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Current closure through the neutron star crust
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ABSTRACT
Force-free pulsar magnetospheres develop a large-scale poloidal electric current circuit that
flows along open magnetic field lines from the neutron star to the termination shock. The
electric current closes through the interior of the neutron star where it provides the torque
that spins-down the star. In the present work, we study the internal electric current in an
axisymmetric rotator. We evaluate the path of the electric current by requiring the minimization
of internal Ohmic losses. We find that, in millisecond pulsars, the current reaches the base
of the crust, while in pulsars with periods of a few seconds, the bulk of the electric current
does not penetrate deeper than about 100 m. The region of maximum spin-down torque in
millisecond pulsars is the base of the crust, while in slowly spinning ones it is the outer crust.
We evaluate the corresponding Maxwell stresses and find that, in typical rotation-powered
radio pulsars, they are well below the critical stress that can be sustained by the crust. For
magnetar-level fields, the Maxwell stresses near the surface are comparable to the critical
stress and may lead to the decoupling of the crust from the rest of the stellar rotation.
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1 IN T RO D U C T I O N

A rotating magnetized neutron star is surrounded by a plasma-
filled electrically conducting force-free magnetosphere in which
the magnetic field is energetically dominant and governs its overall
dynamics (Goldreich & Julian 1969). Time-dependent electrody-
namic and magnetohydrodynamic numerical simulations relax to
a steady-state ideal force-free magnetic field configuration that
corotates with the neutron star (Komissarov 2006; Spitkovsky
2006; Tchekhovskoy, Spitkovsky & Li 2013). This magnetospheric
solution was first obtained by Contopoulos, Kazanas & Fendt (1999)
in the case of an axisymmetric rotator.

An important characteristic of the steady-state configuration is
that magnetic field lines that cross the light cylinder contain a certain
distribution of poloidal electric current that forms a large-scale
electric circuit. This is associated with a toroidal magnetic field
component that reflects the fact that magnetic field lines are swept
backwards with respect to the stellar rotation. Without it, plasma
‘frozen into’ these field lines beyond the light cylinder would move
faster than the speed of light. This electric current distribution is the
only one that guarantees smooth crossing of the light cylinder by
the magnetic field, and in that sense, it is an ‘eigenfunction’ of the
problem.

� E-mail: vkarageo@upatras.gr

The ‘generator’ (or ‘battery’) of the magnetospheric electric
circuit is the neutron star rotation, the ‘wires’ are the magnetic
flux surfaces, and the ‘loads’ are finite dissipation regions at large
distances (near and beyond the light cylinder, and the termination
shock at very large distances). The electric current closes through the
stellar interior. It penetrates deep inside the crust, where it generates
the torques necessary to spin-down the neutron star (force-free
conditions must be abandoned there).

The crust comprises an exceptionally strong ion lattice; neverthe-
less, it can only sustain finite stresses (Strohmayer 1991; Chamel
& Haensel 2008; Horowitz et al. 2015). If the spin-down torque
is exerted on a very thin volume, the Maxwell stresses could in
principle exceed the yield limit of the crust, and the crust would
yield. While the magnetospheric solution is obtained by assuming
an ideal plasma with infinite conductivity, the crust has a high but
finite conductivity σ ranging between 1020 and 1027 s−1 (Potekhin,
Pons & Page 2015). We note that even if there is a finite resistivity
in the magnetosphere (Kalapotharakos et al. 2012; Li, Spitkovsky &
Tchekhovskoy 2012), the big picture does not change qualitatively.

