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1 Introduction

F-theory [1] models have been extensively studied in the last few years, starting with [2–6],

for their promising features for GUT-inspired string theory model building.

A detailed analysis of such models reveals that they sometimes develop “non-flat”

points: these are points on the base over which the dimension of the fiber jumps and,

therefore, the standard M-/F-theory [1, 7] is not directly applicable.1 In most phenomeno-

logical F-theory models, where such loci would appear in the generic setting, they are

excluded from consideration by restricting the analysis to a highly non-generic setup.

The goal of this note is to address the physical implications of such non-flat point if they

appear at co-dimension three [8]. We will not give a general solution, but rather analyze in

detail a particular example with interesting phenomenological properties. All the explicit

details that we work out in this article are obtained for the SU(5) × U(1) Peccei-Quinn

1Examples of the appearance of such points in the literature go back to the early days of F-theory [8]

and showed up again with the advent of the intense study of non-abelian gauge groups together with

U(1) selection rules [9, 10]. For instance, two of the many examples appeared in the context of SU(5)-top

constructions over P[1,1,2] [10–12].
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model which was already studied in [13–15], and follow-up works, and which we review in

detail below. However, we expect related models to be amenable to an analysis akin to the

one we perform here.

Our main result is that in the weak coupling limit these non-flat points do not interfere

with the desirable GUT-physics, so they are harmless for model building purposes. Indeed,

the non-flat points occur at special (self-)intersection points of the matter curves. As we

show, they lead to higher order coupling built from the matter states related to the (self-

)intersecting curves. In our example at hand, the 103 curve meets the triple self-intersection

of the 5−1 curve such that we observe a 1035−15−15−1-coupling. The presence of this

coupling will not spoil the physics in a successful SU(5) GUT model. In fact, they will

have very little effect, since the modes involves will typically be massive.2

Before going into the analysis of non-flat points in our example, we will resolve a small

technical issue regarding Q-factorial terminal singularities which was not fully elucidated

in [15]. These are singularities at which uncharged matter localizes. We will remove them

by switching on complex structure deformations, as in [16]. This way, we do not have to

be concerned about these co-dimensional two effects when we ultimately focus on the main

topic of interest in this article, the non-flat torus-fibrations at co-dimension three. Those

come naturally about when we relax the constraints on the base space of the F-theory

fibration which were imposed in [13, 15]. We find that in the resolved F-Theory four-fold

the dimension of the fibre over this point increases, i.e. the fibration becomes non-flat. We

study this co-dimension three effect from various angles, and find that in each case we can

interpret them as the above mentioned higher order coupling.

Along the way, we determine all the fluxes which are either induced by matter

curves [17] and the non-flat fibre. We calculate the second Chern class of the fourfold

and look at its implications on the flux quantisation. We give the fluxes which must be

turned on to satisfy the quantisation condition and show that this flux forbids string states

in four dimensions, coming from M5 branes wrapping the non-flat fibre.

We have organized this paper as follows: in section 2 we review the most relevant

geometric aspects of the global SU(5) × U(1)PQ as studied in [15]. Then we study the

Q-factorial terminal singularities which appear in this setting and discuss how to introduce

complex structure deformations so that these singularities do not appear. Afterwards we

carefully analyse this fibration over a general base without constraints. In section 3, we list

all the fluxes coming from the Mordell-Weil group, the matter surfaces, and the non-flat

fibres, respectively, and relate them with the quantisation condition and explain why it

forbids strings in four-dimensions. In section 4, we take the weak coupling limit of our

setting and study the states and their coupling in the IIB picture. As a check, in section 5

we go to the mirror/IIB side to confirm also from this perspective that the non-flat point

gives rise to a higher order coupling. Finally, we present our conclusions in section 6.

Note added. As we were preparing this paper [18] appeared, which analyzes in detail

the physics associated to various non-flat fibrations in codimension two.

2We would like to thank the referee for emphasizing this point to us.
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2 The geometric setup

In this section, we review and extend the analysis of the global F-theory realisation of

the SU(5) × U(1) Peccei-Quinn model [15], cf. [13, 14] for the local description along the

GUT-divisor. As a first step, let us first recall the geometric setup presented in section 5

of [15].

To obtain the abelian U(1) symmetry, we have to start from an elliptic fibration

with Mordell-Weil group Z [19]. The Weierstraß model realising this symmetry takes

the form [20]

y2 = x3 +

(
C1C3 −B2C0 −

1

3
C2

2

)
xz4+

+

(
C0C

2
3 −

1

3
C1C2C3 +

2

27
C3

2 −
2

3
B2C0C2 +

1

4
B2C2

1

)
z6 ,

(2.1)

with the Mordell-Weil generator, i.e. the second section (besides the zero-section), given by:

(x, y, z) =

(
C2

3 −
2

3
B2C2

2 ,−C3
3 +B2C2C3 −

1

2
B4C1, B

)
. (2.2)

As described in detail in section 5 of [20], one can resolve the co-dimensional singularties

of (2.1) by mapping it into a Bl[0,1,0]P[1,1,2] fibration:

B2 v
2w+ sw2 +B1 sw v u+B0 s

2w u2 = C3 v
3u+C2 s v

2 u2 +C1 s
2 v u3 +C0 s

3 u4, (2.3)

where [u, v, w] are the homogeneous coordinates of P[1,1,2] and s is the coordinate related

to the blow-up of Bl[0,1,0]P[1,1,2].
3 To obtain in addition to the abelian symmetry the

SU(5)-GUT including the Peccei-Quinn symmetry, meaning that the Higgs up and down

multiplets can carry different charges, we have to fix the sections B2, B1, B0, C0, . . . , C3,4

in the following way [13–15]:

B0 = −ω d3 α = ωB0,1 ,

B1 = −c2 d3 = B1,0 ,

B2 = δ = B2,0 ,

C0 = ω3 αγ = ω3C0,3 ,

C1 = ω2 (d2 α+ c2 γ) = ω2C1,2 ,

C2 = ω c2 d2 = ω C2,1 ,

C3 = ω β = ω C3,1 .

(2.4)

Here α, β, γ, δ, d2, d3, c2 are sections of line bundles of appropriate degree over the base.5

The I5-singular locus, i.e. the GUT-divisor, is at ω = 0 on the base, as can be readily seen

from plugging (2.4) into (2.1) and taking the discriminat.

