and 2A); this 
calcite yielded a date of 89 ± 4 Ma (Fig. 3A). 
Calcite in the 208/27-2 well near the Victory 
Field (drilled by British National Oil Corpora-
tion in 1982) formed synchronous with local 
pyrite and predates local sediment fill and quartz 
(Figs. 1 and 2D); this calcite yielded a date of 
71.9 ± 2.6 Ma (Fig. 3B).

Fluid inclusion assemblage studies were 
carried out on quartz and calcite fracture fills 
cutting basement, together with fracture-hosted 

calcite in Devonian cover rocks, to estimate the 
temperatures of mineral precipitation (see the 
Data Repository for details of samples, ana-
lytical methods, and data). Type 1 two-phase 
( liquid + vapor; L > V) aqueous inclusions domi-
nate, and temperature of homogenization (TH) 
salinity pairs define a distinct higher-tempera-
ture field (~215 °C) from quartz-hosted inclu-
sions and a lower-temperature field (~<150 °C) 
defined by calcite inclusions (Fig. 3C). Impor-
tantly, the quartz and calcite here are hosted 
in the same basement fracture (see Fig. 2A). 
In this case, quartz precipitation predated, but 
overlapped with that of calcite, suggesting that 
two pulses of hydrothermal fluid migration oc-
curred—one at higher temperature followed by 
one at lower temperature.

DISCUSSION
The Rona Ridge is representative of many 

sub-unconformity “buried hill” traps associated 
with fractured basement reservoirs (Biddle and 
Wielchowsky, 1994). The unaltered condition of 
the basement cores suggests that the Rona Ridge 
is little affected by deep subaerial weathering. 
However, analysis of seismic reflection data and 
cores from the Lancaster Field (Slightam, 2012; 
Belaidi et al., 2018) has revealed the presence 
of mineralized sediment–filled and breccia-filled 
fissures, several hundred meters deep, and up to 
several meters wide. These findings are consis-
tent with the sediment- and mineral-filled frac-
ture systems reported here all along the Rona 
Ridge at depths many hundreds of meters below 
local top basement.

Geological observations in active rifts (e.g., 
Iceland) and analogue modeling studies (e.g., 
van Gent et al., 2009) have shown that highly di-
lated, interconnected fissure systems can form in 
strong host rocks during extensional faulting as 
stresses become tensile in the uppermost crust. 
We suggest that the emergent Rona Ridge was 
affected by the contemporaneous and long-term 
development of near-surface (>0.5 km depth) 
open fissure systems that hosted hydrother-
mal mineralization from below and sediment 
ingress from above (Fig. 4A). The fluid inclu-
sion data point to successive pulsing of hot 
and cold fluids in the basement, precipitating 
quartz- and calcite-rich fills, respectively. In the 
vein analyzed from well 206/7a-2, local quartz 
predated calcite, but in veins from other cores 
(e.g., 208/27-2; Fig. 2D), local quartz postdated 
calcite. From this, it is reasonable to infer al-
ternating pulses of hot and cold fluid, with no 
consistent pattern on a regional scale.

Calcite U-Pb dating shows that the fissuring, 
mineralization, sediment filling, and initial in-
gress of oil occurred in the Late Cretaceous, pre-
sumably synchronous with active rifting (Figs. 
4A and 4B). This fits well with hydrocarbon 
migration timing suggested by regional basin 
modeling (e.g., Lamers and Carmichael, 1999), 
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Figure 2. Geological characteristics of oil-filled fracture systems, with depths and wells indi-
cated. A: Thin section of an oil-stained fracture partially filled by waterlain, laminated sandstone 
with fine-graded bedding and geopetal fill of quartz-calcite-pyrite; the large vug was originally 
filled with oil. B: Oil-stained meter-scale fissure fill in the Devonian Lower Clair Group with 
contorted bedding laminations and subrounded wall-rock clasts. C: Injected slurry of fine 
sediment with rounded clastic grains and bitumen clasts (inset), which can be traced back 
to larger sediment- and clast-filled cavity with oil stains. D: Large, previously oil-filled vug 
with lining of oil-stained calcite (brown) and later quartz (white), i.e., opposite relationship 
to that seen in A; note the oil stain in the surrounding basement gneiss. E–G: Oil-stained 
cryptocrystalline fill associated with the slip plane in brecciated basement gneisses from 
which fine slurry-like injections are seen to emanate. Yellow symbols in A and B are younging 
directions in fracture sediment fills. Locations of F and G are shown by the colored boxes 
in E and F, respectively.

