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Abstract

In this paper I propose a new method of encoding discrete variables into Ising model qubits for
quantum optimisation. The new method is based on the physics of domain walls in one-dimensional
Ising spin chains. I find that these encodings and the encoding of arbitrary two variable interactions is
possible with only two body Ising terms Following on from similar results for the ‘one hot’ method of
encoding discrete variables (Hadfield et al 2019 Algorithms 12 34) I also demonstrate that it is possible
to construct two body mixer terms which do not leave the logical subspace, an important
consideration for optimising using the quantum alternating operator ansatz. I additionally discuss
how, since the couplings in the domain wall encoding only need to be ferromagnetic and therefore
could in principle be much stronger than anti-ferromagnetic couplers, application specific quantum
annealers for discrete problems based on this construction may be beneficial. Finally, I compare
embedding for synthetic scheduling and colouring problems with the domain wall and one hot
encodings on two graphs which are relevant for quantum annealing, the chimera graph and the
Pegasus graph. For every case I examine I find a similar or better performance from the domain wall
encoding as compared to one hot, but this advantage is highly dependent on the structure of the
problem. For encoding some problems, I find an advantage similar to the one found by embedding in
a Pegasus graph compared to embedding in a chimera graph.

1. Introduction and background

There are currently two dominant settings for quantum computing, gate model quantum computing, in which
computation is realised by a series of discrete ‘gate’ operations, and continuous time quantum computing, in
which problems are encoded in quantum Hamiltonians and natural dynamics of physical systems are used to
find solutions. Furthermore, optimisation and statistical sampling have been identified as a potential early
application for both gate model and continuous time quantum computing.

In continuous time quantum computing, optimisation is achieved by mapping the optimisation problem to
the Hamiltonian of a controllable quantum system in such a way that low energy states correspond to more
optimal solutions. The most technologically mature continuous time quantum computing devices are the
superconducting circuit quantum annealers produced by D-Wave Systems Inc. [1]. Examples of applications for
quantum annealing can be found in diverse fields such as finance[2—4], computer science [5-7], mathematics
[8-10], scheduling [11-13], decoding of communications [14], computational biology [15], flight gate
assignment [16], and air traffic management[17]. For gate based machines, one of the most promising
algorithms for optimisation is the so called the quantum alternating operator ansatz also known as quantum
approximate optimisation algorithm [18—22] abbreviated as QAOA. While in principle QAOA could actually be
considered in either a gate model or continuous time setting, I restrict the discussion here to gate model
implementations.

Like quantum annealing, QAOA requires the optimisation problem to be effectively mapped toa
Hamiltonian. Gate model quantum computing is less technologically mature, so real world use cases have not
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been examined' to the extent they have in quantum annealing, although in principle QAOA (or potentially
hybrid quantum/classical QAOA based algorithms for thermal sampling) could be applied to many if not all of
the applications given previously for quantum annealing.

A common method of mapping classical optimisation problems to quantum hardware is by encoding it into
an Ising Hamiltonian

Hing = »_ i ZiZi + Y hiZ;, (D

i<j i

where Zis a Pauli Zmatrixand Z; = I5""! ® Z @ 15" where nis the total number of qubits, and I, is the

2 X 2identity matrix. In this paper I will focus on encoding into Ising models. Owing to its relative simplicity to
experimentally implement, the most common physical implementation of Ising model quantum optimisation is
the transverse field Ising model

Hirans = —A in + B HIsingr @)

1

where A and Bare positive, possibly time dependent, constants and X; is defined similarly to Z;.

While the challenges in quantum annealing and (gate based) QAOA are not identical, it is likely that both
techniques will face some challenges which are similar [22]. It is therefore natural to consider that some of the
problem mapping techniques for quantum annealing may be useful in QAOA and vice versa. In this work I give a
technique to efficiently map discrete variables and their interactions to qubits. This method is likely to be useful
for both quantum annealing and QAOA, and I will discuss both potential applications.

In the near term, both gate model and quantum annealing devices are likely to have limited connectivity”.
The effects of limited connectivity are different in both cases, for gate model machines, qubit information can be
effectively swapped to realise necessary interactions, but this process will increase both circuit depth and gate
count, which will be a major concern in near term devices with imperfect gates and limited coherence time.

For quantum annealing, a more highly connected graph can be realised by minor embedding [23, 24] in
which logical variables are mapped over strongly interacting ‘chains’ of qubits which form graph minors.
Problems can than be mapped to the effective interaction graph of the minors rather than the original graph.
Alternatively, the logical variables could be encoded into the parity of qubits [25-27]. For quantum annealing,
either embedding technique effectively reduces the number of qubit variables a machine can simulate and
decreases the effective dynamic range of energies which can be used in encoding the problem, since both
methods require strong interactions to enforce that the qubits remain in logically valid states. Since minor
embedding is the most common technique currently used to map problems experimentally, it will be the basis
of the analysis in this paper.

There has recently been a significant effort by D-Wave Systems Inc. to improve the connectivity of their
hardware graph to reduce the overheads associated with hardware embedding. The proposed new graph family,
known as ‘Pegasus’, is significantly more connected that the current ‘chimera’ graph family [28] (for an
alternative construction see [29]). While hardware with the Pegasus topology is not yet publicly available,
Pegasus graphs of various sizes can be generated using the publicly available D-Wave networkx package [30].

Since most quantum hardware is based on quantum bits (qubits), and many optimisation problems involve
discrete rather than binary variables, one often also needs to encode a higher than binary discrete variable (Z-.,)
into multiple quantum bits. Discrete variables include integer variables, but can also include other problem
representations, including discretized versions of continuum variables, and any case where there are multiple
mutually exclusive options. One of many important example of discrete problem is scheduling, where time can
be divided into discrete chunks, and a number of potentially conflicting tasks need to be performed [11-13]. The
time at which each task is performed can be thought of as a discrete variable. Another important example is
graph colouring, which seems like a rather esoteric problem but actually has applications in aircraft scheduling,
organising file transfer between processors, and radio frequency assignments [9, 10, 31].

Strictly speaking the most informationally dense way to encode such a variable into qubits is to map each
value to a binary string, such that a discrete variable of size m, (belonging to Z,, in mathematical language) could
be encoded in [ logz(m)—l qubits. Consider the specific case of the interaction between two variables,

Vi € Z,,, V5 € Z,, using the binary encoding, for simplicity let us restrict ourselves to the case where misa
binary number. In this case, quadratic interactions, including quadratic interactions of a variable with itself (V;?)

! Technically speaking continuous time formulations of QAOA are possible, but no large scale hardware exists with this capability.

2 . L . . . . . .. ¢ . e ooreg & .

One potential exception is optical annealing devices designed in the spirit of so called ‘coherent Ising machines’ [56, 57], which may be able
to realise full connectivity, however, it is unclear if it is technically feasible to realise such devices at a large scale without classical feedback
which interrupts large scale quantum coherence.
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will only require second order couplings, since there are 2 log,(11) qubits, the means 2 log,(m)(2 log,(m) — 1)
couplers. For such interactions, a binary representation is preferable to the encodings discussed here.

However, for higher-than-binary discrete variables, quadratic interactions are a very restrictive form of
interactions, general interactions would have to be expressed as a polynomial of order 2 log,(m) = log,(m?).
Since a polynomial term of order k will require kth order couplings, and will in general require these to couple
every combination of digits in each binary number. By combinatorics, the total number of such couplers will be
~218:(m") — 2 Because building a more than two body interactions out of two body Ising interactions requires
atleast one auxilliary qubit, the cost of implementing arbitrary interactions between binary representations
actually scales worse than less informationally dense encodings. The traditional encoding for arbitrary discrete
variable interactions is the one hot encoding, which requires 1 qubits to represent a variable, and does not
require additional qubits to represent two variable interactions.

