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ABSTRACT

We review several commonly used methods for estimating the tail dependence in a given data sam-
ple. In simulations, we show that especially static estimators produce severely biased estimates
of tail dependence when applied to samples with time-varying extreme dependence. In some in-
stances, using static estimators for time-varying data leads to estimates more than twice as high
as the true tail dependence. Our findings attenuate the need to account for the time-variation in
extreme dependence by using dynamic models. Taking all simulations into account, the dynamic
tail dependence estimators perform best with the Dynamic Symmetric Copula (DSC) taking the
lead. We test our findings in an empirical study and show that the choice of estimator significantly
affects the importance of tail dependence for asset prices.
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1 Introduction

Tail dependence modeling using copulas has gained significant interest from researchers and
practitioners across various fields, including finance, insurance, hydrology, engineering, and energy.
Of particular interest are (upper and lower) tail dependence coefficients, which are defined as the
asymptotic probability that two extreme events occur simultaneously. Estimates of such proba-
bilities are useful for decision makers that need to efficiently allocate resources, e.g., for portfolio
tail diversification, catastrophe management, or large investment project appraisals. All of these
applications require an accurate estimate of tail dependence coeflicients and therefore confidence in
the performance of the employed copula models. Many of those models estimate tail dependence
statically, which can be misleading when the dependence structure of underlying data changes dy-
namically over time. In this paper, we determine how fatal such model risk can be with respect to
the estimation of lower tail dependence coefficients.!

We review various commonly used techniques for estimating the tail dependence of a joint
distribution and show that several of these techniques produce severely biased estimates of tail
dependence in simulations. We then apply these estimators in an empirical setting in which tail
dependence coefficients have been previously used to model extreme dependence. As our key
finding, we show that the systematic overestimation of tail dependence found in the simulation
study translates to financial data, i.e., joint crash probabilities of equities are likely to be severely
overestimated by static estimators employed in previous studies. Consequently, our results imply
that findings from the related (finance) literature need to be interpreted with care and critically
depend on the choice of estimator.

Tail dependence can be used to estimate the likelihood of extreme events occurring at the
same time, which in turn may be employed for practical purposes. For example, in insurance,
extreme losses are modeled using copulas to account for tail dependence (“ruin probability”),
which ultimately influences insurer solvency requirements (see Eckert and Gatzert, 2018). Portfolio
managers may be most interested in whether prices of two (or more) assets crash at the same time.
As pointed out by Poon et al. (2004), investors can achieve better portfolio tail diversification by
choosing asymptotically independent assets and therefore reduce the need to hedge positions with
the use of options. When considering credit risk and contagion effects (see, e.g., Ye et al., 2012;
WeiB et al., 2014), one would like to accurately estimate the joint probability of default.? Outside of
finance, there are various fields that may want to employ non-linear measures of dependence instead
of simple correlations to capture the uncertainty around extreme outcomes (see, e.g., Wang and
Dyer, 2012; Werner et al., 2017, for brief overviews). For example, Wu (2014) models dependence
in warranties of car manufacturers, while Bassetti et al. (2018) consider energy markets. Investors

in or managers of oil and gas exploration projects, which are huge in size and long in duration,

1We concentrate on lower tail dependence in our paper as the tail risk of two assets jointly experiencing extreme
losses is arguably the greatest concern to portfolio and risk managers. Moreover, the models we employ in our study
can be easily adapted to measure upper tail dependence (which could be used to detect price bubbles) as well.

2Similarly, De Jonghe (2010) or Oh and Patton (2017, 2018) employ measures of tail dependence to proxy for
systemic fragility in the financial sector.



benefit from modeling the dependence structure and account for respective tail risk (see Accioly
and Chiyoshi, 2004; Al-Harthy et al., 2007). Silbermayr et al. (2017) argue that tail dependence
measurement is a useful tool for inventory planning, e.g., to capture simultaneous extreme demands
for production in two locations. In hydrology, the probability of the simultaneous occurence of
extreme river flow volumes, rainfalls, or drought periods, in several locations, is modeled using tail
dependence estimators (see, e.g., Poulin et al., 2007; Serinaldi et al., 2015) and helps risk managers
in natural disaster management. Similarly, Elberg and Hagspiel (2015) compare the performance
of several copulas when trying to capture (spatial) tail correlation between wind power stations
and its impact on electricity spot prices and grid planning. Choosing the wrong model to estimate
(time-varying) tail dependence, such as the Gaussian copula with asymptotic tail independence,
will over- or understate respective probabilities and therefore have consequences for pricing and
planning in all of the applications mentioned above.

Despite the consensus in the literature on the importance of accounting for extreme dependence
for numerous applications, authors have employed many different models to estimate tail depen-
dence without considering the model risk in choosing one approach over another. This is especially
true in the finance literature, which we focus on in our study, but extends to other areas as well.
The set of models in our comparative study is motivated by the literature on classical problems in
asset pricing (see, e.g., Meine et al., 2016; Chabi-Yo et al., 2018; Irresberger et al., 2018), credit risk
(see Oh and Patton, 2017; Christoffersen et al., 2018), financial intermediation (Oh and Patton,
2018), and portfolio management (see Christoffersen et al., 2012), where linear correlations are
substituted by measures of extreme dependence. The consensus underlying these studies is that
joint extreme co-movements in equity prices, default intensities, and liquidity are not adequately
captured by correlation, but should rather be modeled using estimates of tail dependence. Most
of these studies comprise a parametric copula model from which the estimates of tail dependence
are derived. For example, in the early studies of Rodriguez (2007), Okimoto (2008), and Garcia
and Tsafack (2011), estimates of the lower tail dependence in equity returns are extracted from
simple static and regime-switching copula models. More recent work, such as in Patton (2006),
Christoffersen et al. (2012), and Oh and Patton (2017, 2018), proposes to use dynamic copula mod-
els to account for possibly time-varying extreme dependence in financial data, the need of which is
empirically confirmed by, e.g., Grundke and Polle (2012).®> Furthermore, the statistical literature
includes additional nonparametric estimators like the one proposed by Schmidt and Stadtmueller
(2006), which eliminates the model risk of selecting a non-optimal parametric model at the expense
of being purely data-driven and static. Finally, some asset pricing studies such as Chabi-Yo et al.
(2018) and Ruenzi et al. (2018) use convex combinations of different static parametric copulas to
estimate the tail dependence between equity returns and liquidity, respectively. Interestingly, the
literature still lacks a comparison of these different estimators of a distribution’s tail dependence.

