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■■ ABSTRACT

In areas of exceptional exposure, upper-crustal intrusions and their im-
mediate wall rocks commonly preserve direct evidence of the emplacement, 
magma flow pathways, and strains associated with the intrusion process. 
Such excellent exposure is displayed by the Paleogene Maiden Creek intru-
sion—a small satellite body related to the Mount Hillers intrusive complex, 
Henry Mountains, Utah. An intermediate plagioclase-hornblende porphyritic 
magma was intruded into the Entrada Sandstone Formation at an estimated 
depth of ~3 km. The southern part of the intrusion is overlain by the newly 
identified Maiden Creek shear zone (MCSZ): a subhorizontal, top-to-the-WNW 
detachment formed at the contact with the overlying sandstone country rocks. 
From observations of both syn-emplacement deformation and the exposed 
intrusion geometries, it is proposed that the southern Maiden Creek intrusion 
comprises westerly derived, inclined sill sheets. Host-rock sandstones were 
sandwiched (~E–W constriction) between these intrusive bodies beneath the 
MCSZ. It is proposed that the MCSZ is a syn-emplacement magma-driven 
accommodation structure, with a shear sense antithetic to the magma flow 
direction, which played a critical role in accommodating the westerly derived 
sill intrusion. Our results show that inelastic syn-emplacement deformation 
structures, such as the MCSZ, are very important in the accommodation of 
magma in the subsurface. Such small structures are unlikely to be imaged by 
seismic-reflection surveys, highlighting the importance of detailed field studies 
in our understanding of intrusion geometry and emplacement mechanisms.

■■ 1. INTRODUCTION

Large volumes of igneous rock are known to occur in the shallow upper 
crust (upper 10 km) as intrusive bodies, ranging both in size and geometry (e.g., 
Cruden and McCaffrey, 2001; Cruden et al., 2018). Our understanding of the 3D 
geometry and 4D emplacement of igneous intrusions has advanced in recent 
years through improvements in seismic imaging (e.g., Malthe-Sørrenssen et 
al., 2004; Thomson and Schofield, 2008; Magee et al., 2014) and experimental 
modeling (e.g., Kavanagh et al., 2006, 2015; Galland et al., 2009, 2015; Haug et 

al., 2017). However, due to limitations with spatial resolution and appropriate 
rheological modeling materials, respectively, host-rock structures are gener-
ally poorly imaged. Furthermore, over the past few years, there has been a 
growing sense that magma emplacement cannot wholly be assumed to be an 
elastic process (e.g., accommodation by elastic bending; Schofield et al., 2012; 
Haug et al., 2017; Schmiedel et al., 2017; Cruden et al., 2018). Field studies can 
provide insights into subseismic-scale deformation and also emplacement 
processes in natural materials. The incorporation of field observations is there-
fore a key source of evidence to be used in the debate on the mechanics of 
igneous emplacement in the shallow crust. To date, most field-based studies 
of intrusions have focused on the geometry and internal architecture of sills, 
laccoliths, and plutons, using a variety of methods including: field mapping 
of internal contacts and external margins (e.g., Morgan et al., 2008; Magee 
et al., 2012; Wilson et al. 2016); geochronological studies (e.g., Coleman et 
al., 2004; Westerman et al., 2004); magnetic and macroscopic fabric studies 
(e.g., de Saint Blanquat and Tikoff, 1997; Horsman et al., 2005; Stevenson et 
al., 2007); and integration of field and numerical modeling (e.g., Pollard and 
Johnson, 1973). The problem we address here is that few studies have paid 
close attention to the accommodation structures that form in the host rocks 
in direct response to intrusion (e.g., Johnson and Pollard, 1973; Jackson and 
Pollard, 1988; Spacapan et al., 2016; Wilson et al., 2016). The geometry, kine-
matics, displacement (strain field), and deformation mechanisms displayed 
by these accommodation structures must be compatible with the intrusion 
mechanism and magma flow directions, but rarely are these structures dis-
cussed or considered in any great detail.

Three distinct and different types of accommodation structures are associ-
ated with intrusion emplacement. Preexisting structures that are utilized and/
or reactivated during magma emplacement (e.g., Hutton and McErlean, 1991; 
Holdsworth et al., 1999; Magee et al., 2013) are here termed “pre-emplacement” 
accommodation structures. The second type comprises large, tectonically 
driven structures (such as transtensional faults and/or shear zones) that form 
synchronously with magma emplacement, i.e., “syntectonic” accommodation 
structures (e.g., Hutton et al., 1990; McCaffrey, 1992; Neves et al., 1996; Pass-
chier et al., 2005). The third type consists of localized structures that develop 
directly in response to magma intrusion to accommodate the extra volume of 
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rock either laterally or vertically within the host rocks; in this case, deformation 
is driven purely by magma emplacement (e.g., Johnson and Pollard, 1973; 
Spacapan et al., 2016; Wilson et al., 2016). It is this final group of understudied 

“syn-emplacement” accommodation structures and associated physical mech-
anisms that are the most informative with regard to emplacement mechanism 
and are the principal focus of this study.

The present field-based study focuses on a previously undocumented, 
syn-emplacement accommodation structure—the Maiden Creek shear zone 
(MCSZ), which we argue was formed solely during emplacement of the late 
Paleogene Maiden Creek intrusion in the Henry Mountains, Utah (Fig. 1). The 
study combines traditional field mapping and structural studies, microstruc-
tural analysis, and 3D visualization to provide a detailed analysis of the geom-
etries, kinematics, and spatial distribution of the MCSZ in both the intrusion 
and host rocks. We discuss the MCSZ and show how understanding its role as 
a syn-emplacement accommodation structure leads to a significant reinterpre-
tation of the emplacement mechanism for parts of the Maiden Creek intrusion.

■■ 2. GEOLOGICAL SETTING

2.1. Henry Mountains

The Henry Mountains, southeast Utah, form part of the Colorado Plateau 
(Fig. 1A) and are a classic region for the study of shallow-level igneous in-
trusions and their emplacement. Following the ground-breaking research of 
Gilbert in the late nineteenth century (Gilbert, 1877, 1896), a variety of studies 
have been carried out in the range (e.g., Hunt, 1953; Johnson and Pollard, 1973; 
Jackson and Pollard, 1988; Nelson and Davidson, 1993; Habert and de Saint 
Blanquat, 2004; Horsman et al., 2005; de Saint-Blanquat et al., 2006; Morgan et 
al., 2008; Wetmore et al., 2009; Wilson and McCaffrey, 2013; Wilson et al., 2016). 
Five principal peaks (from north to south: Mount Ellen, Mount Pennell, Mount 
Hillers, Mount Holmes, and Mount Ellsworth) make up the Henry Mountains, 
each peak corresponding to an intrusive center (Fig. 1A). The igneous rocks 
are late Paleogene in age (Oligocene, 31.2–23.3 Ma, K-Ar ages; Nelson et al., 
1992), and most are of an intermediate, dioritic composition (58%–63% SiO2; 
Hunt, 1953; Engel, 1959; Nelson et al., 1992). They have a porphyritic texture, 
with dominant plagioclase (An20 to An60; 20%–40%) and hornblende (5%–15%) 
phenocrysts (Nelson et al., 1992). Although broadly consistent in composition, 
the porphyritic textural characteristics vary significantly from one intrusion to 
another (Hunt, 1953; Nelson et al., 1992).