3 The toric variety P[1,1,2] is directly related to the 6th two-dimensional reflexive polygon, in the standard

ordering for such things cf. [11, 12]. Therefore, in the F-theory literature, cf. [21], sometimes (2.3) is known

as the “F6-fibration”, a nomenclature we will also use for brevity.
4As described in [20], to obtain the coefficients of (2.1) from the coefficients of (2.3), we must do a

coordinate shift in w to get rid of the linear terms, cf. section 4.1.
5For base manifolds which are given in terms of toric varieties or embeddings therein, these sections are

homogeneous polynomials of certain (multi-)degrees.
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Though (2.3) together with (2.4) pose the singular setting of the F-theory model we

are interested in, we still have to resolve it to obtain a detailed understanding (via the

duality to M-theory) of the physics of this setup. As it turns out [15], (2.3) plus (2.4) does

not allow for a resolution of the fibration in a purely torical way. But we can still resolve

parts of the hypersurface singularities torically, and only for the final resolution step we

have to introduce a complete intersection to represent the smooth Calabi-Yau Ŷ4. The

resolved model is given by the following two hypersurface equations

HSE1 : λ1 e− λ2 s P2 = 0 , (2.5)

HSE2 : λ2Q− λ1 uP1 = 0 , (2.6)

with the polynomials

Q = e1 sw
2 − e2

4 e0 β v
3 u+ e4 δ v

2w , (2.7)

P1 = e4 e0 d2 u v + d3w + e1 e4 e
2
0 γ s u

2 , (2.8)

P2 = c2 v + e0 e1 α su . (2.9)

The homogeneous coordinates [λ1, λ2] parameterize the P1, which was added in the final

(small) resolution step. To be more precise and for later reference, the two hypersur-

faces (2.5) and (2.6) are embedded into the ambient variety with the relations

u v w s e0 e1 e e4 λ1 λ2 HSE1 HSE2

1 1 2 0 0 0 0 0 1 0 1 4

0 1 1 1 0 0 0 0 2 0 2 3

−cB 0 0 [δ] [ω] 0 0 0 2[δ] + [ω] + [α]− cB 0 2[δ] + [ω] + [α]− cB [δ]

0 0 −1 0 −1 1 0 0 0 0 0 −1

0 −1 −2 0 −1 0 1 0 −2 0 −1 −4

0 −1 −1 0 −1 0 0 1 −1 0 −1 −2

0 0 0 0 0 0 0 0 1 1 1 1

(2.10)

for the homogeneous coordinates and the Stanley-Reisner ideal:

SR-I = {uw, u e, u e4, v s, v e1, w e0, s e0, e0 e, λ1 λ2, s e, s e4, w e4} . (2.11)

Here [·] means the ‘degree’ of the respective section or polynomial and cB is the ‘degree’ of

the first Chern class of the base space.

As noted in [15] this complete intersection Calabi-Yau (CICY) still has singularities.

A careful analysis of (2.5) and (2.6) yields that there is a remaining singularity at the

base loci

α = γ = 0 (2.12)

and fibre coordinates w = v = λ1 = 0. Indeed, if we assume for the above fibration a

two-dimensional base then the so-obtained Calabi-Yau threefold will be Q-factorial with

terminal singularity points. Such varieties have recently been studied from the F-theory

perspective in [16, 22]. There it has been pointed out that such singularities can only be re-

solved in a discrepant way. Furthermore, upon compactification uncharged hypermultiplets
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localise at these singularities which are needed to cancel the six-dimensional gravitational

anomaly. It is not too difficult to show that also the fibration at hand has the right amount

of uncharged singlets to be anomaly-free. The reader interested in the explicit calculation

is pointed to appendix A.

Although these singularities are present in the original setup as presented in [15], we

can smooth them away by switching on complex structure deformations [23]. Since the

locus (2.12) lies generically away from the GUT-divisor, these deformation do not interfere

with the local geometry at ω = 0 and only alter things away from it. Explicitly, we have

to include the higher order terms

B0,2, B1,1, C0,4, C1,3, C2,2, (2.13)

in (2.4) which will give rise to

u2w s2 , u v w s , u4 s3 , u3 v s2, u2 v2, (2.14)

terms in Q, respectively. The thus obtained smooth geometry is the one we will study

throughout the rest of the article.

Most of the details along the GUT-divisor of this SU(5)×U(1)PQ fibration have been

analysed in [15]. However, due to spectral cover considerations the locus

ω = α = c2 = 0 (2.15)

was excluded. But these loci are always presented if we consider the above setting over a

generic three-dimensional base. Therefore, we examine these points very carefully in the

following. However, we recall first the most important features of the model. We start

with the two 10-curves:

10−2 : d3 = 0 , 103 : c2 = 0 , (2.16)

and the three 5-curves:

5−6 : δ = 0 ,

5−1 : α2 c2 d
2
2 + α3 β d2

3 + α3 d2 d3 δ − 2α c2
2 d2 γ − α2 c2 d3 δ γ + c3

2 γ
2 = 0 ,

54 : β d3 + d2 δ = 0 .

(2.17)

The Yukawa-points at

10−2 5̄6 5̄−4 : ω = d3 = δ = 0 ,

10−2 5̄1 5̄1 : ω = d3 = αd2 − c2 γ ,

103 5̄−4 5̄1 : ω = c2 = β d3 + d2 δ ,

10−2 10−2 54 : ω = d3 = d2 = 0 ,

10−2 103 5−1 : ω = d3 = c2 = 0 ,

103 103 5−6 : ω = c2 = δ = 0 ,

(2.18)

– 5 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
3

and

1̄0−3 10−2 15 : ω = d3 = c2 = 0 ,

5̄−4 5−6 110 : ω = δ = β = 0 ,

5̄1 5−6 15 : ω = δ = α2 c2 d
2
2 + α3 β d2

3 − 2α c2
2 d2 γ + c3

2 γ
2 = 0 ,

5̄−4 5−1 15 : ω = β d3 + d2 δ = α2 c2 d
2
2 − 2α c2

2 d2 γ − α2 c2 d3 δ γ + c3
2 γ

2 = 0 ,

(2.19)

have been presented in [15]. Besides these couplings, there is the intersection (2.15) between

the 103-curve and the 5−1-curve for which we cannot write down any gauge invariant three-

point interaction. Looking at the second equation in (2.17), we observe that the 5−1-curve

intersects the 103-curve at the points (2.15) three times, i.e. near α = c2 = 0 the 5−1-curve

takes the form

(α− ρ1 c2)(α− ρ2 c2)(α− ρ3 c2) = 0 (2.20)

with ρi some constants. This hints already at a four-point coupling 1035−15−15−1 but

to get a better picture of what really happens at these points, we have to look at the full

fourfold geometry, especially the fibre structure. As it turns out, these are points where the

dimension of the resolved fibre jumps, i.e. the fibration described by (2.5) and (2.6) over

a three-dimensional (or higher dimensional) base is non-flat.6 The dimensionality jump is

due to the vanishing of P2 at α = c2 = 0. We ‘lose’ one of the equations which define the

fibral curve of E3

E3 : e = P2 = λ2Q− λ1 P1 = 0 . (2.21)

A summary of the curves and the coupling points of this setup is depict in figure 1

2.1 Fibre geometry at the non-flat points

Let us now present the details of the fibre above the non-flat points. At ω = α = c2 = 0,

the P1-curves of E1, E3 and E4 split (or extend in dimension) in the following way

P1
E1
→ {P1

nf1 : e1 = e4 = λ1 = 0, P1
nf2 : e1 = u e0 e4 β − w δ = λ1 = 0,

P1
nf3 : e1 = e = λ2 (u e0 e

2
4 β − w e4 δ) + λ1 (u2 e0 e4 d2 + uw d3) = 0} ,

P1
E3
→ {FS : e = λ2 (v3 e2

4 β − v2w e4 δ − w2 e1) + λ1 (e1 e4 γ + v e4 d2 + w d3) = 0} ,
P1
E4
→ {P1

nf1 : e1 = e4 = λ1, P1
nf4 : e = e4 = e1 λ2 − λ1 d3} ,

(2.22)

whereas the fibres of E0 and E2 remain intact.7 The Cartan charges of the above P1’s are:

P1
nf1 : (−1, 0, 1,−1)−3 ⊂ 1̄0−3 ,

P1
nf2 : (−1, 0, 1, 0)3 ⊂ 103 ,

P1
nf3 : (0, 1,−2, 1)0 ⊂ roots ,

P1
nf4 : (1, 0, 0,−1)3 ⊂ 103 .

