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We show that spontaneous baryogenesis occurs automatically in relaxion models if the reheating
temperature is larger than the weak scale, provided the Standard Model fields are charged under theUð1Þ of
which the relaxion is a pseudo-Nambu-Goldstone boson. During the slow roll, the relaxion breaks CPT,
biasing the thermal equilibrium in favor of baryons, with sphalerons providing the necessary baryon
number violation. We calculate the resulting baryon asymmetry, explore the possible constraints on this
scheme and show that there is a swath of parameter space in which the current observations are matched.
Successful baryogenesis can be achieved for a range of relaxion masses between 10−10 and 10−5 eV.
The mechanism operates precisely in the region of parameter space where recent work has shown relaxion
oscillations to be a dark matter candidate.
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I. INTRODUCTION

An interesting scenario has been suggested [1] to
explain why the Higgs mass is much smaller than the
fundamental scale. Adapting a long-standing idea of
Abbott that attempted (unsuccessfully) to explain the
smallness of the cosmological constant [2], the “relaxion”
mechanism incorporates an interplay of two explicit/
anomalous breakings of a Goldstone shift symmetry, to
relax the Higgs mass dynamically to values close to the
weak scale. The smaller breaking drives the pseudo-
Nambu-Goldstone mode (PNGB), the so-called relaxion,
which samples over Higgs masses, while the larger
breaking comes in the form of a periodic axionlike
potential that is proportional to the Higgs vacuum expect-
ation value (VEV): hence the dynamical evolution of the
relaxion stops as soon as the Higgs VEV turns on. With a
suitable choice of parameters the resultant Higgs mass is
of the correct order.
The central achievement of [1] was to relate the Higgs

mass to a small technically natural parameter, overcoming
the lack of any direct equivalent to the chiral symmetry
breaking that protects quark masses. The proposal can be
made natural in the colloquial sense as well, by adapting
clockworklike scenarios [3].
This paper is motivated by the fact that, being a PNGB,

the rolling of the relaxion represents a spontaneous CPT
violation. Successful baryogenesis scenarios based on such

dynamical evolution were proposed in [4–10] (also see [11]
for a recent review) and were dubbed spontaneous baryo-
genesis (SBG). One is led to ask if SBG is already present
in the relaxion mechanism.
We will demonstrate that SBG is virtually generic.

It requires only the most minimal augmentation of the
relaxion mechanism, namely the addition of a single
operator:

O1 ¼
1

f
∂μϕJμ; ð1Þ

where ϕ is the relaxion and Jμ is a current of matter fields
that has a component orthogonal to both electromagnetic
chargeQ and B − L. Wewill see that the term in Eq. (1) can
be generated simply by charging the matter fields under the
Uð1Þ corresponding to the relaxion shift symmetry [12].
Although the term in Eq. (1) is invariant, a time

derivative of ϕ yields a CPT violating chemical potential
for baryon number [11]. This biases sphaleron transitions
for temperatures around the electroweak scale where they
are active and dominant [4–8].
Thus remarkably all the required ingredients for SBG are

already present in the relaxion mechanism, provided the
operator in Eq. (1) is generated with sufficient strength.
Successful SBG occurs if the cosmological evolution

follows the pattern shown in Fig. 1. There is a period of
inflation (red) and reheat to temperature Tr (black). After
reheat until the temperature drops below Tsph ∼ Tew ∼
130 GeV [13], Bþ L violating transitions (blue) are active
in the plasma, dying away exponentially fast below Tsph.
During this period the relaxion rolls (green) towards its
final value which it reaches at temperature Tc. Thus one has
to satisfy the constraint Tr > Tsph > Tc, which can be done
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without violating any bounds. As the temperature drops
further the relaxion starts to oscillate about the local
minimum and becomes a dark matter candidate [14].
The baryon asymmetry and the dark-matter relic density
are correct in roughly the same region of parameter space.