The intrusions were emplaced into a 3–6-km-thick section of late Paleozoic–
Mesozoic sedimentary rocks overlying Precambrian crystalline basement 
(Jackson and Pollard, 1988; Hintze and Kowallis, 2009) and postdate minor 
Laramide orogenic activity (Late Cretaceous to early Paleogene in age; Davis, 
1978; Davis, 1999) in the Colorado Plateau. Although Laramide structures are 
present locally (Davis, 1978; Jackson and Pollard, 1988; Bump and Davis, 2003), 
the strata into which the Henry Mountains intrusions are emplaced are nearly 

flat lying (Jackson and Pollard, 1988). Lack of significant pre- and post-em-
placement tectonism aids the preservation of both intrusion geometries and 
emplacement-related deformation structures.

2.2. Maiden Creek Intrusion

A number of small satellite intrusions flank the north and northeast mar-
gins of Mount Hillers (Fig. 1A). Due to the excellent exposure giving access to 
3D intrusion geometries, a number of these intrusions have been studied in 
detail and are considered to be classic examples of sill and laccolith intrusions 
(e.g., Gilbert, 1877; Hunt, 1953; Johnson and Pollard, 1973; Habert and de Saint 
Blanquat, 2004; Horsman et al., 2005; de Saint-Blanquat et al., 2006; Morgan 
et al., 2008; Horsman et al., 2009; Wilson et al., 2016). The Maiden Creek body 
forms one of the most distal satellite intrusions of the Mount Hillers complex, 
lying ~10 km NE from the main intrusive center (Fig. 1A). Neighboring sat-
ellite bodies include the Sawtooth Ridge, the Black Mesa bysmalith, and the 
Trachyte Mesa intrusions.

The Maiden Creek body is a small (~1 km2 in map view; Fig. 1B), sub
horizontal intrusion and has been referred to as a sill in previous studies 
(e.g., Hunt, 1953; Johnson and Pollard, 1973; Horsman et al., 2005, 2009). It 
intrudes, and is concordant with, the Entrada Sandstone Formation of the 
Jurassic San Rafael Group (Gilbert, 1877; Hunt, 1953; Johnson and Pollard, 
1973; Horsman et al., 2005). From the abundance of lateral contacts between 
the intrusion and its host rocks, Horsman et al. (2005) proposed that it is 
formed by a main sill-like body (with a tabular geometry in 3D and elliptical 
in map view) with four protruding, finger-like lobes: a pair of lobes trending 
roughly NE–SW in the northeast and a second pair trending ~N–S to the south 
(Fig. 1B). Horsman et al. (2005, 2009) discussed evidence for two vertically 
stacked bulbous terminations along the intrusion margins and highlighted 
a narrow band of solid-state fabrics within the intrusion. On this basis, they 
suggested that the intrusion consists of two vertically stacked igneous sheets, 
with the later sheet intruded above the first (i.e., an example of over accre-
tion; Menand, 2008) and with an almost identical thickness and extent to the 
first. The southern pair of intrusive lobes forms the focus of the present paper 
(Figs. 1C and 1D; Supplemental Materials 11) due to the excellent exposures 
of intrusion–host-rock contacts and abundance of syn-emplacement accom-
modation structures (Fig. 2).

Petrographic analyses show that away from regions of deformation close 
to the margins, the intrusion has a porphyritic texture dominated by subhe-
dral- to euhedral-zoned plagioclase laths (≤10 mm in size with an average of 
~3 mm) and hornblende needles (≤5 mm in length) set within a fine-grained 
matrix with similar mineralogy to that of the phenocrysts (Figs. 3A and 3B). The 
sample shown in Figures 3A and 3B exhibits textures typically seen over much 
of the intrusion; internal deformation appears to be minimal, with euhedral 
phenocrysts preserving crystallization textures (e.g., twinning and pseudo-os-
cillatory zoning in the plagioclases and cleavage in the hornblendes; Fig. 3B). 

1 Supplemental Materials 1. Google Earth™ project 
(.kmz file) with locations of structural stations. Please 
visit https://doi.org/10.1130/GES02067.S1 or access 
the full-text article on www.gsapubs.org to view Sup-
plemental Materials 1.
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Figure 1. Maps of Henry Mountains, Maiden 
Creek Intrusion, and study area. (A) Simpli-
fied geologic map of the Henry Mountains 
region and its location within Utah (from 
Wilson et al., 2016; adapted from Morgan 
et al., 2008). (B) Aerial photograph over the 
Maiden Creek intrusion, a satellite intrusion 
to the Mount Hillers Complex (see 1A). The 
extent of the igneous outcrop is shown in 
blue, while proposed subsurface outline in-
trusion (Horsman et al., 2005) is depicted by 
the yellow dashed lines. Solid white lines 
show steep intrusion-sandstone contacts 
(lateral edges), while dashed white lines 
show subhorizontal contacts (intrusion top 
surface overlain by sandstone). (C) Aerial 
photograph of the study area around the 
two southern intrusive “lobes” (area high-
lighted in 1B). Topographic contours every 
25 m, bold every 100 m. (D) Geologic map 
of the northern section of the gully (area 
highlighted in 1C). Shear zone depicted 
by pink line; lateral intrusion contacts in 
red. Structural stations (field localities) are 
shown by black circles with white outlines 
(see also Google Earth™ kmz file in Supple-
mental Materials 1 [text footnote 1]); laser 
scan stations are shown by pink triangles; 
bedding measurements shown in black. 
Note viewpoint locations for panoramic 
photographs in Figure 2. MCSZ—Maiden 
Creek shear zone; Sst—sandstone.
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scan station 1, looking west. (C and D) Screen captures from 3D laser scan models (in RiSCAN PRO) showing extent of igneous outcrop (teal color) and extrapolated surface of Maiden 
Creek shear zone (MCSZ). Orientations roughly correspond to panoramic photograph views in (A) and (B). See Figure 1D for photograph and scan station locations.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/15/4/1368/4805523/1368.pdf
by Durham University user
on 01 August 2019

http://geosphere.gsapubs.org


1372Wilson et al.  |  Magma-driven accommodation structures during sill emplacementGEOSPHERE  |  Volume 15  |  Number 4

Research Paper

500 µm 500 µm 

15 cm SN

NESW 2 m

MCSS-14

500 µm 

Plg.

Hbl.

SW NE50 cm

Cross-bedded sst.

Interlayered siltstone & shale

Sst.

Sst.

D
ef

. B
an

d

B

D

F

A

E

C

Figure 3. Field and thin-section photographs 
of study area lithologies. (A and B) are of 
the Maiden Creek intrusion. (C–F) are of the 
Entrada Sandstone Formation (host rock). 
(A) Outcrop example of freshly exposed in-
trusion surface showing undeformed por-
phyritic texture ~10 cm below intrusion 
top surface. (Note: Compass-clinometer 
is resting on chilled intrusion top surface.) 
Sample shown in (B) is from an equiva-
lent outcrop to this. (B) Photomicrograph 
(at 5× magnification, plane polarized light 
[PPL]) of an undeformed intrusion (inter-
mediate plagioclase-hornblende porphyry) 
sample collected from the Maiden Creek 
study area. Note large (0.5–5 mm) euhedral 
zoned plagioclase (Plg.) and smaller (0.1–
0.5 mm) hornblende (Hbl.) phenocrysts in 
a fine crystalline matrix. (C) Outcrop photo-
graph showing white and red cross-bedded 
aeolian Entrada Sandstone around Maiden 
Creek. (D) Example of thin interlayered 
siltstone and shale beds between two 
sandstone (Sst.) horizons (protolith to the 
Maiden Creek shear zone). (E and F) Photo
micrographs of: (E) undeformed Entrada 
Sandstone showing significant porosity 
(blue dye) taken under PPL; and (F) example 
of deformed Entrada Sandstone sampled 
~1 m above the top surface of the Maiden 
Creek Intrusion (note grain-size reduction 
due to cataclastic deformation and calcite 
cementation infilling pore space).
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However, narrow (<1 cm) discrete shear zones have also been identified within 
the intrusion (Horsman et al., 2005). In these shear zones, stretching of feld-
spars is apparent, reflecting local deformation in the solid state.