(2.23)

6This does not imply that the dimension of the fourfold changes nor that it is singular at these points.
7We should note here that for a different phase of the Coulomb branch, i.e. for another SR-ideal, the

splitting can be different.
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10−2

5−6

103

5−1

54

Figure 1. A sketch of the matter curves and Yukawa points within the SU(5) GUT divisor

{ω = 0}. The seven bold dots indicate the six Yukawa points of (2.18) plus the triple intersection

of the 5−1-curve with the 103-curve.

To see that the fibre surface FS at the non-flat points are del Pezzo four surfaces at a

special complex structure sublocus, we give the reduced ambient space:

v e1 w e4 λ1 λ2
∑

HSEred
2

1 1 1 0 2 0 5 3

0 0 1 1 1 0 3 2

0 0 0 0 1 1 2 1

(2.24)

into which

HSEred
2 : λ2 (v3 e2

4 β − v2w e4 δ − w2 e1) + λ1 (e1 e4 γ + v e4 d2 + w d3) = 0 (2.25)

is embedded. The polynomials β, δ, γ, d2, d3 from beforehand are now effectively coef-

ficients. The toric space (2.24) is a P1-fibration over the Hirzebruch surface F1
∼= dP1

and (2.25) defines a section of this fibration. Since the section degenerates over the points

v3 e2
4 β − v2w e4 δ − w2 e1 = e1 e4 γ + v e4 d2 + w d3 = 0 , (2.26)

the del Pezzo one surface is blown up at three points. These three points lie along a line.

Therefore, the fibre-surface FS is not a generic del Pezzo four surface but a degenerate

dP4. FS contains several rational curves: the generic fibre and the two special sections

of F1; from the blow-ups of the Hirzebruch surface, we have the line going through the

– 7 –
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blown-up points, the exceptional P1’s, and the proper transforms of the fibres at these

points. The Cartan charges of the rational lines are:

P1
fibre
∼= P1

nf3 → (0, 1, −2, 1)0 ,

P1
sec1 = {e = w = HSEred

2 = 0} → (1, 1, −2, 0)3 ,

P1
sec2
∼= P1

nf4 → (1, 0, 0, −1)3 ,

P1
line = {e = λ2 = e1 e4 γ + v e4 d2 + w d3 = 0} → (1, −2, 1, 0)0 ,

P1
bui

= {e = 0 ∧ (2.26)} → (0, 1, −1, 0)1 ,

P1
p.t.-fibi

∼= P1
fibre − P1

bui
→ (0, 0, −1, 1)−1 .

(2.27)

Regarding P1
line, we should note that prior to the blow-ups it was equivalent to P1

sec1 , i.e.

P1
line is the proper transform of sec1 going through the three points which are blown-up.

Hence, there are two special points for the complex structure deformation of P1
sec1 ; one

where it splits into

P1
sec1 → P1

line +

3∑
i=1

P1
bui

and the one, which existed already in F1, where it becomes reducible to

P1
sec1 → P1

sec2 + P1
fibre .

With these details at hand, we can describe the three-cycle which fuses three 5̄1 states into

a 103 state:

(0, 1, −1, 0)1 + (1, −1, 0, 0)1 + (−1, 0, 0, 0)1 → (3× (0, 1, −1, 0)1 + (1, −2, 1, 0)0)

+ (1, −2, 1, 0)0 + (−2, 1, 0, 0)0 → (1, 1, −2, 0)3 + +(1, −2, 1, 0)0

+ (−2, 1, 0, 0)0 → (1, 0, 0, −1)3 + (0, 1, −2, 1)0 + (1, −2, 1, 0)0

+ (−2, 1, 0, 0)0 → (0, 0, −1, 0)3 .

(2.28)

In figure 2, we sketched FS to better understand the interplay of the rational curves.

3 Fluxes

Now that we have gained insight on the geometry of our model, we can turn to the F-theory

four-form flux of our setup. It has to fulfil the flux quantisation condition [24, 25]:

G4 +
1

2
c2(Ŷ4) ∈ H4(Ŷ4,Z) , (3.1)

with Ŷ4 the resolved Calabi-Yau four-fold. To see whether (3.1) forces us to switch on

half-integer fluxes, we are analysing in the following the Chern class of our four-fold (2.5)–

(2.11). The main goal of this study is to prove that the restriction of G4 to the non-flat

fiber gives rise to a non-trivial homology class. This fact provides a nice simplification of

the physics of the system, since it immediately implies that the M5 brane wrapping this

– 8 –



J
H
E
P
0
5
(
2
0
1
9
)
0
1
3

P1
bu1

P1-base

P1
bu3

P1
bu2

P1
fibre

P1
line

P1
sec1

P1
sec2

P1
p.t.-fib1

P1
p.t.-fib2

P1
p.t.-fib3

Figure 2. Schematic drawing of the fibration structure of fibre surface FS.

divisor is inconsistent [25]. Accordingly, the four dimensional light strings this wrapped

M5 would give rise to in four dimensions are absent.8

Let us also mention that non-trivial flux will potentially induce chirality, and thus

anomaly cancellation is a worry. Our goal in this note is to clarify the dynamics arising

from the non-flat (codimension-three) point, while anomaly cancellation is a more global

phenomenon arising from matter curves, at codimension two. Therefore, we expect our

considerations to hold regardless of whether anomalies are ultimately canceled in any spe-

cific model, as long as the local behavior is as in our example. Even if not immediately

relevant to us, the details of anomaly cancellation could be interesting. For example if

there were underlying algebraic relations like the one observed in [27]. We will leave such

an analysis for future work.