II. DESCRIPTION OF THE MECHANISM

A. The relaxion

The defining feature of relaxion models is that the Higgs
mass squared term, μ2, is dynamical and depends on the
classical value of the slowly rolling relaxion, ϕ. We will
consider the following typical potential [15],

Vroll ¼ ðgϕ −M2 þ � � �ÞH†H þ λðH†HÞ2 þ gM2ϕþ � � � ;
ð2Þ

where M is a cutoff scale. Initially the relaxion field has a
value ϕ≳M2=g such that μ2 > 0, and electroweak sym-
metry is unbroken. During inflation, the relaxion field rolls
due to the linear term and scans the value of μ2. As the
relaxion crosses ϕ ¼ M2=g, μ2 becomes negative, trigger-
ing electroweak symmetry breaking; the Higgs gets a VEV
and turns on a crucial ingredient of relaxion models, the
backreaction potential:

Vbr ¼ Λ4
c cos

ϕ

fw
¼ m̃2hHi2 cos ϕ

fw
: ð3Þ

The relaxion halts at ϕ0, satisfying

V 0
rollðϕÞ þ V 0

brðϕÞ ¼ 0 ⇒ gM2 ¼ Λ4
c

fw
sin

ϕ0

fw
: ð4Þ

At this point, it has a quantum spread across multiple weak-
scale vacua. Generally the phase at these minima ϕ0

fw
∼ 1, but

it can be arbitrarily close to 0 or π=2 in a small fraction of
these vacua [19]. Hence, a large hierarchy between the

Higgs VEVand the cutoff scale can be achieved if g is very
small [20].
The backreaction can arise as in the non-QCD model

of [1], in which ϕ is the axion of a new strong sector.
The axion potential gets a Higgs-dependent contribution
because the lightest fermion mass of the strong sector gets a
contribution from the Higgs VEV. The radiatively gener-
ated, Higgs-independent contributions to the potential are
subdominant when

fc ≲ v; Λ4
c ≲ ð16π2Þv4; ð5Þ

where fc is the analog of the “pion decay constant” in the
strong sector. Λc depends on fc but also on the Higgs
contribution to the lightest fermion mass, making a
separation of scales Λc ≪ fc ∼ Tc technically natural.
Assuming that the reheat temperature after inflation

Tr > v, one can conclude that Tr > Tc ∼
ffiffiffiffiffiffi
4π

p
fc, where

Tc is the critical temperature corresponding to the chiral
phase transition of the new strong group. Therefore, the
backreaction vanishes after reheating and the relaxion
enters a second period of rolling. As the Universe cools
and the temperature drops below Tc again, the backreaction
reappears. During the second phase of rolling the relaxion
obeys V 0 ≃ 5H _ϕ [24] and the relaxion gets trapped again
[14,25] provided

mϕ ≲ 5HðTcÞ: ð6Þ

In the second phase of rolling the relaxion is displaced
from its original stoppingpoint by amisalignment angle [14],

Δθ ¼ Δϕ
fw

≃
1

20

�
mϕ

HðTcÞ
�

2

tan
ϕ0

fw
: ð7Þ

Once HðTÞ < mϕ=3, the relaxion starts oscillating about
the local minimum. These oscillations give rise to a relic
abundance [14], given by

Ωh2 ≃ 3Δθ2
�

Λc

1 GeV

�
4
�
100 GeV

Tosc

�
3

: ð8Þ

See [26] for an alternative way of explaining dark matter
in relaxion models.

B. Spontaneous baryogenesis

We now show that baryogenesis is a generic conse-
quence of the relaxion mechanism. First we note that if SM
fermions ψ i are charged under the relaxion shift symmetry,
O1 is generated (by field redefinitions) with a current of
the form

Jμ ¼
X
i

qiψ̄ iγ
μψ i þ other spin particles: ð9Þ

Tr Tsph Tc Tosc

Time

A
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itr
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y
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Sphaleron Rate