2.3. Host Rock—Entrada Sandstone Formation

The Entrada Sandstone is composed of white and red cross-bedded aeolian 
sandstones and red and brown silty sandstone beds (Fig. 3C), interlayered 
with thin siltstone and shale beds (Fig. 3D; Aydin, 1978). Petrographic analysis 
of the Entrada Sandstone in the Maiden Creek area suggests that the sand-
stone is subarkosic (Fig. 3E) with dominant quartz grains (>90%) and minor 
feldspar (plagioclase and microcline) and lithic fragments (~5%–10%). The 
average grain size is ~0.15 mm (Fig. 3E), although larger grain sizes are mea-
sured in some layers (Aydin, 1978). Undeformed Entrada Sandstone is highly 
porous, with porosities ranging between 15%–35% (Fig. 3E). Cementation is 
patchy (~3%–5% of the rock), with calcite spar being the most common cement 
(Fig. 3E), although Aydin (1978) also reported siliceous and pelitic cements 
within some layers. The highly porous sandstone is ideal for the formation of 
compactional and cataclastic deformation bands (Fig. 3F; Aydin, 1978; Aydin 
and Johnson, 1978; Aydin and Johnson, 1983; Fossen et al., 2007), which can 
help to record even quite modest strains related to magma emplacement 
processes (Morgan et al., 2008).

■■ 3. GEOMETRY OF THE MAIDEN CREEK INTRUSION

3.1 Fieldwork Methodology

Detailed kinematic and geometrical analyses were carried out at numerous 
outcrops across the study area (Figs. 1C and 1D). At each structural station, a 
representative structural data set was collected, including: deformation type; 
geometry; kinematics; phase and timing; and character. A minimum of 30 mea-
surements were recorded per structural station (>50 in areas of high intensity de-
formation). In addition, oriented samples of key structures and rock units were 
collected for thin sectioning and petrographic and microstructural analyses.

The geomorphology and intrusion–host-rock geometries in the bedrock 
of the southern Maiden Creek study area are highly complex and difficult to 
visualize from description alone. It is also difficult to capture the 3D geometry, 
structural complexity, and spatial distribution of the geological observations 
using conventional mapping methods. Digital mapping and virtual outcrop 
methods have the capability to help with visualizing complex structures and 
to aid in the integration of multiple, spatially accurate data types (e.g., Bellian 
et al., 2005; McCaffrey et al., 2005; Buckley et al., 2008; Jones et al., 2009a, 
2009b; Wilson and McCaffrey, 2013). Terrestrial laser scanning (TLS) acquisi-
tion, processing, and interpretation, although time consuming and expensive, 
have helped in the creation of a 3D structural framework as well as providing 

a useful virtual image of the outcrop (Fig. 2 and fly-through movie in Supple-
mental Materials 22).

TLS was carried out at four scan stations (Fig. 1C), using a Leica ScanStation 
C10, to acquire color point-cloud data that were georeferenced using AshTech 
Pro 3 DGPS data sets (Fig. 2). A combination of rapid, low-resolution (360° 
view angles) and high-resolution laser scans of intrusion contact zones in the 
southern Maiden Creek study area were acquired over the period of one day. 
Structural interpretation of the laser scan data helps create a 3D geological 
framework model of emplacement-related deformation structures and their 
relationship to the overall geometry of the exposed intrusion (Fig. 2). TLS 
also aided the capture of fracture and bedding geometries from inaccessible 
outcrops. The laser scan data were sufficiently detailed to also allow the spa-
tial variation of fracture attributes to be measured (e.g., fracture geometry, 
connectivity, and spatial correlation).

3.2. Mesoscale Intrusion–Host-Rock Geometries

The topography of the area is dominated by two gullies. The first is a 
roughly N–S–trending gully (Rattlesnake Gully; Figs. 1D and 2) that is geo-
logically controlled, flanked on either side by exposures of igneous rock with 
steeply dipping and highly eroded sandstones sandwiched in-between (Fig. 2). 
The second is a narrow E–W–trending gully—a more recent geomorphological 
feature formed by incision of the Maidenwater Creek (Fig. 1).

Cropping out to the east of Rattlesnake Gully is a continuous, elongate, 
roughly N–S– trending, ~400-m-long ridge composed of igneous rock that 
Horsman et al. (2005) described as a “finger-like lobe”; this ridge is referred 
to in this study as the eastern lobe (Figs. 1B–1D, 2, and 4A).

Aerial photographs show that the margins of the eastern lobe are gently 
curved and bow outwards and to the east (Figs. 1B–1D). The intrusion–host-
rock contacts of the eastern lobe are best exposed at the head of the gully 
(Fig. 2). Less well exposed igneous outcrops also occur along the western flank 
of Rattlesnake Gully and are here termed the western lobe (Figs. 1B–1D and 2). 
The E–W–trending incision, formed by the Maidenwater Creek (Figs. 1B–1D), 
provides excellent 3D exposure through both the eastern and western intrusive 
lobes. The part of the incision cutting the eastern lobe is known locally as Secret 
Nap Gorge (Figs. 1D, 2A, 2B, and 4A), while that part of the incision cutting 
the western intrusive lobe forms an amphitheater dominated by a pillar-like 
outcrop known as “The Pussycat” (Figs. 2, 4B, and 4C). Within this amphi-
theater, the geometry of the eastern margin of the western lobe is especially 
well exposed: the intrusion top contact is relatively flat-lying (Figs. 4B and 4C), 
while the lateral contact shows a distinct angular hour-glass geometry (Fig. 
4C), with upper and lower portions of the intrusion protruding further into the 
adjacent host rock than in the middle portion. Similar hour-glass geometry is 
also observed on the eastern margin of the eastern lobe. A distinct structural 
zonation is also apparent within the intrusive lobes: subhorizontal faults and 
fractures dominate the upper 5 m of the intrusion, while subvertical fractures 

2 Supplemental Materials 2. Fly through movie of ter-
restrial laser scan (TLS) model. Please visit https://
doi.org/10.1130/GES02067.S2 or access the full-text 
article on www.gsapubs.org to view Supplemental 
Materials 2.

Downloaded from https://pubs.geoscienceworld.org/gsa/geosphere/article-pdf/15/4/1368/4805523/1368.pdf
by Durham University user
on 01 August 2019

http://geosphere.gsapubs.org
https://doi.org/10.1130/GES02067.S2
https://doi.org/10.1130/GES02067.S2
https://doi.org/10.1130/GES02067.S2
http://www.gsapubs.org


1374Wilson et al.  |  Magma-driven accommodation structures during sill emplacementGEOSPHERE  |  Volume 15  |  Number 4

Research Paper

30mSSW NNE NNESSW

Concordant sst.
beds below

Sub-horizontalintrusion–host rock contact(g)

E W

MCSZ

Subhorizontal
Faults & Fractures

Subvertical
Fractures

10m

MCSZ The Pussycat

SSE NNW

Western
Lobe

10m

Less deformed,
subhorizontal sst.