But even more importantly, the empirical relevance of selecting the right estimator for a data sam-

3Such dynamic models are found to be useful for applications in, e.g., portfolio optimization (see Al Janabi et al.,
2017).



ple’s tail dependence for applications in financial economics remains completely unacknowledged.
4

The findings from both our simulations as well as our application to equities have highly relevant
consequences for our understanding of extreme dependence. As our main contribution, we show in
this paper that several tail dependence estimators which have been proposed in the literature are
severely biased. Especially when applied to data samples with time-varying extreme dependence,
static estimators tend to significantly overestimate the actual level of tail dependence in the data.
This finding casts reasonable doubt on the frequent finding that extreme dependence in financial
markets has increased and is high (especially during a time of crisis). What we find most striking is
that this tendency to overestimate extreme dependence is common to almost all estimators that we
identified from previous empirical studies in financial economics and econometrics. As this paper’s
second main contribution, we show in our empirical application that the choice of the correct tail
dependence estimator has significant effects on the outcomes of asset pricing studies which rely
on tail dependence estimates. The implications of these findings are straightforward: The role
of extreme dependence in financial assets, which often exhibit dynamic dependence structures,
requires to be reassessed in several areas of interest (stock returns, liquidity, systemic risk of banks,
etc.) whenever empirical findings have been based on tail dependence estimates stemming from
inaccurate static estimators.

The rest of this paper is organized as follows. Section 2 quickly reviews the most popular
estimators of the coefficient of lower tail dependence that have been proposed in the literature.
In Section 3, we present the results of our comprehensive simulation study on the finite sample
properties of the various estimators of tail dependence. In Section 4, we discuss the economic
importance of our findings by applying several tail dependence estimators to equity data. Section

5 concludes.

2 Copulas and Tail Dependence

The lower tail dependence (LTD) estimators included in our simulation study are based on
copulas.” Thus, in this section we provide a brief overview of copulas and show how they can be
used to measure tail dependence. Further details and a complete introduction to copulas can be
found in Nelsen (2006) and Joe (1997).

Loosely speaking, a copula is a function that specifies the link between a multivariate distribu-
tion function and its one-dimensional marginal distribution functions. Formally, a copula can be

defined as a multivariate distribution function with standard uniform margins. With X = (X1, X2)

4The empirical finance literature is far from agreeing on the question how extreme dependence should be measured.
To better understand how researchers deal with the estimation of extreme dependence we provide a survey table of
recent studies on extreme dependence published in the Review of Financial Studies, the Journal of Financial and
Quantitative Analysis, the Journal of Banking and Finance, and others in the period starting from 2006. As one
can easily see from the table in the Internet Appendix, existing studies employ a great variety of different extreme
dependence estimators, reaching from nonparametric to fully parametric and from static to dynamic estimators.

5 Another popular way of measuring tail risk in finance and portfolio management that is based on univariate
distributions is given by the estimation of a sample’s tail risk index.



denoting a two-dimensional random vector with joint density f = (f1, f2) and distribution function
F = (F}, F»), the copula C of the distribution F is given by

C(u1,ug) = F(F ' (w1), Fy ' (ug)) (1)

where F; ! is the generalized inverse of F; and u; € [0,1], i = 1,2.

The theoretical framework of copulas goes back to the work of Sklar (1959) who shows that,
under certain conditions, every copula is a joint distribution function and vice versa. More precisely,
Sklar’s (1959) Theorem states that, if F; and F» are continuous, C exists and is unique. Conversely,
if C is a copula, the theorem states that F' is a joint distribution function with margins Fj, i = 1,2.5

Using (1), the joint density, f, can be expressed as

F(z1,22) = e(Fi(z1), Fo(x2)) - f1(21) f2(22) (2)

where ¢ denotes the density of C'. Hence, the dependence structure can be separated from the
marginal structure implying the following important applications of Sklar’s (1959) Theorem. On
the one hand, we can characterize the complete dependence structure in a multivariate data set
and, on the other hand, are able to generate highly flexible multivariate models.

In our simulation study, however, we shall use copulas to simulate and estimate coefficients of
(lower) tail dependence. Thus, in the following, we discuss the concept of tail dependence and the
computation of tail dependence coefficients.

Intuitively, the concept of tail dependence refers to the amount of dependence in the lower-left
or upper-right quadrant of the joint distribution, F', and thus provides measures for the dependence
between extreme realizations of X; and Xs. More precisely, the coefficient of lower (upper) tail
dependence is defined as the conditional probability that X takes on a realization in the left (right)
tail of F} given that X9 has already realized a value in the left (right) tail of F5. In our simulation
study, we are merely interested in the coefficient of lower tail dependence so that we will exclude
the coefficient of upper tail dependence from the further discussion.”

Formally, the LTD coefficient, 77, is given by
= hﬁ’)lPI‘ (X1 < FM(u)| X2 < Fz_l(u)] . (3)

According to McNeil et al. (2005), we can express 7% in terms of the copula C of the joint distri-
bution F' if the marginal distributions F; and Fb are continuous, and obtain the following simple

formula

L = 1lim 70(% u)
ul0 u

(4)

5Note that Sklar’s (1959) Theorem is not restricted to dimension two but holds for arbitrarily high dimensions.
A general presentation and a formal proof can be found in Schweizer and Sklar (1983).

"Note that the properties and formulas for the LTD coefficient given in this section can be easily transferred to
the coefficient of upper tail dependence. See, e.g., McNeil et al. (2005).



Hence, tail dependence can be viewed as a copula property where the copula C'is said to have lower
tail dependence if 7% € (0,1]. In case of 7% being equal to zero, C has no lower tail dependence

implying that X; and X, are asymptotically independent in the lower tail.®

3 Simulation Study

We now turn to a comparison of various copula-based LTD estimators that are frequently used
in the financial economics literature. We conduct a comprehensive Monte-Carlo simulation study to
investigate the performance of the estimators with respect to different performance metrics as well
as varying simulation environments. We start with a brief overview of the models under study. A
formal description of the models and details on estimation procedures can be found in the Internet

Appendix.

3.1 Models under study

The LTD estimators included in our simulation study comprise three dynamic models allowing
for time-varying LTD coefficients and eight static models which assume that LTD coefficients are
constant over time.”

The dynamic models are based on the ¢ copula which has received much recent attention in
financial modeling and has been shown to be superior to other copulas such as, e.g., the Gaussian
copula (see Demarta and McNeil, 2004). The method of dynamizing the ¢ copula, however, differs
across the three models. The ¢ copula is parameterized by the degree of freedom parameter, v, and
the correlation parameter, p, with the implied LTD coefficient being given in closed form. The first
dynamic model we consider is Patton’s (2006) model that parameterizes time variation in the ¢
copula by assuming an ARMA (1,10)-type process for the correlation parameter, p, to capture both
persistence in correlation and any variation in dependence. We refer to this model as the Patton
model hereafter. The second model dynamizes the ¢ copula by applying Engle’s (2002) Dynamic
Conditional Correlation (DCC) model to copula correlations, which are correlations between the
copula shocks implied by the ¢ copula. This model is denoted as the DCC model in our study.
In the same manner, we also apply the Dynamic Symmetric Copula (DSC) model as proposed by
Christoffersen et al. (2012) to the copula correlations of the ¢ copula and call this model the DSC

81t is worth noting that tail dependence as a concept, i.e., an inherent feature of the copula model that does not
depend on the marginal distributions, is different from tail risk measures such as the Value-at-Risk (VaR) or Expected
Shortfall (ES), which try to capture actual losses and not probabilities in the tail. In particular, tail dependence,
an asymptotic probability, is not the same as moving the quantile 7 N\, 0 when calculating VaR/ES measures, i.e.,
calculating joint losses when going deeper into the left tail. The introduction in Section 1 references a number of
applications in finance and other fields such as hydrology, manufacturing, or energy markets, in which decision makers
are interested in the likelihood of extreme events occurring simultaneously, not necessarily pure joint losses. There
are some approaches in the finance literature that employ both VaR/ES estimates and tail dependence to construct
a more complete measure of financial tail risk (see Agarwal et al., 2017; Chabi-Yo et al., 2019).

