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1 Introduction

In the quest towards an ever more accurate prediction for the inclusive Higgs production

cross section at hadron colliders, one of the major tasks is the computation of fixed-order

corrections in the perturbative expansion in powers of the Standard Model (SM) couplings.

Our understanding of pure QCD corrections, which are known to be very important for

this process, has reached an unprecedented level of accuracy in recent times. A milestone

in this programme was achieved with the computation of the third correction term in the

expansion in the strong coupling αs of the cross section for Higgs production via gluon

fusion in the infinite top mass limit [1, 2]. In a typical setup for the LHC running at a

centre-of-mass energy of 13 TeV, this contribution shifts the prediction for the total cross

section upwards by roughly 3% [3].

On the other hand, weak corrections to the leading-order (LO) inclusive Higgs cross

section also need to be considered. In the same setup mentioned before, the first weak term

turns out to increase the total gluon fusion cross section by a significant 5% [4–6]. Since

next-to-leading-order (NLO) QCD corrections can be as large as the leading contribution,

the motivation to investigate mixed first-order QCD and first-order weak corrections is very

strong. Although the exact size of this term is at present unknown, various approximations

have been considered in the literature. The first estimate to appear was based on the

– 1 –



J
H
E
P
0
5
(
2
0
1
9
)
0
0
2

argument that mixed QCD-weak effects on the inclusive Higgs production cross section

are well approximated by combining the purely weak term and the full QCD series in a

multiplicative fashion [7]. Following this factorisation approach, the authors of ref. [3]

reported the mixed QCD-weak corrections to be approximately 3% of the full result, and

conservatively estimated the uncertainty stemming from non-factorisable contributions to

be 1% of the total. The estimates of [3, 7] are obtained by considering the unphysical

limit mH � mW ,mZ . The gluon induced interference contributions discussed in our

work are suppressed in this limit by two powers of the weak boson masses with respect

to the leading order O(α2
Sα) cross section, which we verified by explicit calculation. The

theoretical uncertainty associated to each of the other main error sources (determination

of parton distribution functions, truncation of the QCD perturbative series, and missing

quark-mass effects) is currently of the same order. It is therefore highly desirable to remove

the ambiguity due to the factorisation approximation.

Important steps have recently been made in this direction. Thanks to the calculation

of the three-loop mixed QCD-weak correction to Higgs boson gluon fusion for arbitrary

masses of the W , Z, and Higgs bosons [8], an estimate of the cross section in the soft-

virtual approximation was obtained [9]. An independent work considered three-loop matrix

elements in the limit of massless vector bosons instead, and combined them with a different

class of two-loop real-emission contributions [10]. The estimates obtained using these

approximations support the validity of the factorisation approach, since they include some

non-factorisable effects and find that these are numerically small.

In order for the full mixed QCD-weak term to become available, however, two pieces

of the puzzle are still missing. On the one hand there is the formidable challenge of com-

puting two-loop matrix elements with an extra real emission for arbitrary W , Z, and Higgs

masses. On the other hand, there are UV- and IR-finite one-loop weak contributions to the

production of the Higgs in association with two partons, which feature more complicated

kinematics but whose one-loop integrals are well understood. Although in general correc-

tions with fewer or soft real emissions are expected to dominate within the inclusive cross

section [9], the contributions with two extra hard partons are formally of the same order

and may disrupt the approximate factorisation of weak and QCD corrections because of

their final-state kinematic structure.

In the present paper, we address this issue by carrying out the exact inclusive com-

putation of the contribution to mixed QCD-weak corrections from the one-loop partonic

subprocess gg → Hqq̄. We stress that this contribution features one-loop pentagon topolo-

gies which appear only in matrix elements with (at least) two real emissions, that do not

fit in a factorised picture and that have not been assessed before.

The paper proceeds as follows. In section 2, we discuss the different contributions that

enter our computation, we categorise them and identify potential competing mechanisms

which are formally of the same order or slightly higher. Although the computation of

the required matrix elements is straightforward using standard public codes for one-loop

calculations, the computation of the pieces of cross sections we are interested in requires

the renormalisation of parton distributions and the subtraction of initial-state collinear

singularities. Given the very special features of the process examined, these steps require
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some care and are thus described in section 3. Finally, we report and discuss numerical

results.

2 Classification of contributions

In order to classify contributions to the Higgs inclusive cross section, it is useful to write

its mixed QCD and weak expansion as

σpp→H+X =
∑
m,n

σ
(m,n)
pp→H+X , where σ

(m,n)
pp→H+X ∝ αm+2

s αn+1, (2.1)

where the prefactor α2
sα

1 is chosen so as to match the couplings factorised by the leading-

order loop-induced gluon-fusion contribution to inclusive Higgs production. Notice that we

group all squared couplings that are not strong, including the Yukawa of the top quark,

under the label α, in view of their comparable strength and of the electroweak gauge

relations often rendering their separate factorisation ambiguous. The corrections often

labelled “QCD NmLO” and “(electro)weak NnLO” are then denoted by σ
(m,0)
pp→H+X and

σ
(0,n)
pp→H+X , as they become impractical when addressing the mixed cases σ

(m,n)
pp→H+X . With

such a notation in mind, the expected naive parametric suppression from the couplings,

which counts αs ∼ 10−1 and α ∼ 10−2, simply reads σ
(m,n)
pp→H+X ∼ 10−m−2n. In order

to discuss interference terms, we also find it useful to introduce a similar notation for

amplitudes:

A
(i,j)
ab→H+X ∝ gi+2

s gj+1, (2.2)

where we denote by g all couplings that are not gs.

As mentioned above, weak and QCD corrections are expected to factorise to a certain

degree, such that

σ
(m,n)
pp→H+X

σ
(0,0)
pp→H

∼
σ

(m,0)
pp→H+X

σ
(0,0)
pp→H

·
σ

(0,n)
pp→H+X

σ
(0,0)
pp→H

. (2.3)

This approximation is valid under the assumption that the main contributions to the

mixed QCD-weak cross section are to be attributed either to soft gluons or Sudakov weak

logarithms. If one is to assess violations of this factorisation, the expansion term σ
(1,1)
pp→H+X

must be computed exactly. We now set out to discuss the many contributions this term

receives.

In this work, we only consider weak corrections involving the W and Z bosons, as

these dominate over the genuine electroweak corrections (i.e. unresolved photon exchange

or emission) to contributions where the Higgs is produced from massive quark loop lines

that are not the top-quark.

Also, the gluon initiated processes are expected to be the dominant contributions at

the LHC, where quark parton distribution functions (PDFs) are small in comparison to

the gluon one for the typical values of the Bjorken x’s probed by the kinematics involved.