MCSZ
MCSZMCSZ

Intensely
deformed sst.

Western Lobe
EW 20m

SN
30m

Secret Nap
Gorge

Eastern Lobe

Truncated sst.
beds at contact

Rattlesnake
Gully

Contemplation
Peak

5cm SN

The Pussycat

(d)

Eastern Lobe

Ig

Ig

Sst

Sst

Ig

Sst
Ig

C

E

G

D

B

A

F
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predominate below (Fig. 4D). Outcrops exhibiting the basal intrusion–host-
rock contact are limited. Basal intrusion–host-rock contacts are not observed 
in Rattlesnake Gully (Fig. 2), but a subhorizontal lower contact is seen on the 
outer eastern margin of the eastern lobe (Figs. 4F and 4G).

Sandstones in Rattlesnake Gully appear highly deformed (Figs. 2 and 5). 
This contrasts sharply with the exposures of the same sandstone units in 
the hillsides above (Figs. 2 and 3C) and also with those located at the same 
stratigraphic level outside the gully and adjacent to the outer margins of the 
two intrusions, which show only minor deformation. Detailed mapping shows 
that a subhorizontal detachment surface, the Maiden Creek shear zone (MCSZ; 
Fig. 5B), separates the deformed rocks in the gully from those overlying the 
intrusions. The bedding in the little to moderately deformed rocks above the 
MCSZ is shallowly dipping (~10°) to the SE (Fig. 6A). A far greater spread of 
measurements for bedding occurs in the gully below the MCSZ, where sand-
stones occur between the two intrusive lobes. Here, the sandstone bedding 
is folded into a synclinal structure with convex limbs—meaning that the fold 
tightens into the center of the gully. A subvertical fold axial plane trending 
~SSE–NNW can be traced along the center of the gully (Figs. 5C and 6D–6G).

■■ 4. DEFORMATION STRUCTURES

Deformation structures observed in the intrusion host rocks include defor-
mation bands, faults, tensile joints, stylolites, and pencil cleavage (Figs 5–7). 
Deformation structures and styles change markedly above and below the 
MCSZ detachment surface (Figs. 5A and 5B), as illustrated by comparison of 
the orientation data shown in Figure 6.

4.1. Deformation Structures above the MCSZ

The gently dipping sandstone beds (Figs. 3C and 6A) above the MCSZ are 
commonly cut by shear and tensile fractures. Smaller offset shear fractures 
are deformation bands (Figs. 5C and 6A), characterized by narrow (mm-scale) 
zones of cataclasis, calcite cementation, and resulting collapse of porosity 
(Fig. 3F). These bands typically have a decimeter- to meter-scale spacing and 
represent a low- to moderate-deformation intensity (Fig. 5C). The deforma-
tion bands commonly show subcentimeter-scale normal offsets of bedding 
(Fig. 5C). They collectively exhibit a dominant NE-SW trend but are locally 
more varied in orientation and polymodal (e.g., Reches, 1987; Krantz, 1989; 
Fig. 6A). Larger shear fractures with clear kinematic indicators and princi-
pal slip surfaces are also observed. For the purposes of this study, we have 
classified these fractures as faults. In the sandstones above the MCSZ, these 
faults dominantly trend N-S and show normal dip-slip movements (i.e., E–W 
extension; Fig. 6A). A set of steeply dipping tensile joints trend WNW–ESE and 
are oriented roughly perpendicular to the deformation bands (Fig. 6A). These 
joints commonly have a decimeter- to meter-scale spacing.

4.2. Deformation Structures below the MCSZ

Porosity-reducing deformation bands are prolific beneath the MCSZ and are 
associated with the fold in the sandstones. They occur with centimeter-scale 
spacing immediately below the MCSZ, increasing in intensity (mm spacing) to-
ward the synclinal hinge. In contrast to the deformation bands found above the 
MCSZ, strike-slip and reverse offsets of bedding are dominant here (Figs. 6E–6I). 
Although the orientation of deformation bands varies spatially (see below), two 
distinct conjugate trends are apparent: ~SSE–NNW and ~ENE–WSW (Fig. 6C).

Sandstone beds flanking the western intrusive lobe show stepped (kink-band) 
geometry as they steepen into the syncline hinge (Figs. 5D and 5E). This occurs 
due to the presence of several vertical deformation band corridors trending ~NW–
SE (Fig. 5D). This stepped geometry is less apparent on the beds flanking the 
eastern lobe. Instead, a clear rotation of deformation bands and fractures into 
the fold core mimics the steepening of the beds toward the gully center (Fig. 5F).

As the intensity of deformation increases toward the center of Rattlesnake 
Gully, deformation bands start to take on a character more akin to a fracture 
cleavage (i.e., discrete fracture planes rather than narrow zones of deformation). 
Two distinct conjugate planes are apparent, trending SSE–NNW, parallel to 
the fold axis (Fig. 6C). The fold core in the center of the gully is characterized 
by the development of a zone of mm-scale pencil cleavage arising from the 
intersection of these conjugate fracture cleavage planes (Figs. 5A–5H). Pencil 
cleavage intersections plunge shallowly to the SSE and parallel the synclinal 
fold axis (Fig. 6C). Deformation intensities within the fold core are high, and 
bedding laminations are obliterated.

Numerous fault planes (fractures and deformation bands with clear kine-
matic indicators) are observed in the sandstones flanking the eastern lobe (Fig. 
5I). These faults show strike-slip kinematics (from slickenlines and cm-scale 
offsets on deformation bands and cross-beds) and form a conjugate system 
of NNE–SSW dextral and ENE–WSW sinistral structures (Figs. 5I and 6C). They 
are consistent with NE–SW shortening and SE–NW extension. These faults are 
also observed cross-cutting the intrusion–host-rock contact (Fig. 7).

4.3. Deformation Structures at the Intrusion-Sandstone Contacts

Deformation structures observed at the intrusion-sandstone contacts in-
clude: strike-slip faults, mineral stretching lineations, low-angle faults, and 
stylolites. These structures have different spatial distributions relative to the 
upper and lateral margins of the intrusion.

4.3.1. Lateral Margin

The western lateral margin of the eastern lobe (i.e., within Rattlesnake Gully) 
is structurally controlled with sandstone flexed and truncated by a steep intrusive 
contact. Through detailed outcrop studies, faults can be traced continuously from 
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Figure 6. Summary stereoplots of 
field structural data. Equal area, lower-​
hemisphere stereoplots of data show-
ing poles to planes (contoured) sorted 
by spatial location with respect to 
the Maiden Creek shear zone (MCSZ). 
(A) Bedding and deformation struc-
tures in sandstone above the MCSZ. 
(B) Deformation structures within the 
MCSZ and on the top surface of the 
igneous lobes (mineral stretching lin-
eations shown in rose diagram plot; ra-
dial marks depict 5% intervals of total 
percentage of measurements). (C) Bed-
ding and deformation structures in the 
sandstone gully below the MCSZ and 
between the southern igneous lobes. 
Mean planes for distinct cluster popu-
lations are shown for each plot. Fault 
and shear zone plots also show fault 
slip lines with movement direction in-
dicated (red solid fill—normal fault slip; 
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lobe (E) and at the igneous-sandstone contact (F). Ig—
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the sandstone into the neighboring intrusion (Figs. 7C and 7D). Conjugate faults 
trending parallel to those in the neighboring sandstone appear to control the 
geometry of the intrusion–host-rock contact, leading to a jagged intrusion mar-
gin (Figs. 7C and 7D). Exposed fault surfaces preserve subhorizontal, strike-slip 
slickenlines (Figs. 7E and 7F) at the intrusion-sandstone contact. Minerals within 
the intrusion are stretched and/or sheared parallel to the fault planes (Fig. 7D).