9The Internet Appendix provides an overview of the basic copulas underlying the dynamic and static LTD models.



model in the following. Hence, the dynamic LTD estimators can be expressed as

T =2t <— i

with the correlation dynamics being given by

10
pr=A <w + Bpi—1 + alio ;t,,l(ul,t_i)tl,l(ug,t_i)> (Patton) (6)
pt= \/%, Qr=1—0¢—)Q+ Qi1 + 07,17, (DCC) (7)
pt= &7 Qr=01-0—9)[(1—rK)Q+ kD] + Qi1+ ¢z_12, (DSC) (8)

\/ Qn,t@m,t

where w, 8, a, ¢, ¥, ¢, ¥, and & are scalar parameters, Alx) = (1—e ) (1+e %)~ ! is a normalizing
function, uq; and ua; denote the ranks of the residuals from univariate GARCH processes, {2 and Dy
are two-by-two correlation matrices containing constant correlations and time trends, respectively,
and 2§ denotes a vector of (modified) copula shocks.!”

Turning to the static LTD estimators, we first include two mixture copulas in our simulation
study which are based on two different convex combinations of the basic copulas.!! In the spirit
of Chabi-Yo et al. (2018), Rodriguez (2007), and Hong et al. (2007), we select the basic copulas
such that the resulting mixture copula allows for the maximum possible flexibility and is capable
of modeling upper and lower tail dependence as well as independence and asymmetry in the tails.
Accordingly, the first mixture is based on the Joe, Rotated-Joe, and the F-G-M copula and is given
by

Chix,1 = wW1Cj0e + w2C\r0e + w3Cram 9)

where w; € [0,1] for i = 1,2,3 with Z§:l w; = 1. Following the same line of reasoning, the second
mixture is composed of the ¢ copula as well as the Clayton and Frank copula, and can be expressed

as
Chix2 = w1C + w2Cc + w3Clr. (10)

The corresponding constant LTD coefficients can then be computed as

1 VUV A+ 1\/ 1— _1
Téix,l = w9 (2 - 29) and Trﬁixz = 2wity41 (_\/ﬁpp) +2 §w2,

Following existing empirical studies in the finance literature, both mixture models are estimated in

(11)

0Technical details can be found in the Internet Appendix. Note that the DSC model incorporates a time trend
into copula correlations and that setting x = 0 in the DSC model yields the DCC model.
" Tawn (1988) shows that any convex combination of a given (finite) set of copulas is again a copula.



two different ways, respectively. On the one hand, we estimate the mixtures via maximum likelihood
(ML) where the likelihood is maximized with respect to both copula parameters and the weights
at the same time (see, e.g., Ruenzi et al., 2018; Chabi-Yo et al., 2018). The respective models are
denoted as Mix1 g, and Miz2y. On the other hand, we estimate the mixtures via maximizing the
log likelihood function via the Expectation-Maximization (EM) algorithm as proposed by Dempster
et al. (1977) and call the respective models Miz1gy and Miz2g)y (Okimoto, 2008; Chollete et al.,
2009). Note, however, that estimating mixture copulas by maximizing the log likelihood with
respect to both the copula parameters and the weights implicitly assumes that the latter are
observable, which is not the case here. The estimation of mixtures constitutes an incomplete-data
problem which needs to be estimated via the EM algorithm. Being aware of this fact, in our
simulation study we shall investigate how this potential bias translates into the calculation of LTD
coefficients.

Further, we include a static LTD estimator that is based on a regime-switching copula model
and referred to as the RS model. More precisely, we follow Okimoto (2008) and Garcia and Tsafack
(2011) and identify two regimes where we assume the first regime to be Gaussian and the second
regime to be specified by the Clayton copula. Formally, the LTD estimator is based on a mixture

of the regime copulas and thus given by
Crs = 5:Caa + (1 — 5:)Cc (12)

where C'ga and C¢; denote the Gaussian and the Clayton copula, respectively. The variable s; is
a latent state variable taking the values 0 (Gaussian regime) and 1 (Clayton regime) and follows a

Markov chain with a constant transitional probability matrix

1 _
p_ Poo Poo . pi = Pr[s; =i|s;_1 =] for i =0, 1. (13)
l1-pn1  pn

Since the Gaussian copula is asymptotically independent in the tails, the LTD coefficients generated
by this model are based on the LTD coefficient of the Clayton copula which is given in closed form.

Moreover, we include two simple static LTD estimators that are based on the Clayton copula.
The difference between the two estimators lies in the method used for modeling the margins.
While the first estimator is based on a nonparametric approach and uses the empirical distribution
function, the second estimator exploits results from Extreme Value Theory (EVT) and models
the margins semi-parametrically by assuming the Generalized Pareto Distribution (GPD) for the
distribution of excesses and the empirical distribution for the remaining portion. The two estimators
are called CL and CLgyT, respectively.

Finally, we follow Schmidt and Stadtmueller (2006) and include a nonparametric LTD estimator
in our simulation study, denoted as Nonparam. Schmidt and Stadtmueller (2006) build on the
concept of empirical tail copulas and introduce tail dependence estimators that are based on the

empirical copula. Formally, with X; and X5 denoting two n-dimensional random vectors and with



R, = (anJ)j:me and R, o = (Rzn,z)j:l,...m denoting the rank of X; and X», respectively,
they propose the following empirical LTD estimator

1 n
L _ . .
Tm = 1 > LiRi <k and BRI o<k} (14)
i=1

where the parameter k£ needs to be specified adequately. In our simulations and empirical study,
we follow Schmidt and Stadtmueller (2006) and choose k via a plateau-finding algorithm applied
to LTD estimates for successive k (similar to the Hill estimator).

The LTD estimators included in our simulation study are summarized in Table I along with
the expressions for the corresponding LTD coefficients and the correlation dynamics for the time-

varying estimators.

Table I: Lower tail dependence estimators under study.

