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Abstract. We introduce in a general setting a dynamic programming method for solving re-
configuration problems. Our method is based on contracted solution graphs, which are obtained
from solution graphs by performing an appropriate series of edge contractions that decrease the
graph size without losing any critical information needed to solve the reconfiguration problem
under consideration. Our general framework captures the approach behind known reconfigu-
ration results of Bonsma (2017) and Hatanaka, Ito and Zhou (2015). As a third example, we
apply the method to the following well-studied problem: given two k-colorings α and β of a
graph G, can α be modified into β by recoloring one vertex of G at a time, while maintaining
a k-coloring throughout? This problem is known to be PSPACE-hard even for bipartite planar
graphs and k = 4. By applying our method in combination with a thorough exploitation of the
graph structure we obtain a polynomial-time algorithm for (k − 2)-connected chordal graphs.

Keywords. reconfiguration, contraction, dynamic programming, graph coloring.

1 Introduction

Solving a given instance of an NP-hard search problem means that we need to explore an
exponentially large solution space. In order to get more insight into the solution space, it is
a natural question to check how “close”’ one solution for a particular instance is to another
solution of that instance. Doing so could, for instance, be potentially interesting for improving
the performance of corresponding heuristics [18]. Searching the solution space by making
small “feasible” moves also turned out to be useful when analyzing randomized algorithms
for sampling and counting k-colorings of a graph or when analyzing cases of Glauber dynamics
in statistical physics (see Section 5 of the survey of van den Heuvel [23]). Solution spaces in
practical problems, such as stacking problems arising in storage planning [32], have been
explored in a similar matter.

The above situation can be modeled as follows. A solution graph concept S is obtained
by defining a set of instances, solutions for these instances, and a (symmetric) adjacency
relation between pairs of solutions. For every instance G of the problem, this gives a solution
graph S(G), also called a reconfiguration graph, which has as node set all solutions of G,
with edges as defined by some given adjacency relation (if G has no solutions, then S(G)
is the empty graph). The adjacency relation usually represents a smallest possible change
(reconfiguration move) between two solutions of the same instance. For example, the well-
known k-Color Graph concept Ck, related to the k-Coloring search problem, is defined as
follows: instances are graphs G, and solutions are (proper) k-colorings of G. Two k-colorings
are adjacent nodes in the reconfiguration graph Ck(G) if and only if they differ in exactly
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one vertex of G. In general there may be more than one natural way to define the adjacency
relation.

Solution graphs and their properties have been studied very intensively over the last
couple of years for a variety of search problems, such as k-Coloring [2–4, 8, 13–15, 17, 29],
Satisfiability [18, 34], Independent Set [6, 9, 30], Shortest Path [7, 5, 30], List Col-
oring [20], List Edge Coloring [26, 28], L(2, 1)-Labeling [27], H-Coloring [41] and
Subset Sum [25]; see also the surveys [23, 39]. The study of such solution graphs is com-
monly called reconfiguration.

The area of reconfiguration is fast growing, and both algorithmic and combinatorial ques-
tions have been considered. For instance, what is the diameter of S(G) (in terms of the size
of the instance G) or if S(G) is not connected, what is the diameter of its (connected) com-
ponents? In particular, is the diameter always polynomially bounded or not? This led to the
introduction of the S-Connectivity problem, which is that of deciding whether the solution
graph S(G) of a given instance G is connected. We consider the following related problem,
which is also a central problem in the area of reconfiguration:

S-Reachability
Instance: an instance G with two solutions α and β.
Question: is there a path from α to β in S(G)?

The S-Reachability problem is sometimes called the α-β-path problem for S [23]. Our
example problem Ck-Reachability is also known as the k-Color Path problem [15].

Ck-Reachability

Instance: an instance G with two k-colorings α and β.
Question: is there a path from α to β in Ck(G)?

It is known that S-Reachability is PSPACE-complete for most of the aforementioned
solution graph concepts even for special classes of instances [8, 19, 24, 37, 42, 43]. For instance,
Ck-Reachability is PSPACE-complete even if k = 4 and instances are restricted to planar
bipartite graphs [8]. This explains that efficient algorithms are only known for very restricted
classes of instances. Hence, there is still a need for developing general algorithmic techniques
for solving these problems in practice, and for sharpening the boundary between tractable
and computationally hard instance classes.

One important algorithmic technique is dynamic programming (DP). There are only rel-
atively few successful examples of nontrivial dynamic programming algorithms for solving
S-Reachability problems. The reason for this is that many well-studied S-Reachability
problems (including Ck-Reachability for an appropriate constant k) are PSPACE-complete
even for graphs of bounded bandwidth [37, 42], and therefore also for graphs of bounded
treewidth. In fact, the PSPACE-completeness results from [37, 42] hold even for planar graphs
of bounded bandwidth and low maximum degree [43].

One way to cope with the above problem is to restrict the problem even further. For
instance, in a number of recent papers [10, 22, 29, 30, 34–36] the length-bounded version of the
S-Reachability problem was studied. This is the problem of finding a path of length at
most ` in the solution graph between two given solutions. Taking the length ` of a path between
two solutions as a natural parameter, a particular aim of these papers was to determine fixed-
parameter tractability. For instance, although Ck-Reachability is PSPACE-complete for k ≥
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4, the length-bounded version is FPT when parameterized by the length ` [10, 29] (for k ≤ 3,
the length-bounded version is even polynomial-time solvable [29]). In this restricted context,
dynamic programming algorithms over tree decompositions for reconfiguration problems are
more common. For instance, in [37] FPT algorithms are given for various length-bounded
reachability problems, parameterized by both the treewidth and the length `. To give another
example, in [33] FPT algorithms are given for the reachability versions of different token
reconfiguration problems for graphs of bounded degeneracy (and thus for bounded treewidth),
when parameterized by the number of tokens.

1.1 Aims and Methodology

We aim to solve the (original) S-Reachability problem via an algorithm that uses a gen-
erally applicable DP method based on contracted solution graphs. Due to the PSPACE-
completeness of S-Reachability, such an algorithm does not terminate in polynomial time
for all instances. Hence we aim to identify restricted instance classes for which we do obtain
a polynomial running time, as illustrated by a new application explained in Section 1.2 and
two known examples [7, 20] explained below.

Bonsma [7] introduced the DP method based on contracted solution graphs to obtain an ef-
ficient algorithm for Shortest-Path-Reachability restricted to planar graphs. Hatanaka,
Ito and Zhou [20] used this DP method for proving that List-Coloring-Reachability is
polynomial-time solvable for caterpillars (trees obtained from paths possibly by adding addi-
tional vertices that have exactly one neighbor, which belongs to the path). In both papers,
contracted solution graphs are called encodings. To be more precise, in [20] dynamic pro-
gramming was done over a path decomposition of the given caterpillar. In [7], a layer-based
decomposition of the graph was used, which can also be viewed as a path decomposition.
In our paper we focus on the more general tree decompositions instead (which requires us
to introduce a join rule). We will generalize the ideas of [7, 20] to a unified DP method and
illustrate the method by giving a new application.

We now sketch our method and refer to Section 3 for a detailed description. In dynamic
programming one first computes the required information for parts of an instance G. One com-
bines/propagates this to compute the same information for ever larger parts of the instance,
until the desired information is known for G entirely. In our case, G can be any relational
structure on a ground set, such as (directed) graphs, hypergraphs, satisfiability formulas, or
constraint satisfaction problems in general (see e.g. [10]). The order in which the information
can be computed or the order in which parts must be considered is given by a decomposition
of G. For a processed part H of G, the elements of the ground set that are in H and that
have incidences with the unexplored part are called terminals. Reconfiguration moves in H
that do not involve terminals are often irrelevant. We capture the information that is relevant
by the notion of a terminal projection. These projections assign labels to solutions, yielding
so-called label components, which are maximally connected subgraphs of S(H) induced by
sets of solutions that all have the same label. A contracted solution graph is obtained from
S(H) by contracting the label components into single vertices. Dynamic programming rules
for a given decomposition of G describe how to compute new (larger) contracted solution
graphs from smaller ones.

In Section 4 we illustrate our method by giving dynamic programming rules for the Ck-
Reachability problem that can be used if a tree decomposition of the graph is given. Recall
that similar dynamic programming rules have been for other reconfiguration problems [7,
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20] when a path decomposition is given. Our rules solve the Ck-Reachability problem
correctly for every graph G and can also be used directly for List-Coloring-Reachability
and thus generalize the rules of [20]. Nevertheless, the algorithm is only efficient when the
contracted solution graphs stay small enough (that is, polynomially bounded). As indicated
by the aforementioned PSPACE-hardness of Ck-Reachability, this is not always the case.
To make this explicitly clear, in Section 5, we apply the DP rules on a specific example, which
shows that the size of the contracted solution graphs can indeed grow exponentially, even for
2-connected 4-colorable unit interval graphs.

1.2 Application

In Section 6 we apply the DP method to show that, for all k ≥ 3, Ck-Reachability is
polynomial-time solvable for (k − 2)-connected chordal graphs. Chordal graphs form a well-
studied graph class; see e.g. [12] for more information. As unit interval graphs are chordal,
the example given in Section 5 implies that we need to exploit the structure of chordal graphs
further in combination with applying the DP method. The idea is to show that it suffices
to compute the contracted solution graphs only partly. In order to do this we introduce
the new notion of injective neighbourhood property of contracted solution graphs for Ck-
Reachability, which helps us to characterize contracted solution graphs if the original
graph G is chordal and (k − 2)-connected.

As the proof for the PSPACE-completeness result for bipartite graphs from [8] can be
easily modified to hold for (k−2)-connected bipartite graphs3, our result for (k−2)-connected
chordal graphs cannot be extended to (k− 2)-connected perfect graphs. Our result cannot be
extended to all chordal graphs either: recently, Hatanaka, Ito and Zhou [21] solved an open
problem posed in the conference version of our paper [11] by proving that Ck-Reachability
is PSPACE-complete for chordal graphs if k is a sufficiently large constant. We note that in
contrast, Ck-Connectivity is polynomial-time solvable on chordal graphs. This is due to a
more general result of Bonamy et al. [4], which implies that for a chordal graph G, Ck(G) is
connected if and only if G has no clique with more than k − 1 vertices.

Our result on Ck-Reachability on (k − 2)-connected chordal graphs is the first time
that dynamic programming over tree decompositions is used to solve the general version of a
PSPACE-complete reachability problem in polynomial time for a graph class strictly broader
than trees. As reachability problems become quickly PSPACE-complete, we can only hope to
obtain polynomial-time algorithms for rather restricted graph classes. Nevertheless we believe
that there are a number of interesting open problems in this direction, for which our method
could be useful (see Section 7). We also remark that the true strength of our method is
not always revealed when using the viewpoint of worst-case algorithm analysis. For instance,
we observed from some initial experiments using randomly generated k-colorable chordal
or interval graphs that the method performs well on most instances, despite the fact that

3 In [8], it is first shown that the list-coloring version of the Ck-Reachability problem is PSPACE-complete
for connected planar bipartite 4-colorable graphs. In the list-coloring version every vertex is assigned a list
of two or three allowed colors. In the next step of the transformation, to the Ck-Reachability problem,
the list-coloring constraints are simulated by making every vertex adjacent to appropriately colored vertices
of a small bipartite graph with a frozen 4-coloring. A frozen k-coloring is a k-coloring where every vertex is
adjacent to vertices of each other color, so no vertex can be recolored. Since we do not care about planarity,
we can instead simply take one highly connected bipartite graph with a frozen k-coloring and link all vertices
of the first graph to the appropriate vertices of this new graph, to enforce the list-color constraints, while
maintaining bipartiteness and ensuring (k − 2)-connectedness.
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specialized examples can be constructed that exhibit exponential growth. Discussing this is
beyond the scope of the current paper. However, being able to use our method for performing
experiments with a goal to further refining it was one of the reasons why we choose to present
it in full generality.