3.1 The second Chern class

Let us start by giving the second Chern class of an elliptically fibred fourfold Ŷ4 where the

torus fibre is F6 (in the nomenclature of footnote 3). For such manifolds, where we did not

impose an SU(5) singularity yet, the second Chern class reads9

c2(Ŷ4) =
(
c2(B3)− c1(B3)2

)
+6 c1(B3) (S+U+c1(B3)−[δ])−[δ] (S−U−c1(B3)−[δ]) . (3.2)

8Note that even if the flux was trivial, this would not necessarily imply that the strings are light: they

could still obtain a mass from periods of C3, as conjectured in [26] in a closely related case. But the

existence of the flux makes the point moot.
9Here and in the following, we denote by capital letters the divisor class corresponding to the homoge-

neous coordinate given in terms of lower case letters, i.e. U is the divisor class of the locus {u = 0}. In the

case of polynomials we use square brackets, i.e. [c2] denotes the divisor class with representative {c2 = 0}.

– 9 –
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Hence, depending on the degree of [δ], when considering such an F-theory compactification

one might be forced to switch on flux even though no non-abelian gauge groups are present

yet. Note that this is different from the U(1)X case [28, 29].

3.2 U(1)- and matter surface fluxes

Before coming to the second Chern class of the model including the SU(5), we write down

the different fluxes which we can construct from the Mordell-Weil generator and the matter

surfaces. This helps us in the next section to give the second Chern class in a concise way.

From the section S we obtain via the Shioda map [30–32] the following expression for

the U(1)-flux:

G
U(1)
4 (F) = F (5 (S − U − [δ]− c1(B3)) + 4E1 + 3 Λ2 + 2 (E − Λ2) + E4) (3.3)

with F ∈ π∗H1,1(B3,Z). To construct from the matter surfaces gauge invariant fluxes,

we follow a similar strategy to the one presented in [17]. That way we obtain the follow-

ing fluxes:

G4(10−2) = 5 (E1 − Λ1)E4 − (2 c1(B3)− ([δ] + [α] + [ω]))

× (2E1 − Λ2 + (E − Λ2) + 3E4) ,

G4(103) = 5 Λ1E4 − ([δ] + [α] + [ω]− c1(B3))(3E1 + Λ2 − (E − Λ2) + 2E4) ,

G4(5−6) = 5E1 U − [δ] (4E1 + 3 Λ2 + 2 (E − Λ2) + E4) ,

G4(5−1) = ([P1]− Λ2)([P2]− Λ1) + S [P1]− (4 c1(B3)− 2 [δ]− 3 [ω]− [α])

× (−E1 − 2 Λ2 + 2 (E − Λ2) + E4) ,

G4(54) = 5 (E1 ([P1]− Λ2 − E4) + Λ1E4)− (3 c1(B3)− ([α] + 2 [ω]))

× (E1 − 3 Λ2 − 2 (E − Λ2)− E4) .

(3.4)

3.3 Second Chern class of the SU(5) × U(1)PQ fourfold

With all these expressions at hand, we can now finally give the second Chern class of the

fourfold Ŷ4 under consideration:

c2(Ŷ4) =
(
c2(B3)− c1(B3)2

)
+ 6 c1(B3) (S + U + c1(B3)− [δ])

−GU(1)
4 (ω)−G4(10−2)−G4(54)−Gnf

4 + even terms

= G
U(1)
4 (ω) +G4(10−2) +G4(54) +Gnf

4 + even terms . (3.5)

Here Gnf
4 is the flux corresponding to the four cycle FS:

Gnf
4 = [c2] (E − Λ2 − E1) + E1 (Λ1 − S) . (3.6)

The main properties of the Gnf
4 flux are that it does not break the SU(5) gauge sym-

metry and it localises at the non-flat points. To see the second, we can integrate Gnf
4 over

all algebraic two-cycles in Ŷ4 which are accessible to us, i.e.∫
Ŷ4

Gnf
4 Ci = 0 (3.7)
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with

Ci = {Γ Γ̃, U Γ, S Γ, E1 Γ, Λ2 Γ, E Γ, E4 Γ, E4 Λ2, U E1}i, i = 1, . . . , 9 (3.8)

and ∫
Ŷ4

Gnf
4 C10 6= 0 ,

∫
FS

Gnf
4 =

∫
Ŷ4

Gnf
4 C11 6= 0 (3.9)

where C10 = E1E4 and C11 is the four-cycle of the non-flat fibre. In equation (3.8) Γ and

Γ̃ are place holders for all possible divisor classes pulled back from the base B3.

Before we can make our main point of this section, we should first notice that all odd

fluxes besides Gnf
4 appearing in (3.5) do not localise at the non-flat points, i.e.∫

FS
c2(Ŷ4)|FS =

∫
FS

Gnf
4 . (3.10)

Therefore, we conclude that by (3.1) there must be a non-trivial G4 flux on Ŷ4, whose

restriction to FS cancels this contribution.

4 The weak coupling limit and the IIB picture

As we will argue, the F-theory model of interest to us can be taken to weak coupling without

breaking any of the GUT symmetries, and without encountering any special behavior

along the way. Since we are interested in computing a superpotential coupling, which is

a holomorphic quantity, we expect that the result of computing such quantities at weak

coupling remains valid all through moduli space.

4.1 Weak coupling limit

We recall from section 2 that the generic elliptic fibre with one free Mordell-Weil gener-

ater, i.e.

c0 u
4 + c1 u

3 v + c2 u
2 v2 + c3 u v

3 + b0 u
2w + b1 u v w + b2 v

2w + w2 = 0 , (4.1)

can be brought via a birational transformation into Tate form

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6, (4.2)

with

a1 = b1

a2 = −(b2 c1 + b0 c3)

a3 = −(b0 b2 + c2) (4.3)

a4 = (b22 c0 + b0 b2 c2 + c1 c3)

a6 = −(b22 c0 c2 − b1 b2 c0 c3 + b0 b2 c1 c3 + c0 c
2
3).
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In analogy to [33], we define

b2 = a2
1 + 4 a2

b4 = a1 a3 + 2 a2
2 (4.4)

b6 = a2
3 + 4 a6.

To take the weak coupling limit, we proceed along the lines of Sen’s original work [34] and

require b2, b4, and b6 to scale (at leading oder) like ε0, ε1, and ε2, respectively, as we take

the limit ε→ 0. One way to obtain that behaviour is to take

ci → ε ci, (4.5)

in (4.4). Collecting the constant term in b2 = R+O(ε) the linear term in b4 = Sε+O(ε2)

and the quadratic term in b6 = Tε2 + O(ε3) we can write the discriminat in the weak

coupling limit as

∆ =
1

4
R2 (−RT + S2)ε2 +O(ε3) =: ε2R2 ∆w.c. +O(ε3). (4.6)

Plugging (4.3) into ∆w.c., we obtain the rather lengthy polynomial

∆w.c ∼ b2
(
b32 c

2
0 − b1 b22 c0 c1 + b0 b

2
2 c

2
1 − 2 b0 b

2
2 c0 c2 + b21 b2 c0 c2

− b0 b1 b2 c1 c2 + b20 b2 c
2
2 + 3 b0 b1 b2 c0 c3 − 2 b20 b2 c1 c3 − b31 c0 c3 (4.7)

+ b0 b
2
1 c1 c3 − b20 b1 c2 c3 + b30 c

2
3

)
.