The table presents the lower tail dependence (LTD) estimators included in our simulation study along with the expressions for
the corresponding LTD coefficients and the correlation dynamics for the time-varying estimators. We consider eight static LTD
estimators (Mix1nyr,, Mix1gnm, Mix2umr,, Mix2gnm, RS, CL, CLgyT, Nonparam) and three dynamic estimators based on different
dynamizations of the Student’s t copula (Patton, DCC, DSC). The notation is as follows: ¢, and t; ! denote the univariate
distribution and quantile function of the Student’s ¢ distribution with degrees of freedom parameter v, respectively; w1 and w2
denote the weights of the mixture copulas. Regarding the correlation dynamics, w, 8, a, ¢, 1, ¢, 1, and k are scalar parameters,
Az)=(1—-e*)(1+ e*””)’1 is a normalizing function, u1,+ and u2 ¢ denote the ranks of the residuals from univariate GARCH
processes, £2 and Dy are two-by-two correlation matrices containing constant correlations and time trends, respectively, and zf
denotes a vector of (modified) copula shocks. The DSC model incorporates a time trend into copula correlations and nests the
DCC model in case of kK = 0. Technical details can be found in the Internet Appendix.

Model LTD estimator Correlation dynamics
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Patt =A _ LS o i)ty Huz,e—i
721 > b =2t,44 (* \/mx/lfpt) P (:+ﬂpt L gzl e
1+pt _ 12,t — (1 — b — sc  zcT
DCC v = e Qu= (1= 6~ )2+ $Qi1 + 6515
DSC pr= =22 Q= (1-¢—P)[(1-rQ+rD] +

\/Q11,6Q22,¢ ’

Qi1 + ézf,lzgfl

Mix 1y, L _ 1 —
MixTrn T = w2 (2 29) =
Mix2mr, L VUFIVI=p -
MixZgn T = 2wty 41 (— e ) + 27 9 we —
RS —
CL TL =2 % —
CLgvT -
n
L_ 1
Nonparam =52 I{Rj <k and R}, ,<k} -
j=1 m,1S m,2S

3.2 Simulation Design

We now present the setup of our simulation study. To investigate the performance of the LTD
estimators introduced in the previous section, we organize each simulation trial into two steps,
a simulation step and an estimation step. In the first step, we simulate copula data and LTD
coefficients from a specified data-generating process (DGP) and generate artificial price return
data on the basis of the simulated copula data. In the second step, we then apply the LTD

estimators to the artificial return data and evaluate the performance by comparing the estimated



LTD coefficients to the true LTD coefficients from the simulation step in terms of an appropriate
performance metric. We repeat these steps a large number of times and evaluate the performance
in each simulation trial, resulting in a vector of values for the corresponding performance metric.'?
In the following, we discuss the two steps in more detail.

The simulation step comprises two tasks, simulating LTD coeflicients and generating artificial
price return data to embed the simulation into an environment that is comparable to real-data
applications. To simulate LTD coefficients which will be assumed to describe the true LTD in-
herent to the data, we identify the three dynamic LTD estimators as the DGPs throughout the
simulation study.'® To simulate from the dynamic models, we first need to specify the parameters
driving the correlation dynamics in equations (6) to (8).'* For increased comparability with real-
data applications, parameter choices are based on the empirical studies in Engle (2002), Patton
(2006), and Christoffersen et al. (2012). Having determined the parameters, we are now able to
conduct the simulation of true LTD coefficients. Using the notation introduced in the previous
section, the simulation involves the following steps.'® First, as a starting point we randomly draw
u® = (uljo,UQy())T from a bivariate standard uniform distribution, Uy ;). Then, we calculate p;
and ¥ using u© and, finally, simulate u(!) from the ¢ copula, Ct%,pl’ implied by a bivariate ¢
distribution with correlation parameter p;. We repeat the latter steps for t = 2,...,T" and generate
true LTD coefficients, (%)L, as well as copula data, (u®)T_,. Estimation of LTD coefficients
in the second step is based on the the series (u(t))g;l. Since copula data are not directly observ-
able, we transform the series (u(Y)L_| into artificial price return data before moving on to the
estimation step. As is standard in the econometrics literature, we assume that the returns come
from a GARCH(1,1) process with zero mean and t-distributed innovations. With 7 = (ry 4, 79,)"

denoting the (artificial) return corresponding to u(*), we thus define

rit =\ hitzit, zit|Fig—1 ~ ty, (15)
hit=ci+ airit_l +bihi 1 (16)

where F; ; denotes the information available on the 7th series up to and including the ¢th observation,
i=1,2and t = 1,..,7. With 6; = (c;,a;,b;,;)" being the parameter vector of the GARCH
processes, we follow the empirical applications in Engle (2002), Kang et al. (2010), Christoffersen
et al. (2012) and set #; = (0.0005,0.1,0.85,5) " and 62 = (0.0001,0.05,0.9,10) " to generate artificial
returns in line with the stylized facts on real price return series. To simulate return data from the

copula data, we set r19 = 120 = 0 and 019 = 029 = 0 as starting points and compute return

2Note that in our baseline simulation approach we simulate 500 data points from the DGP, use the mean squared
error to evaluate performance, and repeat the simulation and estimation step for a total of 1000 trials. Further details
are provided in Section 3.3.

3Note that, due to the time-varying nature of LTD, simulating from the dynamic LTD estimators will provide
simulated LTD coefficients that are comparable to the LTD coefficients implied by real data.

The parameter choices as well as the resulting expressions for the correlation dynamics are given in the Internet
Appendix.

15Technical details on the simulation from the Patton, DCC, and DSC model can be found in the Internet
Appendix.



innovations via z;; = t;z,l (wit)-

Having simulated return data (r®)7_, with (true) LTD coefficients (7%)L_;, the second step
of our simulation study deals with computing estimated LTD coefficients, (%tL)thl, according to
the models discussed in the previous section. Since our LTD estimators are based on copulas
and copula theory requires white-noise residuals for the computation of unbiased LTD coefficient
estimates, we first apply the GARCH(1,1) filter to transform the marginal return series, (r; ;)L ;,
into white-noise series, (4;¢){_;, where a) = (ﬂ17t,ﬁ27t)T. Then, we apply our LTD estimators
summarized in Table T to (@®)7_; to obtain the series (7/)7_; of estimated LTD coefficients. To
evaluate the performance of the LTD estimators, we apply an appropriate performance metric,
11, to the true and the estimated LTD coefficients. Thus, with 7 = (7)., and # = (7F)]_,, the

performance of the corresponding LTD estimator is given by IT = II (7, 7).