1.3 Paper Organization

To briefly summarize the organization of our paper, Section 2 contains basic notation and
terminology used throughout the paper. In Section 3 we give a full description of the dynamic
programming method of contracted solution graphs. This method relies on rules for dynamic
programming. In Section 4 we illustrate our method by giving such rules, based on tree
decompositions, for the Ck-Reachability problem. Before we apply the method of Section 3
with the rules of Section 4 on the Ck-Reachability problem for (k − 2)-connected chordal
graphs in Section 6, we first give some examples of the use of these rules in Section 5. The
purpose of the latter section is also to illustrate that contracted solution graphs may have
exponential size. We conclude our paper with giving directions for future work in Section 7.

2 Preliminaries

We consider finite undirected graphs that have no multi-edges and no loops. Below we define
some basic terminology. In particular we give some coloring terminology, as we need such
terminology throughout the paper. We refer to the textbook of Diestel [16] for any undefined
terms.

For a connected graph G, a vertex cut set is a set S ⊆ V (G) such that G−S is disconnected.
Vertices in different components ofG−S are said to be separated by S. For k ≥ 1, a (connected)
graphG is k-connected if |V (G)| ≥ k+1 and every vertex cut set S has |S| ≥ k. The contraction
of an edge uv of a graph G replaces u and v by a new vertex made adjacent to precisely those
vertices that were adjacent to u or v in G (this does not create any multi-edges or loops). A
graph is chordal if it has no induced cycle of length greater than 3.

Let G be a graph. A k-color assignment of G is a function α : V (G) → {1, . . . , k}. For
v ∈ V (G), α(v) is called the color of v. A k-color assignment α is a (proper) k-coloring if
α(u) 6= α(v) for every edge uv ∈ E(G) (note that a k-coloring may use less than k colors). A
coloring of G is a k-coloring for some value of k. If α and β are colorings of G and a subgraph
H of G, respectively, such that α|V (H) = β (that is, α and β coincide on V (H)) then α and
β are said to be compatible.

For an integer k, the k-color graph Ck(G) has as nodes all (proper) k-colorings of G,
such that two colorings are adjacent if and only if they differ on one vertex. Note that two k-
colorings of G that can be obtained from each other by a permutation of the colors correspond
to distinct nodes in Ck(G). A walk from u to v in G is a sequence of vertices v0, . . . , vk with
u = v0, v = vk, such that for all i < k, vivi+1 ∈ E(G). A pseudowalk from u to v is a
sequence of vertices v0, . . . , vk with u = v0, v = vk, such that for all i < k, either vi = vi+1,
or vivi+1 ∈ E(G). A recoloring sequence from a k-coloring α of G to a k-coloring β of G is a
pseudowalk from α to β in Ck(G) (in this definition we use the notion of a pseudowalk as we
need this in the context of contracted solution graphs).

A labeled graph is a pair (G, `) where G = (V,E) is a graph and ` : V → X for some
set X is a vertex labeling (which may assign the same label to different vertices); we refer
to Section 3 for an example. A label preserving isomorphism between two labeled graphs
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(G1, `1) and (G2, `2) is an isomorphism φ : V (G1) → V (G2), such that `1(v) = `2(φ(v)) for
all v ∈ V (G1). Informally, two labeled graphs (G1, `1) and (G2, `2) are the same if there exists
a label preserving isomorphism between them.

3 The Method of Contracted Solution Graphs

In this section we define the concept of contracted solution graphs (CSGs) for reconfiguration
problems in general. Consider a solution graph concept S, which for every instance G of S
defines a solution graph that is denoted by S(G). A terminal projection for S is a function p
that assigns a label to each tuple (G,T, γ) consisting of an instance G of S, a set T of
terminals for G and a solution γ for G. Terminal projections are used to decide which nodes
are “equivalent” and can be contracted. In our example and in previous examples in the
literature [7, 20] G is always a graph, and T is a subset of its vertices. A terminal projection p
can be seen as a node labeling for the solution graph S(G). So, for every instance G of S,
every choice of terminals T may give a different node labeling for the solution graph S(G). If
G and T are clear from the context, we write p(γ) to denote the label of a node γ of S(G).

Example 1. Consider the k-color graph concept Ck. Let G be a graph. We can define a terminal
projection p as follows. Let T be a subset of V (G). The nodes of Ck(G) are k-colorings and
we give each node as label its restriction to T , that is, for every k-coloring γ of G, we set
p(γ) = p(G,T, γ) = γ|T . Note that γ|T is a k-coloring of G[T ].

Let p be a terminal projection for a solution graph concept S. For an instance G of S and
a terminal set T , a label component C of S(G) is a maximal set of nodes γ that all have the
same label p(γ) and that induce a connected subgraph of S(G). It is easy to see that every
solution γ of G is part of exactly one label component, or in other words: the label components
partition the node set of S(G). The contracted solution graph (CSG) Sc(G,T ) is a labeled
graph that has a node set that corresponds bijectively to the set of label components of G.
For a node x of Sc(G,T ), we denote by Sx the corresponding label component. Two distinct
nodes x1 and x2 of Sc(G,T ) are adjacent if and only if there exist solutions γ1 ∈ Sx1 and
γ2 ∈ Sx2 such that γ1 and γ2 are adjacent in S(G). We define a label function `∗ for nodes of
Sc(G,T ) to denote the corresponding label in S(G). More precisely: for a node x of Sc(G,T ),
the label `∗(x) is chosen such that `∗(x) = p(γ) for all γ ∈ Sx. Note that the contracted
solution graph Sc(G,T ) can also be obtained from S(G) by contracting all label components
into single nodes and choosing node labels appropriately.

Example 2. Figure 1(c) shows one component of C4(G) for the (4-colorable) graph G from
Figure 1(a). This is the component that contains all colorings of G whose vertices a, b, c, d are
colored with colors 4, 3, 2, 1, respectively (note that it is not possible to recolor any of these
four vertices, as one may recolor only one vertex at a time). So in Figure 1(c) the colors of
the vertices a, b, c, d are omitted in the node labels, which only indicate the colors of e, f, g,
in this order. For terminal set T = {f}, this component contains three label components
(of equal size), and contracting them yields the CSG Cc4(G, {f}) shown in Figure 1(d). For
T = {g}, there are seven label components, and the corresponding CSG Cc4(G, {g}) is shown
in Figure 1(e). Note that Cc4(G, {g}) contains different nodes with the same label.

We stress that the CSG Sc(G,T ) is a labeled graph that includes the label function `∗ defined
above. However, to keep its size reasonable, the CSG itself does not include the solution
sets Sx for each node that were used to define it. For proving the correctness of dynamic
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Fig. 1. (a) A 4-colorable chordal graph G with V (G) = {a, b, c, d, e, f, g}. (b) a 4-coloring α, and one component
of the CSGs of G for four different terminal sets T : (c) Cc4(G, {e, f, g}), (d) Cc4(G, {f}), (e) Cc4(G, {g}) and (f)
Cc4(G, {a, b, c, d}). The G[T ]-colorings in the node labels are given as sequences of colors, for the (ordered version
of) T as indicated below each CSG. The edge colors in examples (c), (d) and (e) correspond to the vertex
colors in (b) and indicate in which vertex of G (namely, e, f or g) two adjacent colorings differ. Example (d)
is constructed from example (c) by contracting an edge between two nodes with labels xyz and x′y′z′ (where
x, y, z belong to {1, 2, 3, 4}) if and only if y = y′, eventually resulting in a node with label y. A similar claim
holds for example (e). Example (c) can also be seen as the component of C4(G) where vertices a, b, c, d receive
colors 4, 3, 2, 1.
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programming rules for CSGs the following alternative characterization of CSGs is useful;
note that the sets Sx correspond exactly to the label components.

Lemma 1 Consider an instance G of a solution graph concept S, terminal set T and terminal
projection p. Let (H, `) be a labeled graph. Then (H, `) = Sc(G,T ) if and only if one can define
(nonempty) sets of solutions Sx for each node x ∈ V (H) such that the following properties
hold:

1. {Sx | x ∈ V (H)} is a partition of the nodes of S(G) (the solutions of G).
2. For every x ∈ V (H) and every solution γ ∈ Sx: p(G,T, γ) = `(x).
3. For every edge xy ∈ E(H): `(x) 6= `(y).
4. For every x ∈ V (H): Sx induces a connected subgraph of S(G).
5. For every pair of distinct nodes x, y ∈ V (H): xy ∈ E(H) if and only if there exist solutions

α ∈ Sx and β ∈ Sy such that α and β are adjacent in S(G).

Proof. ⇒: We choose the sets Sx to be the label components, as chosen in the above definition
of Sc(G,T ). Then the Properties (1), (2), (4) and (5) follow immediately from the definitions.
For Property (3), we use the fact that label components are maximal connected node sets
with the same label, together with Properties (2) and (5).

⇐: Let (H, `) be a labeled graph for which solution sets Sx can be defined such that the five
properties hold. Consider a node x ∈ V (H). Properties (4) and (2) show that all solutions in
Sx are part of the same label component; denote this label component by C. Note that for
all α ∈ Sx, p(G,T, α) = `(x) due to Property (2).

In order to show that in fact Sx = C, let γ /∈ Sx be adjacent to some solution in Sx. We
must show that p(G,T, γ) 6= `(x). By Property (1), γ belongs to a set Sy for some y 6= x. By
Property (5), we obtain xy ∈ E(C). Then, by Property (3), we find that `(y) 6= `(x). Hence
p(G,T, γ) = `(y) 6= `(x) due to Property (2).

Because Sx induces a label component for every x, there exists a bijection φ between the
nodes of H and the label components of S(G) (This is a bijection because of Property (1)).
This yields a bijection φ′ between the nodes of H and the nodes of Sc(G,T ), which is label
preserving by Property (2) and an isomorphism by Property (5) and the definition of Sc(G,T ).
Hence (H, `) = Sc(G,T ).4 ut

A mapping S that assigns solution sets (or label components) Sx to each node x of Sc(G,T )
that satisfies the properties given in Lemma 1 is called a certificate for Sc(G,T ). Given such a
certificate S and a solution γ for G, we define the γ-node of Sc(G,T ) with respect to S to be
the node x with γ ∈ Sx. For readability, we will not always explicitly mention this certificate
when talking about γ-nodes in Sc(G,T ) (except in Lemma 2 below), but the reader should
keep the following convention in mind: when γ-nodes are identified in Sc(G,T ) for multiple
solutions γ, these are all chosen with respect to the same certificate.

Example 3. In Figures 1(c)–(f), the α-node for the coloring α shown in Figure 1(b) is marked.
In particular consider Cc4(G, {g}) in Figure 1(e). Since the certificate for Cc4(G, {g}) is not
actually indicated in the figure, the other leaf with label 2 can also be chosen as the α-node
(considering the nontrivial label-preserving automorphisms of the graph). Similarly, if we

4 Since node names are irrelevant, we will simply write (H, `) = Sc(G,T ) to denote that there is a label
preserving isomorphism between the two. More formally, Sc(G,T ) can be seen as a class of labeled graphs
that are equivalent under labeled isomorphisms.
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choose a coloring β that coincides with α except on nodes e and f , where we choose β(e) = 3
and β(f) = 4, then the same two leaves (the ones with label 2) of Cc4(G, {g}) can be chosen
as the β-node. Nevertheless, if both an α-node and β-node are marked, then this will only be
correct according to the above convention when they are distinct! 5

The main purpose of our definitions is the following key lemma.

Lemma 2 Let (G,T ) be an instance of a solution graph concept S. Let Sc(G,T ) be the
contracted solution graph for some terminal projection p. Let α and β be two solutions and
let x and y be the α-node resp. β-node with respect to some certificate S. Then there is a path
from α to β in S(G) if and only if there is a path from x to y in Sc(G,T ).

Proof. First suppose that there exists a path γ0, . . . , γk from α to β in S(G). Replace every
solution γi in this sequence by the node v of Sc(G,T ) with γi ∈ Sv. By definition, the resulting
node sequence starts in x, and terminates in y. By Lemma 1 Property 5, consecutive nodes
in this sequence are the same or adjacent, so this sequence is a pseudowalk from x to y. This
immediately yields a path from x to y.

