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Abstract 

Repeat multibeam bathymetric surveys conducted in 2004, 2005 and 2018 show 

that seven slope-confined canyons on the continental slope of the Pearl River Mouth 

Basin, South China Sea, were dominated by large volume, widespread erosion. Erosion 

volumes were up to 3.4 times greater than deposition volumes. Erosion-dominated 

areas of the canyons are up to 2.3 times greater than areas dominated by deposition. 

Average rates of erosion (ranging from 0.7 to 0.8 m/yr) were greater than average rates 

of deposition (ranging from 0.5 to 0.8 m/yr). In plan view, the erosion-dominated zones 

exhibit two characteristic shapes: (1) linear, found mainly in upper canyon reaches, 

distributed predominantly along canyon axes and at the base of eastern canyon walls, 

and; (2) blocky, found mainly in lower canyon reaches, widely distributed along the 

steep canyon walls and on lower-canyon interfluves. The deposition-dominated zones 

are scattered along canyon floors and walls. Seismic reflection data show lateral shifts 

of canyon fill deposits through time, indicative of longer-term eastward canyon 

migration. The linear erosion-dominated zones may be attributed to erosive turbidity 

currents triggered by energetic internal solitary waves shoaling on the shelf. The 

eastward canyon shifts were likely induced by rapid near-bed eastward currents 

generated mainly by westward propagating powerful internal solitary waves of 

depression. The widespread erosion in the deeper canyon areas and interfluves is likely 

a consequence of slope instabilities associated with the presence of gas hydrates. This 

study indicates that active sedimentary processes can occur in slope-confined canyons 
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even during sea level highstands. Local, site-specific oceanographic and geological 

features (e.g., internal solitary waves, gas hydrates) can significantly increase 

sedimentary activity in and around submarine canyons. 

Keywords: submarine canyons; sedimentary processes; turbidity currents; South 

China Sea 

1. Introduction 

Submarine canyons are the largest morphological features shaping present 

continental margins (Reading and Richards, 1994). These features not only convey 

large volumes of sediment from the continental shelf to the deep sea (Shepard and Dill, 

1966; Shepard, 1981; Normark and Carlson, 2003; Wynn et al., 2007), they also sort 

the transported sediments (Posamentier and Walker, 2006). Coarser (sandy) canyon-

sorted sediments are important potential hydrocarbon reservoirs (Deptuck et al., 2003; 

Posamentier and Kolla, 2003). 

Turbidity currents are the dominant mechanism by which sediment is transported 

within submarine canyons. The magnitude and frequency of these flows has been 

argued to fluctuate as a consequence of sea level change (Posamentier and Walker, 2006; 

Covault and Graham, 2010). Powerful and frequent turbidity currents have been 

suggested to occur during sea level lowstands due to the basinward migration of fluvial 

systems and enhanced sediment supply to continental slope and basin floor (Vail et al., 

1977; Burgess and Hovius, 1998). However, recent studies have demonstrated that 
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strong and frequent turbidity currents also occur in submarine canyons during sea level 

highstands, thus allowing for the maintenance of canyon morphology (e.g., Shepard, 

1981; Pratson et al., 1994; Smith et al., 2005; Mulder et al., 2012; Mountjoy et al., 

2018). Frequent turbidity current occurrence during highstand conditions has been 

suggested by recent observations in Monterey Canyon (Paull et al., 2003, 2018; Xu et 

al., 2004), Var Canyon (Khripounoff et al., 2009), Congo Canyon (Azpiroz-Zabala et 

al., 2017), and Gaoping Canyon (Zhang et al., 2018). Notably, these observations are 

limited to shelf-incised submarine canyons. No observations of turbidity currents in 

slope-confined canyons, accounting for 69% of the large canyons on Earth (Harris and 

Whiteway, 2011), have yet been reported. 

The Pearl River Mouth Basin, South China Sea (Fig. 1), is one of the two most 

important gas hydrate drilling areas (i.e., Shenhu area, Yang et al., 2015) in the South 

China Sea. Here, 19 submarine canyons are confined on the upper continental slope 

(Zhu et al., 2010; Gong et al., 2013; He et al., 2014; Zhou et al., 2015). These canyons 

face the Pearl River, the second largest river draining into the South China Sea (Wang 

and Li, 2009). These slope-confined canyons are located in an area that is notable for 

the occurrence of vigorous oceanographic processes, including quasi-steady water 

exchange with the Pacific (Wang and Li, 2009) and some of the world’s largest internal 

solitary waves (Alford et al., 2015). The complex and special hydrodynamic 

environment makes the modern canyons in the Pearl River Mouth Basin an ideal site 

for addressing the research gap on sedimentary processes in slope-confined canyons 
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during sea level highstands. In addition, understanding the contemporary activity of 

such canyons can help assess geohazards relevant to ongoing gas hydrate exploitation 

in the area.  

In this paper, building on published work that has focused on long-term (i.e., the 

middle Miocene to present) (Zhu et al., 2010; Gong et al., 2013; Zhou et al., 2015) 

development of the canyons on the continental slope of the northern South China Sea, 

this study addresses contemporary canyon processes within seven slope-confined 

canyons. Based on repeat multibeam bathymetric surveys conducted in 2004, 2005, and 

2018, as well as two canyon-crossing multichannel seismic reflection profiles, our work 

(1) illustrates bathymetric changes between 2004 and 2018 in the upper canyon reaches, 

as well as between 2005 and 2018 in the lower canyon reaches; (2) documents the 

distribution, sediment volumes, and rates of erosional and depositional activity; (3) 

discusses mechanisms possibly responsible for sedimentary processes in the slope-

confined canyons and; (4) compares the sedimentary processes of these slope-confined 

canyons with those of shelf-incised canyons on other continental margins. 

2. Geological setting 

The South China Sea is one of the largest marginal seas in the western Pacific 

region. The modern oceanic basin formed as a result of crustal rifting and subsequent 

drifting during the late Eocene or early Oligocene to middle Miocene (Taylor and Hayes 

1980; Li et al. 2014). Subsequent to the late Miocene, as the South China Sea basin 
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entered a phase of regional thermal subsidence, its northern and southern passive 

continental margins gradually formed. 