Along the eastern margin of the western lobe, similarly structurally controlled 
intrusion margin geometry is observed (Figs. 4C and 8). Below “the Pussycat” 
outcrop (Figs. 2, 4B, and 4C), faults within the sandstone can be observed dipping 
parallel to the intrusion contact (Fig. 8). Due to the inaccessibility of parts of this 
outcrop, TLS was utilized to capture fault geometries (Fig. 8C). Fault planes were 
constructed in GoCAD™ (Fig. 8D) from interpreted polylines (RiSCAN PRO). A set 
of shallowly dipping conjugate reverse faults were identified, trending SSE-NNW, 
consistent with fault geometries seen in neighboring accessible outcrops (Fig. 8F).

4.3.2. Upper Intrusion

Immediately below the MCSZ, a locally strong linear fabric defined by 
aligned, stretched plagioclase phenocrysts is developed in a narrow zone, up 
to 10 cm thick, located on the top surfaces of both the eastern and western 
intrusive lobes (Figs. 9A–9C). Two trends are observed (Fig. 5B): a dominant 
~E–W trend (086°–266°), observed at multiple locations on both intrusive lobe 
top surfaces; and a weaker ~N–S trend. Stretched plagioclase phenocrysts are 
also observed along discrete subhorizontal shear bands in the uppermost 5 m 
of the intrusion (Figs. 4D, 4E, and 9A).

Low-angle fault planes bisect the upper few meters of the western intrusive 
lobe (Figs 4D, 6B, and 9D). These fault planes trend parallel to the ~N–S strike of 
the intrusion margin and dip shallowly (~20°) to the west (Fig. 6B). Slickenlines 
and lunate fractures on these slip surfaces indicate top-to-the-west kinematics 
(Figs. 6B and 9D). Similar low-angle fault planes can be seen within highly 
altered sandstones directly above the intrusion of the western lobe (Fig. 9E). 
These country rock–hosted, low-angle faults exhibit a soft, white precipitate 
along fault surfaces, suggesting that they likely acted as fluid conduits during 
alteration of the sandstone.

Stylolites are observed within ~5-m-thick horizons of altered sandstone 
located immediately above the intrusive lobes (Figs. 6B and 9E–9G). The stylo-
lites occur on a centimeter to meter scale and are relatively simple in character, 
forming a wave-like surface (Fig. 9F), dipping shallowly to the SE (Fig. 6B). 
They are typically oriented parallel to both the sandstone beds in which they 
are found and to the underlying top surface of the intrusion (Figs. 6A and 6B).

4.4. Spatial Distribution of Deformation Structures

Deformation structures and geometries vary across and along the gully (Fig. 10). 
The strike of the deformation structures generally parallels the trend of the nearest 

parts of the eastern and western intrusive lobes; i.e., ~SSE–NNW at the head of 
Rattlesnake Gully, rotating to ~N–S moving to the south (Fig. 10). In the south, 
where the gully opens out, the sandstones only appear flanked by intrusive rocks 
to the west, and here deformation structures switch orientation to an ~E–W trend 
(see localities MCSS-28 and MCSS-30 in Fig. 10). Deformation structures through-
out most of Rattlesnake Gully are contractional. However, the ~E–W–trending 
structures in the south display characteristics more typical of opening “mode 1” 
joints (i.e., extensional). These structures are oriented perpendicular to the dom-
inantly constrictional deformation bands seen within the rest of the gully (Fig. 10).

Adjacent to the eastern lobe, a number of small faults can be seen cross-
cutting and shaping the sandstone-intrusion contact (Fig 7). The kinematics on 
these faults appear to change, traversing from north to south along the margin. 
Starting in the NE of Rattlesnake Gully (Fig. 10), these faults are dominantly 
strike-slip faults (Figs. 5C, 6I, 7, and 10), while in the south, dip-slip reverse 
kinematics dominate (Fig. 10).

■■ 5. MAIDEN CREEK SHEAR ZONE (MCSZ)

The Maiden Creek shear zone is a previously undocumented thin (<1-m-thick) 
shallowly dipping structure that separates weakly deformed sandstone above 
from highly deformed sandstones (within Rattlesnake Gully) and sheared in-
trusive top surfaces below (Figs. 5 and 11).

5.1. Outcrop Observations and Spatial Extent

The best exposure of the MCSZ lies at the head of Rattlesnake Gully, at the 
base of a ~2-m-high sandstone cliff face created by the shear zone eroding more 
easily than the surrounding host sandstones (Figs. 5A, 5B, and 11). Here the 
shear zone in the sandstones is subhorizontal and characterized by a series of 
shallowly (<25°) ESE-dipping shear planes with ESE–WNW–trending slicken-
lines preserved on upper and lower shear plane surfaces (Fig. 6B). It appears 
to be at its thickest in this location, measuring ~0.6 m thick (Figs. 11B and 11C). 
On subvertical surfaces that parallel the movement direction, C-type shear 
fabrics (Passchier and Trouw, 2005) indicate top-to-the-WNW kinematics (Figs. 
6B and 11C). The shear zone exhibits a strong foliated fabric with an interlay-
ered sequence of thin (cm-scale) clay-rich brown layers, more competent hard 
red sandstone layers, and sigmoidal quartz lenses (up to 10 cm long; Fig. 11C). 
The lithologies here are similar to undeformed thin siltstone and shale beds 
observed locally within the Entrada Sandstone Formation (Fig. 3D), and it is sug-
gested that these rocks are the most likely protolith for the shear zone materials.

The MCSZ can be traced laterally onto the top surface of both intrusive 
lobes, although exposures are better on the western lobe (Figs. 11D and 11E). 
Here the shear zone is <15 cm thick, and shear fabrics are difficult to iden-
tify due to a lack of 3D exposures and inaccessibility. However, ESE–WNW 
slickenlines can still be recorded on lower and upper shear surfaces (Fig. 6B).
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On the upper surface of the western lobe, a discrete shear zone becomes 
harder to identify. However, deformation structures consistent with the kine-
matics of the MCSZ are still abundant in the uppermost 5 m of the intrusion. 
These include the ~E–W stretched plagioclase phenocrysts and low-angle 
(top-to-the-west) faults in both the intrusion top surface and overlying altered 
sandstones (Figs. 6B and 9). These structures are all kinematically compatible 
with top-to-the WNW shear. Subparallel stylolites are also spatially coincident 
with these structures on the top surface (Fig. 9F).

5.2. Shear-Zone Microstructures

Microstructural analysis was carried out on samples collected from the 
MCSZ (locality MCSS-0; Figs 11 and 12). In a vertical polished section, cut 
normal to the shear zone fabric and parallel to the stretching lineation and 
movement direction (i.e., ESE–WNW), a clear layered and foliated fabric is 
apparent (Fig. 12A). Localized detachment surfaces (i.e., principal slip surfaces) 
separate broader, more distributed zones of deformation. These zones of de-
formation appear to reflect a distinct lithological layering, with quartz-domi-
nated (sandstone) layers dispersed between layers of clay- and feldspar-rich 
(shale and siltstone) zones (white and brown layers, respectively, in Fig. 12).