For the other direction, consider a path v0, . . . , vk from x to y in Sc(G,T ). For every node
vi, Svi induces a connected subgraph of S(G) (Lemma 1 Property 4). For any two consecutive
nodes vi and vi+1, there exist solutions γ ∈ Svi and γ′ ∈ Svi+1 that are adjacent in S(G)
(Lemma 1 Property 5). Clearly, α ∈ Sv0 and β ∈ Svk . Combining these facts yields a path
from α to β in S(G). ut

Lemma 2 implies that for a solution graph concept S and any terminal projection p and
terminal set T , we can decide S-Connectivity if we know Sc(G,T ) (the answer is YES if
and only if Sc(G,T ) is connected) and the S-Reachability problem if we know Sc(G,T )
and the α-node and the β-node (the answer is YES if and only if these two nodes are in the
same component). However, for obtaining an efficient algorithm using this strategy, we must
throw away enough irrelevant information to ensure that Sc(G,T ) will be significantly smaller
than S(G), yet maintain enough information to ensure the efficient computation of Sc(G,T ),
without first constructing S(G). Our strategy for doing this is to use dynamic programming
to compute Sc(H,T ′) for ever larger subgraphs H of G, while ensuring that all of the CSGs
stay small throughout the process. The remainder of this paper shows a successful example
of this strategy.

4 Dynamic Programming over Tree Decompositions

The following terminology is based on widely used techniques for dynamic programming over
tree decompositions; see Section 6 and [1, 31, 38] for further information.

A terminal graph (G,T ) is a graph G together with a vertex set T ⊆ V (G), whose vertices
are called the terminals. If T = V (G), then (G,T ) is called a leaf. If v ∈ T , then we say that
the new terminal graph (G,T \ {v}) is obtained from (G,T ) by forgetting v (or using a forget
operation). If T 6= V (G), v ∈ T and N(v) ⊆ T then we say that (G,T ) can be obtained from
(G− v, T \ {v}) by introducing v (or using an introduce operation). Note that for a terminal

5 It is possible for the given example to choose two solutions α and β, and correctly mark an α-node x with
respect to a one certificate S1, and a β-node y with respect to another certificate S2, such that α and β are
in different components of S(G), but x and y are in the same component of Sc(G,T ). This is clearly not
desirable; see Lemma 2.
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graph (G′, T ′) with T ′ 6= ∅, different graphs can be obtained from (G′, T ′) by introducing a
vertex v, whereas forgetting a terminal always yields a unique result. The condition that each
neighbor of the new vertex v must be in T is necessary, as we will see at several places in our
proofs. We say that (G,T ) is the join of (G1, T ) and (G2, T ) if

– G1 and G2 are induced subgraphs of G,
– V (G1) ∩ V (G2) = T and V (G1) ∪ V (G2) = V (G),
– V (G1) 6= T and V (G2) 6= T , and
– for every uv ∈ E(G), it holds that uv ∈ E(G1) or uv ∈ E(G2).

Before we present the dynamic programming rules for recoloring, we first give some back-
ground and an overview of how these operations are commonly used in the context of dynamic
programming over tree decompositions (see e.g. [1, 31, 38]). The reader familiar with these
techniques may safely skip to Section 4.1. A tree decomposition of a graph G consists of a
tree T and a set Xv ⊆ V (G) for every v ∈ V (T ), such that:

1.
⋃

v∈V (T )Xv = V (G),
2. for every xy ∈ E(G), there exists a node v ∈ V (T ) such that {x, y} ⊆ Xv, and
3. for every x ∈ V (G), the nodes {v ∈ V (T ) | x ∈ Xv} induce a connected subgraph of T .

The width of a tree decomposition is the size of a largest set Xv minus one, and the minimum
width over all tree decompositions is the treewidth of G. In an algorithmic context, a root
node is chosen for the tree decomposition and dynamic programming is used to compute
certain information bottom up from the leaf nodes to the root node, using appropriate dy-
namic programming rules. If the information is known for all child nodes of a node v, then a
dynamic programming rule states how to use this to compute the desired information for v.
Defining and proving dynamic programming rules for all possible cases that occur in gen-
eral tree decompositions is rather complex, so usually the (rooted) tree decomposition is first
transformed into a nice tree decomposition. This is a rooted tree decomposition that contains
only four types of nodes:

– leaf nodes with no children,
– join nodes u with two children v and w such that Xu = Xv = Xw,
– introduce nodes u with one child v such that Xv ⊂ Xu and |Xu \Xv| = 1, and
– forget nodes u with one child v such that Xu ⊂ Xv and |Xv \Xu| = 1.

It is well-known that general tree decompositions can be transformed into nice tree decom-
positions in polynomial time (without increasing the tree-width) [31, 38]. This is a useful fact
since then dynamic programming rules need only be defined for the four types of nodes above.
In Section 6.1 we go into more detail about nice tree decompositions and slightly adjust their
definition by interpreting leaf, forget, introduce and join nodes in the context of terminal
graphs instead of graphs. (It is a good exercise for the reader to prove that both definitions
are equivalent. However, since our presentation is self-contained, this step is not necessary for
our proofs.)

4.1 Dynamic Programming Rules for Recoloring

We will now focus on CSGs for the k-color graph concept Ck, using the terminal projection
p(G,T, γ) = γ|T . We will show how to compute the CSG Cck(G,T ) when (G,T ) is obtained
using a forget, introduce or join operation from a (pair of) graph(s) for which we know the
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CSG(s). Hatanaka, Ito and Zhou [20] considered a variant of these CSGs, namely for the case
that |T | = 1 in the context of list colorings of caterpillars. They gave a combined introduce
and forget rule and a restricted type of join rule, similar to the rules below.

We first state the (trivial) rule for computing Cck(G,T ) for leaves, which follows from the
facts that Ck(G) has k-colorings of G as nodes and that the label `(x) of a node x in Cck(G,T ) is
a k-coloring of G[T ]. Afterwards we give the rules for the forget, introduce and join operations,
which can be proven using the properties of Lemma 1. Together these four rules allow us to
compute the CSG Cck(G,T ) for every terminal graph (G,T ). Figure 2 illustrates the rules for
the forget and introduce operation, whereas Figure 3 illustrates the rule for the join operation.

Lemma 3 (Leaf) Let (G,T ) be a terminal graph with T = V (G). Then Cck(G,T ) is isomor-
phic to Ck(G) and its label function ` is the isomorphism from Cck(G,T ) to Ck(G). Moreover,
for every k-coloring γ of G, the γ-node of Cck(G,T ) is the node v with `(v) = γ.

Lemma 4 (Forget) Let (G,T ) be a terminal graph. For every v ∈ T , it holds that (H ′, `′) =
Cck(G,T \ {v}) can be computed from (H, `) = Cck(G,T ) as follows:

– For every node x in H with `(x) = γ, let `′(x) = γ|T\{v}.
– Iteratively contract every edge between two nodes x and y with `′(x) = `′(y) and assign

label `′(z) := `′(x) to the resulting node z.

Moreover, for any coloring γ of G, the γ-node of Cck(G,T \ {v}) is the node that results from
contracting the set of nodes that includes the γ-node of Cck(G,T ).

Proof. Let S denote the certificate for (H, `), so for every node x of H, Sx denotes the set of
k-colorings of G (or solutions), such that these sets satisfy the properties stated in Lemma 1.
In addition, for every coloring γ for which a γ-node x has been marked in H, we may assume
that γ ∈ Sx. We will prove the statement using Lemma 1 again, by giving a certificate S′ for
(H ′, `′), and proving that the five properties hold for these.

The graph H ′ is obtained by iteratively contracting edges of H, so every node y of H ′

corresponds to a connected set of nodes of H, which we will denote by My. So {My | y ∈
V (H ′)} is a partition of V (H). For every node y ∈ V (H ′), we define S′y = ∪x∈MySx.

For every k-coloring γ of G such that the γ-node x ∈ V (H) is marked, we define the
γ-node of H ′ to be the node y with x ∈My. Clearly, γ ∈ S′y then holds, so this is correct. It
now remains to verify that the solution sets S′x satisfy the five properties stated in Lemma 1.

1. {Sx | x ∈ V (H)} is a partition of the nodes of Ck(G) (Lemma 1 Property 1), and {My |
y ∈ V (H ′)} is a partition of V (H), so {S′y | y ∈ V (H ′)} is a partition of the nodes Ck(G).

2. Consider a node y ∈ V (H ′), with label `′(y), which is a k-coloring of G[T \ {v}]. Every
node x ∈ My has a label `(x) with `(x)|T\{v} = `′(y), and for every γ ∈ Sx, it holds that
γ|T = `(x) (Lemma 1 Property 2), and thus γ|T\{v} = `′(y). Therefore, for every γ ∈ S′y,
it holds that γ|T\{v} = `′(y).

3. Consider two adjacent nodes x and y in H ′. This implies that there exists an edge ab
between the node sets Mx and My of H. By definition, all nodes a ∈Mx have `′(a) = `′(x),
and all nodes b ∈ My have `′(b) = `′(y). So if `′(x) = `′(y), then the edge ab should also
have been contracted when constructing H ′, a contradiction. Hence `′(x) 6= `′(y).

4. Consider a node x of H ′. The node set Mx is connected, so for any two nodes y, z ∈Mx, the
subgraph of H induced by Mx contains a path from y to x. Edges ab of this path correspond
to solution sets Sa and Sb that contain adjacent solutions (Lemma 1 Property 5). In
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addition, all such solution sets Sa are connected in Ck(G) (Lemma 1 Property 4). Combining
these facts shows that the new solution sets S′x are connected in Ck(G).

5. Let z and z′ be two nodes of H ′. By construction, z and z′ are adjacent if and only if there
exist nodes x ∈ Mz and x′ ∈ Mz′ that are adjacent in H. Two such nodes x and x′ are
adjacent in H if and only if there exist solutions α ∈ Sx and α′ ∈ Sx′ that are adjacent in
Ck(G) (Lemma 1 Property 5). Using the definition of Sz and Sz′ , we conclude that z and
z′ are adjacent if and only if there exist solutions α ∈ Sz and α′ ∈ Sz′ that are adjacent in
Ck(G). ut

Lemma 5 (Introduce) Let (G,T ) be a terminal graph obtained from a terminal graph (G−
v, T \ {v}) by introducing v. Then (H ′, `′) = Cc

k(G,T ) can be computed as follows from
(H, `) = Cck(G− v, T \ {v}):

– For every node x of H with label `(x), and every color c ∈ {1, . . . , k}: if the (unique)
function δ : T → {1, . . . , k} with δ(v) = c and δ|T = `(x) is a coloring of G[T ] then
introduce a node xc with label `′(xc) = δ.

– For every pair of distinct nodes xc and yd: add an edge between them if and only if (1)
x = y or (2) xy is an edge in H and c = d.

Moreover, for every k-coloring γ of G, if x is the γ|V (G)\{v}-node in H and γ(v) = c, then xc
is the γ-node of H ′.

Proof. Let S be a certificate for (H, `), so for every node x of H, let Sx denote the set of k-
colorings of G−v (or solutions), such that these sets satisfy the properties stated in Lemma 1.
In addition, for every coloring γ for which a γ-node x has been marked in H, we may assume
that γ ∈ Sx. Now we construct a certificate S′ for (H ′, `′). For every node xc of H ′ (that
corresponds to a node x of H, and to assigning a color c to the new vertex v), we define S′xc

to be the set of k-colorings α of G with α(v) = c and α|T\{v} ∈ Sx. For every k-coloring γ of
G and node xc of H ′, we define xc to be the γ-node of H ′ if and only if γ(v) = c and x is the
γ|V (G)\{v}-node of H. Clearly, this guarantees γ ∈ S′xc

for the chosen γ-node xc. To prove the
statement, it only remains to show that the new solution sets S′xc

satisfy the five properties
stated in Lemma 1.

1. First, we observe that for every node xc of H ′, S′xc
is a nonempty set of k-colorings of

G, because Sx is nonempty (Lemma 1), and by choice of c, every coloring α ∈ Sx can be
extended to a k-coloring of G by setting α(v) = c (this uses the fact that N(v) ⊆ T ). So
to prove that the new solution sets form a partition of the nodes of Ck(G), it only remains
to show that every k-coloring α of G is included in S′xc

for exactly one new node xc. For
every such α, there exists a unique node x of H such that α|V (G)\{v} ∈ Sx (Lemma 1
Property 1). Since α is a coloring of G, α|T is a coloring of G[T ], so we have created one
node xc with c = α(v). This is the unique node of H ′ with α ∈ S′xc

.