In this paper we obtain the flow of the magnetospheric electric
current inside the neutron star crust and calculate the transfer
of magnetospheric spin-down torque into the stellar interior. The
plan of the paper is as follows. In section 2, we derive the
governing equations that describe the flow of electric current in the
stellar interior. In section 3, we solve these equations numerically
and present results for several pulsar models. We discuss their
implications in section 4, and present our conclusions in section 5.
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2 PRO BLEM SETUP

2.1 The equation for the electric current in the crust

Let us consider an axisymmetric stationary configuration. In what
follows, we will work in spherical coordinates (r, θ , φ) centred
on the neutron star and aligned with the axis of symmetry (which
coincides with the axis of rotation and the magnetic axis). The
electric current density may in general be expressed as

j = 1

2π
∇I × ∇φ + jφ φ̂ , (1)

where I = I(r, θ ) is the electric current that passes through a
ring perpendicular to and concentric with the axis of symmetry
passing through position (r, θ ). Note that I is related to the toroidal
component of the magnetic field B as

I = c

2
r sin θ Bφ , (2)

and we further assume that the poloidal component of the magnetic
field is a dipole. The azimuthal component of the electric current jφ
in equation (1) is due to the corotation of the internal space-charge,
namely jφ = r sin θ � ∇ · E, and does not enter in our calculations
below. � is the stellar angular velocity and the electric field is given
by Ohm’s law,

E = −r sin θ � φ̂ × B/c + j
σ

. (3)

Here c is the speed of light and σ the electric conductivity of the
crust. The power per unit volume in the crust is given by

j · E = −r sin θ �
(
φ̂ × B/c

)
· j + j 2

σ
= 1

c
( j × B) · ν + j 2

σ
,(4)

where ν = r sin θ � φ̂ is the velocity of the crust at (r, θ ) for an
observer in the lab frame. The term ( j × B) · ν/c in equation (4)
expresses the work per unit volume and time done by the Lorentz
force that spins-down the pulsar. The j2/σ term is the Ohmic thermal
losses per unit volume and time, due to the finite conductivity of
the crust.

Our goal is to obtain the distribution I(r, θ ) in the stellar interior.
We will approach this question by applying a Fermat-type principle.
We propose that the current inside the crust of the neutron star will
distribute itself so that it minimizes the total Ohmic thermal losses.
This allows us to formulate a minimization equation.

POhm ≡
∫

V

j 2

σ
dV =

( c

4π

)2
∫

V

(∇ × B)2

σ
dV , (5)

where we have used j = (c/4π )∇ × B. By demanding that POhm is
minimized, we obtain the condition

c

4π
∇ ×

(∇ × B
σ

)
≡ c

4π
∇ ×

(
j
σ

)
= 0 (6)

(see Appendix A). The same result is obtained if we start from
Ohm’s law in the stellar interior (equation 3) and realize that, for a
stationary configuration, ∇ × E = 0 (Faraday’s law), this yields:

∇ ×
(

j
σ

)
= 0 , (7)

which is identical to equation (6). With the help of equation (1),
equation (6) then takes the form

∂2I

∂r2
− 1

σ

∂σ

∂r

∂I

∂r
− cos θ

r2 sin θ

∂I

∂θ
+ 1

r2

∂2I

∂θ2
= 0, (8)

where we assume that the electric conductivity of the crust is a
function of radius only σ = σ (r).

The two approaches are interconnected. Equation (6) essentially
describes an Ohmic eigenmode (Chanmugam & Gabriel 1972)
corresponding to the zero eigenvalue, or equivalently infinite decay
time, subject to given boundary conditions. The infinite decay time
is imposed here by setting ∇ × E = 0. The Ohmic thermal power
minimization derivation, starts from Ohm’s law as well. Here we
assume that among all possible electric current configurations that
are compatible with the boundary conditions, the one that will
survive the longest is the one that has the lowest Ohmic thermal
losses. We note here that while magnetic field energy is converted
into heat as described by the term j2/σ , this power is replenished by
the fact that we enforce time-independent boundary conditions.

We note that the magnetospheric current closing through the
crust is not related to the Hall current (Goldreich & Reisenegger
1992). The latter is associated with the structure of the crustal
magnetic field, and it can drive magnetic field evolution, especially
for magnetic fields above 1014 G. Here we assume for simplicity
that the magnetic field in the crust is a pure dipole, and that the
source of the field (i.e. the associated azimuthal electric current)
lies interior to the crust.