This is the IIB D-brane locus (without the orientifold plane) for the generic F6-fibration

if we take the weak coupling limit as in (4.5). The corresponding Calabi-Yau threefold is

given by following double cover of B3:

ξ2 −R = 0 , (4.8)

where the vanishing set {R = 0} defines the orientifold plane and the orientifold action is

naturally induced by

ξ ←→ −ξ . (4.9)

Now we restrict the section bi and ci to the case we are interested in, i.e. SU(5)×U(1)PQ [15]:

b0 = −ω d3 α+ b0,2 ω
2 , b1 = −c2 d3 + b1,1 ω , b2 = δ ,

c0 = −ω3 αγ , c1 = −ω2 (d2 α+ c2 γ) , c2 = −ω c2 d2 ,

c3 = −ω β .
(4.10)

where, for convenience, we switch on only one complex structure deformation compared

with [15], cf. equation (2.13). Thus, we obtain

ξ2 + c2
2 d

2
3 + ω

(
b21,1 ω − 4 b0,2 ω δ + 4α δ d3 − 2 b1,1 c2 d3

)
= 0 (4.11)

for the hypersurface of the Calabi-Yau threefold. We do not show the rather lengthy

expression for ∆w.c. because it will turn out that in suitable coordinates the polynomial
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factorizes and the loci of the brane-image brane pair become evident. We work now close

to the singular point10

ξ = ω = c2 = α = 0, (4.12)

where we expect the higher order coupling to arise. In particular, we assume that all d3

and δ are non-vanishing close to the points of interest. We define now

(u, w, σ) := (c2 d3, b
2
1,1 ω − 4 b0,2 ω δ + 4α δ d3 − 2 b1,1 c2 d3, ω), (4.13)

such that the ordinary double point singularity, or conifold, takes the form

ξ2 = u2 + σw . (4.14)

We can represent this confold also in a toric way by introducing the homogeneous coordinate

αi, βi with i = 1, 2 and scaling relation:

α1 α2 β1 β2

1 1 −1 −1
(4.15)

where

|α1|2 + |α2|2 − |β1|2 − |β2|2 = 0. (4.16)

The affine coordinates from above are expressed in terms of homogeneous ones as

(ξ, u, σ, w) =

(
1

2
(α1β2 − α2β1) ,

1

2
(α1β2 + α2β1) , −α1β1, α2β2

)
. (4.17)

Furthermore, the orientifold involution (4.9) acts now via

αi ←→ βi . (4.18)

Using these two coordinate changes, we can rewrite the D-brane locus close to the

point of interest as follows:

∆w.c. ∼ α5
1 β

5
1

(
(−2 b21,1 δ

2 γ + 8 b0,2 δ
3 γ + b31,1 δ d2 − 4 b0,2 b1,1 δ

2 d2 − b31,1 β d3)α3
1

+ (−2 b21,1 δ d2 + 8 b0,2 δ
2 d2 + 6 b21,1 β d3)α2

1 α2

+ (8 δ2 γ − 4 b1,1 δ d2 − 12 b1,1 β d3)α1 α
2
2 + (8 δ d2 + 8β d3)α3

2

)
×
(

(−2 b21,1 δ
2 γ + 8 b0,2 δ

3 γ + b31,1 δ d2 − 4 b0,2 b1,1 δ
2 d2 − b31,1 β d3)β3

1

+ (−2 b21,1 δ d2 + 8 b0,2 δ
2 d2 + 6 b21,1 β d3)β2

1 β2

+ (8 δ2 γ − 4 b1,1 δ d2 − 12 b1,1 β d3)β1 β
2
2 + (8 δ d2 + 8β d3)β3

2

)
. (4.19)

10The hypersurface (4.11) has obviously more singularities than the one at (4.12). There, is for instance,

a co-dimension two singularity along ξ = ω = d3 = 0. However, we will ignore this singularity because

first of all we are only interested in the vicinity of (4.12) and secondly we could either resolve it or chose

a fibration where d3 is constant. All the other co-dimension three singularities can be treated like [26],

cf. below.
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This makes it obvious that the flavor brane/image brane pair are respectively located at

P1 = η0 α
3
1 + η1 α

2
1α2 + η2 α1α

2
2 + η3 α

3
2 = 0 (4.20)

P2 = η0 β
3
1 + η1 β

2
1β2 + η2 β1β

2
2 + η3 β

3
2 = 0, (4.21)

whereas the GUT stack and image-stack are at α1 = 0 and β1 = 0, respectively. Locally

the ηi’s are invertible and we treat them as if they were non-zero complex numbers. Under

this assumption, we can further factorise the flavour branes to

P1 = Π3
i=1(Aiα1 +Biα2) , (4.22)

P2 = Π3
i=1(Aiβ1 +Biβ2) . (4.23)

This implies that close to the point of interest there are three incoming flavor branes

Aiα1 +Biα2 each with their respective mirror Aiβ1 +Biβ2.

4.2 Ext groups and quiver theory

In order to construct the resulting gauge theory, we need to specify all branes participating

at the point of interest. Following [26], we employ the method of non-commutative crepant

resolutions [35]. This entails describing branes as elements of the derived category of quasi-

coherent sheaves on say Y+. Open string states between these are expressed in terms of

morphisms between such objects, which in turn are elements of so called Ext groups. (For

a review of the relevant background material aimed at physicists, see [36].) We will first

briefly review the general form of the construction for the conifold in section 4.2.1, and will

then apply this construction to our non-flat point in section 4.2.2.

4.2.1 Non-commutative crepant resolution of the conifold

Consider again the singular conifold, described by

Spec
(
C[ξ, u, w, σ]/〈ξ2 − u2 − σw〉

)
. (4.24)

This, as we saw above, is a toric variety

α1 α2 β1 β2

1 1 −1 −1
. (4.25)

The conifold has two small crepant resolutions which correspond in toric language to dif-

ferent subdivisions of its fan. These are also toric varieties with homogeneous coordinates

α1, . . . , β2 subject to the constraint

|α1|2 + |α2|2 − |β1|2 − |β2|2 = t. (4.26)

The two small resolutions are distinguished by the sign of t, and we denote them as Y±
respectively. Applying the orientifold involution (4.18) to (4.26), we see that t↔ −t, that

is to say the two resolutions Y± are exchanged. This means that the resolution mode

corresponding to the P1 is projected out.
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It is, however, possible to describe D-branes on the singular space directly using its

non-commutative crepant resolution [35]. By this we mean a non-commutative ring A

A = End(M ⊕R), (4.27)

where R = C[ξ, u, w, σ]/〈ξ2 − u2 − σw〉 and M is

M = coker
(
ψ : R2 −→ R2

)
. (4.28)

Here the map ψ is given by

ψ =

(
ξ + u σ

w ξ − u

)
. (4.29)

Notice that one could also take

M = coker
(
φ : R2 −→ R2

)
, (4.30)

with

φ =

(
ξ − u −σ
−w ξ + u

)
. (4.31)

Observe that

φψ = ψφ = (ξ2 − u2 − σw)

(
1 0

0 1

)
. (4.32)

We do not want to delve into the details but simply state that A is derived equivalent to

Y±. More concretely there is a correspondence

Db(mod(A)) ∼= Db(QCoh(Y±)), (4.33)

cf. Theorem 5.1 in [35]. As is well established [36], one can view objects of Db(QCoh(Y±)) as

D-branes in the B-model and morphisms between them correspond to open strings states.