Deformation microstructures within these different zones include: inclined 
fault surfaces and tensile fractures (Fig. 12B); S–C fabrics (Figs. 12C–12E); 
pressure solution seams and development of fibrous overgrowths (Fig. 12E); 
winged objects (σ-type porphyroclasts; Figs. 12C, 12E, and 12F); and zones of 
ultra-cataclasite. A number of different shear fabrics and kinematic indicators 
are apparent. Both C-type (Figs. 12C and 12E) and C′-type (Fig. 12D) shear fab-
rics can be identified. Tails of cataclastic material are also observed adjacent 
to some larger clasts (Figs. 12E and 12F). These all show non-coaxial defor-
mation with a top-to-the-WNW shear sense, consistent with field observations.

Grain-scale deformation mechanisms appear to be dominated by brittle 
fracture, cataclastic flow, and fluid-assisted pressure solution, the latter leading 
to the development of the distinct foliation. Cataclastic deformation appears 
to predominate in the quartz-rich (sandstone) layers, although brittle faults 
and tensile microfractures are apparent throughout.

Microstructural analyses of sheared and stretched plagioclase feldspars 
within the top surface of the intrusion also demonstrate asymmetry with tails 
and Riedel shear fracture planes consistent with a top-to-the-WNW shear 
component (Fig. 9C). Deformation mechanisms again are dominantly brittle 
(e.g., fracturing and cataclastic flow).

5.3. Variations in Deformation Character

As outlined above, the style of deformation associated with the MCSZ ap-
pears to vary spatially across the top surfaces of the lobes (Fig. 13). Two dis-
tinct domains are recognized: (1) the sandstone on sandstone domain (as seen 

in Rattlesnake Gully); and (2) the sandstone on intrusion domain on the top 
surface of the igneous “lobes” (Fig. 12).

In the “sandstone on sandstone” domain, the MCSZ is characterized by 
sharp, well-defined principal slip surfaces located at the top and base of a 
discrete horizon of shear fabrics, typically >0.1 m and <1 m thick (Figs. 11 and 
13). In the “sandstone on intrusion” domain, deformation associated with the 
MCSZ is partitioned across the intrusion–host-rock contact (Fig. 13) into zones 
dominated by pure shear/flattening (i.e., stylolites; Fig. 9F) in the altered host 
rock, interlayered with zones of simple shear (i.e., sheared plagioclase; Figs. 
9A–9C) found within the uppermost few meters of the intrusion. As a result, 
deformation here is more dispersed and is characterized by a thicker defor-
mation zone up to ~3 m thick on either side of the top surface of the intrusion, 
with a less clearly defined principal shear zone (Fig. 13).

■■ 6. DISCUSSION

6.1. MCSZ: A Syn-Emplacement Accommodation Structure

The MCSZ appears to be a significant structure localized along the upper 
contact of the southern Maiden Creek intrusion and is associated with both the 
eastern and western intrusive lobes. It appears to also define an upper limit 
to intrusion-related deformation of host-rock sandstones within Rattlesnake 
Gully (Figs. 5 and 13).

Low-angle faults on the intrusion top surface show consistent top-to-the-
WNW shear, matching that of the MCSZ (Figs. 6B and 9D). These low-angle 
faults can only be seen cutting the uppermost few meters of the intrusion. 
Below this, subvertical fractures predominate (Fig. 4D). As these brittle faults 
cross-cut the intrusion, a post-emplacement timing could be inferred. However, 
similar faults can also be identified in the altered sandstone immediately above 
the intrusion. Carbonate precipitation along these faults in the altered sand-
stone indicates that they were present while the intrusion was still hot enough 
to be driving hydrothermal fluids through the host rock. Assuming, therefore, 
that these low-angle faults in both the intrusion and the sandstones are con-
temporaneous in age, a syn-emplacement timing is likely for these structures.

The field relationships suggest that the MCSZ in Rattlesnake Gully and its 
continuation along the top surfaces of the intrusive lobes is consistent with it 
being a syn-emplacement structure. Further evidence in support for this timing 
comes from the lack of offset between the thermally and chemically altered 
overlying sandstones (Figs. 9E–9G) with respect to the underlying intrusive 
bodies. If the MCSZ postdated emplacement of the intrusive bodies, we would 
expect to see a top-to-the-west offset of the altered sandstones relative to the 
underlying intrusive lobes. This is not observed, and the spatial distribution 
of altered sandstone units corresponds very closely to the location of the top 
of the intrusion (Fig. 13).

Horsman et al. (2005) identified a strong relationship between mineral 
stretching lineations and anisotropy of magnetic susceptibility (AMS) fabrics 
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Figure 12. A series of photomicrographs of 
Maiden Creek shear zone (MCSZ) micro-
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to-the-WNW movement. (A) Thin-section 
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(F) Zoom-in of deformed quartz grain in (E).
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in the Maiden Creek intrusion. They used these fabrics to infer magma flow 
directions. Horsman et al. (2005) identified both ~N–S– and ~E–W–trending 
fabrics on the eastern and western intrusive lobes (Fig. 14) but favored a 
north-to-south magma flow direction in their emplacement model. In contrast, 
although some N–S–trending mineral lineations are identified in our study, the 
field mineral lineation and kinematic data collected are predominantly E–W. 
The dominant E–W–trending fabrics within the intrusive lobes, along with the 
top-to-the-WNW kinematics observed in the MCSZ, could be explained by 
easterly directed magma flow, which is in turn compatible with the regional 
model of a feeder system to the west for the wider Maiden Creek intrusion 
(Horsman et al., 2005, 2009; Wilson, 2015). An easterly magma flow direction 
would also be consistent with the arcuate trend observed for the intrusive 
lobes and intervening zone of country rocks in Rattlesnake Gully.

An alternative model for the development of the MCSZ is that it is simply 
a décollement or gravity-driven basal detachment surface, where the less 

deformed rocks above are sliding down dip due to the growth of the under-
lying intrusion. However, the movement on the shallowly ESE-dipping shear 
zone is up dip (top-to-the-WNW), and therefore, this model appears unlikely 
in the absence of any evidence for a later regional tilting. Furthermore, as 
the spatial distribution of the shear zone appears localized to the southern 
Maiden Creek intrusion, a regional décollement and/or detachment surface 
model is less likely.

6.2. Structural Complexity and Variations in Strain within 
Rattlesnake Gully

The spatial distribution of deformation structures and geometries in the 
sandstone below the MCSZ and between the two intrusive “lobes” likely re-
flects variations in strain within sandstones that are now exposed in the gully. 
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The strikes of structures in the sandstones within Rattlesnake Gully parallel the 
intrusion margin of the eastern lobe. Deformation is dominantly constrictional, 
with shortening perpendicular to the synclinal fold hinge line and intrusion 
margins (Fig. 10), resulting from “squeezing” of the sandstone between the 
western and eastern lobes. Thus, the maximum principal strain orientation 
rotates from ~ENE–WSW at the head of the gully in the north, to ESE–WNW in 
the south (Fig. 10). However, in the NE part of Rattlesnake Gully, strain is more 
complex, with a conjugate set of strike-slip faults observed in sandstones adja-
cent to the lateral margin of the eastern lobe (Figs. 5I and 10). The shortening 
axis associated with these conjugate sets is however still consistent with the 
strain axis observed along the rest of the gully.