The study site, is located on the continental slope of northern South China Sea, 

southeast of Hong Kong and the mouth of the Pearl River (Fig. 1A). This area 

structurally lies in the Pearl River Mouth Basin (Fig. 1A), one of the largest oil- and 

gas-bearing basins offshore from China. The study area covers about 1647 km2, with 

water depths between 200 and 1600 m. The regional slope is approximately 1.6° on 

average (He et al., 2014). The 19 slope-confined canyons (Fig. 1B) are the most 

prominent morphologic features. Drilling results suggest that the late Miocene to 

Pleistocene canyon deposits in the study area are dominated by deep-water mud and 

silty mud, intercalated with sandy layers (Lüdmann et al., 2001; Gao et al., 2012). The 

muddy layers are mostly distributed in the inter-canyon areas, and the sandy layers 

occur mostly in the canyon fills. Content of clay minerals in the inter-canyon area 

sediments may up to 64% on average (Gao et al., 2012). 

The main sediment source within the study area is the Pearl River (Fig. 1). Since 

1980, the Pearl River has annually discharged approximately 300×109 m3 of water (Gu 

et al., 1990) and 20–30×106 tons of sediment into its estuary (Wu et al., 2018). At the 

river mouth, the Pearl River delta has prograded at an average rate of 17 m/yr over the 

past 6,000 years (Huang and Song, 1981; Fyfe et al., 1999). The present Pearl River 

delta is confined within the estuary of the river (Wei and Wu, 2011; Wu et al., 2014). 

Seventeen of the 19 submarine canyons on the continental slope of the Pearl River 
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Mouth Basin, were first documented by Zhu et al. (2010). These 17 canyons, which are 

found at water depths between 450 and 1500 m, are 30–60 km long, 1.0–5.7 km wide, 

and 50–300 m deep (Zhu et al., 2010). The canyons have been migrating northeastward 

since the middle Miocene (Zhu et al., 2010; Gong et al., 2013; Zhou et al., 2015). The 

evolution of the canyons includes three stages: the early lowstand incision stage, the 

late lowstand lateral-migration and active-fill stage and, the transgression stage when 

Pearl River no longer directly delivered sediment to the canyons (Gong et al., 2013).  

Submarine landslides on the flanks of the 19 canyons were investigated by He et 

al. (2014). A total of 77 landslides characterized by small area (0.53–18.09 km2 in the 

plan view) and short run-out distances (<3.5 km) were identified in the canyon area. 

Seafloor undulations are found in the canyon head areas and lower reaches, with some 

of the undulations linking to slope instabilities (Qiao et al., 2015). The seven canyons 

in the study area correspond to C5 through C11 labeled by Zhu et al., 2010, C6 through 

C12 labeled by He et al. (2014) which we adapt in this study (Fig. 1B). Among the 

seven canyons, C6 through C9 correspond to C4 through C1 in Gong et al. (2013), 

respectively. 

3. Material and methods 

3.1.Bathymetric surveys 

Three repeat multibeam bathymetric data surveys and two multichannel seismic 

reflection profiles are used in this study. The first bathymetric survey (Fig. 1B), 
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covering the upper canyon reaches, was collected in 2004, using an ELAC Bottom 

Chart 1180/1050 multibeam system. The second bathymetric survey (Fig. 1B), covering 

the lower canyon reaches, was collected in 2005, using a RESON SeaBat 8150 

multibeam system. The third bathymetric survey, covering the entire canyon region, 

was collected in 2018, using a Kongsberg Maritime EM 122 multibeam system.  

The three original multibeam soundings were processed using CARIS HIPS and 

SIPS software (Caris HIPS and SIPS, version 8.1.9). This processing included sound 

velocity profile corrections, tidal level correction, editing navigation data and altitude 

data (Zhao et al., 2015), followed by a work flow using Combined Uncertainty and 

Bathymetry Estimator (CUBE) and “Surface filter” to eliminate outliers in the raw data 

(Calder and Mayer, 2003; Zhao et al., 2019). The swath angle surface method in CARIS 

HIPS and SIPS software was used to build the high-resolution seabed digital terrain 

model (DTM) with a grid resolution of 200 m. 

Subtraction of the repeat mapping surfaces was used to document changes in 

seafloor elevation between 2004 and 2018 in the upper canyon reaches, as well as 

between 2005 and 2018 in the lower canyon reaches. Artifacts in the multibeam 

bathymetric data are identified mainly based on two features: regionally linear 

abnormal bathymetry; isolated abnormal bathymetry, especially on the survey 

boundaries.  

Changes in elevation between the different datasets were used to identify areas of 

erosion (negative change) and deposition (positive changes). From this we were able to 
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calculate volumes of eroded and deposited sediment, the relative proportion of erosion-

dominated and deposition-dominated areas within the canyons, and the rates of erosion 

and deposition during the 14 years.  

3.1.1. Elevation difference correction 

To quantify whether any corrections were necessary between the different surveys, 

we analysed whether there were any systematic differences between surveys in selected 

references areas. The reference areas were selected on the basis that they should be 

outside in influence of any sediment density flows than may occur and thus any changes 

are likely to be a consequence of difference between the survey instruments (Wright et 

al., 2008; Le Friant et al., 2010). Two reference areas (Z1 and Z2, Fig. 4) were selected 

above the canyons to analyse the comparability of the 2004 and 2018 surveys. Two 

references areas (Z3 and Z4, Fig. 4) were selected significantly below the canyons to 

analyse the comparability of the 2005 and 2018 surveys. The mean value of difference 

in depths for the Z1 – Z4 was -3.1 m, -3.6 m, -5 m and -5.1 m, respectively. As a 

consequence of these systematic difference, a 3 m and 5 m correction to the observed 

elevation differences was applied to the 2004 – 2018 and 2005 – 2018 surveys, 

respectively. 