Relaxion
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FIG. 1. The pattern of evolution required for successful baryo-
genesis during cosmological relaxation.
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Such field redefinitions also generically result in terms like
ϕF2F̃2 and ϕGG̃, where F2 and G are the SM SUð2ÞL and
SUð3ÞC gauge field strengths. Following the treatment of
[7–9] the ϕF2F̃2 term can be removed by a Bþ L trans-
formation (that will also modify the composition of the
current above). We must ensure that a ϕGG̃ term is not
generated [otherwise it will lead to anOð1Þ strongCP phase
once the relaxion stops] by demanding that the relaxion
shift symmetry have no triangle anomaly with SUð3ÞC.
Now we show that the operator O1 generates a baryon

asymmetry. In the presence of the operator O1, the back-
ground value of _ϕ shifts the energy of particles and
antiparticles differently (implying a spontaneous breaking
of CPT symmetry). This is equivalent to

μi ¼ −μ̄i ¼ qi _ϕ=f þ ðBi − LiÞμB−L þQiμQ; ð10Þ

where (μ̄i) μi is the chemical potential for (antiparticles)
particles i, Qi is the electromagnetic charge and μQ;B−L are
Lagrange multipliers introduced to enforce conservation of
Q and B − L. Any source of Bþ L violation generates an
asymmetry in the species i of

ni − n̄i ¼ fðT; μÞ − fðT; μ̄Þ

¼ giðqi _ϕ=f þ ðBi − LiÞμB−L þQiμQÞ
T2

6
; ð11Þ

where fðT; μÞ is the Fermi-Dirac distribution, we have
assumed μ ≪ T and the factor gi incorporates color, as well
as 2 spin degrees of freedom for each Weyl fermion, a
factor of 2 for complex scalars, and 3 for massive gauge
bosons. The chemical potentials μQ and μB−L are deter-
mined by solving nQ ¼ nB−L ¼ 0. This gives a baryon
number density

η≡ nB
s

¼ gSB
_ϕ

f
T2

6
×

45

2π2g�T3
¼ 15

4π2
gSB
g�

_ϕ

fT
; ð12Þ

where the particular linear combination of currents in Jμ
determines the value of gSB ∼Oð1Þ. For instance, in the
flavor degenerate example with nþ 1 Higgs doublets,
considered in the Appendix,

gSB ¼ 3ðð33þ 4nÞqλe þ 9qλuÞ
ð111þ 13nÞ ; ð13Þ

where qλe;μ are the effective global charges of the Yukawa
couplings.

C. Baryogenesis from the relaxion

Having collected the components, we now proceed to see
how they fit together in a generic relaxion scenario [1] and
to derive constraints. Typically the relaxion stops its slow
roll much before inflation ends (we would need extreme

fine-tuning in order to guarantee that the relaxion travels far
in field space but stops at a time close to the end of
inflation). Therefore the first slow roll of the relaxion is not
suitable for baryogenesis as any baryon asymmetry gen-
erated would be diluted away. As discussed above however,
there is a generic scenario in which the reheat temperature
Tr at the end of the inflation is high enough to restore the
chiral symmetry breaking that is the source of the oscil-
latory potential for the relaxion. Consequently the relaxion
undergoes a second stage of rolling, this time in a radiation
dominated phase. It is in this secondary period of rolling
that the time derivative of the relaxion can drive baryo-
genesis. The operative source of baryon number violation is
provided by electroweak sphaleron transitions which are
faster than the Hubble rate for temperatures T > Tsph ∼
130 GeV.
Using Eq. (12) and _ϕ ∼ V 0ðϕÞ=ð5HÞ (see Sec. II A), the

generated baryon number asymmetry is

η ¼ 15

4π2
gSB
g3=2�

m2
ϕmpl

T3
sph

fw
f
; ð14Þ

where the experimentally measured value of η ¼ 8.7 ×
10−11 [27] and the relaxion mass is