We therefore neglect all contributions to σ
(1,1)
pp→H+X that factorise parton luminosities with
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× A
(0,0)?
gg→H A

(2,0)?
gg→H A

(0,2)?
gg→H A

(2,2)?
gg→H A

(1,0)?
gg→Hg A

(1,2)?
gg→Hg A

(2,0)?
gg→Hqq̄ A

(0,2)?
gg→Hqq̄

A
(0,2)
gg→H σ

(0,1)
gg→H σ

(1,1)
gg→H σ

(0,2)
gg→H σ

(1,2)
gg→H

A
(2,2)
gg→H σ

(1,1)
gg→H σ

(2,1)
gg→H σ

(1,2)
gg→H σ

(2,2)
gg→H

A
(1,2)
gg→Hg σ

(1,1)
gg→Hg σ

(1,2)
gg→Hg

A
(0,2)
gg→Hqq̄ σ

(1,1)
gg→Hqq̄ σ

(0,2)
gg→Hqq̄

× A
(1,0)?
gq→Hq A

(3,0)?
gq→Hq A

(−1,2)?
gq→Hq A

(1,2)?
gq→Hq

A
(−1,2)
gq→Hq σ

(0,1)
gq→Hq σ

(1,1)
gq→Hq σ

(−1,2)
gq→Hq σ

(0,2)
gq→Hq

A
(1,2)
gq→Hq σ

(1,1)
gq→Hq σ

(2,1)
gq→Hq σ

(1,2)
gq→Hq

Table 1. Summary of contributing amplitudes to the weak corrections to Higgs inclusive production

involving one (bottom table) and two (top table) initial-state gluons, for various perturbative orders.

The results reported in this work are highlighted with a green background, while those addressed

in refs. [7, 9] are denoted in blue. Together, these form the complete σ
(1,1)
gg→H+X weak correction.

at least one quark. To get a reference for the size of these terms that we do not compute,

we report numerical results also for σ
(0,1)
gq→Hq.

1

Weak corrections stemming from the interference with leading QCD production modes

are often subject to kinematic suppressions that renders them smaller than what is naively

expected from their factorised couplings. For this reason, we also report the pieces of the

cross sections σ
(0,2)
gg→Hqq̄ and σ

(−1,2)
gq→Hq built from the square of the amplitudes A

(0,2)
gg→Hqq̄ and

A
(−1,2)
gq→Hq. These form a gauge-invariant subset of higher-order contributions.

Our work reports on the contribution σ
(1,1)
gg→Hqq̄ for the first time and, together with the

results from refs. [7, 9], it completes the computation of σ
(1,1)
gg→H+X . We now proceed to list

in table 1 all amplitudes building σ
(1,1)
gp→H+X .

We now turn to discussing the Feynman diagrams building the amplitudes A
(2,0)
gg→Hqq̄,

A
(0,2)
gg→Hqq̄, A

(1,0)
gq→Hq and A

(−1,2)
gq→Hq that contribute to the cross sections presented in this work.

The amplitude A
(2,0)
gg→Hqq̄ is built from the diagrams depicted in figure 1 where the Higgs

is produced via weak vector boson fusion and interfered with the leading QCD gluon-fusion

diagrams shown in figure 3.

Diagrams of the class 1d and 1e, where the Higgs is produced via gluon-fusion, feature

a Z-boson propagator2 which however does not yield any Breit-Wigner resonance as they

1Note that our initial-state notation gq encompasses in this context both permutations gq and qg.
2The diagram analogous to 1e with a photon instead of the Z-boson is exactly zero in virtue of Furry’s

theorem.
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(a) (b) (c)

(d) (e) (f)

Figure 1. Representative subset of diagrams contributing to the amplitude A
(0,2)
gg→Hqq̄. In dia-

grams 1a, 1b and 1c, the Z boson can be interchanged with a W boson. Diagrams 1d and 1e are

contributions to the production of a Higgs in association with a Z boson and are only included in

the computation of σ
(1,1)
pp→H+X , and not that of σ

(1,2)
pp→H+X . Diagrams of the class 1f are only present

for the process gg → Hbb̄.

are interfered against the QCD diagrams of figure 3. We must nonetheless regulate the

Z-boson propagator pole, which motivates our use in this computation of the complex-

mass scheme [11, 12] with finite widths for the internal top quark and unstable weak gauge

bosons. These diagrams 1d and 1e are however ignored when considering their squared

contribution to σ
(1,1)
pp→H+X , since in this case they are best accounted for in the narrow-

width approximation as the LO prediction for associated Higgs production, i.e. σ
(1,1)
gg→HZ

(also reported in this work).

Finally, diagrams of the class 1f are specific to the third-generation quarks where the

Higgs can also be emitted from the top-quark running in the loop. This contribution is

analogous to that of the heavy quarks in the two-loop electroweak corrections to Higgs

production investigated in ref. [13] and, for this reason, we found it interesting to report

our results separately for the processes gg → Hqq̄, with q ≡ u, d, c, s, and gg → bb̄H.

3 Initial-state collinear singularities

All of the one-loop amplitudes considered in this paper are free of explicit ultraviolet and

infrared divergences that can arise from the integration over the loop momenta. In other

words, working in dimensional regularisation with D ≡ 4−2ε, their analytic expressions do

not contain explicit poles in the dimensional regulator ε. However, matrix elements may

feature non-integrable infrared divergences in regions of the phase space which correspond

to unresolved configurations. In order to discuss this issue, we concentrate on the amplitude

A
(0,2)
gg→Hqq̄ as it constitutes the main focus of the present work.

In principle, the process gg → Hqq̄ presents infrared divergences when the quark-

antiquark pair in the final state is collectively soft, and/or when one or both of the quarks

– 5 –
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(a) (b) (c) (d)

Figure 2. Diagrammatic contributions to the amplitudes A
(−1,2)
gq→Hq (figures 2a, 2b, 2d) and A

(1,0)
gq→Hq

(figure 2c), yielding σ
(−1,2)
gq→Hq and σ

(0,2)
gq→Hq respectively. Diagrams 2a and 2b also appear in the

reduced matrix elements factorised by the collinear subtraction local counterterms of eqs. (3.2)

and (3.1). Notice that diagrams belonging to the class 2d are specific to the process gb→ Hb. In

all cases, the full top-quark mass dependence is retained.

(a) (b) (c) (d)

Figure 3. Diagrams building the amplitude A
(2,0)
gg→Hqq̄ against which the diagrams listed in figure 1

are interfered to yield σ
(1,1)
gg→Hqq̄. The full top-quark mass dependence is retained.

are collinear to the direction of an incoming gluon. However, thanks to the factorisation

properties of QCD, in double-unresolved configurations the amplitude A
(0,2)
gg→Hqq̄ can be ap-

proximated by universal factors times the reduced amplitude A
(−2,2)
qq̄→H (that is, of order g3)

which is identically zero. Indeed, the triangle one-loop diagrams for qq̄ → H require a

mass insertion for the chirality flip and therefore vanishes for massless onshell quarks. This

explains why the interference involving the amplitude A
(0,2)
gg→Hqq̄ only requires the subtrac-

tion of single-unresolved infrared limits, while the interference built upon the amplitude

A
(−1,2)
gq→Hq does not require IR subtraction at all.

The same observations can be made, perhaps more intuitively, by inspecting the rep-

resentative Feynman diagrams depicted in figure 1. It is straightforward to see that prop-

agators of massless partons which do not belong to closed loops can go on-shell only in

the graphs of type 1b and 1c. In the case of the diagram 1b, this happens when antiquark

d̄5 becomes collinear to gluon g2 such that the hard scattering subgraph corresponds to

diagram 2a. By contrast, in the kinematic limit where quark d4 is collinear to gluon g1

and quark d̄5 is collinear to gluon g2, both non-loop propagators of graph 1c are singular.