3.1.2. Accounting for uncertainty 

Accounting for possible errors is necessary when using repeat multibeam sonar surveys 

to assess seabed change and is often overlooked (Schimel et al. 2015). Sources of error 

can include differences in the sonar system used, vessel configurations, vessel motion, 



10 
 

tide, parameters affecting sound velocity and absorption, low signal-to-noise ratios and 

bottom detection algorithms (Hare et al., 1995; Lurton, 2003; Lurton and Augustin, 

2010). To assess uncertainties in our elevation change data, we used the fixed reference 

uncertainty method described by Schimel et al. (2015). This was achieved by selecting 

two areas as reference areas for the 2004-2018 surveys (upper canyons) and 2005-2018 

surveys (lower canyons). The reference areas (Z1 and Z2 in upper canyons, and Z3 and 

Z4 in lower canyons, Fig. 4), were assumed to stay unchanged between surveys. The 

standard deviation of the elevation differences in each reference area (1.2 m, 1.6 m, 2.5 

m, 1.9 m for Z1–Z4, respectively) is treated as a possible error in derived erosion 

(deposition) thickness, and thus as the detectable threshold in elevation change (Wright 

et al., 2008; Le Friant et al., 2010). The thresholds of elevation change between the 

2004 and 2018 surveys and the 2005 and 2018 surveys are 1.5 m and 2.5 m, respectively. 

This equates to a volumetric uncertainty in each grid cell of 6 x 104 m3 and 10 x 104 m3 

respectively. 

3.2.Seismic data 

The two multichannel seismic reflection profiles, collected in 2006, have a domain 

frequency between 72 and 96 Hz in the near-seafloor interval, which gives a vertical 

resolution (tuning thickness) of about 4 to 6 m (assuming an average interval velocity 

of about 1700 m/s, as estimated from well-logging data in Gao et al., 2012). Each 

seismic profile is about 25 km long. The seismic profiles were used to identify 

subsurface features in the study area. 
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4. Results 

4.1 General morphology 

Two significant morphologic features were identified in the study area, based on 

the bathymetric data: submarine canyons and scarps. 

    Seven submarine canyons (canyons C6 through C12) are present on the upper 

continental slope of the study area (Figs. 1B and 2). The canyon heads are located 

approximately 300 km southeast of the Pearl River mouth and 1 to 5 km beyond the 

shelf edge. These canyons (Tab. 1) extend downslope from approximately 700 m water 

depth (range = 538 to 865 m) to approximately 1500 m water depth (range = 1405 to 

1663 m). Average canyon dimensions are approximately 33 km long (range = 23 to 40 

km) and about 3 km wide (range = 1.1 to 4.8 km). The canyon heads are the narrowest 

canyon sections. The slope gradients of the canyon axes commonly decrease downslope, 

from approximately 4° at the canyon heads (range = 2.9° to 4.9°) to approximately 1.0° 

at the canyon mouths (range = 0.8° to 1.0°). Some canyons (C6, C9, C10, and C11) 

include a steep mid-canyon section. All seven canyons have steep sidewalls, with slopes 

of 3° to 14°. The eastern walls are usually steeper than the western ones (Fig. 2A). 

   Numerous slope scarps are present on the ridges between the canyons (Fig. 2). 

These scarps are crescent-shaped, and most are found at water depths ranging from 

1000 to 1600 m. Additional scarps occur on the seafloor close to the canyon heads. 

These scarps are up to 5 km long, with headwall vertical relief of up to 68 m and 
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headwall gradients of 4° to 9°. 

4.2 Canyon-related seismic facies 

Three significant seismic facies were identified in the study area, based on the 

seismic reflection data: channel fill, contorted, and transparent to chaotic facies.  

Channel fill seismic facies are characterized mainly by chaotic or transparent 

seismic reflectors, with fill boundaries defined by high-amplitude reflection interfaces 

(Fig. 3). The chaotic configurations are usually characterized by high-amplitude 

reflectors, whereas the transparent configurations are commonly characterized by low-

amplitude reflectors. In cross-section, the canyon fills are relatively narrower 

(approximately 0.5 km) in the upper reaches and wider (approximately 1.5 km) in the 

lower reaches. These fills show evidence of eastward canyon migration in both the 

upper and lower reaches (Zhu et al., 2010; Gong et al., 2013).  

Contorted seismic facies are characterized by contorted or steeply dipping 

reflectors (Fig. 3). These features are distributed mainly along the interfluves of the 

lower canyon reaches and hanging on the canyon walls. Normal faults often appear in 

the contorted seismic facies (Fig. 3). It is noted that the contorted reflections usually 

show increasing fold amplitude or wave relief with depth (Fig. 3C). The most 

significant modern morphologic expressions of the contorted seismic facies are the 

abundant slope scarps (Fig. 2). 

Transparent to chaotic seismic facies are characterized by transparent reflectors 
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capped by high-amplitude chaotic reflectors (Fig. 3C, D). These features, which exhibit 

a vertical columnar or cone shape, are found beneath the interfluves of the lower canyon 

reaches. 

4.3 Elevation change  

   Comparison of the 2004 and 2018, and the 2005 and 2018 bathymetric surveys 

shows significant elevation changes in the upper canyon reaches and in the lower 

reaches between surveys (Fig. 4). Both negative (erosion) and positive (deposition) 

changes in elevation are recorded.   

4.3.1 Erosion 

In terms of areal coverage, the erosion-dominated zones (negative elevation 

change) occupy ~44 % (canyon C9) to ~56 % (canyon C8) of each individual canyon 

(Tab. 2; Fig. 5A). The canyon-specific volume of eroded sediment (Tab. 2, Fig. 5B) 

ranges from about 32×106 m3 (canyon C8) to 183×106 m3 (canyon C10) in each upper 

canyon reach (2004–2018), and from about 297×106 m3 (canyon C9) to 506×106 m3 

(canyon C10) in each lower canyon reach (2005–2018). The erosion rate in each canyon 

ranges from 31×106 m3/yr (canyon C8) to 52×106 m3/yr (canyon C10) (Fig. 5B). The 

average erosion thickness is 7–11 m in each upper canyon reach and 9.5–12.5 m in each 

lower canyon reach. The average vertical erosion rate (in thickness) in each canyon 

ranges from about 0.7 m/yr to 0.8 m/yr (Fig. 5C). 

The zones dominated by erosion have two characteristic shapes: linear and blocky 
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(Fig. 4). The linear zones occur mainly in the upper reaches at water depths shallower 

than ~1000 m (i.e., within 8 km downstream of the canyon heads), along the canyon 

axes and at the base of the eastern canyon walls (Figs. 4 and 6). The linear zones range 

in width from 0.5 to 1.0 km. In contrast, the blocky zones occur mostly in the lower 

reaches at water depths greater than ~1000 m, though a few do occur in the upper 

reaches. These zones appear on canyon sidewalls, usually linked to those on the 

submarine canyon interfluves (Figs. 4 and 6). The blocky zones range in length from 

0.5 to 5.0 km and in width from 0.2 to 2.0 km. The area of each irregularly shaped zone 

dominated by erosion is about 1 km2 on average. Along- and cross-slope profiles of 

elevation change show eastward canyon migration during the past 14 years, which is 

more significant in the upper reach (Fig. 6). 