m2
ϕ ¼ Λ4

c=f2w: ð15Þ

From the first of these expressions one can conclude that

fw
f

¼ η

�
15

4π2
gSB
g3=2�

m2
ϕmpl

T3
sph

�−1

∼ 109
�

mϕ

10−5 eV

�
−2
: ð16Þ

Therefore successful baryogenesis requires a large-scale
separation between f and fw. This is acceptable because
the relaxion dynamics is already driven by the much
larger-scale separation, F=fw ∼ ðM=ΛcÞ4 where F ∼
M2=g is the total field excursion. The hierarchy f ≪ fw ≪
F can easily be obtained from the clockwork mechanism
[3,22,23] with the operator in Eq. (1) arising from the first
site of the clockwork, the backreaction potential from an
intermediate site and the rolling potential from the last
site. In such a setup f would be the only fundamental
physical scale, while fw, F would be fictitious scales.
The prospects for baryogenesis are determined by five

unknown parameters (fw, f, fc, Λc, mϕ) which, due to the
two relations in Eqs. (14) and (15), represent three
independent variables. Since the sphalerons must decouple
before the backreaction potential reemerges at temperature
Tc, we need Tsph ≳ Tc, and so we choose fc ¼ Tsph=

ffiffiffiffiffiffi
4π

p
to saturate this bound. As we will see, the bounds for
smaller fc can easily be determined by rescaling. Hence we
can display the results in the plane of mϕ and f. The other
two variables are then related by
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fw ¼
� ffiffiffi

8
p

π2

9
ffiffiffi
5

p ηg3=2�
T3
sph

mpl

�
f
m2

ϕ

; ð17Þ

Λ4
c ¼

� ffiffiffi
8

p
π2

9
ffiffiffi
5

p ηg3=2�
T3
sph

mpl

�2 f2

m2
ϕ

: ð18Þ

Now, for a region in the mϕ; f-plane to successfully
produce the baryon asymmetry, it must satisfy the follow-
ing constraints:
a. Relaxion constraints: In order to realize the relaxion

mechanism successfully, the loop consistency condition in
Eq. (5) requires Λ4

c < 16π2v4, which translates into

π2

810
η2g3�

T6
sph

v4m2
pl

<
m2

ϕ

f2
: ð19Þ

In addition the slow roll requirement in Eq. (6) provides an
upper bound on mϕ:

mϕ < 5

ffiffiffiffiffiffiffiffiffiffiffiffi
g�T4

c

90m2
pl

s
∼ 3.8 × 10−5 eV

�
Tc

Tsph

�
2

: ð20Þ

One can verify that this is the only bound that depends on
fc ¼ Tc=

ffiffiffiffiffiffi
4π

p
. Therefore, changing fc effects only the

upper bound on mϕ. Finally for a successful clockwork
implementation of the relaxion mechanism, it is essential
that the explicit/anomalous breaking at the first and last site
be much smaller than the decay constant which implies, for
the cutoff, M ≲ f. All these constraints are shown in our
master plot in Fig. 1.
b. Cosmological constraints: The Universe must reheat

to sufficient temperature in order to activate sphalerons,
Tr > Tsph. Furthermore, the sphalerons must decouple
before the relaxion stops again, Tsph > Tc; otherwise
CPT is restored while sphalerons are active and they erase
any net baryon number. This is satisfied by our afore-
mentioned choice of fc. Finally, [11] shows that the
backreaction of Jμ on _ϕ is sufficiently small if f > Tsph ∼
130 GeV.
c. Experimental constraints: The coupling of ϕ to SM

fields must not be detectable. There are two types of
constraint: the first type arises from the mixing of ϕ with
the Higgs boson which results in an emergent fifth force
for the relaxion mass range relevant here. This effect does
not depend on the choice of Jμ, so it can be treated
independently. The mixing angle between the relaxion and
the Higgs comes from the backreaction potential in Eq. (3)

and is of order sin θ ∼ Λ4
c

fwvm2
h
. The constraints on this angle as

a function of mϕ have been presented in [28] and are
reinterpreted in our master plot as the red exclusion area.
The second type of constraint is from the coupling of the

relaxion to SM particles via the operator in Eq. (1). In our

region of interest, the most important bounds on the
coupling of the relaxion to electrons, photons and nucleons
arise from the fact that such a coupling allows for a more
efficient cooling of stars and supernovae (see [29]). While
most of these bounds can be evaded if Jμ does not contain
first generation fermionic currents (recall that a coupling to
GG̃ must be absent in any case as discussed in Sec. II B), a
coupling to photons, E α