Altogether, our simulation study is organized into the following steps:
1. Simulation step

1.1. Draw u(® = (uy 9, u0)" ~ Upo 11-

1.2. Calculate p; and 7{ using u(©).

1.3. Simulate u(!) from Ctg,pl'

1.4. Repeat steps 1.2. and 1.3. for t = 2, ..., T and obtain (7)_; and (u®)L_,.
1.5. Calculate z;; = tljil(ui7t), 1=1,2.

1.6. Compute ;4 = \/hi 2+, where h;; = ¢; + airzt_l + bihi—1 and 10 = hjg = 0.
2. Estimation step

2.1. Apply the GARCH(1,1) filter to (r;+)Z_; and obtain (d;:)},,i=1,2.
2.2. Apply LTD estimators to (@), and obtain (77)L .

2.3. Apply the performance metric to (r£)Z; and (#1)Z; and obtain IT = II (T, #).

These two steps are repeated for a total of N simulation trials resulting in the performance vector
m = (I,

n_q, where 1I,, = II(7,,7,) with 7, and 7, denoting the true and estimated LTD

coefficients drawn from the nth simulation trial.

3.3 Simulation Results

We now turn to the results of our simulation study. We first introduce our baseline approach
and discuss the corresponding results. In the following, we then extend our baseline approach with
respect to the sample size and performance metric and check the robustness of the conclusions drawn
from the baseline approach. Finally, we conduct a ranking approach to identify the best performing

LTD estimator across all simulation settings (i.e., across all sample sizes and performance metrics).
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3.3.1 Does the choice of estimator matter? The baseline approach.

The baseline approach is based on the following simulation setting. Given the notation intro-

duced in the previous section, we set
T
T =500, N=1000, and I =I(r,#)=T"Y (r—#)>" (17)
t=1

That is, performance is measured in terms of the mean squared error (MSE). Thus, we simulate
500 LTD coefficients from the Patton, the DCC, and the DSC model, respectively, and then apply
the LTD models presented in Section 3.1 to the resulting series of artificial returns to generate
estimated LTD coefficients. For each of the three DGPs, these steps are repeated for a total of
1000 trials.

The panels of Table II report descriptive statistics of true and estimated LTD coefficients sep-
arately for each DGP.!6

Note that the estimation of most LTD models included in our study requires removing pseudo observations equal
to 1. To preserve comparability of true and estimated LTD coefficients, we remove the corresponding value from the
series of true LTD coefficients as well, resulting in 499 x 1000 = 499, 000 true and estimated LTD coefficients for the
majority of LTD models.

11
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As can be seen from Panel A of the table, specifying the Patton model as the DGP (according
to the parameterization displayed in the Internet Appendix) leads to true LTD coefficients ranging
from 0% to 98.60%, where the means are close to 16%.!” Comparing the means of the true and
estimated LTD coefficients provides first evidence on the performance of the different estimators.
Regarding the dynamic estimators, the Patton and DCC model show an exceptionally good per-
formance, with the means of the estimated LTDs deviating by approximately 1% from the means
of the true LTDs in absolute terms.'® Not surprisingly, the Patton model, when determined to be
the DGP, is the best performing LTD estimator. The DSC model, however, shows a somewhat
worse performance, with the mean true and estimated LTD differing by more than 7% (in absolute
terms). Turning to the static estimators, the performance deteriorates considerably for most esti-
mators, with the differences in the means increasing dramatically to levels ranging between 3.58%
to more than 37% in absolute terms. Interestingly, the Mix2y;, and Mix2gy model outperform
the DSC model as well as all other static estimators (including the Mix1yr, and Mix1gy model) in
terms of the differences between the means. Further, with respect to the CL and the CLgyt model,
the table shows that modeling the excess distributions of the marginals by the GPD substantially
improves the estimates and decreases the differences in the means from 35% to 24%. The worst
performing estimator is the Nonparam model, with the difference being more than 37% in absolute
terms. These results are supported by the percentiles and the higher moments captured in Panel
A of Table II, which show the superior ability of the dynamic estimators to reproduce the distribu-
tional properties of the true LTD coefficients. Panels B and C show corresponding results for the
cases in which the DCC and the DSC model are specified as the DGP. As can be seen from the
panels, in these cases the true LTDs are 44% and 42% on average, respectively, indicating that the
parameterization of these models leads to remarkably higher LTDs than that of the Patton model.
The main conclusions, however, remain the same.

To further study the performance of the different estimators, we compute and compare the MSEs
across all estimators for each of the three DGPs and report the corresponding results in Table II.
This table presents descriptive statistics of the MSEs and splits up the MSEs into mean squared
positive deviations (denoted as MSE™) and mean squared negative deviations (denoted as MSE™)
to assess whether MSEs result from underestimation or overestimation of true LTD coefficients.
As can be seen from the table, the MSE results confirm the first evidence and support the above
conclusions. Irrespective of the choice of DGP, the dynamic LTD estimators consistently outperform
the static estimators in terms of MSE. Interestingly, when determined to be the DGP, the Patton
model has the lowest average MSE (0.0099) and is the best performing LTD estimator, whereas
the DSC model has a considerably worse (average) MSE of 0.0152 and is the most inaccurate
dynamic LTD estimator. In case of the DCC and the DSC model being the DGP, the DSC
model clearly outperforms the Patton and the DCC model, with the average MSE being around

0.0080 in both cases. Turning to the static LTD estimators, the mixture copula models dominate

T True LTD coefficients are simulated independently and separately for each LTD estimator in each simulation
trial.
8In the following, we will use the terms LTD coefficient and LTD interchangeably.
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the remaining LTD models irrespective of the DGP. When we specify the Patton model as the
DGP, the results are as expected; due to their greater flexibility, the Mix2y1, and Mix2gy model
outperform the Mix1yg, and Mix1gy model as indicated by the consistently lower average MSEs.
Moreover, estimating the mixtures via the EM algorithm yields considerably better results than
ML estimation for both mixture models. Somewhat surprisingly, these results do not hold anymore
for the Mix2y1, and Mix2gy model when specifying either the DCC or the DSC model as the DGP.
As can be seen from the table, in these cases the corresponding average MSEs of the Mix2y, and
Mix2gy model are greater than those of the Mix1yg, and Mix1gy model and increase from 0.0236
to 0.0319 and from 0.0336 to 0.0411 when changing from ML to the EM algorithm, respectively.
Furthermore, the most inaccurate LTD estimates are generated by the CL and the Nonparam
model, with the average MSEs ranging from 0.0698 to 0.1343 and from 0.0629 to 0.1705 across
the DGPs, respectively. Remarkably, with the Patton model being the DGP, the average MSEs
for the two estimators are substantially greater than those resulting from choosing the DCC or
the DSC model as the DGP (e.g., the average MSEs for the CL and Nonparam model decrease
from 0.1343 to 0.0698 and from 0.1705 to 0.0629 when switching from the Patton model to the
DCC model, respectively). Further, confirming the evidence from Table II, the CLgyT model has
a much lower average MSE than the CL model across all DGPs, indicating that the EVT approach
of applying the GPD to the marginal distributions prior to estimating the copula model results in
a material improvement in the accuracy of LTD estimates. More precisely, as shown in Table II,
MSEs of the CLgyt model are roughly half the MSEs of the CL. model on average, irrespective
of the DGP. With respect to under- and overestimation, Table II shows that there is no specific
pattern in the statistics of MSE™ and MSE™ for most of the LTD estimators. In case of the Patton
model, however, approximately 50% of MSE results, on average, from under- or overestimation of
true LTD coefficients across all DGPs. Interestingly, in case of the CL, CLgyT, and the Nonparam
model, the percentages of MSE that on average result from underestimation are consistently low
across all DGPs, ranging from 0.06% (CL, DGP Patton) to 7.18% (Nonparam, DGP DSC) and

indicating that these models systematically overestimate LTD.