Using the dictionary laid out in [26], we will map certain (complexes of) A-modules to

D-branes of interest. In order describe these effectively note that

A = End(M ⊕R) = End(R,R)⊕ End(A,A)⊕ End(A,M)⊕ End(M,A). (4.34)

As a quiver we can represent A as

R Me0 e1

α1,2

β1,2

(4.35)

Here

End(R,R) = 〈e0〉 ∼= R (4.36)

End(R,R) = 〈e1〉 ∼= R (4.37)

End(R,M) = 〈α1, α2〉 (4.38)

End(M,R) = 〈β1, β2〉, (4.39)

as R-vector spaces. In particular, ei are idempotents.
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Any module of A can be encoded as a quiver representation. As laid out in [26], the

basic representations from which one builds D7-branes are:

P0 = e0A , (4.40)

P1 = e1A. (4.41)

These are linear combinations of paths ending at the left and right node of the quiver (4.35),

respectively. Clearly morphisms from P0 to P1 are generated by α1,2 and from P1 to P0 by

β1,2. Together with the assignment

P0 7→ O (4.42)

P1 7→ O(1), (4.43)

where O is the structure sheaf of the resolved conifold, we obtain for instance(
P0

α1−→ P1

)
7→
(
O α1−→ O(1)

)
. (4.44)

Here the map α1 between the sheaves is nothing but the fiberwise multiplication by the ho-

mogeneous coordinate. The power of this approach is that computing Ext-groups between

complexes of sheaves is easier in the setting of quiver representations. Since all relevant

computations were already carried out in [26], we will not demonstrate them but only list

the results in the following.

Fractional branes given by D1-branes wrapping the resolution divisor are given by

S0 = C〈e0〉 (4.45)

S1 = C〈e1〉. (4.46)

In terms of diagrams

C {0}e0 0

0

0

and

{0} C0 e1

0

0

We will later indicate the what the objects S0, S1 look like in Db(Y+). It is, however,

convenient to define I0 = S0[−1] and I1 = S1[−1]. Then we can represent the resolved

conifold by

I0 I1e0 e1

αi

βi

(4.47)
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This follows from the fact that the moduli space of representations of dimension (1, 1) is

exactly the resolved conifold, see [26] section 3.2.1.

The brane/image brane pairs appearing in this paper are

F i0 = O O(1)
Aiα1+Biα2 ∈ Obj

(
Db(Y+)

)
(4.48)

F i1 = O O(−1)
Aiβ1+Biβ2 ∈ Obj

(
Db(Y+)

)
. (4.49)

These correspond to D7 branes located at the 5 curve. To see this apply the cokernel to the

relevant maps, which is commonly referred to as Tachyon condensation. Moreover there is

one pair of objects corresponding to D7 branes located at the 10 curve

G0 = O O(1)
α1 ∈ Obj

(
Db(Y+)

)
(4.50)

G1 = O O(−1)
β1 ∈ Obj

(
Db(Y+)

)
. (4.51)

We also have fractional branes D(-1) instantons described by objects I0 = S0[−1] and

I1 = S1[−1] where

S0 = O(2) O(1)⊕2 O

 β2

−β1

 (
β1, β2

)
∈ Obj

(
Db(Y+)

)
(4.52)

S1 = O(1) O⊕2 O(−1) 0

 −β2
β1

 (
β1, β2

)
(4.53)

For more details on this see appendix A of [26].

We now study the open string states between these branes by computing certain Ext

groups between elements of Db(Y+), where Y+ is one of the crepant small resolutions of

the conifold. To this end consider the pair

F i0 = O O(1)
Aiα1+Biα2 ∈ Obj

(
Db(Y+)

)
. (4.54)

F i1 = O O(−1)
Aiβ1+Biβ2 ∈ Obj

(
Db(Y+)

)
. (4.55)

The groups Exti(F0, F1) were calculated in [26], but only for the value (A,B) = (0, 1). We

claim that these are isomorphic to our Ext groups as the two complexes

O O(1),
Aα1+Bα2 (4.56)

O O(1)
α2 , (4.57)

are isomorphic in Db(Y+). To see this consider the following automorphism of the conifold

f : (α1, α2, β1, β2) 7→
(
α1,

1

B
(α2 −Aα1), β1, β2

)
≡ (α̃1, α̃2, β1, β2). (4.58)
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Observe that Aα̃1 +Bα̃2 = α2. One readily checks that

f∗O f∗O(1)

O O(1).

∼=

Aα̃1+Bα̃2

∼=
α2

(4.59)

Similarly, we obtain an isomorphism

g∗O(−1) g∗O

O(−1) O,

∼=

Aβ̃1+Bβ̃2

∼=
β2

(4.60)

where

g : (α1, α2, β1, β2) 7→
(
α1, α2, β1,

1

B
(β2 −Aβ1)

)
≡ (α1, α2, β̃1, β̃2). (4.61)

This implies that all Ext groups computed in [26] are isomorphic to the ones we will

need, e.g.

Extj(F0, F1) ∼= (0,C[α1β1], 0, 0) , (4.62)

Extj(F1, F0) ∼= (0,C[β1α1], 0, 0) . (4.63)

4.2.2 The non-flat point at weak coupling

We now describe the relevant branes in our setup. There are the three pairs of objects

F i0 = O O(1)
Aiα1+Biα2 ∈ Obj

(
Db(Y+)

)
(4.64)

F i1 = O O(−1)
Aiβ1+Biβ2 ∈ Obj

(
Db(Y+)

)
. (4.65)

These correspond to D7 branes located at the 5 curve. Moreover there is one pair of objects

corresponding to D7 branes coming from the 10 curve

G0 = O O(1)
α1 ∈ Obj

(
Db(Y+)

)
(4.66)

G1 = O O(−1)
β1 ∈ Obj

(
Db(Y+)

)
. (4.67)

We also have fractional branes D(-1) instantons described by objects I0 = S0[−1] and

I1 = S1[−1] where

S0 = O(2) O(1)⊕2 O

 β2

−β1

 (
β1, β2

)
∈ Obj

(
Db(Y+)

)
(4.68)

S1 = O(1) O⊕2 O(−1) 0

 −β2
β1

 (
β1, β2

)
(4.69)
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I0 I1

G1

G0 F i1

F i0

Figure 3. Quiver theory for GUT and flavor branes. Note that one should draw F 1
0 , F

2
0 , F

3
0

separately and connect to the other nodes as indicated. For the sake of clarity only one flavor

brane/image brane is shown.