8π
ϕ
f FμνF̃μν, would still be induced,

where E is the electromagnetic anomaly coefficient for the
relaxion shift symmetry and we have ignored terms with a
further m2

ϕ=m
2
f suppression (mf being the mass of the

fermions in the loop). The best experimental constraint on
the operator comes from bounds on the rate of cooling of
globular cluster stars, f=E > 2 × 107 GeV [29]. The con-
straints from the contribution of ϕ to the number of
relativistic degrees of freedom ΔNeff [30] are always
subdominant. In our master plot we show this bound for
E ¼ 1 as a purple dashed line, which will apply to currents
such as Jμ ¼ τ̄Rγ

μτR or Jμ ¼ t̄RγμtR − b̄RγμbR [31].
Clever choices for the global charges can, however,

suppress or even lead to a vanishing E. Consider for
example the charge assignment where the only nonzero
charges are (1) qL3

¼ qτR ¼ 1 where L3 is the third
generation lepton doublet. For this case, E ¼ 0 and the
bound due to the coupling to photons can be entirely
evaded. While we have guaranteed that the charge assign-
ment above has no electromagnetic or color anomaly, it is
still not completely free of constraints. First of all flavor
mixing effects can reintroduce a coupling to electrons, once
O1 is rotated to the mass basis, but these can be made small
by constraining corresponding off-diagonal rotation matrix
elements to be small. Moreover, there are very well-
motivated approaches to lepton flavor model building
[33,34] where the charged lepton mass matrices are, to a
very good approximation, diagonal. More important are the
renormalization group effects that generate, at low scales, a
coupling of the relaxion to electrons and first generation
quarks. As we show in the Supplemental Material, even if
we couple the relaxion to just third generation leptons, we
tend to generate couplings of the relaxion to the first and
second generation fermions of order c ∼ 10−3 through two-
loop effects involving electroweak bosons. The stellar
energy loss argument can be applied to the relaxion
coupling to electrons in globular cluster stars or its coupling
to nucleons in the supernova SN1987A. Both of these yield
a similar bound, f=c≳ 109 GeV [29], as shown in Fig. 2.
The constraints from ΔNeff are always subdominant
compared to these star cooling constraints [30].
Finally, the star cooling constraints can be entirely

evaded if the current in O1 contains only right-handed
neutrinos as proposed in Ref. [35]. In this case the full
white region in Fig. 2 would be allowed by constraints.
d. Dark matter: The authors of Ref. [14] point out that

the relaxion oscillations can explain the observed dark
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matter abundance. At any point in the plane of Fig. 2, the
expected dark matter abundance can be computed up to the
square of the factor tanðϕ0=fÞ [see Eqs. (7) and (8)].
We show in Fig. 2 lines indicating the value of tanðϕ0=fÞ
required to match the observed dark matter abundance.
Values of tanðϕ0=fÞ much larger or smaller than unity are
an indication of the level of tuning required to obtain the
correct relic density [see the discussion below Eq. (4)].
Remarkably, we find that in the small allowed region
obtained after imposing all the theoretical and experimental
constraints discussed here, the required tuning to obtain
observed relic density ranges from none at all to a maximum
of ∼100. The relaxion DM should be stable and not decay
to photons.We have checked that, even in the examplewith
the least suppressed couplings discussed above, the relax-
ion decay time to two photons is much longer than the age
of the Universe: τ ≫ H−1

0 .
Finally let us mention how our bounds would change if

theOð1Þ factor gSB is varied. The clockwork constraint and
the constraints arising from the operatorO1 are not directly
related to gSB. The effect of gSB on the fifth force or loop
consistency bounds can be determined by simply linearly

rescaling f, and the constrained regions move upward
(downward) for larger (smaller) values of gSB. Thus a factor
of gSB ∼ 10−3 would be required to close the parameter
space entirely.