The subgraph that describes the hard scattering process, however, evaluates to zero for

massless quarks as explained before, thus avoiding the singularity. In the limit where only

one of the quarks is collinear to an incoming gluon, the hard part of diagram 1c matches

that of graph 2b.

– 6 –
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From the observations drawn so far, we conclude that for the local subtraction of

implicit singularities it is sufficient to consider standard NLO initial-collinear counterterms.

These subtraction terms are to be added back, analytically integrated over the unresolved

degrees of freedom yielding explicit poles in the dimensional regulator ε. These poles cancel

against those part of the parton distribution function (PDF) renormalisation counterterms,

as guaranteed by collinear beam factorisation, thus rendering the complete computation

finite.

The formal expression which describes this subtraction procedure and the combination

with PDF renormalisation counterterms reads:

σ
(m,n)
gg→Hqq̄ =

∫ 1

0
dx1

∫ 1

0
dx2 fg(x1)fg(x2)

{
∫

dΦHqq̄

[
M(m,n)

gg→Hqq̄J(φHqq̄)−
∑
π

Cgq ⊗M(m−1,n)
gq→Hq J(φ̃Hq)

]
(3.1)

+
∑
π

∫
dΦHq

∫ 1

0
dξ [〈Cgq〉 (ξ) + ∆gq(ξ)]M(m−1,n)

gq→Hq J(φHq)

}
, (3.2)

where the dependences on the factorisation and renormalisation scales µF and µR as well as

on the kinematic inputs for the matrix elements have been suppressed for brevity. The sums

run over the four permutations π that are obtained exchanging the quark and the antiquark

in the final state and/or the two initial-state gluons among themselves. The symbol Cij

denotes the local counterterm for particles i and j going collinear and 〈Cij〉 its counterpart

analytically integrated over the unresolved degrees of freedom. The observable functions

are indicated with J, and ∆ik is the PDF renormalisation kernel for parton with flavour i to

change into species k before entering the hard process. The notation φ̃Hq indicates reduced

kinematics of lower multiplicity which are obtained by mapping a pair of collinear partons

to a massless parent. The concrete expressions of all subtraction ingredients closely follow

ref. [14] and are presented more explicitly in appendix A, where we also explicitly show

that our subtraction counterterms correctly regulate the relevant collinear singularities.

4 Setup of the computation and numerical results

The amplitudes A
(0,2)
gg→Hqq̄ and A

(−1,2)
gq→Hq that factorise a Higgs coupling to weak bosons were

first computed analytically (for massless quarks only) in ref. [15], in the different context

of NLO QCD corrections to weak vector-boson fusion. In the present case and as indicated

in table 1, in order to obtain contributions to σ
(1,1)
gg→Hqq̄ and σ

(0,1)
gq→Hq, these amplitudes must

be interfered against their corresponding QCD analog.

Nowadays such one-loop amplitudes are readily available from many automated one-

loop matrix-element generators. However, a high degree of flexibility is necessary in order to

be able to select the relevant diagrams and interferences, and to construct the appropriate

subtraction terms. This motivates our choice of generating the relevant one-loop squared

amplitudes using MadLoop [16], part of MadGraph5 aMC@NLO [17] (henceforth ab-

breviated MG5aMC), as it can efficiently generate and interfere [18] arbitrary one-loop

– 7 –
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Parameter value Parameter value Parameter value

PDF set PDF4LHC15 nlo 30 µR = µF MH/2,MH Mt 174.3

αS(m2
Z) from PDF set GF

πα√
2m2

W (1−m2
W /m2

Z)
Γt 1.35408

√
ŝ 13000 α−1 132.507 ytv√

2
mt

M̄Z 91.188 Γ̄Z 2.42823 Mb 0.0

M̄W 80.419 Γ̄W 2.02844 ybv√
2

0.0

MH 125.0 ΓH 0.0 V CKM
ij δij

Table 2. SM parameters used for obtaining all numerical results presented in table 3. Dimensionful

parameters are given in GeV. Lower-case mass parameters correspond to their complex-valued

counterpart in the complex-mass scheme, i.e. mW =
√
M̄2

W − iΓ̄W M̄W . The collision energy is set

to 13 TeV.

amplitudes in the SM and beyond. MadLoop uses Ninja [19, 20] and OneLOop [21],

or alternatively COLLIER [22], for performing one-loop reductions and for the evaluation

of the scalar one-loop master integrals. We present in appendix C some details about the

generation procedure as well as benchmark numbers in order to facilitate the reproduction

of our results. Moreover, we have cross-checked MadLoop’s numerical implementation

of the amplitudes A
(2,0)
gg→Hqq̄ and A

(0,2)
gg→Hqq̄ against a completely independent and analytical

computation described in appendix B.

As already mentioned, we choose to renormalise all unstable particles in the complex-

mass scheme [11, 12] and consider the SM input parameters given in table 2, for the LHC

at a collision energy of 13 TeV.

The numerical Monte-Carlo integration as well as the necessary IR subtraction proce-

dure, presented in eqs. (3.1) and (3.2) as well as in appendix A, have been implemented in

a private extension of MG5aMC currently under development. The poles in the dimen-

sional regulator ε have been checked to cancel as expected.3 Moreover, we have validated

our code by comparing NLO QCD cross sections against results from MG5aMC for the

processes pp→ Z and pp→ H, the latter in the Higgs Effective Theory.

Our results are presented in table 3. Along with the different contributions to the

inclusive cross section for Higgs production, we also report the semi-inclusive cross sections

for the production of a Higgs boson with transverse momentum larger than 400 GeV.

The motivation to consider this boosted Higgs regime is twofold. On one side, it mimics

typical experimental selection cuts used to reduce backgrounds and study new physics

effect prominent in that regime. On the other side, it selects a region of phase space where

real emissions are typically hard and the relative importance of the corrections computed

in this work may in principle be enhanced.

We find that the squared contributions of order O
(
α2
sα

3
)

can be suppressed compared

to their O
(
α3
sα

2
)

counterpart by less than what is expected by their parametric ratio α/αs.

3This check of course only considers the convoluted term of eq. (3.2) as our computation involves no

virtual contribution. Also, for the pole cancellation to occur, it is important to restrict the initial state

contributions to gluons only, as poles from the beam factorisation terms ∆qg and ∆qq remain uncanceled

given that we ignore the corresponding real-emission subprocesses.
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cross section
[fb]

cross section
[fb]

interferences squared amplitudes

σ
(α3
sα

2)
gg→Hqq̄

11.93 ± 0.04
σ

(α2
sα

3,no-HZ)
gg→Hqq̄

−0.260 ± 0.004

13.31 ± 0.08 −2.135 ± 0.003

σ
(α3
sα

2)

gg→Hbb̄
−5.94 ± 0.03

σ
(α2
sα

3,no-HZ)

gg→Hbb̄
3.867 ± 0.008

−7.36 ± 0.03 0.882 ± 0.006

σ
(α2
sα

2)
qg→Hq + σ

(α2
sα

2)
q̄g→Hq̄

−163.9 ± 0.1
σ

(αsα3)
qg→Hq + σ

(αsα3)
q̄g→Hq̄

52.3 ± 0.2

−137.0 ± 0.2 48.6 ± 0.1

σ
(α2
sα

2)
bg→Hb + σ

(α2
sα

2)