1GSA Data Repository item 2019254, U-Pb geo-
chronology, fluid inclusion analyses, and data tables, 
is available online at http:// www .geosociety .org 
/datarepository /2019/, or on request from editing@ 
geosociety .org.
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Re-Os dating of Faroe-Shetland Basin oil (Fin-
lay et al., 2011), and Ar-Ar dating of adularia ce-
ments in the Victory Field (Fig. 3D; Mark et al., 
2005). The ~25–20 m.y. spread in ages suggests 
a protracted period of activity, which also seems 
consistent with the fluid inclusion data and the 
observation that local mineralization sequences 
vary within and between wells.

The widespread preservation of vuggy tex-
tures and primary porosity, and the ubiquity of 
zoned, cockade-style textures, are indicative of 
fissure–mineral fill systems that remained open 
or partially open over long time periods (e.g., 
see Lander and Laubach, 2015). The presence 
of injected slurries originating from sediment-
filled cavities (e.g., Fig. 2C) and the local pres-
ervation of fault-hosted, oil-stained silica gel 
along a basement-hosted shear fracture (Figs. 
2E–2G) suggest a link between fissure forma-
tion and fluid—and by inference oil—migration 
related to active seismicity (Figs. 4A and 4B). 
Major hydro logical changes are known to fol-
low modern earthquakes (e.g., Wang and Manga, 
2010). We infer a repeating cycle of interseis-
mic  dilatant fracturing and slow fluid ingress 
into strong basement host rocks (Fig. 4A; Muir-
Wood and King, 1993) that alternated with rapid 
contraction of fluid- and sediment-filled voids 

during earthquakes and the upward transport of 
fluid through the basement (Fig. 4B).

Marine shales blanketed the Rona Ridge 
following its relatively rapid subsidence in the 
Late Cretaceous (Fig. 4C). It seems likely that 
once the naturally propped fissure systems had 
formed, upward migration of oil within the 
basement and up into local Devonian to Juras-
sic cover sequences below the regional seal was 
able to continue. There is little microstructural 
evidence for reactivation of oil-bearing fractures 
in the cores, although some calcite veins and 
cemented clastic fissure fills in the Lancaster 
Field preserve possible evidence for late dissolu-
tion prior to infilling with oil, likely during the 
Cenozoic (Belaidi et al., 2018). Thus, it appears 
that although seismicity may have triggered the 
onset of oil migration from source into the frac-
tured basement ridge, later stages were likely 
buoyancy driven.

IMPLICATIONS AND CONCLUSIONS
Fissure formation and filling in consoli-

dated rocks below regional unconformities have 
been recognized in a variety of settings (e.g., 
 Montenat et al., 1991; Wright et al., 2009), but 
the potential economic significance remains 
largely unexplored. Our findings show that the 

development of tensile fissures in rheologically 
strong host rocks deformed close to the surface 
during tectonic extension presents an opportu-
nity for the development of naturally propped 
networks of deeply penetrating, partially filled 
fissures. Following burial beneath a regional (or 
local) unconformity, these fracture systems are 
then potential sites for the accumulation and 
storage of hydrocarbons, geothermal fluids, or 
aquifer development. There is also evidence that 
active rift-related seismicity initiated hydrocar-
bon migration into the basement reservoir. This 
highlights the intriguing possibility that fracture 
dilation processes related to basement-hosted 
earthquakes could trigger migration episodes 
in global hydrocarbon basins.
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Figure 4. A–C: Simplified 
geological cross-section 
model to explain the de-
velopment of Rona Ridge 
fractured basement play 
(not to scale), with distri-
bution of various cover 
sequences drawn for il-
lustrative purposes only. 
Fissure systems are hun-
dreds of meters deep and 
at least several meters 
wide. Left: Repeated cy-
cles of gradual opening 
of dilational fractures in 
basement during inter-
seismic loading alternate 
with coseismic elastic col-
lapse. This repeated cycle 
draws in fluids (hydro-
thermal, oil), leading to 
partial filling with mineral 
precipitates and/or depo-
sition of sediment from 
the surface, followed by 
fluids being driven out 
during earthquakes and 
sediment-slurry injection 
into wall rocks. In effect, 
the basement ridge acts 
as an active fluid pump 
during rifting. Note that 
fractures are permanently 
propped open by their 
partial fills of sediment, 
wall-rock clasts, and min-
erals, and this facilitates 
later, buoyancy-driven mi-
gration of oil as the reser-
voir is charged from below. L. Cret.—Late Cretaceous; E.—Early; Jur.—Jurassic; Dev.—Devo-
nian; Gp—Group; OWC—oil-water contact.
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