III. DISCUSSION AND CONCLUSION

We have shown that spontaneous baryogenesis is an
integral feature of relaxion models with a high reheat
temperature, which induces a second stage of rolling, and
that it can generate the SM baryon asymmetry we observe
today with almost no adjustment. Indeed the only addi-
tional ingredient is a single operator coupling the relaxion
to matter currents, ∂μϕJμ, which arises automatically if
some SM fields are charged under the Uð1Þ of which the
relaxion is a pseudo-Nambu-Goldstone boson. Remarkably
one encounters (to adapt a phrase from [14]) a double
“relaxion-miracle,” because the baryogenesis mechanism
operates most effectively, and with the least tuning, exactly
where the relaxion oscillations are a viable dark matter
candidate.
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APPENDIX A: ORIGIN OF O1

The simplest explanation for the operatorO1 in Eq. (1) of
the main text is that it arises because the SM fermions are
charged under the global symmetry for which the relaxion
is a PNGB. In this case the Yukawa coupling terms of the
SM must carry extra powers of eiϕ=f to be invariant under
the relaxion shift symmetry. To explore this possibility we
will generalize the discussion in Ref. [9] in order to deal
correctly with anomalies. We begin with the Yukawa-
induced masses for the fermions during the relaxion
evolution, which in the unitary gauge take the form

Lm ¼ −λuv½u†re−iθuul þ u†l e
iθuur�

− λdv½d†re−iθddl þ d†l e
iθddr�

− λev½e†re−iθeel þ e†l e
iθeer�; ðA1Þ

where obviously v ¼ hHi, and a summation over gener-
ations is implied. The θi are time-dependent phases driven
by the relaxion mechanism,

θi ¼ qλi
ϕ

f
; ðA2Þ

where the qλi are the difference in global charge between
the respective left- and right-handed fermion. The Higgs
VEV, vðtÞ, is of course also time dependent, although
that has only a minor effect on the baryon asymmetry.
For simplicity we will for this illustrative example take the

FIG. 2. The parameter space in which spontaneous baryo-
genesis happens during the second roll of the relaxion. The
orange shading shows a region where the relaxion does not get
trapped by the backreaction potential. The quantum corrections
spoil the backreaction potential in the blue region. The region that
leads to rapid star cooling in globular clusters is below the purple
dashed line; however, this bound can be relaxed by a suitable
choice of current. The region that is ruled out by order 1 coupling
between relaxion and tau leptons lies below the green line. The
purple region shows the clockwork requirement M ≲ f for
M ≳ 100 TeV. Finally, the fifth force constraints from mixing
with the Higgs particle rule out the region in red. We have added
contours of the value of tanðϕ0=fÞ required to obtain the correct
relic density as per [14]. Finally, the grey line indicates the region
where fw ¼ mpl.
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phases θi to be generation independent. This allows us to
diagonalize the fermion mass terms as in Eq. (A1).
To determine the physical consequences of the evolving

phases in Eq. (A1), one can remove them at the expense of
inducing baryon and lepton currents. Broadly speaking this
must be equivalent to the operator O1 with Jμ being some
combination of only right-handed currents. We know this
because one is free to remove the phases with a rotation on
the right-handed fermions only, which avoids topological
SUð2Þ terms.
To see this in more detail, first we remove the phases in

Eq. (A1) by making the rotations,

ql → eiωql; ur → eiðω−θuÞur; dr → eiðω−θdÞdr;

l → eiω̄l; er → eiðω̄−θeÞer; ðA3Þ
where we are allowed two arbitrary phases, ω and ω̄
(corresponding to B and L rotations), upon which of course
the eventual physics should not depend.
The corresponding change in the classical action is

δS0 ¼ −
Z

d4x½q̄lγμql∂μωþ ūrγμur∂μðω − θuÞ

þ d̄rγμdr∂μðω − θdÞ þ l̄γμl∂μω̄

þ ērγμer∂μðω̄ − θeÞ þ � � ��; ðA4Þ
where the ellipsis refers to the accompanying shift in the
mass terms that removed the phases. At the same time the
rotation in Eq. (A3) induces contributions from global
anomalies and finite temperature triangle diagrams, which
combined (and neglecting all masses except mt;b) are