b̄g→Hb̄
20.95 ± 0.04

σ
(αsα3)
bg→Hb + σ

(αsα3)

b̄g→Hb̄
13.78 ± 0.05

19.45 ± 0.06 13.82 ± 0.02

σinterf.+squared
total

30.9 ± 0.2
σ

(α2
sα

2,Γ̄Z=0)
gg→HZ

98.17 ± 0.05

24.9 ± 0.2 76.27 ± 0.03

pT (H) > 400 GeV

σ
(α3
sα

2)
gg→Hqq̄

−0.0054 ± 0.0002
σ

(α2
sα

3,no-HZ)
gg→Hqq̄

0.00390 ± 0.00003

0.00674 ± 0.00008 0.00154 ± 0.00004

σ
(α3
sα

2)

gg→Hbb̄
−0.0093 ± 0.0002

σ
(α2
sα

3,no-HZ)

gg→Hbb̄
0.0363 ± 0.0003

−0.00197 ± 0.00009 0.0118 ± 0.0002

σ
(α2
sα

2)
qg→qH + σ

(α2
sα

2)
q̄g→Hq̄

−1.005 ± 0.003
σ

(αsα3)
qg→Hq + σ

(αsα3)
q̄g→Hq̄

0.1019 ± 0.0002

−0.7486 ± 0.0005 0.0841 ± 0.0001

σ
(α2
sα

2)
bg→Hb + σ

(α2
sα

2)

b̄g→Hb̄
−0.0326 ± 0.0001

σ
(αsα3)
bg→Hb + σ

(αsα3)

b̄g→Hb̄
0.1033 ± 0.0003

−0.0268 ± 0.00003 0.0950 ± 0.0002

σinterf.+squared
total

−0.502 ± 0.003
σ

(α2
sα

2,Γ̄Z=0)
gg→HZ

0.3049 ± 0.0006

−0.3615 ± 0.0008 0.2159 ± 0.0003

Table 3. Fully and semi inclusive cross sections at LHC13 obtained with SM input parameters

given in table 2 for the processes gg → Hqq̄ and gg → Hbb̄, as (partial) contributions to the

corrections of order O
(
α3
sα

2
)

and O
(
α2
sα

3
)

to inclusive Higgs production. For the contributions of

order O
(
α2
sα

3
)

labelled “no-HZ”, the diagrams of the class 1d and 1e are ignored, as they are best

accounted for in the narrow-width approximation as the LO contribution to the process gg → HZ,

which is also shown. We also report the O
(
α2
sα

2
)

and O
(
αsα

3
)

contributions from the quark-

initiated processes qg → Hq and bg → Hb. Finally, we consider the boosted regime, in which the

Higgs transverse momentum is required to be at least 400 GeV. In each bracket separated by a

dashed line, the upper number corresponds to the scale choice µR = µF = mH/2 while the lower

one corresponds to µR = µF = mH .
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This is for example the case for the processes involving b quarks, and it can be explained

by the kinematic suppressions interfering contributions are typically subject to.

Also, contributions of order O(αms α
n) with m + n = 4 are numerically more relevant

than those with m+n = 5 in spite of their suppression by one quark luminosity. The quark-

initiated weak corrections are however still small in comparison with the whole σ
(α3
sα

2)
pp→H+X ,

and can thus be safely neglected as already observed in ref. [23]. These two observations

reinforce the conclusion that the contributions to σ
(α3
sα

2)
gg→Hqq̄ that are computed in this work

and which have been neglected up to this point are of similar (ir)relevance to that of other

neglected terms of weak origin.

The cross section σ
(α3
sα

2)

gg→Hbb̄ from only final-state b quarks reveals that contributions

featuring Higgs production from the internal top quark line (see figure 1f) are comparable

and of opposite sign to that of emissions from internal weak bosons. This fact contrasts

with the study of ref. [13] of the two-loop amplitude A
(0,2)
gg→H where it was instead found that

Higgs emissions from internal top quarks only contribute to less than 2% of the complete

amplitude at this order, and could thus be safely ignored in the computation of the three-

loop amplitude A
(2,2)
gg→H of refs. [8–10]. Indeed, the higher partonic collision energy probed

by A
(1,2)

gg→Hbb̄ enhances contributions from internal top-quark Higgs emissions, even more so

in the boosted regime. Similarly, the same mechanism enables the bottom-quark initiated

contribution σ
(α2
sα

2)
bg→Hb at the same level as that of the channels initiated by each other valence

quark flavour.

The squared contribution σ
(α2
sα

3,no-HZ)

gg→Hbb̄ omits the diagrams 1d and 1e featuring a Z

boson decay since it is best accounted for in the narrow-width approximation. It is however

clear that the extent to which one should consider Higgs production in association with

an on-shell Z boson depends on the particular observable considered. We chose to report

here the quantity σ
(α2
sα

2,Γ̄Z=0)
gg→HZ only to serve as an upper bound to this contribution.

Notice that the contribution σ
(α2
sα

3,no-HZ)
gg→Hqq̄ is negative, despite involving squared am-

plitudes. This originates from the finite logarithms in the PDF renormalisation term ∆gq

and integrated counterterm 〈Cgq〉, stemming from dimensional regularisation. Our results

also highlight that considering a subset of higher-order corrections and factorising only a

particular combination of initial-state flavours typically yields a large dependence on the

factorisation scale. This is especially true for squared amplitude contributions and the

boosted regime, for which the chosen fixed scales proportional to the Higgs mass (as it

is tailored to the prediction of the inclusive Higgs production cross section) are not well

suited in light of the significantly larger collision energies probed. We choose to report here

absolute factorisation scale dependency, given that some contributions can be accidentally

close to zero4 for one of the two scale choices. A more detailed analysis of the sensitivity

of these contributions to the factorisation scale is beyond the scope of this work.

The overall magnitude of all contributions computed here is such that they can be

safely neglected in light of the total size of the gluon fusion cross section 48.58 pb+2.22 pb
−3.27 pb

4This is for example the case in σ
(α2

sα
3,no-ZH)

gg→Hbb̄ |µF =mH where Higgs emissions from weak bosons are close

to equal and opposite in sign to emissions from internal top-quarks, and in σ
(α2

sα
3,no-ZH)

gg→Hqq̄ |µF =mH/2 where the

cancellation occurs between the hard reals and the logarithms in ξ part of the integrated counterterms 〈Cgq〉.
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(theory) [3] with contributions of weak origins that are estimated to be of the order of 2 pb,

with a theoretical uncertainty in the range of 200 fb [9, 10]. The aggregated sum σtotal of all

contributions computed in this work is only meant to serve as qualitative highlight of that

fact. Our results then further support the factorisation approximation when accounting

for mixed weak and QCD corrections to inclusive Higgs production.

The hierarchy of the various terms is altered when considering the boosted Higgs

regime, where the kinematic suppression of gluon-initiated interference contributions is

strong enough to make them of the same order or smaller than their squared counterpart.