3.3.2 How important is sample size? Extending the baseline approach.

When estimating copula models, sample size is a critical issue. In this section, we extend our
baseline approach and examine the performance of the LTD estimators with respect to varying
sample sizes. More precisely, we include two additional simulation specifications that arise from

the baseline approach by altering the number of simulated (true) LTD coefficients, T', from 500 to

19The results discussed above are illustrated and supported by additional figures reported in the Internet Appendix
that plot MSEs separately for each of the three DGPs as well as for each of the LTD estimators studied in our
simulation approach. MSEs remain relatively flat for the dynamic models with sporadic peaks across the simulation
replications for some of the DGP specifications. The MSEs for the static LTD estimators, on the other hand, are
for the most part characterized by considerable fluctuations and a generally higher level than that of the dynamic
estimators’ MSEs. Supporting the evidence from Table II, the mixture copula models show the best performance
among the static estimators, whereas the MSEs of the remaining static models exhibit an increased variability and
magnitude.
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250 and to 1,000, respectively.

The results of the extended simulation approach are illustrated in Figure 1. As can be seen

Figure 1: Average mean squared errors for different sample sizes.

The figure shows average mean squared errors (MSE) for the lower tail dependence (LTD) estimators with respect to
different sample sizes and separately for each of the three data-generating processes (Patton, DCC, and DSC model).
MSE is computed according to MSE = II(,#) = T! Z;‘F:l(n — #)?, where 7 = (11)i—; and # = (#)7_; denote
the series of true and estimated LTD coefficients, respectively. For each LTD estimator, the figure plots three bars
showing the average MSE for each of the three sample sizes considered (7" = 250;500; 1000), where the average is
calculated across a total of N = 1000 simulation replications. The names of the LTD estimators are abbreviated
according to the notation introduced in Section 3.1.
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from the figure, the general conclusions drawn in the previous section remain valid when varying
the sample size, i.e., the dynamic models are the best performing LTD estimators and the mixture
copula models clearly dominate the remaining static models across all three sample sizes. Further,
the figure shows that the performance of the dynamic LTD estimators substantially improves with
increasing sample size, irrespective of the specified DGP. This effect is particularly pronounced
when the DCC model is specified as the DGP. In this case, when increasing the sample size, T,
from 250 to 1,000, the average MSE for the Patton, the DCC, and the DSC model decreases
considerably from 0.0224 to 0.0083, from 0.0224 to 0.0041, and from 0.0146 to 0.0047, respectively.
Put differently, reducing sample size from 1,000 to 250 (that is, by a factor of 4.00) increases the
average MSE by a factor of 2.94 for the Patton model, a factor of 5.46 for the DCC model, and
a factor of 3.11 for the DSC model, leading to a remarkable deterioration in performance. Hence,
we find clear evidence of consistency for the dynamic LTD estimators studied in our simulation
approach so that the dynamic models provide statistically consistent estimates of LTD coefficients.

However, the pattern is not as pronounced for the static estimators. In fact, for most of the
static models, increasing the sample size does not necessarily result in a better performance, i.e.,
decreasing MSEs. Except for the RS and the Nonparam models, which exhibit decreasing (average)
MSEs for increasing sample sizes across all DGP specifications, the relation between performance
and sample size is not as clear for the remaining static estimators.?’ Consequently, we do not find

evidence of consistency for most of the static LTD estimators in our simulation approach so that

29Tn case of the Mixlyr model, for example, we can see from results tabulated in the Internet Appendix that,
when the Patton model is determined to be the DGP, the average MSE slightly decreases from 0.0386 to 0.0370 when
increasing sample size from 250 to 1,000. When specifying the DSC model as the DGP, the average MSE increases
substantially from 0.0212 to 0.0374, implying a worse performance for a greater sample size.
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most static models in our study seem to deliver inconsistent estimates of LTD coefficients.
Overall, the extended baseline approach shows the robustness of our results with respect to
sample size on the one hand, and demonstrates the importance of considering sample size when
estimating LTD models on the other hand. Based on our results, the issue of sample size is
particularly relevant for the dynamic estimators. Increasing the sample size results in a material
improvement in the performance of the estimators, or put the other way round, decreasing sample

size deteriorates LTD estimates substantially.

3.3.3 Is performance measurement crucial? Reevaluating simulation results.

One concern about our simulation study might be the choice of performance metric we used to
evaluate the accuracy of the LTD estimates. Up to this point, performance evaluation exclusively
relied on the mean squared error criterion and neglected any other performance measures. Hence,
in this section we introduce additional performance metrics and check the robustness of the results
presented in the preceding sections with respect to performance measurement. More precisely, we
include three additional performance metrics in the evaluation of our simulation results, namely a
slight variation of MSE (denoted as MSEy) and two metrics based on the absolute deviation between
true and estimated LTD coefficients (denoted as MAD; and MADsy). The additional performance

metrics are computed according to the following formulas

T

MSE, =T 1Y (72 - 72)° (18)
t=1
T

MAD; =T | — 4 (19)
t=1
T

MAD, =T ') |77 - #7]. (20)
t=1

Results on average values of the performance metrics are illustrated in Figure 2 separately for
each DGP, performance metric, and each sample size (T = 250;500; 1,000).?! Figure 2 demon-
strates that the main results and conclusions drawn in the previous sections remain valid when
altering the performance metric, indicating that our findings from above are robust towards perfor-
mance measurement and do not depend on the specific properties of MSE. More precisely, we can
see from the figure that the dynamic LTD estimators clearly outperform the static models across
all DGPs and across all performance metrics, with the superiority becoming increasingly evident as
sample size grows. Further, as in the case of MSE being the performance metric, both MSEy and
the MAD measures decrease with increasing sample size, indicating better performance for larger

sample sizes.??

2'We report a comprehensive result table in the Internet Appendix, from which we retrieve several numerical
examples discussed below.

22 An exception to this pattern is constituted by the Patton model when the DSC model is specified as the DGP.
As shown in the results table in the Internet Appendix, in this setting, average MSE2 and MAD> increase from 0.0083
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Figure 2: Average alternative performance metrics for different sample sizes.