The one hot encoding can be derived by realising that, if a Hamiltonian is symmetric with respect to
exchange of the qubits, than the energy can be written as a function of Z =}, Z;, or equivalently, the count of
qubits in the |1) configuration, b = 3, %(1 — Z;). The energy with respect to a symmetric Hamiltonian is
therefore a polynomial in b, the one hot condition can be enforced by constructing a second order polynomial
where the minimum occurs atb = 1. In other words, since b is symmetric, it can be treated as a single parameter
which counts the number of variables in the 1 configuration, a polynomial can be constructed which is uniquely
minimised when exactly one variable is in this configuration, this term can effectively act as a constraint

Honehot,b = /\(b - 1)2 = /\(b2 —2b + 1)) (3)

where A is a suitably large positive constant. Translating back into Z; and dropping irrelevant constant factors
yields

Honehot = A ZZIZ] - (m— 2)2 Zil, 4)

i<j i

where \is a suitably large positive constant which enforces that the system should be found in the logically valid
subspace with high probability. Because each logical state corresponds to a specific qubit being in the one
orientation, arbitrary pairwise interactions between one hot encoded variables can be achieved using two body
Ising interactions.

It is worth briefly commenting that a computer consisting of a single large Z,, variable is a unary encoding
and is therefore not efficient, multiple such variables however have a robust tensor product structure as
discussed in [32], and therefore can be used efficiently in quantum computing, provided there are sufficiently
many compared to the (typical) variable size.

I propose an alternative to the one hot encoding based on one-dimensional Ising domain walls.  argue that
this new encoding is likely to be more useful in near term applications because it requires fewer qubits and in
many realistic problem structures also requires a less connected interaction graph, which can lead to more
efficient implementations, I also discuss a variety of other advantages. Once I have developed the domain wall
encoding, I give a comparison between binary, one hot, and the domain wall encoding in table 2. I discuss both
quantum annealing and QAOA implementations, and in particular demonstrate that for several realistic classes
of synthetic problems, the domain wall encoding can lead to significant improvement in embedding efficiency
over one hot, which in some cases is similar to the comparative advantage of embedding in a Pegasus
graph versus a chimera graph.

The structure of this paper is as follows. In section 2, I introduce the domain wall encoding of discrete
variables. In the following section, section 3 I introduce how to encode arbitrary two variable interactions
similarly to what is known for one hot. In section 4, I discuss how QAOA mixers which do not allow the system
to leave the logically valid subspace may be implemented, as has been previously done for one hotin [22]. In
section 5 I discuss advantages of building application specific special purpose annealers which encode discrete
problems using the domain wall encoding. In the next section, section 6 I discuss the advantages of the domain
wall encoding for minor embedding in quantum annealing and circuit compilation in QAOA. In section 7
provide evidence of the advantage gained from domain wall encoding over one hot for embedding three
realistically structured problem types in graphs which are relevant to quantum annealing. In section 8 I review
my numerical methods in the interest of transparency and reproducibility (all code is also publicly available at
[33], including simplified code to implement a domain wall encoding). Finally in section 10 I discuss the results
and make concluding remarks.
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Figure 1. Top: One-dimensional ferromagnetic Ising chain with end spins held in place by infinitely strong fields. Bottom: equivalent
model where the action of the end spins which cannot change their orientation is substituted by fields. As table 1 depicts, the
degenerate ground state manifold of this model encodes a variable in Zs.

2. Domain walls in the one-dimensional Ising model

Let us consider the one-dimensional ferromagnetic Ising model, defined by the following Hamiltonian

o0
Hing ==X Y. ZiZis &)

i=—00

where Z;is a Pauli Z matrix acting on the ith qubit.

I define a domain wall as existing between two qubitiand i + 1 when the bit values of the two qubits are not
equal. In other words, domain walls exist for classical basis states where (Z;Z; ;) = —1. For a one-dimensional
ferromagnetic chain of qubits, the energy is simply proportional to the expectation value of the domain wall
number. Moreover, a single bit flip on qubit i, X; (as implemented by the driver in equation (2)), can have three
different possible effects on domain walls

L.If(Z; 1) = (Zi11) = (Z;), then X; will create two domain walls, and increase the energy by 4 \.

2.If(Z;_1) = (Zi11) = (Z)), then two domain walls already exist adjacent to qubit i and they annihilate,
decreasing the energy by 4 \.

3.1f(Z;_1) = (Zi}+1), than one domain wall exists adjacent to qubit i and a bit flip will move the domain wall at
no energy cost.

An important consequence of the above is that bit flips cannot remove a single domain wall, a domain wall can
only be removed if it encounters another domain wall. In this sense domain walls are topologically stable. In other
words, if (Z_1) = (Zy) than there must be an odd number of domain walls between qubits —1 and N, regardless
of the configuration of the intermediate qubits. This idea is somewhat reminiscent of how (classical) magnetic
storage media store classical data in magnetic domains which are topologically protected from local fluctuations
aslongas they are smaller than the size of the domain [34]. Unlike a magnetic hard drive, only a single domain
wall per chain is topologically protected, as opposed to one domain wall every time a logical zero is adjacent to a
logical one in the hard drive case. The reason for this difference is that in quantum optimisation the fluctuations
play an active role in the computation, and therefore simply making a domain large, without logically fixing its
value, risks the domain, and therefore the information it contains, being destroyed.

Let us consider the situation where infinitely strong penalties hold qubit —1 in the 1 state and qubit Nin the 0
state, as depicted in figure 1(top). In this case, there must be an odd number of domain walls between these two
fixed qubits. The lowest possible energy in this situation is achieved by placing a single domain wall between any
ofthe N + 1 pairs of successive qubits, and therefore can be thought of as encoding n discrete
variable x € Zy.; — {0, 1...N}.

We now observe that since qubits —1 and N are both effectively fixed by strong constraints, they can be
ignored, leaving only a segment of N qubits (indexed between 0 and N — 1) with the Hamiltonian

N=2
Hy = =AY ZiZiv1 — Zo + Zn-1l, (6)
i—0

as depicted in figure 1(bottom). The concept of the two ‘virtual’ qubits at the end of the chain allows a useful
definition which will simplify the formulation of Hamiltonians later on, I define

4
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Table 1. The five states used to encode Zs
using the domain wall scheme depicted
in figure 1(bottom).

Encoded value Qubit configuration
0 0000
1 1000
2 1100
3 1110
4 1111
Z; -1<i<N
M )1 i.: -1 7
! 1 i=N @

undefined  otherwise

using this definition, we are able to simplify equation (6)

N—-1
Hy=-AY Z Z5). @

i=—1

The single domain wall states which are used to encode Zs in figure 1(bottom) appear in table 1. The information
storage in the domain wall encoding is a unary encoding (up to the padding with zeros) which, in itselfis not a
novel way of storing information, although I am not aware of any use of unary encodings in currently used Ising
mappings. The novelty of the domain wall encoding comes not from how the information is stored, but how it is
processed, in particular, the efficient implementation of two variable interactions discussed in section 3.