δS1 ¼
Z

d4x

��
18ωþ 6ω̄ −

3

2
Λtθu −

3

2
Λbθd

�
g22F2F̃2

32π2

−
�
9ω

2
þ 3ω̄

2
−
�
4 −

17

24
Λt

�
θu

−
�
1 −

5

24
Λb

�
θd − 3θe

�
g2YFYF̃Y

32π2

þ ðð3 − ΛtÞθu þ ð3 − ΛbÞθdÞ
g23GG̃
32π2

�
; ðA5Þ

where the finite temperature pieces are given by

Λðm; TÞ ¼
X
n∈Z

8πTm2

3ðm2 þ ð2nþ 1Þ2π2T2Þ3=2 : ðA6Þ

At high temperatures, T ≫ m, these terms can be approxi-
mated as

ΛT≫m ¼ 14

3
ζð3Þ m2

π2T2

�
1 −

93ζð5Þ
56ζð3Þ

m2

π2T2
þ � � �

�
: ðA7Þ

Thus we have implicitly already taken the infinite T limit
for all but the top and bottom masses, by setting their Λ’s to
zero. In the small T limit, one instead finds

ΛT≪m ¼ 8

3
: ðA8Þ

Here the requirements for baryogenesis during the
relaxion mechanism start to diverge from those of electro-
weak baryogenesis in Ref. [9]. In particular the anomalous
GG̃ terms for the strong coupling should be zero in the
final vacuum such that an Oð1Þ strong CP phase is not
generated once the relaxion stops. This motivates (at least
for generation-independent phases) models with the par-
ticular physical choice

θd ¼ −θu: ðA9Þ

Under this assumption we may neglect the effect of strong
sphalerons [36,37]. We now follow [9] and remove the
SUð2Þ topological piece in the action as well, by setting

ω ¼ 1

12
ðΛt − ΛbÞθu −

1

3
ω̄ ≈ −

1

3
ω̄: ðA10Þ

This particular choice of ω puts all the important physics
in the δS0 term:

δS0 ≈
Z

d4x½ūrγμur∂μθu − d̄rγμdr∂μθu

þ ērγμer∂μθe þ JμB−L∂μω̄�: ðA11Þ

Note that, since we will ultimately set B − L ¼ 0, the
arbitrary phase ω̄ can have no effect on the physics.
Inserting Eq. (A2), the remaining part can as promised be
interpreted as a term of the form of the operator O1, with

Jμ ¼ qλuðJμur − JμdrÞ þ qλeJ
μ
dr
: ðA12Þ

It is straightforward to generalize the above discussion to
generation-dependent charges if we keep in mind some
crucial distinctions. First of all, for general charges it is not
possible to remove the phases from the Yukawa terms by
redefinitions of the singlet quarks alone. The redefinition of
the doublet quarks will then generate a ϕF2F̃2 term that
can be removed by a Bþ L rotation. Finally the condition
in Eq. (A9) for not generating a strong CP phase is
generalized to the condition that the global symmetry have
no triangle anomaly with QCD (see for example Ref. [38]).

APPENDIX B: CALCULATING THE BARYON
ASYMMETRY FOR A GIVEN CURRENT

Now we show how the baryon asymmetry can be
computed for a given current in Eq. (A12). Starting from
Eq. (11) in the main text we solve for μB−L and μem by
solving nB−L ¼ nQ ¼ 0. For the case at hand, treating _θi ¼
qλi

_ϕ as classical homogeneous background fields, with the
qi’s taken from Eq. (A12), we find
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μB−L ¼ − _̄ω −
3ðð7þ nÞ_θe þ 12_θuÞ

111þ 13n
;

μem ¼ 3

2

ð5_θe − 39_θuÞ
111þ 13n

; ðB1Þ

where in order to keep contact with [7–9] we have allowed
for n charged Higgs scalars with charge �1.
Finally substituting into Eq. (11) of the main text gives

nB ¼ nL ¼ 3

ð111þ 13nÞ ðð33þ 4nÞ_θe þ 9_θuÞ
T2

6
;