The figure shows average values of the alternative performance metrics for the lower tail dependence (LTD) estimators
with respect to different sample sizes and separately for each of the three data-generating processes (Patton, DCC,
and DSC model). The alternative performance measures include a modified version of the mean squared error
(denoted as MSE2) and two mean absolute deviation measures (MAD; and MAD3), which are computed according
to MSE> = T ' 27| (72 — 72)%, MADy = T™* Y27, |7 — 7|, and MADy = T™2 27 |77 — 77|, where T = (1)/-,
and ¥ = (ﬁ)thl denote the series of true and estimated LTD coefficients, respectively. For each LTD estimator,
the figure plots three bars for each performance metric showing the average MSEs, MAD;, and MAD; for each of
the three sample sizes considered (T° = 250; 500; 1000), where the average is calculated across a total of N = 1000

simulation replications. The names of the LTD estimators are abbreviated according to the notation introduced in
Section 3.1.

DGP Patton

Average MSE / MAD

O.Lﬁ_hj_““_“ﬂﬂ_ﬂ

=

— — 1 [— —
Patton bce DSC Mix1yy Mix1gy Mix2y, Mix2gy RS cL Clevr Nonparam
0.25 7
020 |
B
2
§B15f
3
3
=
g
3010* MAD;
005 |
MSE; |:i |:I
oo [ [ I I I II] I} U Ll
i R e T e T B e e e
Patton bcec DSC Mix1yy Mix1gy Mix2y Mix2gy RS cL Cleyr Nonparam

025 4

020 4 = n=1000

Average MSE / MAD
o
L

B
L

0.05 -

WLJJLJ all ﬁ il i

Patton pcc psc Mixtyy. Mixtey Mix2y, Mix2ey; RS cL Clevr Nonparam

19



Moreover, the mixture copula models are the dominating static LTD estimators across all DGPs,
performance metrics, and sample sizes.

Regarding the mixture copula models, the results do not provide evidence of one of the two
mixture models being superior to the other or of the EM algorithm leading to more accurate LTD
estimates. Further, similar to the results in the previous sections, the CL and the Nonparam model
are the worst performing LTD estimators across all simulation settings, with the performance
metrics being substantially higher than those of the other estimators.?® Assuming the Patton
model as the DGP and a sample size equal to 1,000, for example, average MSEs for the CL and the
Nonparam model is approximately 42 (0.0552/0.0013) and 77 (0.1012/0.0013) times the average
MAD: of the Patton model. As expected, the effect of the EVT approach remains significant across
all DGPs and sample sizes as can be seen from the considerable reduction in the average values of
the MSE and MAD measures for the CLgyT model when compared to the CL. model in Figure 2.

3.3.4 Which estimator performs best? Summary and conclusions.

This section summarizes the results from our simulation study and shortly reviews the most
important conclusions. Table III provides a ranking of the LTD estimators included in our study for
each of the simulation specifications investigated in the previous sections (i.e., for each performance
metric, DGP, and sample size), where each estimator is assigned a number between 1 (best per-
former) and 11 (worst performer). For each performance metric and LTD estimator, the rankings
are summed up and the values of the corresponding performance metric are averaged across all
DGPs and sample sizes (see the last two columns in Table III), with low sums and average values
implying global superior performance (that is, across all simulation settings). The rankings, sums,
and averages reported in the table summarize our general findings, which can be stated as follows.

First, the dynamic LTD estimators clearly dominate the static estimators, with the superiority
of the former becoming increasingly evident with growing sample sizes.?* Among the dynamic
estimators, the Patton model is the best performing model only when at the same time assumed to
be the DGP. Otherwise, the DSC model outperforms the Patton and the DCC model.?® Second,

the mixture copula models are the best performing static LTD estimators, irrespective of the

to 0.0105 and from 0.0679 to 0.0824, respectively.

23In some settings, the RS model performs even worse than the CL or the Nonparam model. These settings are,
however, restricted to the small sample size specifications. When sample size is increased, the performance metrics
consistently decrease to values below those of the CL and Nonparam model.

24 As mentioned before, tail dependence coefficients, i.e., asymptotic probabilities that are an inherent feature
of a copula, are different from other tail risk measures such as VaR or ES. Therefore, the best performing copula
model with respect to tail dependence estimation may not necessarily be the best estimator for VaR and ES figures.
In unreported simulation results for different sample sizes, we see that in fact the mixture models may sometimes
provide better accuracy with regard to VaR and ES measures than dynamic models. However, these differences in
performance, as indicated by MSEs, are not as striking as the differences in MSEs of LTD estimates as shown before.
In short, the performance of dynamic models with respect to LTD coefficient estimates is relatively better than the
performance of static models for VaR and ES.

25Note the corresponding pattern in Table III. When specified as the DGP, the Patton model ranks on first place
for the most part, while the rankings of the DSC model range between the third and fifth place. Changing the DGP
from the Patton to the DCC or DSC model, however, results in the Patton model ranking between the second and
fourth place and the DSC model ranking on first place for most specifications.
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specification of the mixture and the estimation method. Occasionally, when sample size is low
(T = 250), the mixture copula models outperform some of the dynamic LTD estimators, but
as sample size increases, the mixtures considerably underperform the dynamic models.?6 Third,
neither the specification of the mixture nor the estimation method has a distinct impact on the
accuracy of LTD estimates. The two mixture models provide similarly accurate LTD estimates and,
somewhat surprisingly, the bias arising from using the two different maximization strategies for the
log likelihood (one step and the EM algorithm) for estimation of the mixtures does not translate
into a consistent deterioration in performance. Fourth, the worst performing LTD estimators are
the CL and the Nonparam model, where the performance of the former improves significantly
when modified by the EVT approach of applying the GPD to the marginal distributions prior to
estimating the copula. The resulting CLgyT model as well as the RS model fall somewhere in
between the mixture models and the CL and Nonparam model regarding their performance, with
the lowest values of their corresponding performance metrics reaching those of the mixtures and

the highest reaching those of the CL. and Nonparam model.

4 Tail dependence in finance

We now apply selected tail dependence estimators to the universe of U.S. equities from 1980
to 2011 to investigate the economic implications of the choice of tail dependence estimator used
in many empirical asset pricing studies.?” We estimate the Mixlgy model? (as used in, e.g.,
Chabi-Yo et al., 2018), the Patton model as one that outperformed the mixture model, and the un-
derperforming Clayton (EVT) model, and then compute corresponding tail dependence coefficients
for each stock and year.?”