East–west–trending extensional structures observed in the southern part 
of Rattlesnake Gully are perpendicular to the dominantly constrictional defor-
mation bands seen to the north (Fig. 10). This localized zone of extension-dom-
inated deformation is coincident with the southern tip of the eastern lobe. 
Therefore, changes in strain and deformation trends may reflect changes in the 
boundary conditions around the intrusion contacts: i.e., more contraction in the 
north where sandstones are trapped between two thick (>30 m) intrusive lobes 
and more extension in the south where the sandstones are less constrained 
due to the thinning (<10 m) and termination of the eastern lobe (Fig. 10).

6.3. Implications of MCSZ for Emplacement Models and Geometry of 
the Southern Maiden Creek Intrusion

Figure 15 provides a range of models for the emplacement and geometry of 
the southern Maiden Creek intrusion. Models 1 and 2 are end-member models, 
while a hybrid of these is also considered. Model 1 follows that proposed by 
Horsman et al. (2005, 2009) for the emplacement of two N–S–trending fin-
ger-like lobes. In this model, magma propagates in a southerly direction from a 
main “sill-like” intrusive body situated to the NW. In contrast, Model 2 involves 
both the eastern and western intrusive bodies propagating from depth in the 
WNW toward the ESE as inclined sheets, with magma flow laterally splaying 
from the dominant SW–NE trend (and flow direction?) of the Maiden Creek 
intrusion. In a hybrid of these end members, the western intrusive body is de-
rived from depth to the west (i.e., an inclined sheet, as per Model 2), while the 
eastern intrusive lobe propagates from the north to the south (as per Model 1).

Using interpretation of fabric data (mainly magnetic foliation and lineation 
results from AMS studies) coupled with field observations of linear fabrics, Hors-
man et al. (2005) proposed that two radial (fanning) lineation patterns are seen in 
the Maiden Creek intrusion. The first lies within the main body, and the second 
lies within the fingers. From the lineation pattern observed in the main body, 
Horsman et al. (2005) speculated that, although not exposed, the feeder for the 
intrusion should be located toward the west or southwest. The general alignment 
between lineation measurements and the N–S elongation of the two southern 
intrusive lobes (Fig. 14) was taken to indicate a southern flow of magma away 
from the main body out into the fingers (i.e., Model 1; Fig. 15B). Horsman et al. 
(2005) proposed that these finger-like lobes initially started as small protrusions 
along the margin of the main body, where swelling occurred as a result of local 
heterogeneity, such as fracture sets in the host rock. As the magma pressure rose, 
propagation began outwards from the main body and continued until magma 
at the margin of the finger ceased to have sufficient driving pressure to displace 
the host-rock sediments (Horsman et al., 2005). This emplacement mechanism 
for the finger-like lobes is similar to that proposed by Pollard et al. (1975) for 
fingers around the periphery of the Shonkin Sag Laccolith in Montana, USA.

In Model 1, the constrictional deformation of the country rocks exposed in 
Rattlesnake Gully could result from lateral expansion of one or both of the west-
ern and eastern intrusive lobes as magma propagates in a southerly direction 
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Figure 14. Spatial distribution of intrusion fabrics across the study area. (A) Mineral stretching 
lineations from Horsman et al. (2005) with data from this study shown also in purple and on 
the inset rose diagram. (B) Magnetic lineations from anisotropy of magnetic susceptibility 
(AMS) data for the Eastern Intrusive Lobe (from Horsman et al., 2005).
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(Fig. 15B). Such contraction of the host-rock sandstones trapped between would 
most likely lead to stronger deformation in the sandstones immediately adjacent 
to the lateral margins of the lobes, with deformation intensity decreasing away 
from the contacts. Johnson and Pollard (1973) on studying deformation struc-
tures in host-rock sandstones adjacent to and between two intrusive bodies in 
the NE of the Maiden Creek intrusion (i.e., the northeasterly pair of finger-like 
lobes in the Horsman et al. (2005) model; Fig. 15A) reported intense fracturing 
within a “wedge-shaped area,” as depicted in Model 1 (Fig. 15B), with fracturing 
extending only ~10 m into the adjacent host rocks.

Model 1, although relatively simple, does not explain the spatial distribu-
tion, asymmetry, trend, and kinematics of deformation structures observed 
within the host sandstones in Rattlesnake Gully. Although intense deforma-
tion banding (cm spacing) is observed in sandstones proximal to the lateral 
intrusion margins, in contrast to the predicted wedge-shaped zone of fractur-
ing close to the lateral margins, deformation intensity increases toward the 
sandstones located in the center of the syncline (with mm spacing for discrete 
pencil-cleavage planes). Furthermore, in this model for lateral expansion and 
squeezing of sandstones trapped between two magma lobes, assuming that 
the emplacement of the lobes is contemporaneous, symmetrical folding and 
deformation would be expected (Fig. 15B), while the observed synclinal fold 
is markedly asymmetric as are the associated deformation structures (Figs. 
10 and 13). Most significantly of all, Model 1 cannot explain the kinematics 
of the MCSZ, because southerly propagating magma fingers would result in 
top-to-the-north shear in overlying host rocks, not top-to-the-WNW as implied 
from field and microstructural kinematics (Figs. 6B, 11, and 12).

In order to account for both the kinematics of the MCSZ and the structural 
complexity observed in the sandstone beds below and in-between the intru-
sive bodies, we propose a new alternate model. Model 2 (Fig. 15D), with both 
the western and eastern intrusive bodies being fed from depth in the west and 
WNW (i.e., an E to ESE magma flow direction), overcomes many of the problems 
associated with Model 1. In this model, the western and eastern lobes are offset 
lobate structures that form at the leading edge of two inclined, propagating 
sheets that most likely coalesce at depth (e.g., a saucer-shaped sill). These lobate 
structures further coalesce with the main body of the Maiden Creek intrusion. 
In such a model, the sandstones beneath the MCSZ within Rattlesnake Gully 
correspond to an intervening inclined wedge (similar to a bridge structure; 
Magee et al., 2018). Importantly, Model 2 can account for the development 
and kinematics of the MCSZ, the shear zone forming antithetic to the westerly 
propagating magma sheets. This model works if both sheets are emplaced 
contemporaneously, as well as if the western body is emplaced after the em-
placement of the eastern body. Lateral splaying and/or radial fanning of the 
magma at the tips of the upwards propagating sill sheets from the west would 
account for both the dominant E–W and less common N–S mineral stretching 
lineations (this study and Horsman et al., 2005) and AMS fabrics (Horsman et 
al., 2005) recorded in the eastern and western intrusive bodies (Fig. 14).

Furthermore, Model 2 explains the high constrictional strain within host 
rocks exposed in Rattlesnake Gully, as well as the deformation and geometric 

asymmetry due to squeezing between two inclined magma sheets. The syn-
clinal geometry and associated contractional structures within the gully imply 
a steeply dipping reverse-sense of shear (i.e., the western lobe propagating 
in the hanging wall to the eastern lobe).

A Hybrid Model (Fig. 15C) may also account for many of the geometric 
and kinematic observations; however, certain aspects are problematic. Not 
only does this model necessitate a specific order in which the eastern and 
western intrusive bodies are emplaced, it still requires the eastern lobe to be 
fed from the north (i.e., a southerly magma flow direction). Detailed struc-
tural and kinematic mapping of the greater Maiden Creek intrusion implies 
a dominant northeasterly magma flow direction (Wilson, 2015) for the main 
NE–SW–trending lobe (Fig. 1B). A north to south magma flow seems at odds 
with even lateral spreading from this main northeasterly magma flow direction.