2. Consider a node xc of H ′, with label `′(xc) = δ. For every α ∈ S′xc
, it holds that α(v) = c

and δ(v) = c. Furthermore, δ|T\{v} = `(x) = α|T\{v} (Lemma 1 Property 2). This shows
that the label `′(xc) is chosen correctly.

3. Consider two adjacent nodes xc and yd of H ′. If x = y then c 6= d, so `′(x) 6= `′(y).
Otherwise, x and y are adjacent nodes in H, so `(x) 6= `(y) (Lemma 1 Property 3). The
labels `(x) and `(y) are the restrictions of `′(xc) and `′(yd) to T \ {v}, so also in this case
we conclude that `′(x) 6= `′(y).
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4. Consider a node xc of H ′, and two k-colorings α and β in S′xc
. There is a path P from

α|V (G)\{v} to β|V (G)\{v} in the subgraph of Ck(G − v) induced by Sx (Lemma 1 Prop-
erty 4). As N(v) ⊆ T , all colorings γ in P have an extension γ′ ∈ Sxc with γ′(v) = c and
γ′|V (G)\{v} = γ. So replacing all colorings in P by their extension this way yields a path
from α to β in the subgraph of Ck(G) induced by S′xc

. Therefore, S′xc
is connected.

5. Consider two distinct nodes xc and yd in H ′, and their corresponding sets of solutions S′xc

and S′yd . Observe that these contain solutions that are adjacent in Ck(G) if and only if
at least one of the following is true: (1) c = d (and thus x 6= y) and Sx and Sy contain
solutions that are adjacent in Ck(G − v), or (2) c 6= d and Sx ∩ Sy 6= ∅. The first case
holds if and only if c = d and the nodes x and y are adjacent in H (Lemma 1 Property 5).
In the second case, Sx ∩ Sy 6= ∅ holds if and only if Sx = Sy, and thus x = y (Lemma 1
Property 1). This shows that we have added the edges correctly. ut

Lemma 6 (Join) Let (G,T ) be a terminal graph that is the join of terminal graphs (G1, T )
and (G2, T ). Let (H1, `1) = Cc

k(G1, T ) and (H2, `2) = Cc
k(G2, T ). Then (H, `) = Cc

k(G,T ) can
be computed as follows:

– For every pair of nodes x ∈ V (H1) and y ∈ V (H2): if `1(x) = `2(y) then introduce a node
(x, y) with `((x, y)) = `1(x).

– For two distinct nodes (x, y) and (x′, y′), add an edge between them if and only if xx′ is
an edge in H1 and yy′ is an edge in H2.

Moreover, for every k-coloring γ of G, if x is the γ|V (G1)-node in H1 and y is the γ|V (G2)-node
in H2, then (x, y) is the γ-node in H.

Proof. Denote V1 = V (G1) and V2 = V (G2). For every node x of H1, let S1
x denote the set

of k-colorings of G1 such that these sets satisfy the properties stated in Lemma 1. Similarly,
we define the sets S2

x for every node x of H2. In addition, we assume again that these sets
coincide with the choices of γ|V1-nodes and γ|V2-nodes.

We define a certificate S for (H, `) as follows. For every node (x, y) of H, we define the
set S(x,y) to consist of all k-color assignments α of G such that α|V1 ∈ S1

x and α|V2 ∈ S2
y . For

any k-coloring γ of G and node (x, y) of H, we choose (x, y) to be the γ-node of H if and
only if x is the γ|V1-node of H1 and y is the γ|V2-node of H2. This obviously guarantees that
γ ∈ S(x,y) for the chosen γ-node (x, y). To prove the statement, it only remains to show that
the new solution sets S(x,y) satisfy the five properties stated in Lemma 1.

1. First, we show that for every node (x, y) of H, S(x,y) is a nonempty set of k-colorings of G.
The set S1

x contains at least one coloring α1 of G1, and S2
y contains at least one coloring α2

of G2 (Lemma 1 Property 1). Both of these colorings yield the coloring `((x, y)) = `1(x) =
`2(y) when restricted to T (Lemma 1 Property 2), so they can be combined into a k-color
assignment α for G. Since all edges of G are part of G1 or G2 (by definition of the join
operation), the resulting α is a k-coloring of G.
To prove that the sets S(x,y) partition the k-colorings of G, it now suffices to show that
every k-coloring α of G is included in exactly one set S(x,y). Consider αi = α|Vi for i = 1, 2.
Then α1 ∈ Sx for exactly one node x of H1, and α2 ∈ Sy for exactly one node y of
H2 (Lemma 1 Property 1). These nodes have `1(x) = α|T and `2(y) = α|T (Lemma 1
Property 2), so we have created exactly one node (x, y) with α ∈ S(x,y).

2. Consider a node (x, y) of H, and a solution α ∈ S(x,y). Let α1 = α|V1 . Then α|T = α1|T =
`1(x) = `((x, y)) (Lemma 1 Property 2).
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3. Consider adjacent nodes (x, y) and (x′, y′) of H. Then by definition, x and x′ are adjacent
in H1, so `1(x) 6= `2(x

′) (Lemma 1 Property 3), and thus `((x, y)) 6= `((x′, y′)).

4. Consider a node (x, y) of H. We prove that S(x,y) is a connected set in Ck(G). Consider
any two colorings α, β ∈ S(x,y). Define αi = α|Vi and βi = β|Vi for i = 1, 2. Then for
i = 1, 2, there exists a path P i (or recoloring sequence) from αi to βi, in the subgraph
of Ck(Gi) induced by S1

x resp. S2
y (Lemma 1 Property 4). All colorings γ in both paths

satisfy γ|T = `((x, y) = `1(x) = `2(y) (Lemma 1Property 2). Therefore, we can construct
a recoloring sequence from α to β that contains only colorings in S(x,y) by first recoloring
vertices of V1\T as prescribed by the recoloring sequence P 1 (which yields a coloring δ of G
with δ|V1 = β1 and δ|V2 = α2), and subsequently recoloring vertices of V2 \T as prescribed
by the recoloring sequence P 2 (which yields the coloring β). This can be done because
V1 ∩ V2 = T and neither P 1 nor P 2 recolors a vertex of T . All of the color assignments
in the resulting sequence are part of S(x,y) by definition (and they are in fact colorings, as
argued above in (1)).

5. Consider two distinct nodes (x, y) and (x′, y′) in H. We prove that they are adjacent if
and only if there exist solutions α ∈ S(x,y) and β ∈ S(x′,y′) that are adjacent in Ck(G).

Suppose (x, y) and (x′, y′) are adjacent. By definition, this means that x and x′ are adjacent
(and thus distinct) nodes of H1, and y and y′ are adjacent nodes of H2. So we can choose
solutions α1 ∈ S1

x and β1 ∈ S1
x′ that are adjacent in Ck(G1), and solutions α2 ∈ S2

y and
β2 ∈ S2

y′ that are adjacent in Ck(G2) (Lemma 1 Property 5). Since `1(x) 6= `1(x
′) (Lemma 1

Property 3), and α1|T = `1(x) and β1|T = `2(x
′) (Lemma 1 Property 2), the colorings α1

and β1 differ on T , and therefore, since they are adjacent, only on T (so their restrictions
to V1 \T are the same). Similarly, the colorings α2 and β2 differ only on T . By definition of
(x, y), `1(x) = `2(y), so we can choose a k-coloring α of G with α|V1 = α1 and α|V2 = α2.
Similarly, we can choose a k-coloring β of G with β|V1 = β1 and β|V2 = β2. As argued
above, the colorings α and β differ only on one vertex in T , so they are adjacent in Ck(G).
By their construction, α ∈ S(x,y) and β ∈ S(x′,y′), so this proves the first direction.

For the converse, suppose that there exist adjacent colorings α ∈ S(x,y) and β ∈ S(x′,y′). Let
αi = α|Vi and βi = β|Vi for i = 1, 2. Let w be the (unique) vertex of G with α(w) 6= β(w). If
w ∈ T then, by using similar arguments as in the previous paragraph, one can verify that x
and x′ are adjacent nodes in H1 and y and y′ are adjacent nodes in H2, and therefore (x, y)
and (x′, y′) are adjacent in H. We conclude the proof by showing that w ∈ T always holds.
Suppose for contradiction that w 6∈ T ; without loss of generality assume that w ∈ V1 \ T .
So α2 = β2. Therefore S2

y ∩ S2
y′ 6= ∅, and thus y = y′ (Lemma 1 Property 1). It follows

that `1(x) = `2(y) = `2(y
′) = `1(x

′). In addition, since (x, y) and (x′, y′) are distinct nodes
and y = y′, it follows that x 6= x′. But α1 ∈ S1

x and β1 ∈ S2
x′ are adjacent, so xx′ ∈ E(H1)

(Lemma 1 Property 5). This is a contradiction to the fact that `1(x) 6= `1(x
′) must hold

due to Lemma 1 Property 3. ut

Remark 1. The DP rules in this section can be generalized further to capture the rules of [20]
for the list coloring generalization CL of Ck. In this generalization, an instance G,L consists of
a graph G together with color lists L(v) ⊆ {1, . . . , k} for each v ∈ V (G). Solutions are now list
colorings, which are colorings α of G such that α(v) ∈ L(v) for each v ∈ V (G). Adjacency is
defined as before. So the list coloring solution graph CL(G,L) is an induced subgraph of Ck(G).
Hence, it is straightforward to generalize our DP rules to CL, namely by simply omitting all
nodes that correspond to invalid vertex colors.
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Fig. 2. An example of computing CSGs using forget and introduce operations. A 4-colorable 2-connected
chordal graph G with V (G) = {a, b, c, d, e, f, g, h} is shown. Note that G is in fact unit interval and isomorphic
to the graph GI

8 defined in Section 4. Starting with one component of the CSG Cc4(G[{a, b, c, d}], {c, d}), the
corresponding component of Cc4(G, {g, h}) is computed, using four forget and introduce operations. The G[T ]-
colorings in the node labels are given as sequences of colors for the ordered version of T as indicated below
each CSG. For instance, for T = (c, d), the node label 12 indicates the coloring γ with γ(c) = 1 and γ(d) = 2.
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5 Examples of Exponential Size CSGs

In this section we further illustrate the dynamic programming rules given in Section 4 and
show that components of Cck(G) can grow exponentially, even if G is a chordal graph and
k = 4. Namely, when considering 4-colorable chordal graphs that may have cut vertices, it is
easy to obtain CSGs that have exponentially large components: take p copies of the graph
shown in Figure 1(a), and identify the g-vertices of all of these graphs. Call the resulting
graph G∗p. The graph G∗2 is shown in Figure 3(a).

Proposition 7 For every integer p ≥ 1, Cc4(G∗p, {g}) has a component with 1 + 3 · 2p nodes.

Proof. By induction over p we prove the following: Cc4(G∗p, {g}) has a component that is a
star (a K1,n graph) in which the central node has label 1 (to be precise, this means that the
label is a coloring that assigns color 1 to vertex g), and which has 2p leaves with label j,
for j ∈ {2, 3, 4}. The case p = 1 can easily be verified; see also Figure 1. For the induction
step, apply Lemma 6 to the star components of Cc4(G∗p−1, {g}) and Cc4(G∗1, {g}) given by the

induction hypothesis: for j ∈ {2, 3, 4}, the 2p−1 nodes with label j of the former graph are
combined with two nodes with label j of the latter graph, giving 2p new nodes with label j.
All of these are adjacent only to the unique new node with label 1. ut

(a) Graph G∗2 (b) Cc4(G∗2, {g})

g

13

3

3

4

2

3 2

2

2

44

4

Fig. 3. (a) The graph G∗2, which can be obtained using a join operation on two subgraphs isomorphic to the
graph G shown in Figure 1(a), with T = {g}. (b) One component of the CSG Cc4(G∗2, {g}), which can be
obtained by combining two copies of the CSG from Figure 1(d), as shown in Lemma 6.