Additional terms can be used to modify the energy given a domain wall at a given site, this can be
accomplished by observing that,

1 0 (z8) =(z{")
Sz = ZEy) =q1 (zZM) =-1, (Z) =1, ©)
1 (Z5) =1, (Z7) = -1
furthermore, it is not possible to have the case where ( Z™N) = 1, ( Z™) = —1 with onlya single domain
wall, therefore, we define
-1 —x  —
b= zN — ZND, (10)

which assigns an energy penalty of 1 to domain wall location i and does nothing otherwise (neglecting constant
energy offsets, which are discussed later). Using these terms, arbitrary energies can be assigned to any domain
wall position. I further observe that a binary variable in the domain wall formalism reduces to a single qubit, and
z{V = Z, therefore the domain wall formalism recovers the standard binary qubit representation when N = 1.
It is worth remarking here that we could instead define ¢; in an arguably more natural way using two body
operations
-1 — —
8§ = 5(1 — zNZz®)y, (11)
however, while this definition is completely mathematically valid, I will show later that this requires four body
Ising interactions to implement arbitrary two body interactions between the encoded variables.

3. Interactions between domain wall variables

Now that I have demonstrated how to assign penalties for single discrete variables, I move on to discuss coupling
between domain wall encoded variables. To do this, I must first introduce notation for additional variables, this

is accomplished by introducing a second index relating to the variable number, k, 6; — (_Sik and ZN) — Z(NWk

I now observe that the term (_Sik 5} is one iff variable k has a value of i and variable / has a value of j, and is zero
for all other values of variables k and . From this observation, it follows that an arbitrary two variable function
can be created from’

3 . . . . . .
Again up to a constant energy offset, see later discussion. Note that the single variable terms can be created from sums of two variable terms.
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N M k=l
H2var - Z Z Ei,jéi 6] (12)

i=0 j=0

Furthermore, by substituting in equation (10) the product

Sik 5}; _ i(ZfﬁVf’k Z](»Zfll)’l _ ZMF Z](-fol)’l _ZMF Z]{M),l + ZOk Z](M),l)) (13)
since every term of this equation is at most two-body by equation (9), it immediately follows that arbitrary two
variable functions can be constructed by two body Ising couplers between encoded domain wall variables.
Furthermore since there are only N x M possible couplers between an encoded Zy ;1 and a Zy, 1, it follows
that this can be accomplished with at most N x M two body Ising terms. Since binary variables can be
considered a special case of the domain wall encoding, arbitrary coupling between standard binary Ising
variables (i.e. in mixed binary/integer problems) and domain wall encoded discrete variables is possible without
requiring any special modification to the formalism.

Before moving on to applications of the domain wall encoding, it is important to make one technical
mathematical note about the domain wall encoding in contrast to the one hot encoding. If we are using the
domain wall encoding to encode an interaction between a Z, and a Z,, variable, then the number of
independent Hamiltonian terms used to encode the interaction willbe (im — 1) x (n — 1) twobody
interactionsand n + m — 2 single body terms, leaving atotal of n x m — 1total independent degrees of
freedom to controln x mindependent interaction terms. The missing degree of freedom is accounted for by
the fact that all physical dynamics (and the ordering and gaps between energies of solutions) are invariant
under a shift in the defined zero of energy.

A redefinition of the zero of energy provides an additional degree of freedom which is purely mathematical.
Non-trivial physical interactions which shift the zero of energy are possible in one hot, a fully connected
interaction between all of the qubits in each variable will penalise all n x m states equally. If one attempts to
construct a similar ‘gauge operator’ in the domain wall encoding by summing all possible terms in equation (12),
all interaction terms from the individual expansion in equation (13) will cancel.

The fact that the number available one and two body interactions plus redefinition of the zero energy exactly
equalsn x mimplies that the domain wall encoding is the densest possible encoding of arbitrary two variable
interactions between integers using only one and two body Ising terms and no auxilliary qubits, using any fewer
number of qubits would not leave enough degrees of freedom to arbitrarily control the interaction.

Let us now briefly consider what would happen if I instead had defined interactions using & from
equation (11), in that case, the resulting product would be

<1k ¢ 1
6 &= (1 - Z(NWk Z Ok Z N Z NV Z B0k Z (VK Z 0L Z 00T, (14)

which requires a four body coupler and is therefore much less convenient to implement. One of the major results
in this paper is that the coupling between domain wall variables can be implemented only using two body coupling
if built from the definition given in equation (10) rather than the one in equation (11). For the remainder of this
work, I will only consider the interaction encoding defined in equation (13) because of the clear advantage it has
in only requiring two body couplers to implement.

4. QAOA mixers

Traditionally quantum annealing and QAOA use transverse field mixers described by Hamiltonians of the form
equation (2). However, this allows for the possibility of ending the call to the protocol in an invalid state, which in
the case of the domain wall encoding would be any state where a variable encoding has more than one domain wall.
Such states are problematic because they do not uniquely correspond to solutions to the original problem, and
while it is possible that an advantage could be obtained using clever post-processing, an invalid state is still an
undesirable outcome. The problem of finding invalid states in finite temperature quantum annealing has been
highlighted in [35]. It would therefore be preferable to use a mixing Hamiltonian which only mixes between valid
states, as discussed in [22, 36, 37]. These papers have focused on QAOA, since currently existing quantum annealers
use transverse field mixers. There has however been substantial progress [38, 39] recently on two body mixing
terms for quantum annealing, therefore, it may not be outside of the realm of possibility (although probably further
in the future) that the mixers proposed in this section could be implemented in quantum annealers.

Recall that flipping a qubit which is adjacent to a single domain wall does not change the domain wall
number, therefore, we should construct Hamiltonian terms which only perform a bit flip operation if the qubit
is adjacent to a single domain wall®. Fortunately the Hamiltonian term (Z;_X; — X;Z;. ) satisfies exactly this

Strictly speaking we only want to prevent bit flips in the no domain wall case, since the two domain wall case is already an invalid state.
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property. Starting from any computational basis state where (Z;_1) = (Z;,), the two Pauli X terms on qubit i
will cancel. On the other hand, for (Z; 1) = —(Z; 1), the action will be X, depending on which side of the
qubit the domain wall is located. Summing together such terms for each domain wall site yields

N-1 _
Huix = > ( Z0Xi = X; Z{)). (15)
i=0
While this mixer Hamiltonian contains sums of non-commuting terms, it can be broken down into the sum of
two Hamiltonians constructed out of commuting terms This division works by observing that X and Z terms are
always consecutive, therefore Hamiltonian terms with all of their Z components on odd (even) qubits will have X

components on even (odd) terms The Hamiltonian can be split as follows Hpy = HE™ + H29 where
) _
mix = Z ( Z§i7)1X2i - X5 Zé,#)]), (16)
i=0
and
Nt1
2 S JR—
Hl = 37 ( Z X1 — Xoinr ZiY)). (17)

i=0

Not only does H;, conserve domain wall number, but each HE'*9 both do as well, implying that any
operator formed by performing the unitaries created from these Hamiltonians will also conserve domain wall
number. Indeed, each of these terms can be constructed from Z;Z; ; ; and Hadamards. Since (exponentiated)
two body Ising terms are already necessary to produce the phase separators, then this mixer can be efficiently
constructed from two body terms which already exist.

While the mixer in equation (15) is similar to the controlled-X-rotation mixer discussed at the beginning of
4.2.2 of [22], there is an important distinction, while the controlled- X-rotation mixer is controlled by a single
qubit value, whether or not the X is applied in equation (15) is actually applied by whether two qubits agree or
differ. The approach of splitting the driver into commuting parts which follows after that equation is essentially
the same as what was done in [22].