A computation of the Ext groups shows [26]

Exti(G0, I0) = (0,C, 0, 0), Exti(G0, I1) = (0, 0,C, 0) (4.70)

Exti(G1, I0) = (0, 0,C, 0), Exti(G1, I1) = (0,C, 0, 0) (4.71)

Exti(F0, I0) = (0,C, 0, 0), Exti(F0, I1) = (0, 0,C, 0) (4.72)

Exti(F1, I0) = (0, 0,C, 0), Exti(F1, I1) = (0,C, 0, 0), (4.73)

and

Exti(G0, G1) ∼= (0,C[α2β2], 0, 0), Exti(G0, F1) ∼= (0,C[α1β2], 0, 0) (4.74)

Exti(G1, G0) ∼= (0,C[β2α2], 0, 0), Exti(G1, F0) ∼= (0,C[β1α2], 0, 0) (4.75)

Exti(F0, F1) ∼= (0,C[α1β1], 0, 0), Exti(F0, G1) ∼= (0,C[α2β1], 0, 0) (4.76)

Exti(F1, F0) ∼= (0,C[β1α1], 0, 0), Exti(F1, G0) ∼= (0,C[β2α1], 0, 0). (4.77)

Also we have

Ext1(I1, I0) ∼= Ext1(I0, I1) ∼= C2. (4.78)

This situation is neatly summarized in a quiver diagram shown in figure 3.

In order to obtain the desired theory after orientifolding one takes the branes Gi with

multiplicity 5 to generate the GUT stack. A chiral bifundamental string between G0 and

G1 giving rise to a state in the 10 representation upon orientifolding. This can be derived

more rigorously by considering the gauge group on empty nodes. In [26] it was shown that

indeed we obtain USp(0).

The flavor branes F ij are each chosen with multiplicity 1. Between G1 and each F j0 we

have a bifundamental with the same chirality as above giving rise to a 5 state. Instanton

effects arise from D1 branes wrapping the nodes Ii. We will only consider the case of a

single instanton.

Firstly, consider a D1 brane wrapping I1. This gives rise to charged zero modes as in

figure 4. Hence, the superpotential reads

Winst = λi110[ij]λj1 + λi1
(
(51)iν11 + (52)iν12 + (53)iν13

)
. (4.79)

Performing the integral∫
dλi1dν11dν12dν13 exp(Winst) = 10 515253, (4.80)
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U(5)

U(1) U(1) U(1)

I0 I1

51

52

53
λ1

10

ν11 ν12 ν13

Figure 4. Relevant zero modes for one D1 brane wrapping I1 after orientifolding. Dashed lines

indicate possible string states, but since I0 is not occupied the play no relevance here. Labels such

as ν12 refer only to bold lines. Note that we have orientifolded the quiver shown above.

we obtain the desired coupling. If on the other hand we wrap one D1 brane around the I0

node, there will be no contribution to the superpotential due to our choice of chirality.

5 The mirror picture

Finally, it is interesting to see how the superpotential coupling appears from the mirror

IIA perspective. This mirror picture gives a useful heuristic understanding of the physics,

but the analysis is harder to make fully precise than in the IIB setting, where we have

a well defined problem in algebraic geometry. The analysis is very similar to that in [26]

(building on previous work in [37–39]), so we will be somewhat brief.

For the purposes of computing holomorphic data the topology of the mirror to the

conifold can be described by a fibration over C with fiber C∗ × Σ [40, 41], described by

uv = W ,

P (x, y) = W ,
(5.1)

where W ∈ C parameterizes the base of the fibration, u, v ∈ C parameterize the C∗ fiber,

and x, y ∈ C∗ describe the (punctured) Riemann surface Σ. For the specific case of the

conifold, we can choose a framing [42] such that

P (x, y) = q + x+ y + xy − xy2 . (5.2)

Here q is a complex structure modulus mirror to the complexified size of the small resolution

of the conifold. This equation defines a P1 punctured at four points. As discussed in detail

in [37], for the purposes of computing holomorphic quiver data for our system, it is enough

to focus our attention on Σ.

In addition to the geometric background itself, we need to describe how the branes

wrap the geometry. The case with one U(5) stack and one additional U(1) brane stack was
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Figure 5. Structure of branes and the orientifold involution on Σ. We outer dashed line should

be identified with a point to obtain P1. The four punctures have been marked by stars, and the

orientifold involution induces a reflection along the red line (which becomes a reflection along the

equator on P1).

described in detail in [26]. An important difference in our case is that, in addition to the

U(5) stack, we have three U(1) flavor branes. We will start by analyzing the case in which

all U(1) branes are coincident, leading to a flavor stack with gauge group U(3) × U(5).

The restriction of the brane system to Σ can then be determined by identical arguments

to those in [26], with the result shown in figure 5.

There are various features to note in figure 5. We have the G0 ∼ G1 stacks (the

identification is due to the orientifold action), associated with the U(5) stack, and the

F0 ∼ F1 stacks, associated to U(3). We obtain various fields, as these stacks intersect each

other,11 and additional matter fields as the flavor stacks intersect the instanton brane I1,

with gauge group O(1) = Z2. The resulting matter content can be summarized as

U(5) U(3) O(1)

A 10 1 0

Q 5 3 0

P 1 3 0

λ 5 1 1

ν 1 3 1

. (5.3)

Note that P is most naturally the (complex conjugate of the) two-index representation

of SU(3), which can be identified with the fundamental representation. The worldsheet

instantons depicted in figure 5 then generate an effective action for the charged instanton

11Since the intersection is at a puncture, the existence of massless matter associated with the “intersec-

tion” is external input data from the point of view of the theory at the singularity.
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zero modes of the form

Sinst = λiQai νa + λiA[ij]λ
j + νaP

[ab]νb (5.4)

where raising the index corresponds to going to the complex conjugate representation. The

effective non-perturbative superpotential one obtains from integrating out the charged zero

modes is then of the form

Wnp = εabcε
ijklmA[ij]Q

a
kQ

b
lQ

c
m + εabcε

ijklmA[ij]A[kl]Q
a
mP

[bc] ∼= AQ3 +A2PQ (5.5)

where we have omitted the unknown (but generically nonzero, since the relevant worldsheet

instantons have generically finite area) coefficients of the various terms in the superpoten-

tial, which depend on various geometric and brane moduli.

It is now a simple job to deform away from the U(3) locus. This can be seen as a

Higgsing of the SU(3) flavor symmetry, which will give a mass to at least some of the fields

in P , and generically to all of them.12 We can model this as the deformation of (5.5)

given by

Wnp → AQ3 +A2PQ+mP 2 , (5.6)

where, for simplicity, we have set all of the masses equal. Integrating out P then leads to

an effective superpotential of the form

W ′np = AQ3 − 1

4m
(QA2)2 (5.7)

which in the m → ∞ limit leads to the superpotential that we have argued for in the

previous section.