4.3.2 Deposition 

The deposition-dominated zones (positive elevation change) occupy ~22 % 

(canyon C12) to 45 % (canyon C6) of each individual canyon’s area (Tab. 2; Fig. 5A). 

This is much less extensive than the area dominated by erosion (Fig. 5A). The canyon-

specific volume of sediment deposition (Tab. 2) ranged from ~72×106 m3 (canyon C8) 

to 202×106 m3 (canyon C9) in each upper canyon reach (2004–2018), and from ~70

×106 m3 (canyon C8) to 226×106 m3 (canyon C7) in each lower canyon reach (2005–

2018). The rate of deposition in each canyon ranges from 10.7×106 m3/yr (canyon C8) 

to 28×106 m3/yr (canyon C7), which is only 30–80 % of the erosion rate in each canyon. 

The average thickness of deposited material is ~7–10 m in the upper canyon reaches, 
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and 6–14 m in the lower canyon reaches. Average deposition rate in each canyon ranges 

from about 0.5 m/yr to 0.8 m/yr (Fig. 5C). 

The deposition-dominated zones, like the erosion-dominated zones, exhibit both 

linear and blocky shapes. Only a few are linear, with a length up to 2.4 km (canyon C10) 

and widths ranging from 172 to 353 m. The largest one has an area of 0.5 km2 (canyon 

C10). These linear features extend along the base of some of the canyon walls. Most of 

the deposition-dominated zones are irregular and blocky in outline, and most appear on 

canyon interfluves, canyon walls, and canyon floors in the lower reaches (Fig. 4). 

Cross-slope profiles of elevation change show that the deposition-dominated zones with 

irregular outlines can occur on the ridges of canyon interfluves (Fig. 6D). The irregular 

blocky zones dominated by deposition range in length from 0.2 to 2.0 km and in width 

from 0.2 to 1.0 km. The largest of these irregularly shaped zones is 1.5 km2 (canyon 

C7). 

5. Discussion 

5.1 Reliability of detected elevation changes 

Making repeat bathymetry measurements has been shown to be an effective means 

of analyzing different submarine sediment transport processes (e.g., Hughes Clarke et 

al., 1996; Hughes Clarke, 2016). However, it is important to test whether local site 

characteristics, particularly steep slope gradients, which make data acquisition difficult 

are in fact the cause of differences between datasets (Fox et al., 1992).  
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Prior to GPS ship navigation being common, the impact of slope gradients on 

differences between datasets was evaluated using a slope weighting factor (Chadwick 

et al., 1998, 2008, 2018). However, the wide application of precise GPS location has 

made the inclusion of such a weighting factor unnecessary. Nonetheless we have 

assessed the potential impact of slope and water depth on our measured elevation 

differences (Fig. 7). Our data show no obvious correlation between elevation change 

and slope gradient or elevation change and water depth. We therefore, conclude that 

neither slope nor water depth has had a significant impact on our detected elevation 

change and thus we have confidence in our results. 

5.2 Interpretation of seismic facies 

Previous studies have used integrated seismic and borehole analyses to understand 

the evolution of the canyons in the Pearl River Mouth Basin (Zhu et al., 2010; Sun et 

al., 2012; Gong et al., 2013; Yang et al., 2015, 2017; Zhou et al., 2015). Borehole data 

has verified that the chaotic high amplitude seismic reflectors and the transparent 

seismic facies which make up the canyon fill facies represent turbidites (Zhou et al., 

2015) and debris flow deposits, respectively (Zhu et al., 2010; Gong et al., 2013). 

Meanwhile the high-amplitude reflectors which constrain these facies are thought to 

represent the incision surfaces of paleo-canyons (Zhu et al., 2010; Zhou et al., 2015). 

In contrast to the channel fill facies, the contorted seismic facies which exist on the 

canyon walls (Fig. 3) exhibit a combination of characteristics which are indicative of 
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submarine landslides or slumps and therefore represent slope instabilities (Hampton et 

al., 1996). These facies show evidence of headscarps and glide surfaces which display 

as reflectors separating the displaced mass from the underlying strata (He et al., 2014). 

They also show evidence of normal faults indicative of material displacement and thus 

mass failures (He et al., 2014; Su et al., 2019). 

Last, 3-D seismic and borehole studies have shown that the columnar/cone shaped 

transparent to chaotic seismic facies seen in Fig. 3. are representative of gas 

chimneys/fluid migration pathways which exist as a consequence of the abundance of 

gas hydrates which exist in the area (Sun et al., 2012; Yang et al., 2015, 2017). 

5.3. Canyon ridge crescentic features  

Numerous crescentic features have been identified on the ridges between the 

canyons (Fig. 2). Features with similar plan-view morphologies and scales have been 

observed in other settings (Migeon, et al., 2012; Zhong et al., 2015; Symons et al., 2016; 

Pope et al., 2018; among many others). Crescentic features such as those that are 

observed are thought to be predominantly generated by turbidity currents or slope 

instabilities. Where features are related to turbidity currents, the internal architecture of 

the bedforms is made up of regular ordered reflectors, which in the case of supercritical 

turbidity currents exhibit regular back-stepping beds which develop as the bedform 

migrates upstream (Migeon et al., 2001; Postma and Cartigny, 2014; Hage et al., 2018). 

They are also regularly found in bedform trains associated with fluctuating flow 
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properties (Cartigny et al., 2011). In contrast, where bedforms are related to slope 

instabilities a number of the following should be present; (1) a distinct headscarp; (2) a 

glide plane or surface; (3) listric normal faults; (4) offset or deformed internal reflectors, 

and; (5) a compressional/depositional zone (Bugge et al., 1988; Hampton et al., 1996; 

Masson et al., 2006; Chaytor et al., 2009). According to these criteria, previously 

published seismic and core data show that the majority of the scarps are likely related 

to slope instabilities (see He et al., 2014 and Su et al., 2019 for more details). 