¼ gSB
_ϕ

F
T2

6
; ðB2Þ

where

gSB ¼ 3ðð33þ 4nÞqλe þ 9qλuÞ
ð111þ 13nÞ ðB3Þ

is a constant of order 1.
Note the physical interpretation which is clear from

Eq. (11) of the main text: there is a bias for Jμ production in
the plasma, but Jμ does not preserve B − L or Q. Therefore
any production of Jμ must be accompanied by a compen-
sating production of JμB−L and JμQ. As a consequence even
Jμ ¼ ērγμer, with no baryon content at all, leads to a
baryon asymmetry. (One should be mindful of the back-
ground assumption that left-handed and right-handed fields
remain in chemical equilibrium throughout, via the Yukawa
couplings.)
As expected, there is no dependence of the answer on ω̄,

so the physics does not care about how the phase absorption
is arbitrarily divided between left- and right-handed fields.
As a second check of these expressions, taking θu ¼ −θd ¼
−θe ¼ −2ω̄ gives a current in Eq. (A11) proportional to the
hypercharge, as it should because in this case the Yukawas
have relaxion charges proportional to the hypercharges of
the Higgs bosons appearing in the couplings: then Eq. (B3)
yields the answer of [7,8], relevant for Higgs-driven
electroweak baryogenesis. (The relaxion charges here are
of course completely general.)

APPENDIX C: CALCULATING OF
RADIATIVELY GENERATED
COUPLINGS TO LEPTONS

As described in [39], anomalous currents can renorm-
alize through nonzero anomalous dimensions. As a result,
even if we couple the relaxion to just third generation at
some high scale, we will generate a small coupling to other
leptons and quarks at lower scales. The anomalous dimen-
sion has been calculated in [40]:

d logZ
d log μ

¼ γA ¼ 3nFCF

8

�
αi
π

�
2

þ � � � ; ðC1Þ

where CF is the Casimir operator of the fundamental
representation and nF is the number of fermionic fields
in the fundamental representation. When the leading
coupling between the relaxion and the SM is in the leptonic
sector, the largest contribution to the anomalous dimension
comes from the loop of electroweak (EW) bosons. For our
purposes, the anomalous dimension has the form

γA;EW ¼ 9ng
8

�
α2
π

�
2

þOðα32; α21Þ; ðC2Þ

where ng is the number of active generations (there are four
fundamentals per generation). Below mW, we need to
integrate out the W’s and Z’s and the two-loop diagram
responsible for γA generates a finite contribution propor-
tional to G2

Fm
4
W ∼ α22 and logarithmic contribution sup-

pressed by G2
Fm

4
l ∼ 10−7α22. For this reason, we can neglect

the anomalous dimension below mW. The electromagnetic
contribution is proportional to α2em and is therefore sub-
leading. To summarize, the largest contribution to the
couplings to leptons and quarks comes from the running
induced by electroweak loops from the scale f down tomW .
Consider the charge assignment we consider in the main
body of our paper:

L ¼ ∂μϕ

f

�X
Q

cQQ̄γμQþ
X
L

cLLþγμL−
�
; ðC3Þ

where cQðfÞ ¼ cLðfÞ ¼ 0, except for cτðfÞ ¼ 1. As shown
in [39], the contributions to other couplings are

ciðmZÞ ¼ ciðfÞ þ
�
ZðmZÞ
ZðfÞ − 1

�
cτ
4ng

: ðC4Þ

Integrating Eq. (C2) we arrive at

ZðmZÞ
ZðfÞ − 1 ∼

9ng
8π2

Z
mZ

f
α22ðμÞd log μ: ðC5Þ

Since α2 only runs by at most 30% between mZ and
109 GeV, it is conservative to use α2ðμÞ ¼ α2ðmZÞ. This
assumption makes the integral trivial and the generated
quark and lepton couplings will bound by

ci ¼
9ng
32π2

cτðfÞα22ðmZÞ log f=mZ

¼ 8 × 10−4 log f=106 GeV: ðC6Þ
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