With a little more effort, we can also construct CSGs with exponentially large components
when restricting to (k − 2)-connected k-colorable chordal graphs, or even 2-connected 4-
colorable unit interval graphs, as we show below.

A graph G is an interval graph if G has a representation in which each vertex corresponds
to an interval of the line, and two vertices are adjacent if and only if their corresponding
intervals intersect. If these intervals have unit length, then G is a unit interval graph. For
p ≥ 4, let the graph GI

p have vertex set {v0, . . . , vp−1} and edge set {v0v3} ∪ {vivi+1 | 0 ≤ i ≤
p− 2} ∪ {vivi+2 | 0 ≤ i ≤ p− 3}. A graph isomorphic to GI

8 is shown in Figure 2. It is readily
seen that each GI

p is an interval graph. An interval graph is a unit interval if and only if it is
claw-free, that is, does not contain the 4-vertex star as an induced subgraph [40]. Hence, as
each GI

p is claw-free, each GI
p is even a unit interval graph.
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For our proof we need the following simple observation (which has been used in various
earlier papers on recoloring, such as in the proof of Theorem 11 of [8]).

Lemma 8 Let α and β be two k-colorings of a graph G = (V,E), and let v be a vertex of
degree at most k−2. Then Ck(G) contains a path from α to β if and only if Ck(G−v) contains
a path from α|V \{v} to β|V \{v}.

Below we state our claim more precisely and give a proof of it as well.

Proposition 9 For p = 4q + 4 with q ∈ N, the CSG Cc4(GI
p, {vp−2, vp−1}) has 4! components

on at least 2q nodes.

Proof. For every set S ⊆ {1, . . . , q}, we construct a coloring αS of GI
p as follows. For all

j ∈ {0, . . . , q}:

– αS(v4j) = 3 if j ∈ S, and αS(v4j) = 4 if j 6∈ S.
– αS(v4j+1) = 4 if j ∈ S, and αS(v4j+1) = 3 if j 6∈ S.
– αS(v4j+2) = 1.
– αS(v4j+3) = 2.

Observe that for every S, αS is a 4-coloring of GI
p. There are 2q possible choices of S, and

therefore 2q such colorings αS . An induction proof based on Lemma 8 shows that for every
S1 ⊆ {1, . . . , q} and S2 ⊆ {1, . . . , q}, C4(G) contains a path from αS1 to αS2 . Informally, vertex
vp−1 has degree 2 = 4− 2 and we may delete vp−1 by Lemma 8. After deleting vp−1, vp−2 has
degree 2, and may be deleted next. Continuing this procedure ends with two 4-colorings of the
complete graph on vertices {v0, v1, v2, v3}, which coincide. That is, for every S, αS assigns the
colors 4, 3, 1, 2 to the vertices v0, v1, v2, v3, respectively (note that no vertex of {v0, v1, v2, v3}
can be recolored). It follows that all of the colorings αS we constructed are part of the same
component of C4(GI

p). Finally, we observe that every coloring αS forms a one-node label

component in Cc4(GI
p, {vp−2, vp−1}). Indeed, the only vertex that can be recolored in any αS

is the vertex vp−1; all other vertices have three distinctly-colored neighbors. Summarizing,
Cc4(GI

p, {vp−2, vp−1}) contains a component that contains at least 2q nodes that are labeled
with a coloring that assigns colors 1 and 2 to vertices vp−2 and vp−1, respectively.

For every 4-coloring of G[{v0, v1, v2, v3}], the CSG contains a component isomorphic to
the component considered above, so there are 4! components of this type. ut

The last CSG shown in Figure 2 contains two nodes with label 12; these correspond to
the colorings α∅ and α{1} constructed in the above proof. The CSG shows that any recoloring
sequence between these two colorings needs to recolor the vertices vp−2 = g and vp−1 = h
at least two resp. three times. We remark that the proofs of Propositions 7 and 9 illustrate
different proof techniques for CSGs: one uses the dynamic programming rules, and the other
argues about label components of the solution graph directly. Both examples show that we
need to do more than only computing CSGs to solve the problem for (k−2)-connected chordal
graphs in polynomial time. In the next section we will characterize the CSGs and show that
it suffices to compute only a part of them.

6 Recoloring Chordal Graphs

In this section we will show that CSGs can be used to efficiently decide the Ck-Reachability
problem for (k− 2)-connected chordal graphs. Recall that a graph is chordal if it contains no
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induced cycle of length greater than 3. To prove the result, we use the fact that for a chordal
graph G and any clique T of G, the terminal graph (G,T ) can recursively be constructed from
simple cliques using a polynomial number of clique-based introduce, forget and join operations.
In order to do this we first define the notion of a nice tree decomposition for terminal graphs in
Section 6.1. In the same section we show an upper bound on the size of an arbitrary nice tree
decomposition for a terminal graph. Afterwards we make the above fact for chordal graphs
precise in Section 6.2, namely by defining chordal nice tree decompositions for terminal graphs.
We remark that some of our statements are similar to (and can alternatively be deduced from)
well-known facts about tree decompositions [16] and nice tree decompositions [31] for graphs.
However, for readability, and since we need to prove an upper bound on the size of a nice tree
decomposition for terminal graphs, we give a self-contained presentation.

6.1 Nice Tree Decompositions for Terminal Graphs

Nice tree decompositions describe how a terminal graph (G,T ) can be obtained from trivial
graphs using forget, introduce and join operations. A nice tree decomposition of a terminal
graph (G,T ) (where G is an arbitrary graph, not necessarily chordal, and T may not be a
clique) is a tuple (T , X, r), where T is a tree with root r and X is an assignment of bags
Xu ⊆ V (G) for each u ∈ V (T ) that can be defined recursively as follows:

(1) If T = V (G), then the tree T consists of one (root) node r with bag Xr = T .
(2) If v ∈ V (G) \ T and (T ′, X, r′) is a nice tree decomposition of (G,T ∪ {v}), then a nice

tree decomposition for (G,T ) can be obtained by adding a new root r with Xr = T and
adding the edge rr′.

(3) If (G,T ) can be obtained from (G−v, T \{v}) using an introduce operation and (T ′, X, r′)
is a nice tree decomposition of (G− v, T \ {v}), then a nice tree decomposition for (G,T )
can be obtained by adding a new root r with Xr = T and adding the edge rr′.

(4) If (G,T ) can be obtained from (G1, T ) and (G2, T ) using a join operation, and (T1, X, r1)
and (T2, X, r2) are nice tree decompositions of (G1, T ) and (G2, T ), then a nice tree de-
composition for (G,T ) can be obtained by adding a new root r with Xr = T and adding
edges rr1 and rr2.

We call a node u ∈ V (T ) a leaf, forget node, introduce node or join node if u is added as the
root in case (1), (2), (3) or (4), respectively. The width of (T , X, r) is maxu∈V (T ) |Xu| − 1.

We will need the following lemma.

Lemma 10 Let (T , X, r) be a nice tree decomposition of a terminal graph (G,T ) of width at
most w ≥ 1, and let n = |V (G)| ≥ 1. Then |V (T )| ≤ (w + 4)n.

Proof. Let t = |T |. We use induction over |V (T )| to prove that

|V (T )| ≤ 2n− t+ (w + 2)(max{0, n− t− 1}).

Then, since this value is at most (w + 4)n, the lemma statement follows.

Let |V (T )| = 1. Then the root r of T is a leaf (so T = V (G) and t = n). This means that

|V (T )| = 1 ≤ n = 2n− t+ (w + 2)(max{0, n− t− 1}).

Let |V (T )| ≥ 2. Then the root r is either a forget, introduce or join node. We consider each
of these cases below.
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If r is a forget node then by induction, after adding the new root to the tree, the number of
nodes is at most:

1 + 2n− (t+ 1) + (w + 2)(max{0, n− (t+ 1)− 1}) ≤ 2n− t+ (w + 2)(max{0, n− t− 1}).

If r is an introduce node then by induction, after adding the new root to the tree, the number
of nodes is at most:

1 + 2(n− 1)− (t− 1) + (w + 2)(max{0, n− 1− (t− 1)− 1}) =

2n− t+ (w + 2)(max{0, n− t− 1}).

Finally, suppose that r is a join node and that (G,T ) is obtained by joining together graphs
on n1 and n2 = n−n1 + t nodes. From the definition of the join operation it follows that both
of these values are strictly larger than t, so we may write max{0, n1− t− 1} = n1− t− 1 and
max{0, n2 − t− 1} = n2 − t− 1 = n− n1 − 1. Then by induction, after adding the new root,
the number of nodes is at most:

1 + 2n1 − t+ (w + 2)(n1 − t− 1) + 2(n− n1 + t)− t+ (w + 2)(n− n1 − 1) =

1 + 2n+ (w + 2)(n− t− 2) ≤ 2n− t+ (w + 2)(n− t− 1).

For the last step, we used the fact that t ≤ (w + 1). ut

6.2 Chordal Nice Tree Decompositions for Terminal Graphs

A nice tree decomposition (T , X, r) of (G,T ) is chordal if for every node u ∈ V (T ), Xu is
a clique of G. Note that, if (T , X, r) is a chordal nice tree decomposition of a k-colorable
graph G, then the width of (T , X, r) is at most k − 1. Hence, Lemma 10 shows that any
chordal nice tree decomposition of a k-colorable graph has at most (k + 3)n nodes.

In order to show how to find a chordal nice tree decomposition in polynomial time we
need the following lemma, which tells us how to select the proper type of root node when
constructing such a tree decomposition. Here, a terminal graph (G1, T1) is called smaller than
another terminal graph (G2, T2) if 2|V (G1)| − |T1| < 2|V (G2)| − |T2|.

Lemma 11 Let (G,T ) be a terminal graph where G is a chordal graph, and T is a clique
with T 6= V (G). If G− T is disconnected, then (G,T ) can be obtained from a pair of smaller
chordal terminal graphs (G1, T ) and (G2, T ) using a join operation. Otherwise, (G,T ) can
be obtained from a smaller chordal terminal graph (G′, T ′) using either a forget or introduce
operation, where T ′ is a clique. For every such (G,T ), the relevant operation and subgraph(s)
can be found in polynomial time.

Proof. If G − T is disconnected, then let C be the vertex set of a component of G − T , and
consider the two graphs G1 = G[T ∪ C] and G2 = G− C. Then (G,T ) is the join of (G1, T )
and (G2, T ) with |V (G1)| − |T | < |V (G)| − |T | and |V (G2)| − |T | < |V (G)| − |T |.

Next assume that G − T is connected. If T contains a vertex v that has no neighbors in
G− T , then (G,T ) can be obtained from (G− v, T \ {v}) using an introduce operation (note
that this operation requires that v has no neighbors in G−T ), and 2|V (G− v)| − |T \ {v}| =
2|V (G)| − |T | − 1.
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Finally, assume that G− T is connected and every vertex in T is adjacent to at least one
vertex in G− T . Below we prove that there exists a vertex u ∈ V (G) \ T that is adjacent to
every vertex of T . As T is a clique, this means that T ∪ {u} is a clique. Consequently, (G,T )
can be obtained from (G,T ∪ {u}) by a forget operation, such that T ∪ {u} is a clique in G,
and 2|V (G)| − |T ∪ {u}| = 2|V (G)| − |T | − 1.

We choose u ∈ V (G) \ T to be a vertex with a maximum number of neighbors in T over
all vertices in G − T . We claim that u is adjacent to every vertex of T . For contradiction,
assume there exists a vertex y ∈ T that is not adjacent to u. Recall that G− T is connected
and that every vertex in T is adjacent to at least one vertex in G−T . These two assumptions
imply that we can choose a shortest path P in G− T from u to a neighbor v of y (so v is the
only vertex of P that is adjacent to y).

Let u′ be the last vertex on P (when going from u to v) that has a neighbor z ∈ T not
adjacent to v. As u is a vertex in G − T with the maximum number of neighbors in T over
all vertices in G− T and u is not adjacent to y ∈ T ∩N(v), vertex u satisfies this condition.
Hence, vertex u′ exists (and u′ 6= v).