6 Conclusions

The main focus of this note has been to understand non-flat fibres, in co-dimension three, in

F-theory and, in particular, their effect on the low-energy dynamics. In previous analyses

of the models that we discuss here, this issue was sidestepped by drastically restricting the

base manifolds under consideration. Here we tied up this loose end, by showing that it is

not necessary to restrict the base manifolds to avoid these points, as they are harmless for

the good phenomenological properties of the model.

Although we concentrated on one specific model for concreteness, it is clear that the

conclusions should hold fairly generally. This result is significant for F-theory model build-

ing because non-flat points seem to appear rather frequently. Hence, our result, that they

are harmless, does away with the need of having to worry about choosing the base of the

fibration with care in order to avoid such points, and simplifies model building.

12We will nevertheless keep the Q fields massless. Recall from footnote 11 that the massless spectrum

of GUT fields is external data from the point of view of the singularity, which will be determined by

global considerations.
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A 6d anomaly cancellation

We now verify the anomaly cancellation condition for the Q-factorial Calabi-Yau threefolds

with terminal singularities of section 2. As is very well explained in [16] a Q-factorial variety

X is one where for each Weil divisor D there exist an integer n such that nD is Cartier. If

the resolved variety X̃ has canonical class K̃ and X has canonical class K then under the

given circumstance

nK̃ = f∗(nK) + n
∑

aiEi, (A.1)

for some integers n, ai. Here Ei are classes of the exceptional divisors. If ai > 0 for all i,

then the singularities are called terminal.

Physically these singularities imply a localization of matter states from wrapped M2-

branes, that is a number of uncharged hyper multiplets.

To verify the anomaly cancellation condition we have to compute the number of tensor,

vector and hyper multiplets, nT , nV , nH arising from such a compactification. These have

to satisfy

29nT − nV + nH = 273. (A.2)

We know that since we have an SU(5) ×U(1) matter group

nT = 0, nV = 24 + 1 = 25. (A.3)

This leaves us with an unknown number of hyper multiplets nH . As is well known these

number splits up into number of uncharged n0
H and charged hyper multiplets ncH

nH = n0
H + ncH . (A.4)

The charged hyper multiplets ncH are counted by algebro-geometric means, and n0
H is

computed via the topology of our variety.

A.1 Counting charged hyper multiplets

Charged hyper multiplets arise from so-called matter loci associated to gauge groups present

in our theory. In the case at hand we have several charge 10 and charge 5 loci as well

as singlets.

We now restrict ourselves to working with

n = deg(δ) = 2, deg(α) = 1, (A.5)
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which yields

[α]⇒ deg(α) = 1

[β] = c1(B2) + [δ]− [ω]⇒ deg(β) = 4

[γ] = 4c1(B2)− 2[δ]− 3[ω]− [α]⇒ deg(γ) = 4

[δ]⇒ deg(δ) = 2

[c2] = [δ] + [α] + [ω]− c1(B2)⇒ deg(c2) = 1

[d2] = 3c1(B2)− [δ]− 2[ω]− [α]⇒ deg(d2) = 4

[d3] = 2c1(B2)− [δ]− [α]− [ω]⇒ deg(d3) = 2.

Here we exploit the fact that over B2 = P2 the degree of a homogenous ploynomial is equal

to the first Chern class of its asssociated line bundle. The charge 10 states are located

at (2.16). It follows from Bezouts theorem that there are deg(ω) · (deg(d3) + deg(c2)) = 3

such points on the base. This gives us 30 hyper multiplets.

The charge 5 loci are given by (2.17). Applying Bezouts theorem again yields a total

of 2 + 6 + 11 = 19 such points. This gives a contribution of 5 · 19 = 95 multiplets.

Counting the number of singlets is more involved. We know [15] that the singlets of

U(1) charge ±10 are located at

δ = ωβ − 1

2
c2d3δ = 0. (A.6)

This is equivalent to

δ = β = 0. (A.7)

In our specific case Bezouts theorem implies that there are

deg(δ) · deg(β) = 2 · 4 = 8, (A.8)

such points.

The singlets of U(1) charge ±5 are located at the points satisfying

F1 := βc2
2d

2
3δ

2 + c2
2d2d3δ

3 − 3β2c2d3δω − 2βc2d2δ
2ω

+ γc2δ
4ω + αβd3δ

3ω + αd2δ
4ω + 2β3ω2 = 0, (A.9)

F2 := − αβc2d
2
3δ

4 − αc2d2d3δ
5 + β2c2

2d
2
3δ

2

+ 2βc2
2d2d3δ

3 + c2
2d

2
2δ

4 − 2β3c2d3δω (A.10)

− 2β2c2d2δ
2ω + αβ2d3δ

3ω + β4ω2 − αγδ6ω = 0.

In addition points satisfying one of the following conditions must be excluded from this list:

δ = β = 0

δd2 + βd3 = 0 (A.11)

c2 = ω = 0

δ = ω = 0.
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Generically the locus F1 = F2 = 0 consists of 14 · 18 points. We now subtract the points

of (A.11) weighted by their proper intersection multiplicity. This yields

14 · 18− 16 · 2 · 4− 2 · 6− 1 · 1 · 1− 10 · 2 · 1 = 91. (A.12)

All in all the number of uncharged hyper multiplets is

30 + 95 + 8 + 91 = 224. (A.13)

A.2 Counting uncharged hyper multiplets

The number of uncharged hyper multiplets is computed from the topological Euler char-

acteristic and h1,1 of our variety. We know that

h1,1 = 6. (A.14)

Strictly speaking this is the Hodge number of a smooth threefold rationally equivalent to

our singular variety. The existence of such a deformation is guaranteed by [23].

The Euler characteristic of the singular variety is computed by first computing it for

a smooth representative of its rational equivalence class. Then we use the fact that [43]

χ(XSing)− χ(Xsmooth) =
∑
P

mP , (A.15)

where the latter sum runs over the singular points P and mP denotes the Milnor number

of such a point.

The Euler characteristic χ(Xsmooth) is computed using the toric embedding and turns

out to be

χ(Xsmooth) = −132. (A.16)

We know that there is only one type of singularity located at

α = γ = 0, (A.17)

which are 1 · 4 = 4 points. The Milnor numbers turn out to be

mP = 2. (A.18)

We thus end up with

χ(XSing) = χ(Xsmooth) +
∑
P

mP = −124. (A.19)

The number of uncharged multiplets then is simply

n0
H = 1 + h1,1 − 1

2
χ(Xsing) +

1

2

∑
P

mP = 7 + 62 + 4 = 73. (A.20)

We now add the universal hyper multiplet to that number to end up with

1 + n0
H = 74. (A.21)

We see that the anomaly cancellation condition is satisfied by computing

1 + n0
H + ncH − nV = 1 + 73 + 224− 25 = 273. (A.22)
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[13] J. Marsano, N. Saulina and S. Schäfer-Nameki, Compact F-theory GUTs with U(1) (PQ),

JHEP 04 (2010) 095 [arXiv:0912.0272] [INSPIRE].

[14] M.J. Dolan, J. Marsano, N. Saulina and S. Schäfer-Nameki, F-theory GUTs with U(1)
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