All interference contributions also become negative in this case, while the square term

σ
(α2
sα

3,no-ZH)
gg→Hqq̄ is now positive as hard real emissions become dominant. Overall, none of the

contributions computed plays a significant role in that scenario either, given that the pure

QCD contribution is estimated in ref. [24] to be 25 fb with a large theoretical uncertainty

exceeding 20%.

5 Conclusion

The large QCD corrections to inclusive Higgs production at LHC13 calls for accounting

for mixed weak and QCD corrections in a multiplicative scheme, that is assuming their

complete factorisation. In light of the accuracy sought-after for this process, it is important

to assess the validity of this factorisation assumption by explicitly computing σ
(1,1)
pp→H+X ,

namely the mixed QCD and weak correction of order O(α3
sα

2) to the Higgs inclusive cross

section.

To this end, two groups [8–10] computed σ
(1,1)
gg→H+X and found that it supports the

hypothesis that weak corrections factorise. These works however neglected the quark-

initiated components as well as the “double-real” channel gg → Hqq̄ and we confirm

here that these terms can be safely neglected, amounting to about 5% of the total mixed

weak and QCD corrections. We verified that our conclusions also apply when imposing

that the Higgs transverse momentum lies above 400 GeV. The interference nature of the

contributions σ
(1,1)
gg→Hqq̄ and σ

(1,1)
gq→Hq renders them prone to kinematic suppressions, and we

indeed found that the square of the one-loop weak amplitudes involved can be larger than

naively expected from their parametric suppression of α/αs. The selective nature of the

contributions computed in this work is such that they feature a large factorisation scale

dependency, further stressing that their inclusion would require to also consider all other

partonic channels.

Besides further establishing the validity of the hypothesis assumed when accounting

for weak corrections to inclusive Higgs production, our work also showcases the novel

flexibility brought by recent developments in the realm of automated one-loop matrix

element generation and Monte-Carlo integration for higher-order computations.
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A Initial-collinear counterterms

In this appendix, we detail all ingredients that are necessary for the subtraction of implicit

singularities outlined in eqs. (3.1)–3.2, and we demonstrate that the matrix element for

g1g2 → q3q̄4H5 is correctly regulated in the regions of phase space close to unresolved

configurations. As already announced in section 3, the construction and notation follow

closely ref. [14].

Let us begin with the expression of the local initial-collinear counterterms in eq. (3.1).

In general, in order for these counterterms to approximate the matrix element point by

point in the phase space, spin correlations need to be taken into account. Suppressing the

coupling orders, we define

[Cg1q3 ⊗Mq̄13g2→q̄4H5 ](φq3q̄4H5) ≡ (8παsµ
2ε)

1

sg1q3

P̂ ss
′

g1q3(1/z)
ω(q̄13)

ω(g1)

×Mss′
q̄13g2→q̄4H5

(φ̃q̄4H5)θ(y0 − y), (A.1)

where s and s′ respectively specify the spin of the quark which enters the reduced amplitude

and the corresponding conjugate. The factor ω(q̄)/ω(g) accounts for the different averaging

on the initial state spins and colours in the matrix elements and equals Nc/(N
2
c − 1) in

four spacetime dimensions. The symbol P̂ ss
′

gq denotes the final-final qg splitting function

P̂ ss
′

gq (z) ≡ δss′CF
[

1 + (1− z)2

z
− εz

]
, (A.2)

and the variable z in eq. (A.1) is computed using

z ≡ Q · (p1 − p3)

Q · p1
, (A.3)

with Q = p1 + p2. For the process at hand, since the parton which enters the hard process

after the splitting is always a quark, spin correlations are absent as indicated by δss
′

in

eq. (A.2). The momentum mapping that we use to determine the reduced phase-space point

φ̃qH is the one used for two initial-state partons in Catani-Seymour dipole subtraction (see

section 5.5 of [25]).5 Finally, the Heaviside θ function at the end of eq. (A.1) controls the

region of phase-space where the counterterm is active through the parameter y0, which

determines the range for the variable y ≡ 2p1 · p3/Q
2.

At this point, all the elements needed to check that eq. (3.1) only features integrable

singularities have been presented. In order to validate our subtraction and assess the

5Note that this mapping involves recoiling against all final state particles, and it would not be efficient

for studying differential Higgs observables.
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numerical stability of the integrand which is built from the interference of two one-loop

amplitudes, we start from a random resolved kinematic configuration and examine the

behaviour as different collinear limits are approached. We control the distance from any

given unresolved limit using a scaling variable λ, which is engineered to approach the

singular configuration at a pace such that the phase-space volume between λ and λ + dλ

is proportional to λ itself. For a kinematic configuration with a centre-of-mass energy of

1 TeV and in the case of a collinear pair, the typical invariant mass is then O(1 GeV) for

λ = 10−6 and O(1 MeV) for λ = 10−12. Under the same conditions and in the case of two

collinear pairs, the typical invariant mass of each of them is O(1 GeV) for λ = 10−12 and

O(1 MeV) for λ = 10−24 instead. For the sake of concreteness, we consider the partonic

subprocess g1g2 → b3b̄4H5, with the understanding that all qualitative features are identical

in the case of light quark flavours in the final state.

In figure 4, we display the behaviour of the matrix element interference and its four

initial-collinear counterterms as a function of λ for a given starting kinematic configuration.

The left panels simply show the ratio of counterterms to the matrix element. In the right

panels, we plot their sum weighted by λ, which is representative of the contribution to

the total integral coming from a neighbourhood of λ. We therefore expect the integral to

be convergent if this quantity tends to zero when λ → 0. In figure 4a we consider the

limit C(1, 3), where the matrix element is approximated by the counterterm C(1, 3) and

all other terms in the sum over π of eq. (3.1) are regular. The cases of C(2, 4), C(1, 4)

and C(2, 3) are fully analogous. In figure 4b we study the limit of two collinear pairs

C(1, 3)C(2, 4) which, as discussed in section 3, does not require any additional treatment

since the matrix element for qq̄ → H at order O
(
gsg

2
)

is zero. Finally, in figure 4c

we consider the limit C(3, 4) to confirm that the matrix element of order O
(
α2
sα

2
)

for

gg → bb̄H does not feature a non-integrable divergence when the two quarks in the final

state are collinear. We note that the figures in this section can be sensitive to the numerical

stability parameters of MadLoop which, among other things, control when to switch to

a slower quadruple precision evaluation. Further discussion of this technical aspect is

however beyond the scope of this work and we limit ourselves to reporting here that all

Monte-Carlo integrations performed in this work could be successfully carried out using

MadLoop’s default parameters.6 Incidentally, we observe that in order to obtain results

at the level of precision needed for this work it is not necessary to introduce a technical

cutoff.

The integral of the collinear counterterm over the unresolved phase space has been

computed in [14] and reads

〈Cgq〉 (ξ) =
αs
2π
Sε

[
µ2
R

Q2

]ε
TR
CF

{
[ξ2 + (1− ξ)2]

[
−1

ε
+ ln(1− ξ)(1 + θ[ξ − (1− y0)])

+ ln(y0)θ[(1− y0)− ξ]
]

+ 2ξ(1− ξ)
}

+O(ε), (A.4)

6We note however that it proved to be necessary to employ an estimate of MadLoop’s accuracy based

on the comparison of two separate numerical evaluations that differ by a Lorentz transformation of the

kinematic inputs (by setting MadLoop’s parameter NRotations DP to 1).
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(c) C(3, 4) limit.