Let P ′ be the subpath of P from u′ to v. By our choice of u′, no vertex of P ′ other than
u′ is adjacent to z. Recall also that v is the only vertex of P ′ that is adjacent to y. As T is a
clique, y and z are adjacent. As P ′ is a shortest path, the subgraph of G induced by V (P ′) is
a path. As u′ 6= v, it follows that |V (P ′)| ≥ 2. Hence, V (P ′)∪ {y, z} induces a cycle of length
at least 4 in G, contradicting the fact that G is chordal. We conclude that u is adjacent to
every vertex of T , as desired.

The above case study can easily be translated to a polynomial-time algorithm for finding
the graph operation that applies. ut

We are now ready to state the following result.

Corollary 12 Let G be a chordal k-colorable graph on n vertices, and let T be a clique of
G. Then it is possible to find a chordal nice tree decomposition of (G,T ) on at most (k+ 3)n
nodes in polynomial time.

Proof. Lemma 11 shows how we can choose the proper type of root node. We can build
the chordal nice tree decomposition by adding this node to the tree decomposition(s) of (a)
smaller graph(s). The entire chordal nice tree decomposition is constructed by continuing this
process recursively. Lemma 10 shows that the resulting chordal nice tree decomposition has
at most (w + 4)n nodes, where w + 1 is the maximum bag size. Since every bag is a clique
of G and the graph is k-colorable, we have w + 1 ≤ k, so there are at most (k + 3)n nodes.
Since we have a polynomial number of nodes, and for every node we spend polynomial time
(Lemma 11), the entire process terminates in polynomial time. ut

We note that the precise complexity bound in Corollary 12 depends on implementation
details, which are beyond the scope of this paper.

6.3 The Structure of CSGs for (k − 2)-Connected Chordal Graphs

Using an inductive proof based on Lemma 11, we will now characterize the shape of CSGs
for (k − 2)-connected k-colorable chordal graphs. We start with a lemma that we will apply
to (k − 2)-connected k-colorable chordal graphs in our induction proofs.
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Lemma 13 Let G be a `-connected chordal graph, and let T be a clique of G with T 6= V (G).
If (G,T ) can be obtained from (G− v, T \ {v}) using an introduce operation, then |T | ≥ `+ 1
and G − v is `-connected. If (G,T ) can be obtained from (G1, T ) and (G2, T ) using a join
operation, then |T | ≥ ` and both G1 and G2 are `-connected.

Proof. If (G,T ) is obtained from (G− v, T \ {v}) using an introduce operation, then N(v) ⊆
T \ {v} by definition. Since T 6= V (G), it follows that T \ {v} is a vertex cut set of G that
separates v from at least one other vertex, so |T | = |T \ {v}| + 1 ≥ ` + 1. In addition, since
T is a clique of G, every vertex cut set of G − v is also a vertex cut set of G, and therefore
G− v is `-connected.

If (G,T ) is obtained from (G1, T ) and (G2, T ) using a join operation, then T is a vertex
cut set of G that separates V (G1) \ T from V (G2) \ T , so |T | ≥ `. In addition, since T is a
clique of G, every vertex cut set of Gi is a vertex cut set of G (for i = 1, 2), and therefore G1

and G2 are `-connected. ut

We need some extra definitions. For integers m, k with 1 ≤ m ≤ k, a labeled graph (H, `)
is an (m, k)-color-complete graph if there exists a complete graph K[T ] on vertex set T with
|T | = m such that:

– for all vertices v ∈ V (H), `(v) is a k-coloring of K[T ],
– every such k-coloring of K[T ] appears at exactly one vertex of H, and
– two vertices of H are adjacent if and only if their labels differ on exactly one vertex of T .

From this definition it follows that for every pair of integers m and k, there is a unique (m, k)-
color complete graph, up to the choice of T . An (m, k)-color-complete graph has k!/(k −m)!
vertices (this is the number of ways to k-color a complete graph on m vertices), and every
vertex has degree m(k − m). In particular, if m = k then the graph consists of k! isolated
vertices (meaning that the graph is a forest). A labeled graph (H, `) is said to satisfy the
injective neighborhood property (INP) if for every vertex u ∈ V (H) and every pair of distinct
neighbors v, w ∈ N(u), it holds that `(v) 6= `(w). Note that (m, k)-color-complete graphs
trivially satisfy the INP.

We will now show that for the graphs we consider, the following invariant is maintained
by introduce, forget and join operations:

The CSG is an (m, k)-color complete graph, or a forest that satisfies the INP.

Note that a (k, k)-color complete graph is trivially a forest that satisfies the INP. We start
with the trivial observation that this invariant initially holds.

Lemma 14 Let G = (V,E) be a complete graph on m vertices, with m ≤ k. Then Cck(G,V )
is an (m, k)-color complete graph.

We now prove that a forget operation maintains the invariant (below, we argue that all
the relevant cases are covered by the next lemma). Recall that a label `(u) of a node u of
Cck(G,T ) is a coloring of G[T ], so by `(u)(x) we denote the color that x ∈ T receives in this
coloring.

Lemma 15 Let G be a k-colorable chordal graph and let T be a clique of G with k− 1 ≤ |T |,
and v ∈ T . If Cck(G,T ) is a (k− 1, k)-color complete graph, then Cck(G,T \{v}) is a (k− 2, k)-
color complete graph. If Cck(G,T ) is a forest that satisfies the INP, then Cck(G,T \ {v}) is a
forest that satisfies the INP.
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Proof. Let (H, `) = Cck(G,T ) and (H ′, `′) = Cck(G,T \ {v}). We will use the fact that (H ′, `′)
can be constructed from (H, `) as shown in Lemma 4.

First consider the case that (H, `) is a (k − 1, k)-color-complete graph. Then, from the
definition of (k−1, k)-color-complete graphs it follows that for every coloring α of G[T \{v}],
the nodes {x ∈ V (H) | `(x)|T\{v} = α} induce a nonempty complete subgraph of H. When
constructing (H ′, `′) from (H, `), this subgraph will be contracted into one node, so for every
such coloring α, H ′ contains exactly one node with label α. Consider two colorings α1 and α2

of G[T \ {v}] that differ on only one vertex w ∈ T \ {v}. We can extend both to a coloring of
G[T ] by choosing a color for v that occurs in neither α1 nor α2 (since |T \{v}| = k−2), which
yields colorings of G[T ] that are adjacent in H (since (H, `) is (k − 1, k)-color complete) and
that are compatible with α1 resp. α2. It follows that the nodes of H ′ with labels α1 and α2

are adjacent (Lemma 4). We conclude that (H ′, `′) is a (k − 2, k)-color-complete graph.

Next, consider the case that (H, `) is a forest that satisfies the INP. Then H ′ is clearly a
forest, since it can be obtained by contracting H (Lemma 4). If H contains no edges, then H ′

contains no edges, and trivially (H ′, `′) satisfies the INP. Note that this is the case if |T | = k.
So it only remains to consider the case that H contains at least one edge, and therefore
|T | = k − 1. The last part of the proof is illustrated in Figure 4.

Mb
Ma Mc

`′(c) = β`′(a) = α`′(b) = β

H, `:

H ′, `′:

a cb
w w

y zx2x1
vw w

Fig. 4. An illustration of the proof of Lemma 15.

For every node a ∈ V (H ′), denote by Ma the set of nodes of H that are contracted to
obtain a, when constructing (H ′, `′) from (H, `) as shown in Lemma 4 (so all nodes in Ma

are labeled with a G[T ]-coloring that is compatible with the G[T \ {v}]-coloring `′(a)). For
every k-coloring α of G[T \ {v}], there are at most two compatible colorings of G[T ], since
|T \ {v}| = k− 2. So since H satisfies the INP, the subgraph of H induced by the nodes that
have an α-compatible label has maximum degree at most 1, and thus maximum component
size at most 2. It follows that for every a ∈ V (H ′), |Ma| ≤ 2.

We now prove that (H ′, `′) satisfies the INP. Suppose to the contrary that H ′ contains
a node a with `′(a) = α, that has two neighbor nodes b and c with `′(b) = `′(c) = β. Let
w ∈ T \ {v} be the vertex on which α and β differ. So there are nodes y ∈ Mb and x1 ∈ Ma

that are adjacent in H, and nodes z ∈ Mc and x2 ∈ Ma that are adjacent in H (Lemma 4).
Because the adjacent colorings `(y) and `(x1) differ on vertex w, they differ on no other
vertex. The same holds for `(z) and `(x2). As H satisfies the INP, it follows that x1 6= x2, so
|Ma| ≥ 2, and thus |Ma| = 2.
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We conclude that y, x1, x2, z is a path in H such that `(y)(w) 6= `(x1)(w), `(x1)(v) 6=
`(x2)(v), and `(x2)(w) 6= `(z)(w). Recall that labels of adjacent nodes in H differ on exactly
one vertex. The colorings `(y), `(x1), `(x2) and `(z) all use |T | = k− 1 different colors out of
a total of k colors. Combining these facts shows that `(y)(w) = `(x2)(v) = `(z)(v). But since
`(y) and `(z) are both compatible with β, `(z)(w) = `(y)(w). This contradicts that `(z) is a
(proper) coloring of G[T ]. We conclude that (H ′, `′) satisfies the INP. ut

Next, we show that the introduce operation maintains the invariant.

Lemma 16 Let G = (V,E) be a (k − 2)-connected k-colorable chordal graph and let T be a
clique of G, with T 6= V , such that (G,T ) can be obtained from (G − v, T \ {v}) using an
introduce operation. If Cck(G− v, T \ {v}) is a (k − 2, k)-color complete graph, then Cck(G,T )
is a (k − 1, k)-color complete graph. If |T | = k or Cck(G− v, T \ {v}) is a forest that satisfies
the INP, then Cck(G,T ) is a forest that satisfies the INP.

Proof. Let (H, `) = Cck(G−v, T \{v}) and (H ′, `) = Cck(G,T ). We will use the fact that (H ′, `′)
can be constructed from (H, `) as shown in Lemma 5. By Lemma 13, |T | ≥ k − 1. If |T | = k,
then H ′ is a set of isolated vertices, which proves the statement. So we may now assume that
|T | = k − 1.

First consider the case that (H, `) is a (k − 2, k)-color-complete graph. For every k-
coloring α of G[T ], there exists exactly one node in H that has a label β that is compatible
with α. So H ′ contains exactly one node with label α. Consider two colorings α1 and α2 of
G[T ] that differ on exactly one vertex. If this vertex is v, then the nodes of H ′ with labels α1

and α2 are adjacent (Lemma 5). Otherwise, let βi = αi|T\{v} for i = 1, 2. The nodes with
labels β1 and β2 are adjacent in H since it is a color-complete graph. Therefore, the nodes of
H ′ with labels α1 and α2 are also adjacent in this case (Lemma 5). We conclude that (H ′, `′)
is a (k − 1, k)-color complete graph.

Next, consider the case that (H, `) is a forest that satisfies the INP. From Lemma 5 it
follows easily that (H ′, `′) satisfies the INP. We now prove that H ′ is a forest. Since |T \{v}| =
k−2, every node x of H has as label `(x) a (k−2)-coloring of the complete graph G[T \{v}].
So there are exactly two nodes in H ′ that correspond to x, which are adjacent (Lemma 5).

We will now show that for any edge xy ∈ E(H), the following holds: if x1 and x2 are the
vertices of H ′ that correspond to x, and y1 and y2 are the vertices of H ′ that correspond to
y, then there is at most one edge in H ′ with one end in {x1, x2} and one end in {y1, y2}.
Observe that this property, combined with the fact that H contains no cycles, shows that H ′

contains no cycles.