2.2 Boundary conditions

We will integrate equation (8) in a computational domain rin ≤ r ≤
rout and 0 ≤ θ ≤ θout of the crust. We first need to specify I(r, θ ) at the
boundaries of the domain. We set the outer radial boundary at the
radius of the star, namely rout = rns, and the inner radial boundary
at the inner crust radius rin = 0.9rns. Along the axis, I(r, 0) = 0.
I(rin, θ ) = 0 as we assume that the current is contained within the
crust (this is a reasonable assumption due to the high resistivity
that prevents the current from penetrating below the crust). I(r, θ

> θout) = 0. This is justified by the fact that the magnetospheric
poloidal current flows only along open field lines, and no current
flows in the dead zone. Inside the crust, the majority of the current
stays below the polar cap region, and does not spread to much
lower latitudes. Actually, as we shall see, part of the current spreads
beyond the polar region, but as long as the latitudinal boundary θout

is taken to be sufficiently large, its particular value is not important.
For computational convenience we take θout = 2θpc, where θpc ≈
(1.23 rns/rlc)1/2 is the latitude of the footpoint of the last open field
line on the star.1 Here, rlc = c/� is the radius of the light cylinder.
The pre-factor 1.23 in the above expression is based on the most
detailed numerical solution of the axisymmetric problem to date,
namely that of Timokhin (2006).

The distribution of electric current I(rout, θ ) along the surface of
the neutron star is provided by the magnetospheric solution. This
has been thoroughly investigated by several authors (Contopoulos
et al. 1999; Gruzinov 2005; Timokhin 2006). Here we use the model
with x0 = 0.992 from fig. 3 of Timokhin (2006). In that paper, I
is given as a function of 	, the poloidal magnetic flux, which on
the surface of the neutron star is defined as 	(θ ) = Br2

ns sin2 θ/2π .
Here and below, B refers to the value of the magnetic field at the
poles of the star. This allows us to obtain the distribution I = I(rout,
θ ). Based on Timokhin’s solution, the maximum value of I is
Imax = 0.87Ism, where Ism = 1.23 × 2πBr3

nsr
−2
lc corresponds to a

split-monopole solution with the same amount of open magnetic
flux (Michel 1973). Therefore, the maximum value used in the
present work is Imax = 1.07 × 2πBr3

nsr
−2
lc . We implemented that

1We have also integrated equation (8) with θout = 3θpc and the difference
in the solution was minimal.
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by sampling the corresponding curve constructing a table with
	−I pairs. Gralla, Lupsasca & Philippov (2016) have shown that
this solution is approximated to high accuracy by the polynomial
expression

I (	) = 	

	0

[
2 − 	

	0
− 1

5

(
	

	0

)3
]

, (9)

where 	0 = 1.23 to agree with the normalization adopted above.
In our approach we have solved the equation using expressions for
the boundary condition, noting a deviation between the solutions of
∼1 per cent.

Outside the polar cap, I(rout, θ ) drops to zero as a step function. We
have smoothened this abrupt drop within a layer of width 0.01θpc.
This smooths out the current density near the surface of the star, but
leaves the flow of current deeper in the crust mostly unaffected.

2.3 Neutron star parameters

We consider a neutron star radius rns = 10 km and we adopt a
typical ground state structure for the crust as described in Chamel
& Haensel (2008; section 3, see fig. 4). Atoms are fully ionized at
mass densities higher than about ρ ∼ 104 g cm−3. The so-called
ocean extends up to densities of 106 g cm−3. This forms a layer
from about a few meters up to 100 m, depending on the temperature
of the neutron star (Potekhin et al. 2015). Below the ocean, the
outer crust consists of a body-centred iron 56Fe cubic lattice with
the composition of the nuclei becoming more neutron-rich as a
result of electron capture. The inner crust region extends from ρnd

∼ 4 × 1011 to about 1014 g cm−3. At the bottom of the crust, some
calculations predict various ‘pasta’ phases of non-spherical nuclei,
such as slabs or cylinders (Horowitz et al. 2015). Such pasta layers
are believed to be highly resistive due to the anisotropic structure of
the lattice and a low-electron fraction (Pons, Viganò & Rea 2013).
In the present work, we consider only the part of the crust ranging
from the base of the ocean down to the crust-core boundary. This
corresponds to densities ranging from ρout = 1.3 × 106 g cm−3

to ρ in = 1.3 × 1014 g cm−3 at the outer and inner crust boundary,
respectively. Finally, we express the density of the crust as a function
of the depth from the neutron star surface (Chamel & Haensel 2008)
with the following analytical expression:

ρ =
(

1 +
(

rns − r

rns − rin

)4
ρin

ρout

)
ρout . (10)

The expression for the electric conductivity σ (ρ) is taken from
analytical fits of the numerical solutions obtained using the codes
developed by Potekhin et al. (2015).2 We have chosen the following
set of parameters: ion charge number (atomic number) Z = 26, mass
number A = 56, impurity parameter Zimp = 0.1, range of densities
106 ≤ ρ ≤ 1014 g cm−3, and temperature T = 107 K. We have
experimented with two magnetic field values, B = 1010 and 1012 G.
The differences between the two conductivity estimates are minimal
(see the green and blue curves in Fig. 1), and we approximate them
by the following analytical power-law expression:

σ (r) = σout

(
ρ(r)

ρ(rns)

)9/10

, (11)

with σ out = 2.5 × 1020 s−1 (red line in Fig. 1). We note the small
deviation between the expressions derived in Potekhin et al. (2015)

2The codes are available at http://www.ioff e.ru/astro/conduct/index.html.

Figure 1. Conductivity function σ (ρ) (equation 11) in comparison to
respective results from the Potekhin code Potekhin et al. (2015).

and the analytical expression used here. We have verified that they
have minimal impact on the electric current flow inside the crust
(less than 1 per cent deviation). To assess the importance of the
conductivity profile, we also integrated equation (8) for a constant
conductivity (σ = 1024 s-1) and we report the differences below.

3 R ESULTS

We solve equation (8) with the Gauss–Seidel numerical method. The
algorithm for this elliptic solver is provided in Numerical Recipes
(Vetterling, Teukolsky & Press 1988). We initialize the scheme with
a trial distribution I(r, θ ) and we repeat the iterative procedure until
convergence is achieved. We implemented an r − θ numerical grid
with a uniform resolution of 160 × 400, and we find that the solution
converges after 106 iterations.

Based on the solutions that we have derived, we can evaluate the
torque exerted on the pulsar, the corresponding stresses, and the
Ohmic heating. In order to calculate these quantities, we assume
that the internal magnetic field is a dipole, namely

Bp(r, θ ) = B r3
ns

(
cos θ

r3
r̂ + sin θ

2r3
θ̂

)
. (12)

First, we calculate the Lorentz force per unit volume using equa-
tion (1),

FL(r, θ ) = 1

c
j × Bp

= Br3
ns

4πr4

(
1

2r

∂I

∂θ
+ cos θ

sin θ

∂I

∂r

)
φ̂ . (13)

Here we have to note that because of E = (rns/rlc)Bp << Bp, the
electrostatic term ρeE, which exists in equation (13) is (rns/rlc)2

times smaller than the calculated one, so in limit of our numerical
error is negligible.

Then, we calculate the torque per unit volume

N(r, θ ) = r × FL

= Br3
ns

4πr3

(
− 1

2r

∂I

∂θ
− cos θ

sin θ

∂I

∂r

)
θ̂ . (14)

Because of axial symmetry only the torque component parallel to
the axis of symmetry is non-zero. Thus, the total torque is given by
the integral

Ntot =
∫

V

(Nr cos θ − Nθ sin θ ) dV . (15)

Finally, we calculate the components of the Maxwell stresses. The
diagonal components correspond to pressure terms, while the off-
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diagonal components lead to the deformation of the crust due to
shear-stresses. Mrθ involves the Br and Bθ components which are
not due to the pulsar spin-down current.