Figure 4. Behaviour of the terms in eq. (3.1) for the process g1g2 → b3b̄4H5 when approaching

different unresolved limits. See text for details.
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where Q = p1 + p2 for the reduced process g1q2 → q3H4 and we have defined

Sε ≡
(4π)ε

Γ(1− ε) . (A.5)

The explicit pole in the dimensional regulator ε featured by this integrated counterterm is

cancelled by the contribution from PDF renormalisation, which is given by

∆gq(ξ) =
αs
2π
Sε

1

ε

[
µ2
R

µ2
F

]ε
Pgq(ξ), (A.6)

where the relevant Altarelli-Parisi splitting kernel reads7

Pgq(ξ) = TR[ξ2 + (1− ξ)2]. (A.7)

We have confirmed that in our implementation of this subtraction scheme the sum of (3.1)

and (3.2) does not depend on y0, which provides a non-trivial cross-check of O
(
ε0
)

terms.

B Analytical computation of the amplitudes A
(2,0)
gg→Hqq̄ and A

(0,2)
gg→Hqq̄

The analytic validation is performed by computing the form factors for the QCD back-

ground depicted in the diagrams figure 3 and the weak contributions with sample diagrams

shown in figures 1a to 1c. While we retain the full quark mass dependence for the QCD

background, we assume massless quarks for the weak contributions. The computation

is performed in D = 4 − 2ε dimensions. However, due to the special reduction of the

scalar pentagon integrals, the final result is only valid for the provided order O
(
ε0
)

in the

dimensional regulator (see section B.2).

The amplitude for the weak process g1g2 → q3q̄4H5 may be written in the general form

A
(0,2)
gg→qq̄H = A

(0,2),VV
gg→qq̄H +A

(0,2),AV
gg→qq̄H +A

(0,2),VA
gg→qq̄H +A

(0,2),AA
gg→qq̄H (B.1)

= εµ1(p1)εµ2(p2)ūs3(p3)vs4(p4)Fµ1µ2
s3s4 , (B.2)

where in the following we will denote the form factor by Fµ1µ2 , suppressing the spinor

indices. We separate couplings of the quarks to the weak gauge bosons according to

udW+ ∝ gVγ
µ + gAγ

µγ5, udW− ∝ g∗Vγµ + g∗Aγ
µγ5 and (B.3)

qqZ ∝ gV,Zγ
µ + gA,Zγ

µγ5, (B.4)

and refer to gV as the vector and to gA as the axial coupling constant. In the following, we

restrict ourselves to the case of d quarks in the final state for concreteness. We will first

discuss the computation of A
(0,2),VV

gg→dd̄H ∝ |gV|2 and then argue that this piece is sufficient to

determine the complete amplitude.

In order to compute the form factors, we first generate all contributing diagrams with

QGraf [26] and perform the color-, Dirac- and Lorentz algebra in Mathematica, whereas

7Note that in our notation the first subscript indicates the parton extracted from the hadron according

to its PDF, and the second one denotes the parton that enters the hard process.
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the γ traces are performed using FORM [27]. For more compact expressions, we choose

an axial gauge for the external gluons g1 and g2, such that

p1 · ε1(p1) = 0 p2 · ε1(p1) = 0 p2 · ε2(p2) = 0 p1 · ε1(p2) = 0, (B.5)

with the physical polarization sum∑
polarization

ε∗µ(pi)εν(pi) = −gµν +
p1µp2ν + p2µp1ν

p1 · p2
for i = 1, 2. (B.6)

As a direct consequence of the gauge choice, terms in the form factors proportional to pµ1
1 ,

pµ1
2 , pµ2

1 or pµ2
2 can be set to zero, since they will not contribute to the amplitude. Internal

gauge bosons and quarks are treated in the Feynman gauge.

B.1 Tensor reduction to scalar integrals

The form factor Fµ1µ2 can be written as

Fµ1µ2 =
∑
i

αiSµ1µ2
i =

∑
i

αi

∫
Nµ1µ2(k)

D1 . . . Dmi

dDk , (B.7)

where the Sµ1µ2
i denote tensor integrals. We can reduce the tensor integrals Sµ1µ2

i to scalar

integrals Sk:

Sµ1µ2
i =

∑
j

Tµ1µ2
j (p1, p2, p3, p4)Sj . (B.8)

To achieve the above decomposition, we use a particular flavour of Passarino-Veltman

tensor reduction [28]. The reduction of the tensor integrals is discussed here by writing

only the integrand numerators Nµ1µ2(k), keeping in mind that the identities exclusively

hold at the integral level.

As a first step we strip off the external Lorentz structures factorising the loop momen-

tum Nµ1µ2(k) and write

Nµ1µ2(k) = cµ1µ2
0 + cµ1µ2;α1

1 kα1 + cµ1µ2;α1α2
2 kα1kα2 + cµ1µ2;α1α2α3

3 kα1kα2kα3 + . . . , (B.9)

where the tensor coefficients ci only involve γ-matrices, external momenta pi and the metric

tensor g. The tensor reduction is performed with the fully symmetric tensor numerators

Ñ (α1α2...αn)(k) = kα1kα2 · · · kαn . Performing the loop integration of the tensor integral

S(α1α2...αn)
i =

∫
Ñ (α1α2...αn)(k)

D1 . . . Dmi

dDk =
∑
j

t
(α1α2...αn)
j (g, p1, p2, p3, p4)cj , (B.10)

will result in Lorentz tensors t
(α1α2...αn)
j which are also completely symmetric in the internal

Lorentz indices αi. The symmetric tensor t(α1...αn) is given by

t(α1...αn) =
1

n!

∑
σ∈Σn

tασ(1)...ασ(n) , (B.11)
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where Σn is the symmetric group of order n, e.g.

t(α1α2)
p1,p2

= p
(α1

1 p
α2)
2 =

1

2
(pα1

1 pα2
2 + pα2

1 pα1
2 ) . (B.12)

Reduction with respect to a fully symmetric tensor basis reduces the number of tensor

structures to be considered in the Ansatz significantly, while still remaining completely

algorithmic.

A further simplification arises from the fact that the only underlying scalar topology

depending on the full external kinematics p1, p2, p3, p4 is the pentagon displayed in figure 1a.

Every other diagram will yield scalar integrals with reducible external kinematics yielding

results depending on a reduced set of Mandelstam variables only. In general we group all

diagrams into families characterized by their minimal set of external momenta and perform

the tensor reduction for the tensor numerators Ñ (α1α2...αn)(k) in each family separately

with respect to the reduced external kinematics. This approach keeps the intermediate

expressions obtained from tensor- and integration-by-parts (IBP) reduction very compact.

The biggest matrix we have to invert is a 24 × 24 matrix for the rank 3 Lorentz tensor

integrals of the pentagon diagram. To perform the analytic matrix inversion we employ

the computer algebra system Fermat [29], which takes below a minute on one core of a

modern computer. In order to obtain the form factor in terms of scalar integrals we then

insert the solutions back into (B.9).