Assume without loss of generality that x1 and y1 are adjacent in H ′. Let w ∈ T be the
unique vertex with `′(x1)(w) 6= `′(y1)(w) (note that w 6= v). Observe that the colorings `′(x1)
and `′(x2) differ only on v, and that the same holds for the colorings `′(y1) and `′(y2). Since
all colorings in `′ use k− 1 colors out of k total colors, it follows that `′(x2)(v) = `′(y1)(w) =
`′(y2)(w), and `′(y2)(v) = `′(x1)(w) = `′(x2)(w). Because all of these labels are (proper)
colorings, we conclude that `′(x2) differs from the colorings `′(y1) and `′(y2) on both v and
w, and `′(y2) differs from the colorings `′(x1) and `′(x2) on both v and w. Therefore, x1y1 is
indeed the only edge between these two vertex groups. It follows that H ′ contains no cycles
and is a forest. ut

Finally, we show that the join operation maintains the invariant.
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Lemma 17 Let G = (V,E) be a k-colorable chordal graph and let T be a clique of G, such that
(G,T ) can be obtained from (G1, T ) and (G2, T ) using a join operation. If one of Cck(G1, T )
or Cck(G2, T ) is an (m, k)-color complete graph, then Cck(G,T ) equals the other graph. If both
Cck(G1, T ) and Cck(G2, T ) are forests satisfying the INP, then Cck(G,T ) is a forest satisfying
the INP.

Proof. Let (H1, `1) = Cck(G1, T ), (H2, `2) = Cck(G2, T ), and (H, `) = Cck(G,T ). We use the fact
that (H, `) can be constructed from (H1, `1) and (H2, `2) as shown in Lemma 6.

First suppose that (H1, `1) is a color-complete graph. Then Lemma 6 shows that every
node of H2 is combined with exactly one node of H1 (there is exactly one node with the same
label), so the nodes of H correspond bijectively to nodes of H2. Furthermore, any edge of
H2 is maintained, since H1 has edges between every pair of nodes labeled by colorings that
differ on exactly one vertex. So (H, `) equals (H2, `2). If (H2, `2) is a color-complete graph,
the proof is analogous.

So it only remains to prove the statement in the case that both (H1, `1) and (H2, `2) are
forests that satisfy the INP. From Lemma 6 it is easily seen that the INP is preserved in that
case. We now argue that the resulting graph H is a forest. Suppose to the contrary that H
contains a cycle C = (u0, v0), (u1, v1), . . . , (uk, vk) with u0 = uk and v0 = vk (we represent
nodes of H by tuples (x, y) where x ∈ V (H1) and y ∈ V (H2), as shown in Lemma 6). Then
u0, u1, . . . , uk is a closed walk in H1, and v0, v1, . . . , vk is a closed walk in H2, of length k ≥ 3.
Since H2 is a forest, there is an index i such that vi−1 = vi+1. It follows that `1(ui−1) =
`2(vi−1) = `2(vi+1) = `1(ui+1). But ui−1 and ui+1 are both neighbors of ui, so since H1

satisfies the INP, ui−1 = ui+1. We conclude that the vertices (ui−1, vi−1) and (ui+1, vi+1) in
H are the same, contradicting that C is a cycle. So H is a forest that satisfies the INP. ut

Combining the above lemmas yields:

Theorem 18 Let k ≥ 3. Let G = (V,E) be a (k−2)-connected k-colorable chordal graph, and
let T ⊆ V (G) be a clique of G with m = |T | ≥ k−2. Then Cck(G,T ) is an (m, k)-color-complete
graph, or it is a forest that satisfies the INP.

Proof. We prove the statement by induction over 2|V | − |T |. If T = V (G), then Cck(G,T ) is
isomorphic to Ck(G), with the trivial label function (Lemma 3), so this is an (m, k)-color-
complete graph (since T is a clique). Now assume that T 6= V (G).

If (G,T ) can be obtained from a graph (G,T ∪{v}) using a forget operation, where T ∪{v}
is a clique of G, then by induction, Cck(G,T ∪{v}) is either an (m+1, k)-color-complete graph
or a forest that satisfies the INP. Because T ∪ {v} is a clique on m + 1 vertices and G is
k-colorable, m ≤ k−1. If m = k−1 then Cck(G,T ∪{v}) is a set of isolated nodes. This shows
that Lemma 15 covers all cases, and thus Cck(G,T ) satisfies the desired property.

If (G,T ) can be obtained from a graph (G− v, T \ {v}) using an introduce operation then
Lemma 13 shows that G− v is (k − 2)-connected, and obviously it is chordal, so we may use
induction to conclude that Cck(G − v, T \ {v}) is either an (m + 1, k)-color-complete graph
or a forest that satisfies the INP. Lemma 13 also shows that |T | ≥ k − 1. This shows that
Lemma 16 covers all cases, and thus Cck(G,T ) satisfies the desired property.

In the remaining case, Lemma 11 shows that (G,T ) is the join of two (smaller) graphs
(G1, T ) and (G2, T ), which are (k − 2)-connected (Lemma 13), and chordal since they are
induced subgraphs of G, so we can use the induction hypothesis. Then Lemma 17 can be
applied, to show that Cck(G,T ) satisfies the desired property. ut
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Remark 2. The examples in Figure 1 show that if we relax the connectivity requirement
to (k − 3)-connectedness, the property in Theorem 18 does not necessarily hold anymore:
the examples in Figure 1(c) and (d) are not forests, and the example in Figure 1(e) does not
satisfy the INP. Hence, we cannot generalize our polynomial-time result on Ck-Reachability
to (k − 3)-connected chordal graphs in a straightforward way.

The characterization of Cck(G,T ) in Theorem 18 does not yet guarantee that simply keeping
track of the (relevant component of the) CSG yields a polynomial-time algorithm, as shown
by the second example in Section 5. However, we will now show that it suffices to only keep
track of the following essential information, which remains polynomially bounded.

6.4 An Efficient Algorithm: Computing Essential Information

Let G = (V,E) be a graph with T ⊆ V , and let α and β be k-colorings of a supergraph of G.
(The graph G should be viewed as a subgraph that occurs during the dynamic programming,
while α and β are the colorings of the full graph.) Let α′ = α|V and β′ = β|V . If Cck(G,T )
is a forest with the α′-node x and β′-node y in the same component, then we define the α-
β-path to be the unique path in Cck(G,T ) with end vertices x and y (together with its vertex
labels). Given the two colorings α and β, the essential information for Cck(G,T ) consists of
the following:

– whether the α′ and β′ nodes appear in the same component,
– whether Cck(G,T ) is a forest, and
– in case the answers to both questions are yes: the α-β-path in Cck(G,T ) (including vertex

labels).

We also need to prove a polynomial upper bound on the length of the α-β-path. This is
nontrivial, since the introduce operation may increase the length by a factor 2. However, we
will show that this only happens when earlier, a forget operation has decreased the length by
a similar amount. To formalize this, we use the following alternative length measure for paths
in CSGs for recoloring.

For a subgraph F of G and v ∈ V (G), we denote the neighbors of v in F by NF (v) =
N(v) ∩ V (F ). Let (H, `) be a labeled graph, where every node label `(v) is a k-coloring of
a complete graph on vertex set T . The set of colors used by a node v ∈ V (H) is defined as
U(v) = {`(v)(x) | x ∈ T}. If P is a subgraph in H and v ∈ V (P ), then the node weight for v
is defined as wP (v) = |(∪x∈NP (v)U(x)) \ U(v)|. So this is the total number of colors that are
used in the labels (colorings) for neighbors of v in P that are not used by the label for v itself.
We define the weight of a subgraph P of H to be w(P ) =

∑
v∈P wP (v). For example, consider

the last CSG shown in Figure 2: the vertex with label 24 has weight 1 in the path with
node labels 32, 34, 24, 23, 21, but weight 2 in the path with node labels 32, 34, 24, 14, 12. This
weight depends on whether the corresponding path in the previous CSG (before forgetting
f) contained the edge between nodes 124 and 324. The main idea is that for a path P , w(P )
bounds the length of P . This follows from the following simple observation, where we deduce
amongst others that wP (v) ≥ 1 if v is not an isolated vertex.

Proposition 19 Let (H, `) be a labeled graph, where every node label `(v) is a k-coloring of a
complete graph on a vertex set T , such that adjacent nodes do not have the same label. Then
for any subgraph P of H and any vertex v ∈ V (P ): 1 ≤ wP (v) ≤ k−|T | if v is not an isolated
vertex in P , and wP (v) = 0 otherwise.
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We observe that, as soon as the α′ and β′ nodes are separated in some CSG that occurs
during the dynamic programming, we may terminate and return NO.

Proposition 20 Let G′ = (V ′, E′) be a subgraph of G = (V,E), and let α and β be two
k-colorings of G. Let α′ = α|V ′ and β′ = β|V ′. For any T ′ ⊆ V ′ and T ⊆ V : if the α′ and β′

nodes of Cck(G′, T ′) are separated, then the α and β nodes of Cck(G,T ) are separated.

Proof. Suppose that the α and β nodes of Cck(G,T ) are not separated. Then by Lemma 2,
there exists a recoloring sequence γ0, . . . , γp from α to β. Then restricting all of these colorings
to V ′ yields a recoloring sequence γ0|V ′ , . . . , γp|V ′ from α′ to β′ for G′. So using Lemma 2
again, the α′ and β′ nodes in Cc(G′, T ′) are not separated. ut

In our next three lemmas we consider a (k−2)-connected k-colorable graph G and we let α
and β be two k-colorings of a supergraph of G (in line with the dynamic programming, where
α and β are k-colorings of the input graph). Whenever we speak of α-β-paths in these lemmas,
we formally mean the restriction of α and β to the vertex set of G (or some induced subgraph
of G). Furthermore, in these lemmas, ‘essentially polynomial time’ means polynomial in the
entire input size, which includes the essential information; in particular, the path length. We
will show later, namely in the proof of Theorem 24, that the maximum path length that can
occur is at most 2(k+ 3)n, which implies that our algorithm runs in polynomial time (in the
usual sense).

Lemma 21 Let G be a (k − 2)-connected k-colorable chordal graph and let T be a clique of
G with k − 1 ≤ |T |, and v ∈ T . If we know the essential information for Cck(G,T ), then
in essentially polynomial time we can compute the essential information for Cck(G,T \ {v}).
If Cck(G,T ) has a unique α-β-path P , then Cck(G,T \ {v}) has a unique α-β-path P ′, and
w(P ′) ≤ w(P ).

Proof. Theorem 18 shows that Cck(G,T ) is either an (m, k)-color complete graph or a forest
that satisfies the INP. Lemma 15 then shows that Cck(G,T \ {v}) is a forest if and only if
Cck(G,T ) is a forest. Proposition 20 shows that if Cck(G,T ) has no α-β-path, then Cck(G,T \{v})
has no α-β-path. If Cck(G,T ) is a forest with a unique α-β-path P , then Lemma 4 shows that
we can find an α-β-path P ′ in Cck(G,T \ {v}) by starting with P , adjusting the labels, and
possibly contracting some edges. This yields the unique α-β-path in the forest Cck(G,T \{v}).

We go more into detail on the construction of P ′ from P in order to prove that w(P ′) ≤
w(P ). If |T | = k then Cck(G,T ) consists of only isolated nodes, and thus Cck(G,T \{v}) (which
is a contraction of the former graph) as well, so the statement is trivial. So now assume that
|T | = k− 1. By Proposition 19, every node in P has weight 1, and nodes in P ′ have weight at
most 2. So to prove that w(P ′) ≤ w(P ), it suffices to show that every node of P ′ with weight 2
results from contracting an edge of P (that is, contracting two nodes of weight 1). Denote
by ` the node labels in Cck(G,T \ {v}) (which are (k − 2)-colorings of G[T \ {v}]). Consider
a node y ∈ V (P ′) with weight 2, so it has two neighbors x, z ∈ V (P ′). Let a ∈ U(x) \ U(y),
and b ∈ U(z) \ U(y). Since wP ′(y) = 2, it holds that a 6= b, so U(x) ∪ U(z) = {1, . . . , k}. So
it is not possible to extend `(x), `(y) and `(z) to k-colorings of G[T ] by assigning the same
color to v, and therefore the node y resulted from contracting two nodes of P . ut

Lemma 22 Let G = (V,E) be a (k−2)-connected k-colorable chordal graph. Let T be a clique
of G with T 6= V , such that (G,T ) can be obtained from (G−v, T \{v}) by using an introduce
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operation. If we know the essential information for Cck(G − v, T \ {v}), then in essentially
polynomial time we can compute the essential information for Cck(G,T ). If Cck(G,T ) has a
unique α-β-path P ′, then w(P ′) ≤ w(P ) + 2 in the case where Cck(G− v, T \ {v}) has a unique
α-β-path P and w(P ′) = 0 otherwise.