Itis worth observing that the mixers here explore the solution space in a fundamentally different way than
the one hot mixers in [22]. Those mixers allow a transition from any state to any other state, whereas the
methods proposed here only allow transitions between consecutive states. It is not immediately obvious which
of these mixers will actually perform better in real problems. On one hand, it is known that a speedup is not
possible for quantum search in too low of a dimension [40], however, low dimensionality is only problematic in
dimensions less than 4, meaning that if this result carries over from search to optimisation (it is not a priori clear
thatit would), then a quantum advantage would be possible in any case with more than 4 variables, which should
be the case in all interesting optimisation problems. On the other hand, it has been shown that it problematic to
have a mixer which is fully connected, as would be the case for a single one hot variable [41-43]. However, since
there will be many variables in a real problem, the total mixer graph formed in the solution space in the one hot
encoding is likely to be quite far from fully connected. Therefore, while the behaviour of these two mixers is
different, which is better for computation should be treated as an open, likely problem dependent, question.

5. Specialised discrete optimisation annealers

In addition to considering specialised QAOA mixer Hamiltonians for domain wall encodings, it is also worth
briefly discussing the possibility of constructing specialised quantum annealers which are specifically designed
for discrete, rather than binary problems. The Hamiltonian to domain wall encode a variable can be constructed
entirely from single body ‘field” terms and ferromagnetic (negative) coupling. Because of the way in which
currently used flux qubit couplers are constructed, these terms can be implemented much more strongly than
anti-ferromagnetic coupling [44]. Therefore, especially for relatively small discrete sets, it may be possible to
construct a specialised quantum annealer designed to handle discrete variables with little or no sacrifice in the
dynamic range available for problem setting as compared to a binary machine. To some extent, the controls of
D-Wave hardware already allow users to take advantage of the ability of ferromagnetic coupling to be stronger,
but under the context of minor embedding [45].

Ifa transverse field mixer is used, then the system would necessarily access invalid higher energy states, and
the energy separation would have to be sufficient that these states are not accessed. In a flux qubit quantum
annealer, the Ising spins are already formed from the two lowest energy states of an infinite ladder for each qubit,
and modelling these additional states is sometimes important to fully understand the dynamics [46]. Creating
discrete variables with domain wall encodings would therefore not represent a fundamental change to how these

7
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devices work. A more exotic and ambitious option would be to develop an annealer which has a mixer.
Hamiltonian of the form in equation (15), however, recall that this would require a significant advance in
available mixer terms. Specialised drivers for quantum annealing which act over a feasible subspace has been
examined previously for other problem encodings [22, 47, 48].

Specialised annealers designed to handle discrete problems could be particularly useful if a high value set of
problems with similar or identical structure were identified. This would allow for the possibility of an
application specific integrated circuit (ASIC) annealer designed to solve specific high value problems. Such an
ASIC approach would make it possible to reduce or eliminate the overhead associated with embedding for a
family of high value problems, since embedding overhead can greatly reduce performance on current, non-
specialised quantum annealers, reducing or eliminating this source of overhead is likely to result in a major
increase in performance.

One final advantage of the domain wall encoding as compared to one hot is that the coupling between logical
states using a transverse field driver is non-perturbative in the sense that the system does not have to pass
through alogically invalid state to get to different logically valid states. The effective transition rates between
logical states is therefore independent of the coupling. In contrast, to pass between two logically valid one hot
states under transverse field driving, the system must pass through a state with either more than one qubit in the
one configuration, or zero qubits in the one configuration. For a fixed transverse field the effective coupling
between logically valid states will therefore decrease as the strength of the penalties enforcing the one hot
constraint are increased. Not having a tradeoff between encoding strength and coupling strength is likely to
make design of specialised domain wall encoded hardware simpler.

6. Embedding/compilation

There are several important differences when considering the domain wall encoding proposed here when
compared to one hot encoding with respect to minor embedding in the case of quantum annealing, or circuit
compilation in the case of QAOA. These differences all relate to the interaction graph structure of the qubits
encoding the problem.

The most obvious in terms of embedding overhead is that a domain wall encoding requires one fewer qubit
per discrete variable, while nominally a minor improvement, this could be significant when encoding small
discrete variables, for instance in a problem composed of Z3 variables, the qubit count would be reduced by %
There are, however, more subtle advantages which are likely to be more important. The domain wall encoding
requires significantly less connectivity within qubits encoding a variable than one hot. In one hot all of the qubits
encoding a variable need to be interconnected, while the domain wall encoding only requires linear connectivity.
Finally, the interactions between the variables will be different in both cases. In summary, the three differences
between the interaction graphs of the two encodings are

1. The domain wall encoding requires one fewer qubit per discrete variable.

2. The domain wall encoding requires only linear connectivity for the qubits used to encode a single discrete
variable, while one hot requires full connectivity.

3. While both methods can implement arbitrary two variable functions using two body interactions between
the qubits encoding the two variables, encoding a particular interaction will require different interactions
between the qubits, in some cases one hot will require more inter-variable interactions, in others the domain
wall encoding will, the interaction structure will also be different.

To mathematically capture some of the structural difference between these two strategies, I consider the edge
distance d, between qubit variables in a graph, defined simply as the minimum number of edges which must be
traversed to get from one vertex to a different vertex. In the one hot encoding, the edge distance between qubits
which encode the same variable Z,, is always 1, whereas for a domain wall encoding, the edge distance between
two such qubits canbe as highasn — 1, depending on other interactions.

Hardware graph connectivity has proven to be a major obstacle in quantum annealing. Recall that the
conventional strategy when a problem graph is not a subgraph of a given hardware is to minor embed [23, 24]
variables by encoding each of them to strongly coupled qubits which form a graph minor. Minor embedding
effectively reduces the number of available qubits, and can lead to issues such as ‘broken’ variables due to
thermal fluctuations [35]. For quasi-planar geometries, like the D-Wave chimera graph, the size of fully
connected graph which can be represented on a given device goes as the square root of the number of qubits.
Parity based encodings [25-27] provide a potential alternative to minor embeddings, but the size of fully
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Table 2. Comparison between binary, one hot and domain wall encoding strategies (note that the ¢/ strategy is not shown in the table, but
would be the same as the one used here except for would require fourth order coupling for a two variable interaction). Maximum order in
this case refers to the maximum number of Z variables which must appear in a single Hamiltonian term for the encoding. Red colouring is
used to indicate a major drawback of a strategy, while blue indicates a major advantage conferred by a strategy. The word ‘complicated’ is
used to indicate cases where the result is likely to be highly dependent on the details of the problem being encoded. For discussion of the
performance metrics, and explanations of the ‘complicated’ cases, see appendix A.

Performance metric | Binary | One hot ‘Domain wall
#Qubits [log,(m)] m m—1
3 __on
#Couplérs 0ifm=2"neZ m(m—1) m— 9
for encoding complicated otherwise
Intra-variable connectivity N/A or complicated |Complete Linear
Maximum order Mog, (m)] 1 1
needed to penalize single values
Maximum order 2 Mlog, (m)] 9 9
needed for two variable interactions
Maximum d. between Complicated 9 m

qubits in interacting variables

connected graph which can be represented in a quasi-planar geometry still scales as the square root of the
number of qubits’.

For the readers convenience, I have constructed table 2 which lists key performance metrics for binary, one-
hot, and domain wall strategies.