With the tensor decomposition described, we are able to express the form factors for

the QCD background and the vector-vector part of the weak contributions in terms of the

following 20 tensor structures:

Tµ1µ2
1 = /p1γ

µ1γµ2 , T µ1µ2
2 = /p2γ

µ1γµ2 , Tµ1µ2
3 = gµ1µ2/p1, T µ1µ2

4 = gµ1µ2/p2,

Tµ1µ2
5 = γµ1pµ2

3 , T µ1µ2
6 = γµ1pµ2

4 , T µ1µ2
7 = /p1/p2γ

µ1pµ2
3 , T µ1µ2

8 = /p1/p2γ
µ1pµ2

4 ,

Tµ1µ2
9 = γµ2pµ1

3 , T µ1µ2
10 = /p1/p2γ

µ2pµ1
3 , T µ1µ2

11 = γµ2pµ1
4 , T µ1µ2

12 = /p1/p2γ
µ2pµ1

4 ,

Tµ1µ2
13 = /p1p

µ1
3 pµ2

3 , Tµ1µ2
14 = /p2p

µ1
3 pµ2

3 , T µ1µ2
15 = /p1p

µ1
3 pµ2

4 , T µ1µ2
16 = /p2p

µ1
3 pµ2

4 ,

Tµ1µ2
17 = /p1p

µ2
3 pµ1

4 , Tµ1µ2
18 = /p2p

µ2
3 pµ1

4 , T µ1µ2
19 = /p1p

µ1
4 pµ2

4 , T µ1µ2
20 = /p2p

µ1
4 pµ2

4 .

(B.13)

B.2 Evaluation of scalar integrals

The IBP reduction of the remaining scalar integrals is performed using the program

Kira [30, 31]. We decompose the scalar pentagon integrals appearing as master inte-

grals following ref. [32]. This decomposition relates the pentagon in 4 − 2ε dimensions to

a linear combination of all boxes obtainable by pinching one of the propagators, and the

pentagon in 6− 2ε dimensions multiplied by a prefactor of order ε. Since the pentagon in

six dimensions is finite, the additional term involving the six-dimensional pentagon is of

order O(ε) and can be omitted for the computation at hand.

We find that all form factors are finite diagram-by-diagram, but order O(ε) coefficients

of the bubbles appear explicitly in the final amplitude.8 The relevant coefficients are

8This is particular to our approach and originates from the IBP reduction of the scalar integrals.
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given by

b0(s;m2, 0) = h(ε)

∫
1

(k2−m2)(k−p)2
dDk

=

(
µ2

m2

)ε [
1

ε
+2−(x−1) ln(1−x)

x
(B.14)

+

(
4+

π2

6
+

(1−x)

2x

(
2 Li2

(
− x

1−x

)
−ln2(1−x)+4 ln(1−x)

))
ε+O

(
ε2
)]
,

b0(s; 0, 0) = h(ε)

∫
1

k2(k−p)2
dDk =

(
− s

µ2

)−ε [1

ε
+2+4ε+O

(
ε2
)]
, (B.15)

a0(m) = h(ε)

∫
1

k2−m2
dDk = m2

(
µ2

m2

)ε [
1

ε
+1+

(
1+

π2

6

)
ε+O

(
ε2
)]
, (B.16)

where x = s/m2. The normalization

h(ε) ≡ µ2ε

iπ2−ε
Γ(1− 2ε)

Γ(1− ε)2Γ(ε+ 1)
, (B.17)

is chosen to match the convention of OneLOop [21], which is also used to evaluate the

remaining non-trivial scalar master integrals.

In the evaluation of the expressions above, some care is needed in order to evaluate

multi-valued functions on their physical Riemann sheet. The convention for numerical

implementations of such functions is that the value assigned on the cut is the one coming

around the finite endpoint of the cut in a counter-clockwise direction [33]. The Feynman

prescription, however, dictates to replace s with s+ iη and take the limit η ↓ 0, which gives

lim
η↓0

ln

(
1− s+ iη

m2

)
=

{
ln(1− x) s < m2,

ln(1− x)− 2iπ s > m2,
(B.18)

if the right-hand side respects the convention. The same holds for s > 0 in the expansion

of the massless bubble. It is easy to see that for the dilogarithm in (B.14), instead, the

physical sheet coincides with the conventional one for all x 6= 1.

B.3 Relations between the axial and vector parts of the amplitude

In the previous section we discussed the computation of the vector part A
(0,2),VV

gg→dd̄H . In what

follows, we restrict the discussion to a single quark family with a diagonal CKM matrix,

gV = g∗V and gA = g∗A. The generalisation to all families of light quarks is straightforward

and purely combinatorial. Since there are no closed fermion loops, we do not have to worry

about ambiguous traces of γ5 in 4− 2ε dimensions and we may take the D-dimensional γ5

to be anticommuting.9

9Our choice corresponds to the NDR treatment of γ5 (see e.g. [34]). Note however, that the amplitude

is finite diagram by diagram and traces over γ5 enter only in the interference of the AV-part with e.g. the

QCD background. Since for the interference there is no explicit ε-dependence anymore, the traces can be

treated as four-dimensional objects, without the need of imposing additional constraints.
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γµγ5 γργ5γν

(a)

γµγ5 γρ γτγ5γν γσ

(b)

γµγ5 γρ γτ γκγ5γν γσ γλ

(c)

Figure 5. The relevant γ matrix structures for A
(0,2),AA

gg→dd̄H
. Figure 5a corresponds to triangle

diagrams, figure 5b corresponds to box diagrams and figure 5c corresponds to pentagon diagrams.

γργ5p3

(a)

γµ γργ5p3 γν

(b)

γρ γτ γκγ5γσ γλp3

(c)

Figure 6. The relevant γ matrix structures for A
(0,2),AV

gg→dd̄H
.

Within the purely axial amplitude A
(0,2),AA

gg→dd̄H both weak couplings are ∝ gAγ
µγ5. The γ

chains that appear in the amplitude are shown in figure 5. One always needs to do an even

number of anticommutations to arrive at γ5γ5 = 1 from which immediately follows that

A
(0,2),AA

gg→dd̄H =
|gA|2
|gV|2

A
(0,2),VV

gg→dd̄H . (B.19)

The axial-vector piece A
(0,2),AV

gg→dd̄H features the γ chains shown in figure 6. These chains

represent the cases where only the vertex closest to the outgoing d quark (of momentum

p3) contributes with an axial coupling.10 It is easy to see that an uneven number of

anticommutations is needed to bring γ5 to the beginning of every spinor chain appearing

in the process. The form factor for the AV part of the amplitude is therefore given by

FµνAV = −2
gA

gV
γ5FµνVV. (B.20)

We thus conclude that the complete weak amplitude can be determined from its purely

vector piece.

B.4 Supplementary material

The notation employed for the supplementary material is the following: we write every

form factor in the supplementary material as the scalar product

Fµν,abs1s2,lm
= (Tµν,abs1s2,lm

)iSi, (B.21)

where the vector T spans the direct product of colour and Lorentz spaces. The pairs of

indices a, b and l,m are associated with the adjoint and fundamental representations of

SU(3) respectively; µ, ν are the Lorentz indices and s1, s2 are the spinor ones.