Figures 3 and 4 depict and compare the time series of aggregate LTD and the range between
the 25th and 75th percentile of LTD across the sample for the three tail dependence estimators.
We define aggregate LTD as the yearly cross-sectional and equal-weighted average LTD over all
stocks in our sample (cf. Chabi-Yo et al., 2018). As can be seen from the panels in Figure 3,
the general patterns in the temporal variation of aggregate LTD are similar across all estimators.
Peaking in 1987 (the year of Black Monday), aggregate LTD stayed relatively flat during the 1990s

and has been on a strong and stable upward trend since the turn of the millennium.>* However,

26Note that this difference in performance is also economically relevant. For example, the mean absolute deviation
(MAD;) in Panel C of Table III shows that the average error across all settings for the Patton model is 10.2%, while
the corresponding average deviations for mixture models are between 11.2% (Mix2gm) and 17.9% (Mixlmw), ie., a
spread of 1% to 7.7% (on average).

27 As an example, we further replicate the study by Chabi-Yo et al. (2018) to show that the choice of tail dependence
estimators and the potential, economically large bias can lead to different results in empirical asset pricing studies
involving extreme dependence measures. We refer to the Internet Appendix for a detailed discussion of the replication
procedure and additional portfolio sorts and regression results confirming our prior.

28 As found in Chabi-Yo et al. (2018), the Mix1 model, consisting of the Joe, F-G-M, and the Rotated-Joe copula,
is the most frequently selected convex combination.

2%Here, we concentrate on those dynamic and static LTD estimators/models that have been used in previous
studies on asset pricing to allow for a direct comparison of the results.

30Note that Chabi-Yo et al. (2018) find no specific pattern in aggregate LTD and the estimates of aggregate LTD

22



0l0c S00¢ 000¢ G661 0661 G861 0861 0l0c S00¢ 000¢ G661 0661 G861 0861
| | | | | | | | | | | | | |

- €0 o - €0 5
() lw)
- ¥0 - ¥0
- G0 — G0
uoned
ITEST) = 90 abuel a|nenbiaju| — 90
WIpxpy —— @l eyebaibby —
sl arebaibbe jo uosedwo? (p) |[9pow uolied wouy g7 arebalbby (o)
0102 G002 0002 G661 0661 G861 0861 0102 G002 0002 G661 0661 G861 0861
| | | | | | | | | | | | | |
— 00 — 00
10 — 10
— co0 — co0
- €0 o - €0 5
lw) lw)
— ¥0 — ¥0
— G0 — G0
abues ajsenbiau| — 90 abues ajsenbiau| — 90
QL7 eebaibby — al7eebaibby —
[apow 17379 wouy g1 s1ehaibby (q) jopow W3 | xi|n woly g1 e1ebalbby (e)

"TT0T ‘T€ oquede(d 0} 0K6T ‘T Arenuep woly HYVASYN PUe ‘XHANY ‘ASAN o) U0 SUIpel) S}00Is UOWWOod ‘G () [[e sessedwoous ojdures an() -o[dures o) Ul sIeoA
pue S}201S [[€ IoA0 SWINJSI JoyIeUl PUR SWINSI YO0)S Usomiaq pajndurod SHUSOLFe0d (1]/] [RNPIAIPUL o) JO 98RIsAR Pajdom-[enbs ‘[RUOI)I9S-SSOID o) SB Pauyep
ST (II/] 99e80183y ‘[epouw uojljed oY) pue ‘LAHH ‘WATXI[ oY) Sulpnpoul ‘Apnjs [eouiduwe Ino ut psiojduws sppowr souspusdep [} 991} S} WO PaIRUIIISS
o[dures oy} ssoroe (IJ/] Jo o[1uediad )G, PUR [IGg ) Ueamjoq o8uel o) pue ((IJ/]) ouepuadop [re) 1omo[ 91e30133e Jo uormoad suwl} oy} sordep oInsy oy J,

"OWII] JOAO ddudpuadep IR} I0MO[ 99eFoISTY ¢ 9INFIg

23



the panels show considerable differences in the amount and variation of aggregate LTD across the
estimators, with the less sophisticated estimators implying a greater and more volatile amount of
tail dependence.

Figure 4 investigates the differences in aggregate L'TD across the three tail dependence estima-
tors in more detail. As can be seen from the panels, there are considerable differences between the
estimates from the Patton model and the two static models, whereas the differences between the
estimates from the Mixlgy and CLgyT model are somewhat less pronounced but still significant.
For example, when comparing the CLgyt and Patton model in the lower panel we observe that the
estimated tail dependence is more than twice as high for the former estimator than for the latter
in most of the years.

In line with the results from our simulations, neglecting intra-year time dynamics appears to

have severe consequences for the tail dependence estimates.

are somewhat more erratic and characterized by occasional spikes.
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Figure 4: Comparing aggregate lower tail dependence across estimators.

The panels of the figure compare the time evolution of aggregate lower tail dependence (LTD) across the LTD
estimators included in our empirical study. Aggregate LTD is defined as the cross-sectional, equal-weighted average
of the individual LTD coefficients computed between stock returns and market returns over all stocks and years in the
sample. The estimators included in our study comprise the Mixlgm, CLgvT, and the Patton model. The left-hand
panels show the range between the aggregate LTD coefficients computed from the different estimators (shaded area)
as well as corresponding mean squared errors (MSE, light-gray bars) calculated according to the formula in (17) for
each stock and year in the sample. The right-hand panels directly compare the amounts of tail dependence over
time by means of bar plots. Our sample encompasses all U.S. common stocks trading on the NYSE, AMEX, and
NASDAQ from January 1, 1980 to December 31, 2011.
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5 Conclusion

In this paper, we have demonstrated that several estimators of tail dependence used in the
literature produce severely biased estimates, especially when static models are used to describe
time-varying extreme dependence in data samples. Estimators that do not account for time-varying
tail dependence or that are incorrectly used (e.g., using Maximum Likelihood in finite mixture
models), and nonparametric estimators regularly overestimate the actual level of tail dependence
in simulated samples.

Within financial economics, our empirical findings suggest that several key results from the
literature (e.g., Okimoto, 2008; Kang et al., 2010; Garcia and Tsafack, 2011; Chabi-Yo et al., 2018;
Ruenzi et al., 2018) need to be treated with care as the actual extreme dependence in asset prices,
which often have time-varying dependence structures (see, e.g., Christoffersen et al., 2012, 2018),
could be lower than stated. We confirm this conjecture from our Monte Carlo experiments in an
empirical analysis of the factors that drive the cross-sectional variation of U.S. stocks between 1980
and 2011. Several estimators of tail dependence that have been extensively used in the previous
literature significantly overestimate the level of lower tail dependence inherent in stock returns.

The implications of our article for future investigations into the role of extreme dependence
are simple, yet important. Choosing a static, nonparametric, or statistically incorrectly estimated
model for measuring extreme dependence in random variables invalidates any conclusions drawn
from potential applications. Economic intuition and previous findings in the literature (even from
those studies that later on employ static models) state that extreme dependence in most financial
data (stock, bond, option, CDS prices) is time-varying. Consequently, future studies in this field
need to account for the time-variation in extreme dependence by using sophisticated dynamic

models, of which some have been proposed almost a decade ago.
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