Gate model quantum machines are less technologically mature, and therefore real world problem
embedding strategies (which can be considered part of the circuit compilation problem) are less developed.
However, the connectivity of the interaction graph on these devices is also likely to lead to overhead. One
strategy to encode interactions which are not natively present in the hardware graph is to perform SWAP
operations between neighbouring physical qubits and thereby shuttle logical variables around to achieve
necessary interactions (see for example [49—-51]). These SWAP operations contribute to the total circuit depth of a
QAOA implementation. In a fully fault tolerant setting, this would only have the relatively minor consequence of
an increased runtime. Near term devices, however, are likely to be far from fault tolerant, and therefore only be
able to reliably implement relatively shallow circuits, it is therefore highly desirable to reduce circuit depth.
Because the eventual structure of large scale gate based quantum devices is still unclear, I restrict the study of
specific examples to embedding in quantum annealing.

7. Examples

In this section, I compare domain wall and one hot minor embeddings for three realistic families of problem
structures. The goal here is not to generate provably hard problems, but rather to reproduce realistic structures
which maybe encountered in the real world. In all cases I examine, I find that domain wall encoding yields at
least a small advantage over one hot, but that the size of the advantage is highly problem structure dependant.

As part of the study here, I numerically examine embedding into both the D-Wave chimera graph, and the
recently proposed Pegasus graph. I find that in the case of synthetic scheduling problems, the advantage in
embedding efficiency between one hot and domain wall encodings is comparable to that of embedding into a
chimera versus a Pegasus graph. On the other extreme, I find that embedding domain wall encoded maximum
three colour problems is actually slightly less efficient than for one hot, but that the requirement of one fewer
qubit per variable more than makes up for this difference and still leaves domain wall encoding as the preferred
strategy. I first describe the basic results for the three families of problems, before a more in-depth comparative
analysis in section 7.4. For transparency and reproducibility, the Hamiltonians for each example are provided in
appendix B.

7.1. Unstructured interactions
Let us consider unstructured interactions, by which I mean interactions for which there is no particular structure
which makes the variables independent from each other in certain regimes and therefore require all two body

> By graph theoretical arguments relating to the treewidth, this will actually be true for any encoding strategy.
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Figure 2. Unstructured interactions between three Z, variables. Black: qubits and interactions needed for both domain wall and one
hot encoding. Magenta: additional qubits and interactions needed for one hot encoding. Edges within variables in the domain wall
encoding have been made thicker as a guide to the eye.

terms to construct the interactions in both the one hot and domain wall encoding’. Unstructured interactions
may come about for example if the interactions between the discrete variables are describing complex
correlations, for instance in an discrete analogy to [2], but where each discrete variable represents more than two
mutually exclusive possibilities.

In the unstructured case, the interaction graph of the domain wall encoding will be a subgraph of the
interaction graph of one hot, as depicted in figure 2, therefore the domain wall encoding will always be easier to
implement since all of the interactions needed for the domain wall encoding are also needed in one hot. In the
example given in figure 2, with unstructured interactions between three Z, variables, the domain wall encoding
requires nine qubits and 36 interactions, while the one hot encoding requires 12 qubits and 76 interactions’.
Given that an advantage can be shown analytically (by showing that the domain wall encoding is a subgraph of
the one hot), it is not necessary to numerically analyse unstructured problems to show an advantage.

7.2. Graph colouring

Let us now consider the more structured problem of maximum graph colouring (referred to as Max- -
ColorableSubgraph [22], also sometimes referred to as Max-x-Cut [52, 53]), where given a graph and n possible
node colours, the goal is to colour the graph to maximise the number of edges which connect vertexes of
different colours. Maximum graph colouring is a generalisation of the more studied problem of graph colouring,
since in graphs which are colourable with # colours, the maximum colouring is a ‘proper’ colouring of the graph,
where no vertexes of the same colour share an edge. The question of whether or not a graph can be coloured is
known to be NP-hard if the number of colours requires is greater than two [54], and even remains hard under
quite restrictive conditions [55]. Solutions to graph colouring problems have wide applicability, including in
aircraft scheduling, organising file transfer between processors, and radio frequency assignments [31]. Quantum
annealing has been applied to graph colouring problemsin [9, 10].

The structure of the interactions for colouring problems is therefore to penalise vertexes of the same colour
(variables which take the same value) while having no effect otherwise. Since this interaction maps directly to
anti-ferromagnetic interactions between qubits corresponding to the same value in one hot, each edge in the
colouring graph requires n two qubit interaction. For the domain wall encoding, the interactions to enforce
different colours are more complicated, but there is also one fewer qubit per variable. When n > 3, the number
of interactions required per graph edgeis3(n — 1) — 2 = 3 n — 5. Thisis not the end of the story when it
comes to number of interactions, however, since the number of interactions per variable is more for one hot,
requiring %n (n — 1)edges compared tothe n — 2 interactions required by the domain wall encoding.

Strictly speaking, one edge can always be removed by a judicious choice of the zero of energy in one hot, but not in the domain wall
encoding, consequences will be discussed in a later footnote.
7 . PR . . . . . e >

By using a judicious choice of the zero of energy, this could be reduced to 73 interactions. This ‘removed’ edge can be placed between

additional qubits in one hot relative to domain wall without loss of generality so the domain wall encoding graph remains a subgraph of the
one hot graph.
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Figure 3. One hot encoding of maximum four colouring of a small graph fragment, red edges indicate edges encoding interactions
between variables, while green indicate the internal edges within each variable. The lower right of the figure depicts the
graph fragment.

Figure 4. Domain wall encoding of maximum four colouring of a small graph fragment, red edges indicate anti-ferromagnetic two
qubit interactions between variables, while black edges indicate the same but ferromagnetic. Thick black the internal edges within each
variable. Red and blue qubits indicate where single body terms are applied, following figure 1(lower). The lower right of the figure
depicts the graph fragment.

As an example, I show how to encode maximum four colouring on this four qubit graph fragment figure 3
depicts the one hot encoding for maximum four colouring on a four vertex graph fragment, while figure 4
depicts the domain wall encoding.

For n colours, it is possible calculate the ratio r of edges to variables above which one hot will involve fewer
interactions, and below which the domain wall encoding will require fewer. This calculation is performed by first
finding the number of interactions per vertex required in the one hot and domain wall cases, and then setting
them equal and solving. For the one hot encoding, each vertex will require %n (n — 1) internal interactions, and
each edge will require another #. For a given r ratio of edges to vertexes, this means that there will be n
(n — 1) 4 rninteractions per vertex. On the other hand, for the domain wall encoding, each vertex requires
onlyn — 1internal interactions, but each edge requires 3 n + 1 interactions, leadingtoatotalofn — 1 + 3 r
n + r. Setting the two expressions equal and solving for r leads to:

1 3
St = Sn+2

2
18
2n—>5 (18)

r.(n) =

assumingagain n > 3. In the limit of large n this expression goes as %, considering that each vertex should be
adjacent to at least n other vertexes for the colouring problem to be non-trivial, for alarge number of colours the
domain wall encoding will contain more edges for realistic problems. For a smaller number of colours, this ratio
can be larger for instance r(3) = 2,and r.(4) = %. Itis important to recall that in all cases, the domain wall
encoding requires fewer qubits. There are also important differences in the structure of the interaction, which
will be highlighted in the next section.
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Figure 5. Minimum linear size of graph requires to embed one hot (red) and domain wall (blue) encoded colouring problems. Dashed
lines and shaded regions indicate minimum and maximum seen for 10 instances and the solid line with stars indicates the average,
dotted lines on Chimera plots indicate size of the current generation of D-Wave device. (a) Three colour embedded into Chimera. (b)
n colour embedding into chimera. (c) Three colour embedding into Pegasus. (d) n colour embedding into Pegasus.