Nonetheless, some features do indeed appear display upslope-migrating internal 

architecture but examples of this are limited (He et al., 2014). Moreover, the crescentic 

features do not exist in coherent trains with similar alignments but instead diverge either 

side of the canyon ridges further suggesting a slope instability origin (Fig. 2). 

5.4 Sedimentary processes in the modern slope-confined canyons 

The 2004/2018 and 2005/2018 repeat multibeam surveys reveal significant 

widespread and large volume erosion accompanied by local small volume deposition 

in the seven slope-confined submarine canyons in the study area. Ratios of erosion-

dominated to deposition-dominated area within the canyons are 1 to 2.3 times greater 

(Tab. 2), and ratios of erosion volume to deposition volume range from 1.2 to 3.4 times 

greater. Average rates of erosion depth are also larger than average rates of deposition 

thickness. The dominance of erosional processes is typical for shelf-incised canyon 

systems, especially during sea level lowstands (Shepard, 1981; Posamentier and Walker, 
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2006; Covault and Graham, 2010). We will now discuss the mechanisms by which this 

erosion and deposition may have occurred in the slope-confined canyons during the 

present sea level highstand. 

Sedimentary processes in submarine canyons are dominated by the activity of 

sediment gravity flows, especially turbidity currents (Shepard et al., 1966; Talling, 

2014). These flows can be generated by three main mechanisms: plunging of sediment-

laden river floodwaters, mass failure of unconsolidated or loosely consolidated 

sediments, or resuspension of sediment near the shelf edge by oceanographic processes 

(Piper and Normark, 2009; Talling et al., 2013; Talling, 2014). The different 

morphologies of the erosion-dominated and deposition-dominated zones of the 

submarine canyons in the study area imply different mechanisms of turbidity current 

generation.  

5.4.1 Erosion in linear zones 

The fact that the linear zones dominated by erosion occur mainly in the upper 

canyon reaches suggests that the turbidity currents responsible for these erosion marks 

may have originated on the shelf or upper slope, with their erosional power decreasing 

down-canyon. The plunging of hyperpycnal river water commonly triggers dilute and 

slow-moving flows (Talling, 2014), but the modern canyons in the study area are not 

presently connected to any river mouth. River-related flows therefore seem unlikely to 

have operated in the canyons during the 14-year study period. 

Mass failure may occur on both gentle and steep submarine slopes (Talling, 2014). 
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In gently (< 2°) sloping areas (e.g., open continental slope and basin floor), such events 

are typically large (extending for several hundred kilometers and involving 100s-1000s 

km3 of material) and infrequent (≥1 per a thousand years), triggering powerful canyon-

flushing turbidity currents (Talling, 2014). In the case of the studied canyons, the 

occurrence of extensive erosion within a mere 14 years and the absence or unresolvable 

nature of linear erosion-dominated zones in the lower canyon reaches indicates that this 

form of infrequent mass failure is not likely the responsible agent. Submarine cables 

are also present further downslope of the canyons but are not known to have been 

broken by turbidity currents between 2004 and 2018 (Pope, personal communication, 

2018) which also supports the absence of large powerful turbidity currents associated 

with large-scale slope failures or canyon flushing events (Piper et al., 1999; Allin et al., 

2018). In steeper areas (e.g., delta lips), mass failures occur frequently (1 to 5 or more 

per year on modern delta-lips) (Talling et al., 2013; Talling, 2014; Clare et al., 2016; 

Hizzett et al., 2018). In the study area, bathymetric and seismic data indicate that a 

paleo-delta extends to the shelf edge (Lüdmann et al., 2001; Zhou et al., 2015; Wang et 

al., 2017). However, because the present Pearl River delta is confined to the river 

estuary (Wei and Wu, 2011), the paleo-delta is likely not receiving large volumes of 

river-derived sediment and mass failure on the paleo-delta lip is probably infrequent. 

This form of frequent mass failure is therefore also likely not responsible for the recent 

occurrence of turbidity currents and extensive upper-canyon erosion. 

Sediment resuspension (e.g., by surface waves or internal waves) is another way 
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to generate powerful turbidity currents, in some places several times per year (Talling 

et al., 2013). In the northern continental shelf of the Dongsha Islands, the widespread 

occurrence of modern sand waves trending NE–SW (Wang, 2000) indicates energetic 

NW–SE ocean processes capable of moving coarse sand grains. The northern South 

China Sea is in fact the site of the world’s largest and most powerful internal solitary 

waves (Ramp et al., 2004; Alford et al., 2015), with amplitudes of up to 240 m and 

northwestward propagation speeds of up to 2.9 m/s (Klymak et al., 2006; Huang et al., 

2016). Internal solitary waves occur in the ocean’s interior, due to difference in density 

between adjacent layers of water. In the northern South China Sea, internal solitary 

waves are generated diurnally by the interaction of tides and local bathymetry in the 

Luzon Strait (Fig. 8A, B) and propagate northwestward toward the Dongsha Islands 

and the coast of China (Alpers, 2014; Alford et al., 2015; Ma et al., 2016). These internal 

solitary waves occur at the water depth of up to 300–500 m (Hsu and Liu, 2000; Lien 

et al., 2014; Tang et al., 2015), and can significantly increase the flow velocity (e.g., 

more than 10 cm/s at ~2374 m; Dong et al., 2015) of the entire water column when they 

pass through (Huang et al., 2016). 

During a 2011 field deployment in the nearby study area, observations of bottom 

currents (see locations in Fig. 8B) showed that internal solitary waves were the most 

powerful events to occur near seabed during the study period (Ma et al., 2016). These 

energetic waves propagated diurnally in the direction of approximately 290° (Fig. 8B), 

causing strong near-bottom (1 m above the seabed) currents (some exceeding 90 cm/s) 
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as the waves shoaled onto the shelf, west of the Dongsha Atoll (Fig. 8C; Ma et al., 2016). 

Such currents can suspend coarse sediments in the continental shelf and shelf edge areas 

(Ma et al., 2016). Many observations from around the globe have confirmed that 

internal solitary waves are capable of inducing bottom stresses sufficient to initiate 

sediment movement and resuspend seabed sediments, especially during wave shoaling 

and breaking (see review in Boegman and Stastna, 2019). In the study area, shoaling 

internal solitary waves that stir up waters dense with resuspended sediment are probably 

the dominant mechanism responsible for triggering turbidity currents that scour the 

upper canyon reaches. 