Proof. Let (H, `) = Cck(G− v, T \ {v}) and (H ′, `′) = Cck(G,T ), such that (H ′, `′) is obtained
from (H, `) as shown in Lemma 5. Let α′ = α|V (G) and β′ = β|V (G). By Lemma 13 we find
that G− v is (k−2)-connected. Hence, we can use Theorem 18 to deduce that (H, `) is either
an (m, k)-color-complete graph (for m = |T | − 1), or a forest that satisfies the INP.

By Lemma 13 we find that |T | = k or |T | = k − 1. First suppose that |T | = k. Then H ′

is a forest consisting of isolated nodes. So its α′ and β′ nodes are in the same component if
and only if they are the same. This holds if and only if α′|T = β′|T , and either (H, `) is a
(k−1, k)-color-complete graph or a forest with an α-β-path of length 0. Clearly the α-β-path
in H ′ has length 0 in this case, and the label of its node is α|T . This shows that we can
deduce, in essentially polynomial time, the essential information for H ′ if |T | = k.

Now suppose that |T | = k − 1. Recall that (H, `) is either a (k − 2, k)-color-complete
graph or a forest that satisfies the INP. Then by Lemma 16 the following holds. If (H, `) is
a (k − 2, k)-color-complete graph, then (H ′, `′) is a (k − 1, k)-color-complete graph. If H is a
forest that satisfies the INP, then H ′ is a forest that satisfies the INP. Hence, H ′ is a forest
if and only if H is a forest. Below we show how to deduce in essentially polynomial time the
essential information for H ′.

Proposition 20 shows that if H has no α-β-path, then H ′ has no α-β-path. Hence it
remains to consider the case where H has a unique α-β-path P . We will apply Lemma 5 to
the nodes of P to construct a (labeled) α-β-path P ′, which is a (labeled) subgraph of (H ′, `′),
and thus the unique α-β-path in (H ′, `′), and show that w(P ′) ≤ w(P )+2. (As an illustration
of this proof, consider for instance how in Figure 2, the path P ′ with w(P ′) = 7 between node
labels 142 and 312 in the CSG with T = (f, g, h) is deduced from the path P with w(P ) = 5
between node labels 14 and 31 in the previous CSG.)

Since |T \ {v}| = k − 2, Lemma 5 shows that every node x ∈ V (P ) yields two adjacent
nodes of H ′, which we will denote as x1 and x2, such that the labels `′(x1) and `′(x2) ((k−1)-
colorings of G[T ]) assign the two colors a and b that are not used by `(x) to vertex v. For
any two adjacent nodes x and y in P , `(x) and `(y) differ on exactly one vertex of T \ {v},
and both are (k − 2)-colorings, so there is at least one color c that is used neither by `(x)
nor by `(y). So we can choose indices i, j ∈ {1, 2} such that for the corresponding vertices xi
and yj (as defined above) it holds that `′(xi)(v) = c and `′(yj)(v) = c. Therefore xi and yj
are adjacent in H ′ (Lemma 5). These two observations show that if we take the two nodes
x1 and x2 for every x ∈ V (P ), then all of these nodes together induce a connected subgraph
of H ′ that contains the α′-node and the β′-node of H ′. Within this subgraph we can easily
find the new α-β-path P ′. Every node of the new path P ′ has weight 1 (Proposition 19). The
total weight of P may increase by 2 if both end nodes of P are replaced by a pair of nodes
this way. Nevertheless, we will now show that the weight cannot increase by more than 2, by
showing that internal nodes y of P are only replaced by a pair of nodes y1 and y2 in P ′ if
wP (y) = 2.

Consider a node y ∈ V (P ) with neighbors x and z on P , such that without loss of generality
the path P ′ contains the new nodes x1, y1, y2, z1, in this order. Let u ∈ T \ {v} be the unique
vertex that the colorings `′(x1) and `′(y1) differ on, and let w ∈ T \ {v} be the unique vertex
that the colorings `′(y2) and `′(z1) differ on. Since all of the colorings `′(x1), `

′(y1), `
′(y2), `

′(z1)
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use k−1 colors out of a total of k colors, we conclude that `′(y2)(v) = `′(x1)(u), and similarly,
`′(y1)(v) = `′(z1)(w). It follows that the colorings `(x) = `′(x1)|T\{v} and `(z) = `′(z1)|T\{v}
together still use all k colors, and therefore wP (y) = 2. We conclude that internal nodes of P
cannot contribute a weight increase, so w(P ′) ≤ w(P ) + 2. ut

Lemma 23 Let G = (V,E) be a (k − 2)-connected k-colorable chordal graph and let T be a
clique of G, such that (G,T ) can be obtained from (G1, T ) and (G2, T ) using a join operation.
If we know the essential information for both Cc(G1, T ) and Cc(G2, T ), then in essentially
polynomial time we can compute the essential information for Cc(G,T ). If Cck(G,T ) is a forest
with a unique α-β-path P , then for at least one choice of i ∈ {1, 2}, Cc(Gi, T ) is a forest with
a unique α-β-path Pi, and w(P ) = w(Pi).

Proof. Let (H, `) = Cck(G,T ), (H1, `1) = Cck(G1, T ) and (H2, `2) = Cck(G2, T ) be labeled graphs
such that (H, `) is obtained from (H1, `1) and (H2, `2) as shown in Lemma 6. By Theorem 18,
for i ∈ {1, 2}, (Hi, `i) is either a (|T |, k)-color complete graph or a forest that satisfies the
INP (Lemma 13 shows that the graphs are (k − 2)-connected).

By Lemma 17, H is a forest (that satisfies the INP) if and only if at least one of H1 and
H2 is a forest. By Proposition 20, if there is no α-β-path in one of H1 and H2, then there is no
α-β-path in H. So now assume that both H1 and H2 contain an α-β-path (though possibly
not unique). If one of these, say Hi, is a forest with a unique α-β-path Pi, but the other is a
color-complete graph, then the unique α-β-path P of H is the same as Pi (Lemma 17), and
thus w(P ) = w(Pi).

It only remains to consider the case that both H1 and H2 are forests and contain a
unique α-β-path; call these P1 and P2 respectively. If P1 equals P2, then H also has an
α-β-path that equals these paths (Lemma 6), which is therefore the unique α-β-path P in
H, with w(P ) = w(P1) = w(P2). We conclude the proof by showing the other direction.
(This is similar to the last part of the proof of Lemma 17.) Suppose H has an α-β-path
P = v0, . . . , vp. Every node vi of H corresponds to a pair v1i and v2i of nodes in H1 resp. H2,
with `(vi) = `1(v

1
i ) = `2(v

2
i ), and P1 = v10, . . . , v

1
p and P2 = v20, . . . , v

2
p are α-β-walks in H1

resp. H2 (Lemma 6). If one of these, say P1, is not a path, then since H1 is a forest, there exists
an index i such that v1i−1 = v1i+1. So `(vi−1) = `1(v

1
i−1) = `1(v

1
i+1) = `(vi+1). But since P is a

path, vi−1 and vi+1 are distinct neighbors of vi, so this contradicts the INP. We conclude that
both P1 and P2 are paths, so P1, P2 and P are all equal, so w(P ) = w(P1) = w(P2). This
concludes the proof, which shows that we can decide in essentially polynomial time whether
H is a forest with an α-β-path, and compute it in that case. ut

Combining the above statements yields the main result of this section:

Theorem 24 Let G be a k-colorable (k− 2)-connected chordal graph, and let α and β be two
k-colorings of G. Then in polynomial time, we can decide whether Ck(G) contains an α-β
path.

Proof. Corollary 12 shows that for every chordal k-colorable graph G on n vertices, we can
find in polynomial time a chordal nice tree decomposition on at most (k+3)n nodes. So every
node of this tree decomposition corresponds to a (k− 2)-connected chordal subgraph H of G
with terminal set T , such that either H is a clique with T = V (H) (leaf nodes), or (H,T ) can
be obtained from the graph(s) corresponding to its child node(s) using a forget, introduce or
join operation. (The fact that all of these graphs are (k − 2)-connected follows inductively
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using Lemma 13, and that they are chordal follows since they are induced subgraphs.) For
every one of those terminal subgraphs, we compute the essential information, bottom up
(Lemma 14, Lemmas 21–23). The computation terminates, answering NO, as soon as one
subgraph (H,T ) is encountered such that α and β are separated in Cck(H,T ), which is correct
by Proposition 20. (We remark that this can occur when (H,T ) is obtained by a join operation,
or by an introduce operation when |T | = k.) Otherwise, the computation terminates for the
root node of the tree decomposition, which corresponds to the entire graph G itself, with
some terminal set T , with the conclusion that either Cck(G,T ) is a color-complete graph, or
that it is a forest that contains an α-β-path. In either case, the answer to the problem is YES
(Lemma 2).

Now we consider the complexity. We find the chordal nice tree decomposition in poly-
nomial time, and it has at most (k + 3)n nodes (Corollary 12). Computing the essential
information for all nodes can be done in essentially polynomial time, that is, when the input
size includes the α-β-path. However, every operation increases the weight of the path by at
most 2 (Lemmas 21, 22 and 23), and in every case the weight of the path is an upper bound
for its length (Proposition 19), so the maximum path length that can occur during the exe-
cution of the algorithm is at most 2(k + 3)n. Together this shows that the whole procedure
terminates in polynomial time. ut

We stress that (m, k)-color complete graphs, which have k!/(k −m)! nodes, are not com-
puted explicitly in our algorithm. So indeed, in order to obtain a polynomial-time algorithm,
we do not need to assume that k is a constant.

7 Discussion

Due to the PSPACE-completeness result of Hatanaka, Ito and Zhou [21] on Ck-Reachability
for chordal graphs, which holds when k is a sufficiently large constant, our polynomial-time
algorithm cannot be extended to all chordal graphs. Since Ck-Reachability problem is
polynomial-time solvable for general graphs if k = 3 [15] and PSPACE-complete for k = 4 [8],
it would nevertheless still be interesting to determine the complexity of C4-Reachability for
chordal graphs (with at least one cut vertex). We refer to Remark 2 for a brief discussion on
why our current proof technique does not work for this case. We also note that the complexity
of C4-Reachability is open for proper interval graphs. Initial experimental results suggest
that solving this problem is not straightforward.

Below we discuss a number of other possible directions for future work, which may require
additional experimental results in order to refine our DP method. The two most important
research goals are the following:

1. Explore for which other solution graph concepts S the DP method can be used to obtain
polynomial-time algorithms for the S-Reachability problem.

2. Explore which other commonly studied reconfiguration problems can be solved efficiently
using CSGs.

The method of using CSGs can be applied to solve the S-Connectivity problem. Hence, this
problem (which is one of the central problems in reconfiguration) is a most suitable candidate
problem for the second research goal. In this context we recall that the Ck-Connectivity
problem is trivial for chordal graphs [4] (see Section 1). Nevertheless, studying the complexity
of the following related problem seems interesting. Call two k-colorings α and β of a graph G
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compatible if they coincide on all k-cliques of G. Given a chordal graph G and k-coloring α,
is the subgraph of Ck(G) induced by all k-colorings that are compatible with α connected?

Finally we discuss the list coloring generalization CL of Ck. In Remark 1, we explained how
to generalize the DP rules presented in Section 4 to CL (namely, by simply omitting all nodes
that correspond to invalid vertex colors). In this way, we showed that the DP rules presented
in [20] can be generalized. However, it is not obvious whether the results from Section 6 also
generalize to list colorings. The following question by Hatanaka (asked at CoRe 2015) is also
interesting: is there a polynomial-time algorithm for CL-Reachability restricted to trees?
Note that Ck-Reachability is trivial for trees, because Ck(G) is connected for every tree G
and every integer k ≥ 3 (see [4]; this also follows easily from Lemma 8).
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