Ignoring the differences in interaction graph structure, in cases where r > r,thereisa tradeoftin terms of
interaction number versus qubit number, with the domain wall encoding requiring fewer qubits but more
interactions. Although a gross oversimplification, let us consider for a moment the case where we ignore the
structure and consider interaction counts. This over simplified picture suggest that for instance in an optical
setting [56, 57] than the domain wall encoding would be preferred. However, if interactions are more difficult to
implement, then the one hot encoding may be best. As I demonstrate later, the opposite is actually true , the
structure of the domain wall encoding makes it easier to implement, and therefore also preferable at large sizes.

In real situations, it is not just the number of edges which is important, but also the structure of the edges. We
first note that the domain wall encoding forms a ‘layered’ structure, where the qubits can be divided inton — 1
layers corresponding to position in the chain used for the domain wall encoding. The minimum possible edge
distance d, between a qubit on layer iand one on layer jis |i — j|, regardless of the graph being coloured, such a
structure is not present in the one hot encoding. As discussed later, numerical analysis reveals that in fact the
relative ease of embedding the structures makes domain wall similarly or more efficient to embed for all problem
sizes  analyse.

To examine the effect of the different structures, I consider numerically embedding maximum # colour
problems on Erdos—Rényi random graphs [58, 59](each pair of vertices independently has an edge with an
independent fixed probability) with edge probabilities of 0.75 and 2 # vertices. As a comparison, I also examine
maximum three colour problems on Erdés—Rényi random graphs with edge probabilities o 0.5. I examine
embeddings on both the D-Wave Chimera graph and the recently proposed Pegasus [28] graph.

For this analysis, I find the smallest Pegasus or square Chimera graph for which a given problem can be
embedded, using the available software [60]. I refer to either the linear size of the Chimera (number of unit cells
along one side) or the size of the Pegasus graph (encoded in a single number) as L. The exact methods which are
used for the numerics are described in section 8.

As we can see in figure 5, the minimum size of chimera or Pegasus graph where a problem can successfully be
embedded is always smaller or equal on average for the domain wall encoding versus one hot encoding.
Moreover, except for the three colour embedding in Pegasus at large sizes the difference becomes more
dramatic, and the worst embedding of a domain wall encoding is still superior to the best for one hot. Finally, we
observe that while, for the three colour problems the difference between the domain wall and one hot encodings
is minimal and grows only slowly with size, it grows much more dramatically for the n colour problem. As I
demonstrate later, in section 7.4, this is due to the domain wall encoding being more efficiently embeddable,

likely because of the previously mentioned layered structure of the domain wall encoding in the # colour case.

7.3.Scheduling

Let us now consider the problem of minimising (or eliminating) scheduling conflicts, different versions of this
problem have been considered for quantum computing [11-13, 17], including most recently the problem of
flight deconflicting [17]. The basic structure I consider is that there are N, possible times and m events each of
duration T} each of which which must startat time #; € (fx min> t,max) Where f min € (0, N — 1)and

femax = to € (0, N — 1 — Ti). Moreover, conflicts can occur if certain pairs of events, occurring at f,, and
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Figure 6. Encoding of scheduling conflicts using domain wall variables. Top: the encoding of a conflicts at a single time, where the
event encoded in the the top chain has a duration of three time units and the event encoded in the bottom has a duration of two.
Bottom: total encoding of the conflict with labels indicating the edge distance from the yellow vertex, the “...” indicates a continued
linear increase in edge distance. Otherwise, colours have the same meaning as in figure 1 (lower).

overlap, which means thateither 0 < # — # < Ty or 0 < #; — #; < Tj. In both the domain wall and one hot
encoding, single variable penalties correspond to single body Ising terms in the encoding, therefore, the problem
structure is not changed by adding such penalties, which could correspond for example to penalties for delaying
aflightin [17].

The structure for encoding time conflicts into the domain wall encoding can be found in figure 6(top) we see
the encoding of all conflicts which could occur if the lower variable has the value corresponding to the first
domain wall position on the bottom variable. In this figure the duration of the top domain wall encoded variable
is Ty = 3 time units, whereas the duration of the event encoded in the bottom variable is T; = 2. To encode the
total conflicts, we just add encodings for the conflicts at all allowed values of #, the result is figure 6(bottom). We
also note the edge distance d, of all of the vertexes from the yellow vertex, in particular noting that continuing the
figure beyond what is drawn, for the top variable the edge distance d, continues to grow linearly. In contrast, d,
takes a maximum value of two for the one hot encoding regardless of the allowed time range of the two events
(one hot encoding not shown).

For each possible value of a fywhere there is a potential conflict with event k and none of the domain wall
variable values involved are the maximal or minimum possible values the conflicts can be encoded using four
interactions between pairs of binary variables, if any of the variables do take extremal values, than the number of
pairwise interactions will be less than four. It follows that if there are g potential values where a conflict is
possible, than the number of binary interactions which are needed is at most 4 q, independent of the durations of
each event, Ty and T}. For one hot encoding on the other hand, for every pair of times where there is a conflict,
there must be an interaction between two binary variables, therefore the number of interactions grows with
event duration.

To get a sense of the effect of domain wall encoding, I again consider examples of embedding the same
problem numerically when encoded in one hot versus domain wall encoding strategies. In this case, I consider
random schedule conflict minimisation problems using a construction discussed in detail in section 8 where
both the number of variables and the potential range of times are increased as the problems are scaled. The
results of this embedding are depicted in figure 7, while the range of graph sizes need to embed is much larger
than for the case of colouring problems, the average size required for domain wall encodings is still significantly
smaller. As I show in the next subsection, this difference is at least partially due to the domain wall encoding
being easier to embed.

7.4. Analysis

So far  have demonstated the advantage of domain wall encodings in realistic problems but have not analysed
the source of the advantage, or compared relative advantages when embedding different problems into graphs.
To do this, I define the embedding ratio, which is the ratio of the number of vertexes used in the graph embedding
to the number of vertexes in the original interaction graph. The embedding ratio captures the efficiency with
which the problem structure can be embedded in a way which does not directly depend on the number of
vertexes in the interaction graph, or details of the original problem.

Figure 8 compares the embedding ratios for the example problems discussed earlier in this section. From
figure 8(a) it can be observed that the domain wall encoding of the maximum three colour problem is actually
slightly less efficient to embed than the one hot encoding, therefore, the advantage seen in figures 5(a) and (c) is
entirely because of the fact that the domain wall encoding requires fewer variables. However, figures 8(b) and (c)
demonstrate that for the max n colour and scheduling problems the structure of the domain wall encoding can
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Figure 7. Minimum linear size of graph requires to embed one hot (red) and domain wall (blue) encoded schedule conflict
minimisation problems with different numbers events. Dashed lines and shaded regions indicate minimum and maximum seen for
10 instances and the solid line with stars indicates the average, dotted lines on Chimera plots indicate size of the current generation of
D-Wave device. Top: Chimera, bottom: Pegasus.
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Figure 8. Relative embedding ratios under different circumstances. Solid symbols (red and blue) indicate comparisons of domain wall
encodings on the X axis and one hot encodings on the Y axis. Hollow symbols indicate embedding into the Pegasus graph on the X axis
and chimera on the Y. Red indicates embedding into a chimera graph, while blue indicates embedding into a Pegasus. For hollow
symbols, black indicates one hot encoding, and magenta indicates domain wall. Fully coloured symbols indicate average values (over
10 instances each), while lighter symbols indicate individual instances. All dashed lines are guides to the eye, with the cyan dashed line
indicating circumstances where equal embedding ratios are obtained. (a) Three colour problems for sizes up to 30 vertices. (b) n
colour problems, colour coded numbers indicate number of colours in the problem (c) Scheduling problems coloured numbers
indicate number of events in the problem (d) Squares indicate scheduling problems, while stars indicate n2 colour problems (three

be embedded much more efficiently at large sizes. Finally, figure 8(d) demonstrates the advantage of embedding

into a Pegasus rather than Chimera graph, with the Pegasus embedding being much more efficient.