Canyon Migration 

The linear erosion-dominated zones occurring at the base of the eastern canyon 

walls are indicative of the continued eastward migration of these canyons (Figs. 4 and 

6; Zhu et al., 2010; Zhou et al., 2015). These 14-year bathymetric indicators of 

migration are consistent with the longer-term canyon-fill migration seen in the seismic 

profiles (Fig. 3) and with observations from other seismic reflection studies in the area 

(Zhu et al., 2010; Gong et al., 2013; Zhou et al., 2015). This migration could be driven 

or influenced by processes such as bidirectional canyon migration, the effects of 

Coriolis forces, topographic steering of turbidity currents, and bottom currents. The first 

three possibilities can be readily ruled out. Submarine canyon evolution may include 

bidirectional (zig-zagging) migration (Posamentier and Walker, 2006), but no evidence 

of this behavior is found in the multibeam bathymetric or seismic reflection data of the 
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study area (Fig. 3; Zhu et al., 2010; Gong et al., 2013; Zhou et al., 2015). Coriolis forces 

can, in the Northern Hemisphere, cause mid- and high-latitude turbidity currents to veer 

to the right (Komar, 1969; Piper et al., 1983). In the case of the studied canyons, though, 

this effect would encourage westward, not eastward, migration. Topographic steering 

is also a weak candidate for driving the eastward migrations, as no large cross-cutting 

topographic features are evident in the study area (Figs. 3 and 4). The nearby Dongsha 

Islands (Figs. 1A and 8A) experienced two uplifts at the Miocene/Pliocene boundary 

and in the Pleistocene (Lüdmann and Wong, 1999), but this phenomenon too would 

tend to drive westward, not eastward, migration of the canyons. 

Bottom currents may be a plausible cause of the observed canyon migration 

although without direct measurements of turbidity currents in these canyons uncertainty 

remains. The study area is affected by eastward regional water mass circulation (with 

current speeds <10 cm/s between 500 and 1500 m water depth; Tian et al., 2006; Yang 

et al., 2010). It is also affected by westward-propagating depression internal waves 

(waves with predominantly downward displacements) which originate at the Luzon 

Strait (Fig. 8A; Alford et al., 2015; Huang et al., 2016; Ma et al., 2016; Bai et al., 2017). 

These waves have been shown to generate reversing eastward near-bed currents with 

velocities of up to 40 cm/s at water depths of 481 m (mooring site in Fig. 8B) and 90 

cm/s at water depths of 175 m (site B in Fig. 8B) (Ma et al., 2016; Boegman and Stastna, 

2019). The variable strength of these currents will have a significant impact on their 

interaction with turbidity currents. 
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Flume tank (Eurotank in Utrecht University) experiments have shown that along-

slope bottom current velocities larger than 15 cm/s are required to deflect unconfined 

depositional turbidity currents with velocities of between 1.0 to 1.4 m/s (Gong et al., 

2018; The Drifters group, personal communication, 2019). Hence, the eastward 

regional water circulation would likely be too weak to steer confined and erosive 

turbidity currents which flow down the canyon if they have similar characteristics as 

those reported in other settings such as Mendocino (California) and Gaoping (Taiwan) 

canyons (Sumner and Paull, 2014; Hughes Clarke, 2016; Gavey et al., 2017; Paull et 

al., 2018; Vendettuoli et al., 2019). However, if turbidity current characteristics more 

closely resemble those reported in the Eel (northern California) or Fonera (in the Gulf 

of Lions) canyons (tens of cm/s), then even the low velocity regional water mass 

circulation may result in eastward deflection of turbidity currents (Puig et al., 2003; 

Palanques et al., 2006). In contrast, combined with the regional water circulation, the 

eastward near-bed current resulting from internal waves is likely to steer slow moving 

turbidity currents eastward along their down-canyon path and may even impact upon 

those flowing at higher velocities. This would likely result in preferential erosion along 

the eastern canyon walls which we observe and thus eastward canyon migration. 

5.4.2 Erosion in block-shaped zones 

The irregular, block-shaped zones dominated by erosion are widespread mainly in 

lower canyon reaches, indicating different modes of erosion in the upper and lower 

reaches. In the upper reaches, the blocky erosion-dominated zones occur sporadically 
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on the steep canyon walls, suggesting local mass failures (Fig. 3). Such events are 

common in submarine canyons worldwide (Masson et al., 2011; Biscara et al., 2013; 

Xu et al., 2013).  

In the lower canyon reaches (water depths >~ 1000 m), the blocky erosion-

dominated zones are widespread, both within and between the canyons (Fig. 4), 

suggesting that a regional mechanism for the development of these zone is responsible. 

The presence of gas hydrates, which are indicated by bottom-simulating reflectors 

(BSRs), and gas chimneys (Figs. 3C, D and 8B; Chen et al, 2016) suggesting gas/fluid 

migration are found at similar depths as confirmed by drilling in the study area (Yang 

et al., 2017). The correlation of gas hydrate presence and significant slope instabilities 

suggest a causal relationship may exist.  

Gas hydrate processes, including accumulation, expansion, dissociation, and pipe 

structure formation have been proposed as triggers for slope instability events (Bugge 

et al., 1988; Sultan et al., 2004; Serié et al., 2012; Elger et al., 2018). Overpressure 

caused by fluid migration, especially in fine sediments, may trigger sediment 

deformation and mass failures (Bugge et al., 1988; Sultan et al., 2004; Serié et al., 2012; 

Elger et al., 2018). In the study area, the presence of gas chimneys and shallow gas (Fig. 

3; Sun et al., 2012) indicate possible gas expansion and subsequent increases in 

overpressure (Bugge et al., 1988; Sultan et al., 2004). Gas hydrates in the study area 

also reduce the permeability of the sediments (Gao et al., 2012; Yang et al., 2017), thus 

potential leading to a build-up of overpressure below the gas hydrate stability zone 

https://scholar.google.co.uk/citations?user=Y8xS8NwAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.co.uk/citations?user=Y8xS8NwAAAAJ&hl=zh-CN&oi=sra
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(Yang et al., 2015, 2017). Pipes in the study area (Sun et al., 2012) could transfer this 

overpressure to shallower sediments (Elger et al., 2018), which could in turn trigger 

sediment deformation and mass failures.  