Therefore, on the merits of each model in accounting for the observations 
in this study, Model 2, with two inclined sill sheets propagating from depth 
from the west, is favored. In Model 2, the observed igneous outcrop at the 
surface represents the steepest section at the tip of a climbing sill sheet, i.e., 
the frontal ramp. If the eastern intrusive body were composed of two stacked 
finger-like lobes, as suggested by Horsman et al. (2005), we would expect to 
see similar lateral bulbous geometries on both sides of the lobe. However, 
what we observe from the eastern intrusive body is a steeply dipping flat 
surface on the western lateral margin (within Rattlesnake Gully; Fig. 2), and 
a more irregular, eastern margin. The simpler, western margin is consistent 
with the upper contact of a ramp section of a saucer-shaped sill (i.e., inclined 
sheet). The irregular eastern lateral margins (observed for both the eastern 
and western intrusive bodies) are interpreted to represent the frontal tip of an 
upward-propagating inclined sill sheet. The irregular, hour-glass geometry of 
the eastern lateral margins (as seen at the Pussycat; Figs. 8 and 13) likely re-
flects the interaction of magma with syn-emplacement faults. Furthermore, the 
curved (arcuate) margin trends of the intrusive bodies may be consistent with 
the map-view geometry of saucer-shaped sills (Malthe-Sørenssen et al., 2004; 
Thomson and Hutton, 2004; Polteau et al., 2008; Thomson and Schofield, 2008).

Due to lack of exposure for the western intrusive body in particular, there 
are uncertainties with all three models for the emplacement and geometry of 
the southern Maiden Creek intrusion. Further data, such as geophysical data 
(gravity and magnetics), are required in order to understand the subsurface 
extent of the intrusion and test the three alternate models for the intrusion 
geometry and emplacement mechanisms. However, the kinematics of the 
MCSZ can only be accounted for by a west to east movement of the underlying 
magma, contrary to the north to south magma flow inferred for the southern 
pair of “finger-like lobes” of Horsman et al. (2005).

6.4. The Role of Syn-Emplacement Shear Zones in Accommodating Magma

This study highlights the importance of syn-emplacement shear zones as sig-
nificant accommodation structures of magma emplacement. The MCSZ, although 
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relatively localized, exhibits a substantial amount of strain, which likely formed 
in response to the forceful emplacement of the eastern and western intrusive 
bodies and possibly reflects the rheological properties of the highly crystalline 
magma during emplacement. Field data and observations support the timing of 
the development and movement on the MCSZ as being contemporaneous with 
the emplacement of the southern Maiden Creek intrusion. As such, its presence 
has significant implications in terms of magma flow directions, emplacement 
mechanisms, and subsurface intrusion geometries, the shear zone most likely 
resulting as an antithetic shear structure (back thrust?) to underlying magma flow.

As the MCSZ is relatively thin and spatially restricted, its presence and 
significance has been unnoticed in previous studies, and we suggest that 
similar accommodating structures may also have been overlooked for other 
shallow-level intrusions. Spacapan et al. (2016) identified high-strain constric-
tional deformation structures associated with the emplacement of sill sheets 
in the Neuquén basin, Argentina. These deformation zones appear strongly 
strata bound and do not deform the overlying units, thus making these analo-
gous to the observations in this study. We therefore postulate that an antithetic 
shear structure similar to the MCSZ may also exist above these high-strain 
deformation zones described by Spacapan et al. (2016).

Antonellini and Cambray (1992) presented a model for the emplacement 
of the Logan Sills (located on the northwest shore of Lake Superior, northern 
Ontario, Canada); in this model, magma propagated along and caused reacti-
vation of preexisting bedding-parallel shear zones, and the overprinting shear 
zone indicators reflected the magma flow direction. This example represents 
a “pre-emplacement” accommodation structure that is locally reactivated as a 

“syn-emplacement” accommodation structure. The present study of the Maiden 
Creek intrusion highlights the importance of newly formed shear zones as 

“syn-emplacement” accommodation structures—localized structures formed 
in response to the strain induced by the intruding magma. Both examples 
highlight the importance of shear zones as accommodation structures.

These accommodating shear zones, whether “preexisting,” “syntectonic,” 
or “syn-emplacement,” are significant structures in terms of: (1) their larger 
size relative to other more commonly identified intrusion-related host-rock de-
formation structures such as deformation bands; (2) the significant amount of 
strain that they accommodate; (3) their role in acting as a detachment surface 
separating highly deformed host rock beneath and between intrusive bodies 
from little deformed host rocks above; and (4) the kinematics of the shear zone 
are strong pieces of evidence for the magma flow and propagation direction.

■■ 7. CONCLUSIONS

Host rocks to shallow igneous intrusions provide a record of emplacement 
and accommodation of magma in the subsurface. This study of the Maiden 
Creek intrusion illustrates well some of the structural complexities that may be 
associated with syn-emplacement accommodation of igneous intrusions with 
complex geometries in the shallow crust. Structural evidence in the southern 

part of the Maiden Creek intrusion is consistent with westerly derived magma 
emplacement. Deformation structures in the host-rock sandstones that crop 
out within Rattlesnake Gully, between the southern intrusive bodies, are dom-
inantly contractional (~E–W shortening), while the spatial distribution and 
observed asymmetry imply a reverse (east-verging) shear component. From 
our observations of both deformation structures and exposed intrusion geom-
etries, we propose that the Maiden Creek intrusion in the south is composed 
of westerly derived inclined sill sheets, in contrast to the previously suggested 
model for a pair of northerly derived finger-like lobes (Horsman et al., 2005).

Overlying these deeper-rooted sills is the newly identified Maiden Creek shear 
zone (MCSZ). This structure, with its top-to-the-WNW shear sense, acts as a de-
tachment surface, separating highly deformed sandstones below (i.e., between 
the sills) from less deformed sandstones above. Although the style of deformation 
in the MCSZ varies from adjacent sandstone on intrusion to the sandstone on 
sandstone domains, the kinematics are consistent, and there is strong evidence 
to support a syn-emplacement timing for the structure. The substantial amount 
of strain observed through microstructural analysis suggests that the MCSZ is a 
significant structure in accommodating magma emplacement. We believe that 
this is the first account of such a syn-emplacement shear zone developed on 
the top surface of a sill-like body that has aided the accommodation of magma.

The spatial distribution of deformation structures in the sandstones trapped 
between the two intrusion fingers is complex and reflects variations in strain 
relating to the arcuate trend of the sill sheets. A zone dominated by strike-slip 
faulting in the north may be indicative of a lateral ramp geometry to the sill 
and would be consistent with left-lateral shear as the sill is emplaced. In the 
south, a change from contractional (~E–W shortening) to extensional (~N–S 
extension) appears coincident with the southern termination of the eastern 
body and, therefore, a change in the local boundary conditions.

Our observations and newly proposed emplacement model may have im-
portant implications for understanding how deformation structures accommo-
date the volumetric addition of magma in the subsurface. Field and microscale 
structural and kinematic data can be used to infer intrusion geometries (dm to 
km scale), which can then be used to fill the data gap between well, outcrop, 
and larger-scale geometries imaged on seismic-reflection profiles.
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