One additional advantage of comparing embedding ratios is that it provides a method to compare problems
of different sizes and types, and even the relative advantages gained from changing different aspects, for instance
encoding and hardware graph. Figure 9 depicts relative embedding ratios under different circumstances plotted
on the same axes. From this plot, we first observe that the structural advantage of domain wall encoding over one
hot encoding is highly problem structure dependent, from actually a slight disadvantage in the case of three
colour problems, to an advantage comparable with the advantage gained from embedding into a Pegasus
graph rather than a chimera in the case of scheduling problems embedded into the Pegasus graph. The hardware
graph structure (Pegasus versus chimera) on the other hand yields a consistent large advantage in terms of
embedding overhead for all studied problem structure.
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Figure 9. Relative embedding ratios under different circumstances. Solid symbols (red and blue) indicate domain wall encoding
embedding ratio on the X axis and one hot on the Y, whereas hollow symbols (black and magenta) indicate embedding into Pegasus on
the X versus embedding into Chimera on the Y. Red indicates embedding into a Chimera graph, while blue indicates embedding into a
Pegasus. Black indicates one hot encoding, while Magenta indicates domain wall encoding. Circles indicate three colour problems,
while stars indicate, 1 colour problems, and squares indicate scheduling. All dashed lines are guides to the eye, with the cyan dashed
line indicating the point where equal embedding ratios are obtained. All points are averaged over 10 instances.

8. Numerical methods

All embedding was performed using the minorminer software which is publicly available [60], with the default
settings. Pegasus and Chimera graphs were created using the publicly available D-Wave networkx software [30].
All of the code for the numerical calculations was written in Python 3.5 and is publicly available from [33].

The minimum embeddable size for a given problem was calculated by first trying the size of the previous
problem (or minimum size for the graph type) if embedding fails then the graph size is incremented until success
and if successful the size is decremented until failure. For maximum colouring problems, the graphs to be
coloured are Erdos Réyni random graphs [58, 59] (each pair of vertices independently has an edge with an
independent fixed probability) with edge probability 0.5 in the three colour case and 0.75 in the # colour case.

For scheduling problems, the goal is to minimise the number of conflicts between events each of which is
constrained to occur at integer times within a range of times between 0 and #,,,,x. The value of ..., is chosen to be
two times the number of events, and the probability that each pair of events will conflict (i.e. that interactions
need to be encoded between them) is chosen independently at random with the probability of a conflict being
0.75. The earliest possible start time #.,1, of an event is chosen uniformly at random between zero and t,,,,x — 2.
The latest possible start time fj,¢ is chosen uniformly at random between t.,1, + 1and #y,.x. The duration of
each event is chosen uniformly at random between one and five time units.

The problems selected here have not been chosen to be provably hard, but rather to have representative
structure of a problem type. It is, however, worth noting that even if the scheduling and colouring problem types
which are use here are not asymptotically hard, there will be a plethora of weighted versions of the problems
which will have the same interaction graphs (and therefore use the same embeddings), and it is likely that at least
one of these versions will be hard. The importance of the existence of multiple problems with the same
graph structure has been highlighted in [61].

9. Extension: domain wall analogue of k-hot encodings

One additional advantage of a one-hot encoding is that it can be naturally extended to a k-hot encoding by
modifying the strength of the one body terms such that in the lowest energy manifold k variables are in the 1
state, rather than only one. Unfortunately, it is not possible to play a similar trick for domain wall variables; the
lowest energy state of the chain will always be the state with exactly one domain wall. The domain wall encoding
can however be used to produce a k-hot analogy by linking together multiple chains and introducing strong
interactions which do not allow any domain walls to be at the same site number. One way to accomplish this is
employ the colouring problem encoding in section 7.2 on a clique (fully connected) graph, this would enforce
that no two variables take the same value and thus the collective object behaves like a k-hot encoding.
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However, an analogue of the k-hot encoding requiring even less interaction between the chains is possible,
this can come by realising that the constraint that the domain wall variable j + 1 has a greater value than variable
j can be implemented efficiently by only interacting nearby qubits on neighbouring chains.

This can be achieved by realising that iff the value of variablej + 1 isless than or equal to that of
variable j, than for some i the following logical statement will be true ((ZN)7) = —1) A (Z™V7H!) = 1).

Therefore we can use interactions of the form (1 + Zi(i\r f’j (1 — Zi(N »i*1) to enforce the constraint,

(<W> =1) v (Z™M7TY = —1)Vi, summing over i (and neglecting an irrelevant constant offset) we
obtain
HOHD = Y 7@ 70T _ 705 | 7m0 (19)

i=0

which yields the minimum possible energy if the value of variable jis less than that of j + 1, and a positive energy
otherwise®. The k-hot condition can therefore be enforced by adding \’ Zgj_z HU7 to the domain wall
Hamiltonians which implement k variables.

Constructing domain wall analogues of k-hot problems seems counter-productive, since it requires more logical
qubits than the analogous k-hot encoding. However, in these k-hot analogies, the parts of the domain walls which
encode different discrete values can still be spatially separated, for some problem, the domain wall analogue may still
be more efficient after embedding. While a potentially fruitful endeavour, examining the efficiency trade-ofts
between k-hot and domain wall k-hot analogues for encoding real problems is beyond the scope of this paper.

10. Discussion and conclusions

In this manuscript, I have discussed a method of encoding discrete variables into Ising model qubits based on
domain walls in one-dimensional spin chains which is an alternative to the traditional one hot method. I have
further demonstrated how arbitrary (classical) two variable interactions can be encoded, and that these
interactions only require two body Ising terms. Furthermore, as was demonstrated in [22] for one hot, two body
mixer terms which preserve the logically valid space are possible, which may be highly relevant in QAOA
implementations [22]. Finally, I have numerically examined the possibility of embedding problems encoded
using the domain wall methods in two graphs which are relevant to quantum annealing, the chimera and
Pegasus graphs. For every problem type I have examined, I found that the domain wall encoding can be
embedded more efficiently than the one hot encoding. The level of improvement is strongly dependent on
problem type, but in some cases can be comparable to the gains made from having a Pegasus versus chimera
hardware graph. Specifically, for the synthetic scheduling problems examined here, embedded into the Pegasus
graph, the gains made in terms of the ratio of physical to logical bits for domain wall versus one hot is
comparable to the gains from embedding into Pegasus versus chimera.

Itis likely that the large gains are due the fact that the domain wall encoding inherently allows variables to be
more ‘spread out’ and therefore take advantage of the natural structure of the problem for embedding in a way
which is not possible for one hot. One example of such structure is the fact that events occurring at very different
times in a scheduling problem are unlikely to interact. For two such interacting variables in one hot, the binary
variables representing the events happening even at very different times can have a maximum edge distance of
two (two edges must be traversed to get between them), whereas for a domain wall encoding, the edge distance is
in principle unbounded. It is worth emphasising that this study was performed using general purpose heuristic
problem embedding software, and therefore it is likely that even better results could be obtained using
specialised software which is specifically designed to take advantage of known structural features within specific
problems. Furthermore, the nominal hardware graphs studies here are also general purpose, it is likely that
embedding overhead could be reduced or even eliminated on application specific hardware, for instance ASICs
designed for problems with a particular structure.