One possible implication is that the gas hydrate–bearing portion of the study area 

has a high risk of submarine geohazards, which must be taken into account in 

assessments of seabed stability. The erosion rate in the lower reaches is 3 to 13 times 

greater of that in the upper canyon reaches (Fig. 5D), perhaps indicating that slope 

instabilities have dominated the erosion in the slope-confined canyons in the study area. 

5.4.3 Local deposition 

The sporadically distributed local deposition around canyon walls in the upper 

reaches probably represents residual deposition of small-scale mass failures on steep 

canyon walls and from mass failures on the interfluves above (Figs. 2 and 3). Small-

scale mass failure events are very common along the margins of ancient and modern 

submarine canyons, e.g., Var (Mas et al., 2010; Khripounoff et al., 2012), Nazare 

(Masson et al., 2011) canyons. In the lower reaches the identified deposition is likely 

linked predominantly to slope failures on the interfluves and supports the hypothesis 

that gas-hydrate related processes probably triggered sediment deformation (Fig. 4; 

Bugge et al., 1988; Sultan et al., 2004; Serié et al., 2012; Elger et al., 2018). However, 

linking the deposition with a specific process requires the acquisition of additional high 

resolution seismic data (He et al., 2014). 

Deposition along the canyon floors appears minimal, although this may be a 

https://scholar.google.co.uk/citations?user=Y8xS8NwAAAAJ&hl=zh-CN&oi=sra
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consequence of the vertical resolution of our bathymetry data. Here, deposition is likely 

dominated by weak or waning turbidity currents (Komar, 1969) but the apparent lack 

of widespread accumulation apart from blockier deposits suggests that sediment has 

been transported further downslope or dispersed over a wider area. 

5.5 Comparison with shelf-incised canyons  

The modern average rates of erosion and deposition of the slope-confined canyons 

(0.7–0.8 m/yr and 0.5–0.8 m/yr in average, respectively) in the northern South China 

Sea are on the same order of magnitude as modern average rates estimated (also from 

repeat bathymetric surveys) for shelf-incised canyons on other continental margins (Fig. 

5C). Cap Lopez Canyon, for example, on the Gabon continental margin of West Africa, 

experienced an average erosion rate of 1.2 m/yr and an average deposition rate of 0.5 

m/yr over the 49 years between 1959 and 2008 (Biscara et al., 2013). Capbreton Canyon, 

in the Bay of Biscay, exhibited erosion rates of ~2 m/yr in average and deposition rates 

of ~1 m/yr in average over 15 years of observation, 1998–2003 (Mazières et al., 2014). 

Monterey Canyon, offshore California, has experienced erosion and deposition rates 

about 2 m/yr in average during a single year (2002–2003) (Smith et al., 2005). These 

examples illustrate that rates of sedimentary processes in shelf-incised canyons may be 

matched in some slope-confined canyons, even during the present sea level highstand. 

The triggering mechanisms for erosion in the two environments are, however, 

different. On present-day shelf-incised canyons, river-fed sedimentation, ocean waves, 
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and tides are able to generate frequent turbidity currents (e.g., Mazières et al., 2014; 

Talling, 2014; Gavey et al., 2017; Smith et al., 2018). In this study of slope-confined 

canyons, for the first time, we identify the shoaling of internal solitary waves as 

possibly the major trigger for turbidity currents in the upper reaches. In the lower 

reaches, activity of gas hydrates may have contributed to the generation of slope 

instabilities, which cause much larger volume of erosion than turbidity currents. These 

findings suggest that local, site-specific oceanographic and geological processes and 

features can significantly increase sedimentary activity within and near submarine 

canyons. 

6.  Conclusions 

Bathymetric surveys of seven slope-confined canyons in the Pearl River Mouth 

Basin, South China Sea, conducted in 2004, 2005 and 2018, show that erosion strongly 

dominated local sedimentary processes during the intervening 14 years. The least 

erosional canyon (by area) experienced erosion over nearly 44% of its total area, while 

the most erosional canyon experienced erosion over nearly 56% of its total area. 

Average rate of erosion in volume ranged from 31×106 m3/yr to 52×106 m3/yr. 

Average rate of erosion in thickness ranged from about 0.7 m/yr to 0.8 m/yr. Deposition-

dominated zones, which were scattered along the canyon walls and floors, occupied 

22–45% of any canyon’s area. Erosion-dominated to deposition-dominated areas were 

1 to 2.3 times greater in individual canyons, and ratios of erosion to deposition rate in 
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volume ranged from 1.2 to 3.4. Average rate of vertical deposition ranged from about 

0.5 to 0.8 m/yr.  

In upper canyon reaches, erosion tended to leave linear scars along the canyon 

axes; at greater depths, blocky chunks of sediment had been widely removed from the 

steep canyon walls and interfluves. The frequent shoaling of energetic internal solitary 

waves onto the shelf is probably responsible for upper canyon scouring by triggering 

turbidity currents. The westward propagating powerful internal solitary waves of 

depression likely induce eastward canyon migration by generating rapid near-bed 

eastward currents enhanced by slow eastward regional water circulation. Overpressure 

associated with activity of abundant gas hydrates (accumulation, expansion, dissolution, 

gas chimneys and pipes) are likely responsible for triggering slope instabilities and 

widespread erosion in lower canyon reaches. The rate of erosion in the lower canyon 

likely dominated by slope instabilities was 3 to 13 times greater than the upper canyons 

where turbidity currents were the predominant mechanism of sediment transport. 