10The case where only the vertex “furthest” to the outgoing d quark contributes with the axial coupling

is completely analogous.
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The interference between two amplitudes A and Ã in this notation then reads

M = 2
1

4

1

(N2
c − 1)2

Re (s̃∗iBijsj) , (B.22)

where B is the structure matrix obtained summing over all colours, spins and polarisations:

Bij =
∑

εµ(p1)εν(p2)ε∗µ′(p1)ε∗ν′(p2)us
′
1(p3)v̄s

′
2(p4)ūs1(p3)vs2(p4)×(T̃µ

′ν′

s′1s
′
2
)i(T

µν
s1s2)j . (B.23)

The supplementary material contains the vector Tµν,abs1s2,lm
and the vector S for the QCD

background, the VV and the AV part of the weak amplitude. We furthermore provide

the structure matrices B for A
(0,2),VV,(AA)

gg→dd̄H A∗(2,0)

gg→dd̄H and A
(0,2),AV,(VA)

gg→dd̄H A∗(2,0)

gg→dd̄H , which

are sufficient to reproduce analytically the one-loop mixed QCD-weak matrix element for

light quarks (excluding Higgs-strahlung contributions).

C Validation material

In order to facilitate the reproduction of our results, we provide below the numerical result

for the matrix elementM(α3
sα

2)

gg→Hdd̄ andM(α3
sα

2)

gg→Hbb̄ summed (averaged) over final (initial) state

helicity and colour configurations for the following two kinematic points and αs = 0.118

(other SM parameters set to the values indicated in table 2, unless otherwise stated).

The matrix elements computed are free of any explicit IR or UV divergence, so that

the specific ε-dependent normalisation factor considered in MadLoop’s conventions is

irrelevant in this case. For the two kinematic points shown in table 4, we find:

The first two matrix element evaluations given in table 5 are exactly those used for

obtaining the results of table 3. The next six correspond to simplified setups that are

only meant to ease comparisons against independent computations. More specifically, the

matrix element denotedM(α3
sα

2,Γt,W±,Z=0,W±@[1a, 1b, 1c],V V )

gg→Hdd̄ corresponds to the case where:

• all widths are set to zero (then using on-shell renormalisation conditions)

• only the diagrams from the classes 1a, 1b and 1c with a W± in the loop are kept

• only the vector part of the two W± interactions is considered.

The definition of the last five matrix elements of the table is fully analogous, with ‘AV+VA’

indicating that the amplitude includes exactly one vector-like and one axial coupling of the

electroweak boson to the quarks.

For each matrix element we checked numerical evaluations of the analytic result for 100

phase-space points and compare them against MadLoop evaluations. We found perfect

agreement at the level of the 10th digit on average.

The above matrix elements can readily be generated by MadLoop (from within

MG5aMC v2.6+) using commands similar11 to the following which generates the matrix

element M(α3
sα

2)

gg→Hdd̄:

11See https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/MadLoopStandaloneLibrary for instructions

on how to generate the corresponding standalone library for linking against your own code.
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[GeV] E px py pz

pg1 = ( 500 , 0 , 0 , 500 )

pg2 = ( 500 , 0 , 0 , −500 )

ph3 = ( 467.7884686370085 , 166.5707878773001 , 373.1956790038965 , −190.2109596961058 )

pd4 = ( 357.8737762854649 , −18.01807463012543 , −341.7897831227270 , 104.5405801225597 )

pd̄5
= ( 174.3377550775266 , −148.5527132471747 , −31.40589588116942 , 85.67037957354616 )

(a) First kinematic configuration.

[GeV] E px py pz

pg1 = ( 500 , 0 , 0 , 500 )

pg2 = ( 500 , 0 , 0 , −500 )

ph3 = ( 503.1176012750793 , 183.7772678439759 , 314.6404088273092 , −323.6196064356687 )

pd4 = ( 101.0581181325984 , −69.50635454208810 , −42.77041343901509 , 59.60118835247730 )

pd̄5
= ( 395.8242805923223 , −114.2709133018878 , −271.8699953882941 , 264.0184180831914 )

(b) Second kinematic configuration.

Table 4. The two kinematic configurations used for the evaluation of the O
(
α3
sα

2
)

contribution to

the process gg → Hdd̄ presented in table 5.

MG5 aMC> set complex mass scheme True

MG5 aMC> import loop qcd qed sm

MG5 aMC> generate g g > h d d~ [virt=QCD QED] QED^ 2==4 QCD^ 2==6

MG5 aMC> output my gg hddx

MG5 aMC> launch -f

Note that in order to select only the diagrams of the classes 1a, 1b and 1c, the following

–loop filter option12 can be passed to the following generate command, yielding the matrix

element M(α3
sα

2,Γt,W±,Z=0,Z@[1a, 1b, 1c],VV+AV+VA+AA)

gg→Hdd̄ :

MG5 aMC> generate g g > h d d~ / w+ w- a [virt=QCD QED] QED^ 2==4

QCD^ 2==6 --loop filter=not(23\\ in\\ struct pdgs\\ or\\ 250\\ in\\

struct pdgs)

12Also note that the rather long loop filters indicated on the command line can alternatively be specified

directly in the user-function user filter() of the MG5aMC Python module loop diagram generation.py.
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[GeV−2] φ = φ4a φ = φ4b

M(α3
sα

2)

gg→Hdd̄ 1.473268137642022e-11 -3.202714028092470e-09

M(α3
sα

2)

gg→Hbb̄ -2.120437436454854e-09 -5.094650485339200e-09

M(α3
sα

2,Γt,W±=0,W±@[1a, 1b, 1c],VV)

gg→Hdd̄ 1.046690169966104e-11 1.051226540819620e-10

Evaluation of analytic result 1.046690169966233e-11 1.051226540819659e-10

M(α3
sα

2,Γt,W±=0,W±@[1a, 1b, 1c],AV+VA)

gg→Hdd̄ -4.013450438936635e-11 -4.984414054112152e-10

Evaluation of analytic result -4.013450438936742e-11 -4.984414054111984e-10

M(α3
sα

2,Γt,W±=0,W±@[1a, 1b, 1c],AA)

gg→Hdd̄ 1.046690169966104e-11 1.051226540819620e-10

Evaluation of analytic result 1.046690169966233e-11 1.051226540819659e-10

M(α3
sα

2,Γt,Z=0,Z@[1a, 1b, 1c],VV)

gg→Hdd̄ 2.656838076288246e-12 3.508375650188969e-11

Evaluation of analytic result 2.656838076288616e-12 3.508375650189406e-11

M(α3
sα

2,Γt,Z=0,Z@[1a, 1b, 1c],AV+VA)

gg→Hdd̄ -1.998115098837096e-11 -2.730298029116885e-10

Evaluation of analytic result -1.998115098837179e-11 -2.730298029116787e-10

M(α3
sα

2,Γt,Z=0,Z@[1a, 1b, 1c],AA)

gg→Hdd̄ 5.365688093206777e-12 7.085433478511003e-11

Evaluation of analytic result 5.365688093207525e-12 7.085433478511895e-11

Table 5. Benchmark evaluations of various matrix elements comparing numerical results from

MadLoop against an independent analytical derivation of the amplitude, presented in appendix B

(see text for details).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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