It would further be interesting to examine the most efficient strategies to decompose problems which do not
fit onto the hardware graph of a quantum annealer [62—64]. The importance of such strategies has been
highlighted in more general cases [65].

Itis finally worth briefly noting that the natural structure present in the domain wall encoding means that it
can be used to design discrete or mixed binary/integer optimisation problems which can be mapped to
hardware with no embedding overhead. This could provide an important tool for scientific studies on real
quantum annealers, as embedding may complicate the interpretation of experimental results. In particular, in an
upcoming work [66] I will examine the ability of real quantum annealers to find solutions to mixed binary/

8. . . s . . . . a . .
This expression can even be made more efficient by omitting domain wall sites corresponding to ‘impossible’ values, for instance, there is
no legal configuration where the jth variable can take a value less than j.
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integer problems which are not only highly optimal but also robust, and examine how reverse annealing [67, 68]
can be used as a tool to trade off between optimality and robustness.
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Appendix A. Explanation of performance metrics given in table 2

We use several performance metrics to compare binary, one-hot, and domain wall encodings in table 2, in this
appendix. We also explain what makes the cases labelled as ‘complicated’ complicated, and why no simple
answer can be given.

A.1. # Qubits

This is the number of qubits which each encoding requires to logically represent the problem. In the case of
binary encoding, this excludes any auxiliary qubits required to implement constraints, see ‘# couplers for
encoding’ for a discussion of where such qubits may come about.

A.2. # Couplers for encoding

This is the number of two body couplers required to restrict the qubits to the logically valid subspace, in other
words, the subspace of qubit configurations which correspond to logically valid values of the discrete variable
being encoded. In the case of domain wall and one hot, this is straightforward, since the number of couplers for
each is well defined. In the case of binary encoding, the complexity depends strongly on whether or not the
discrete variable being encoded involves abinary (i.e. m = 2", m € Z)number of possibilities or not. Ifit does,
than the logically valid space is exactly the space of all possible bitstrings expressible in # qubits, and therefore no
couplers are required to constrain the space. On the other hand if the number of possibilities is not a binary
number, than constraints need to be added to prevent certain configurations, in general, these constraints will
involve more than two body terms and would therefore also require auxiliary qubits to implement effective
multi-body constraints. A full analysis of all of the ways this can be done is beyond the scope of this paper, so this
case has been simply marked as ‘complicated’.

A.3.Intra-variable connectivity

This is the structure of the connectivity required within the variable to restrict to the logically valid subspace. For
one hot this requires a fully connected construction, and for domain wall it requires linear connectivity. As with
the number of couplers, the connectivity depends whether or not the discrete variable involves a binary number
of possibilities, if it does, than no connections at all are needed to restrict to the logically valid subspace. On the
other hand if there is not a binary number, than some configurations need to be excluded, which will generally
require high order coupling, the structures necessary to do this are complicated and beyond the scope of this

paper.

A.4. Maximum order needed to penalise single values

This is the highest order of coupling (i.e. how many qubits need to be coupled together in a single effective
interaction) to penalise an arbitrary single logical value. For both one hot and domain wall, this is one, since
single body terms which either act on a single qubit or bracket a domain wall respectively can achieve this. For a
binary encoding, one would in general need interactions which interact every qubit used to encode the variable
with every other qubit used to encode the variable. Note that some specific kinds of penalties in the binary
encoding may require much lower order, for instance, a penalty which scales linearly with the value of a binary
number only requires single body terms.

A.5.Maximum order needed for two variable interactions
This is the highest order of coupling (i.e. how many qubits need to be coupled together in a single effective
interaction) to implement an arbitrary two variable interaction. For both one hot and domain wall encodings

17



10P Publishing

Quantum Sci. Technol. 4(2019) 045004 N Chancellor

this is two. For the binary encoding, this could require a coupling which involved every qubit in both variables.
Specific interactions can require lower order though, for instance a quadratic interaction can be encoded using
only one and two body interactions.

A.6. Maximum d, between qubits in interacting variables

This is the maximum edge distance between qubits used to encode two different interacting variables. The edge
distance is the minimum number of edges which must be traversed to get between two qubits in the interaction
graph. Roughly speaking this measures how ‘spread out’ a variable encoding can be. As discussed previously in
this appendix, interactions between binary variables can be complex to encode and may require auxiliary qubits
if native high order interactions are not available, therefore the edge distance in the binary case is complicated
and case dependant.

Appendix B. Hamiltonians for examples

In this appendix, I give explicit Hamiltonians for all of the example problem types. To simplify the expressions
and to make it so the same Hamiltonians can be used to express both types of domain wall encodings as well as
one hot, it is useful to provide some definitions. First of all, I define the variable cores which are the constraints
necessary to define the variable for domain walls are defined by equation (8)
N-1
HGRE = =X 30z ZER, (20)
i=—1

where the notation has been modified to add the variable index k, and to clarify the role of the Hamiltonian.
Similarly, following from equation (4), the core Hamiltonian in the one hot equation can be defined as

HO = N> zfzf — (m — 23" zF| (1)
i<j i

In addition to the core, I need to define penalties on different variable values, for the domain wall encoding, this

comes from equation (10)

1 —_— —
600 = 22 =z, (22)
where the bar has been dropped for notational convenience. Finally, for one hot, the definition is very simple
1
5§ = ~Zk, (23)
2
Equipped with these definitions, I now define the Hamiltonians for the three examples

B.1. Unstructured interactions

In this case I consider unstructured interactions between two variables, although the definition can be easily
extended to more. In this case, let the interactions between variable 1 of size N, and variable 2 of size M be defined
bythe N X M matrix A. The Hamiltonian is therefore

N M
Hunsose = HE2' + HO? + 32 3 g6 en
i=1j=1

B.2. Graph colouring

In this case, we consider colouring a graph with K vertexes and edges defined by the K x K strictly upper
triangular matrix e where 1 denotes an edge and 0 represents no edge, using N colours. Each variable will be of
size N and will have constraints which prevent vertexes which are coloured the same to share edges. The
Hamiltonian therefore takes the form

K K K N—-1

| M)

Heolor = ZHg;g’l + Z Z €ij Z 655\])’16;( )]- (25)
I=1 i=1 j=i+1 k=0

B.3.Scheduling

In this case I consider a scheduling problem which is defined to involve 1 events. A single event, event k, must
occur between # min and #; may, and furthermore has a duration Tj. For mathematical convenience, I define
dur(k) = t max — tk,min SOme events conflict, meaning that they cannot occur simultaneously while others do
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not. I define whether or not events conflict using the strictly upper triangular matrix C, where 1 represents a
conflict and 0 represents no conflict. The Hamiltonian is defined as

m duronk m m dur(i) dur(j) ) cdur(in <(dar(ini
Huaea = 32 H 1 3° 55 030 S gt s, o
k=1 i=1 j=i+1 I=1 g=1

The binary matrix Rl(;’j ) defines whether or not two events temporally overlap given their duration, in other
words,

1 ti,min+l*1:tj,min+q*1

1 tj,min+q—1<t,‘,min+l—l<tj,min+q—l+Tj

I timn Tl 1<tjmn+1—-1<tjmn+q—1+T

0 otherwise

Ry = (27)
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