High rates of sedimentary processes currently may occur in some slope-confined 

submarine canyons, even during sea level highstands. These findings suggest that local, 

site-specific oceanographic and geological features can significantly influence the level 

of sedimentary activity in submarine canyon systems. 
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Tables 

Table 1 

General morphologic parameters of seven submarine canyons in the study area 

Canyon 

name 

Water depth 

at canyon 

head (m) 

Water 

depth at 

canyon 

mouth (m) 

Length 

(km) 

Width 

(km) 

Axis slope, 

from upper to 

lower canyon 

(degree) 

Canyon area 

(km2) 

C6 580 --* >12 1.5 - 1.6 4.5 – 8.6 – 1.0 22.1** 

C7 538 1573 37 1.2 - 4.8 4.5 – 1.0 131.7 

C8 866 1631 24 1.1 - 2.8 2.9 – 0.8 63.4 

C9 574 1405 36 1.4 - 4.3 3.0 – 4.5 – 1.6 99.8 

C10 610 1638 40 1.7 - 4.7 2.9 – 5.7 – 1.0 128.2 

C11 865 1425 23 2.3 - 3.4 3.7 – 5.6 – 0.9 93.4 

C12 689 1663 38 1.5 - 3.1 4.9 – 0.8 111.4 

*Mouth of canyon C6 was not included in the bathymetric surveys 

**Lower reach of canyon C6 was not included in the bathymetric surveys 

Table 2 

Characteristics of identified erosion and deposition  

Canyon 

name 

Average erosion 

thickness (m) 

Erosion-

dominated area 

(km2) 

Eroded volume (×

106 m3) 

Average 

deposition 

thickness (m) 

Deposition-

dominated area 

(km2) 

Deposited 

volume (×106 

m3) 

 

2004-

2018 

2005-

2018 

2004-

2018 

2005-

2018 

2004-

2018 

2005-

2018 

2004-

2018 

2005-

2018 

2004-

2018 

2005-

2018 

2004-

2018 

2005-

2018 

C6 10.7 --* 9.9  --* 106.6  --* 8.2  --* 10.0  --* 82.0  --* 

C7 7.0  12.2  26.0  40.8  182.8  496.3  6.9  14.1  21.5  16.0  148.3  226.2  

C8 8.2  12.3  3.9  31.2  32.1  384.4  9.2  8.1  8.2  8.9  72.5  72.7  

C9 6.9  11.1  16.6  26.8  114.8  297.2  8.7  10.4  23.2  14.6  202.8  151.7  

C10 9.4  9.9  19.4  50.9  183.1  505.7  9.8  11.2  15.8  17.2  155.5  193.5  

C11 9.5  10.9  8.5  42.1  80.7  460.7  9.4  10.9  11.0  14.0  102.6  142.2  

C12 8.9  9.5  16.3  41.6  145.7  395.2  7.1  6.2  13.5  11.4  95.8  70.0  

*Lower reach of canyon C6 was not included in the bathymetric surveys 
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Figure captions 

 

Fig. 1. Maps of the study area in the northern South China Sea. (A) Location map. The 

red outline shows the study area covered by the multibeam bathymetric surveys; The 

transparent red marks 19 submarine canyons documented by He et al. (2014); The 

dashed outline shows the boundary of the Pearl River Mouth basin. (B) Bathymetric 

features. The map contours and colors indicate bathymetry. The white lines mark the 

locations of the seismic profiles shown in Fig. 3. The white dotted line represents the 

boundary of 2004 (upper canyon reaches) and 2005 (lower canyon reaches) surveys. 

The white texts show names of seismic profiles. This map is based on the multibeam 

bathymetric survey data collected in 2004 and 2005. 
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Fig. 2. Morphologic maps of the study area, based on the 2005 bathymetric survey. (A) 

Slope gradient map. White lines mark two seismic profiles used in this study. (B) 

Morphosedimentary interpretation. Canyon rims are defined by place of maximum 

slope change. The white dotted line represents the boundary of 2004 (upper canyon 

reaches) and 2005 (lower canyon reaches) surveys. The map contours indicate 

bathymetry (m). Contour interval = 50 m. 
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Fig. 3. Cross-canyon seismic reflection profiles and interpretive drawings. (A, B) 

Canyon segments in relatively shallow slope waters (approximately 800 m): C7, C9, 

and C10. (C, D) Canyon segments in deeper slope waters (approximately 1200 m): C9, 

C10, C11, and C12. Black lines in (B, D) represent high-amplitude reflections. Profile 

locations are shown in Fig. 1B. 
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Fig. 4. Corrected and cropped change maps based on differences between the 2004 and 

2018, 2005 and 2018 bathymetric surveys. (A) Elevation changes. (B) The frequency 

histograms of elevation differences in the entire 2004/2018 and 2005/2018 surveys. The 

thresholds of elevation differences between 2004 and 2008, and 2005 and 2008 are 1.5 

m and 2.5 m, respectively. The carmine lines mark the location of vertical profiles in 

Fig. 6. Rectangles with dashed lines mark reference areas for estimation of accuracy 

and uncertainty of elevation differences. The black bold line represents the boundary of 

2004 (upper canyon reaches) and 2005 (lower canyon reaches) surveys. 
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Fig. 5. Characteristics of erosional and depositional canyon change, on average of 

2004–2018 and 2005–2018. (A) Areal extent of erosion and deposition, expressed as 

percentages of total area within each canyon. (B) Rates of erosion and deposition in 

volume. (C) Average rates of erosion and deposition in thickness. Recent average rates 

are also shown for shelf-incised canyons on other continental margins: Cap Lopez 

Canyon (Biscara et al., 2013), Capbreton Canyon (Mazières et al., 2014), and Monterey 

Canyon (Smith et al., 2005). (D) Erosion rates in volume in the upper (2004–2018) and 

lower (2005–2018) canyon reaches. 
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Fig. 6. Vertical profiles of elevation differences downslope (A, B) and cross-slope (C, 

D). Profile locations are shown in Fig. 4. 
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Fig. 7. Plots of slope vs elevation differences (A, B) and water depth vs elevation 

differences (C, D). 
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Fig. 8. Sketch illustrating oceanographic setting (A), sedimentary processes of the 

slope-confined canyons of the study area (B), and near-bed current-speed observation 

in the shelf at water depths of 175 m (C) that is modified from Ma et al. (2016). Internal 

solitary waves are responsible for erosion of upper canyon reaches and canyon 

migration. Activity of gas hydrates cause erosion of lower canyon reaches. Mapping of 

the internal solitary wave front is based on Wang et al. (2011). The mapping of the 

intermediate water circulation is based on Wang and Li (2009). The locations of the 

shelf-edge rims are based on Zhu et al. (2010), Zhou et al. (2015), and Wang et al. 

(2017). The bottom-simulator reflector (BSR) rim locations are from Chen et al. (2016). 

The mapping of the gas chimneys is based on the seismic profile shown in Fig. 3C and 

on Chen et al. (2016). The two near-bed current meters are described in Ma et al. (2016). 

 