Mrφ = Br (r, θ ) Bφ(r, θ )

4π
and Mθφ = Bθ (r, θ ) Bφ(r, θ )

4π

(16)

are due to the spin-down current which is associated with a toroidal
magnetic field Bφ (see equation 2). The breaking stress limit of the
crust is

τbr =
(

0.0195 − 1.27

� − 71

)
ni

Z2e2

α
(17)

(Chugunov & Horowitz 2010), where � = Z2e2/(αkBT) is the
Coulomb coupling parameter, α = [3/(4πni)]1/3 is the ion sphere
radius, ni is the ion number density, kB is the Boltzmann constant,
and e is the electron charge. A Maxwell stress comparable to τ br may
lead to crust yielding and deformation. We evaluate the breaking
stress for densities in the range ρnd < ρ ≤ ρ in using the table from
Douchin & Haensel (2001), and for densities ρout ≤ ρ ≤ ρnd using
the results of Haensel & Pichon (1994). The breaking stress at the
base of the crust is τ br(ρ = 1014g cm−3) = 2 × 1029 dyn cm−2, at the
neutron drip point τ br(ρ = 4 × 1011 g cm−3) = 1.4 × 1027 dyn cm−2

and at the base of the ocean τ br(ρ = 106 g cm−3) = 1020 dyn cm−2.
These results at the base of the crust and at the neutron drip point
are consistent with the estimates of Cumming, Arras & Zweibel
(2004); Lander & Gourgouliatos (2019). The value near the upper
boundary of our integration domain (the base of the ocean) depends
on temperature through the Coulomb coupling parameter �.

The most important parameter of the problem is the pulsar period.
This determines the size of the polar cap, and thus the boundary
conditions on the surface. We have integrated equation (8) for five
different choices of the period P = 0.01, 0.1, 1, 5, and 7.5 s,
thus exploring configurations that range from a rapidly rotating
millisecond pulsar to a slowly rotating magnetar. The flow pattern
of the electric current in the crust is independent of the strength
of the magnetic field. Nevertheless, the physical quantities that we
evaluate below depend on it. For this reason, we have assigned
realistic values to the magnetic field ranging from 1010 to 1015

G to allow a direct comparison. The combinations employed are
shown in detail in Table 1. For each magnetic model we integrate
equation (8) both for a constant and a variable conductivity given
by equation (11). We also report the deepest point reached by the
electric current flow line that corresponds to I(r, θ ) = Imax/2. This
yields an estimate of the electric current penetration ’half-depth’,
namely how deep 50 per cent of the current reaches inside the star.
We evaluate the Ohmic power using equation (5).

As a consistency test, we calculate the torque exerted on the
star by integrating equation (15), and comparing it with the spin-
down torque of an aligned rotator in the force-free approximation
appropriately corrected (Contopoulos & Spitkovsky 2006),

Nalign = 0.94 × 2

3

�

c

(
1.23r3

nsB

rlc

)2

. (18)

The correction factor of 0.94 is due to the integral of the electro-
magnetic luminosity (Gralla et al. 2016). Once this is taken into
account the volume integral of the spin-down torque Ntot and Nalign

expression are for most models within a 2 per cent difference from
each other. The results obtained using the boundary condition from
the numerical solution of Timokhin (2006) and the polynomial fit
of Gralla et al. (2016) give the same results within 2 per cent of

each other, as expected since the two solutions agree at this level of
accuracy.

4 D ISCUSSION

4.1 Electric current flowlines and Joule heating

In all models, there is a significant penetration of the electric current
in the crust (Fig. 2). This is rather prominent in model A (millisecond
pulsar), where the electric current practically reaches the base of
the crust, with 50 per cent of the current reaching depths greater
than 740 m. Here the solution is affected by the boundary condition
enforced at the base of the crust that does not allow the electric
current to proceed any deeper. If this constraint were to be relaxed
assuming the rest of the star had a similar conductivity, the current
would formally reach into the core. In models B, C, D, and SGR
1806−20, the current travels to a much smaller depth which scales
with the radius of the polar cap. In these models the polar cap
radii are smaller than the crust radius and the boundary condition
at the base of the crust does not play any significant role. We
remark further that a constant conductivity calculation yields a depth
attained by the current approximately equal to 0.4 times that of a
realistic conductivity calculation (Fig. 3).

The paths of the electric current illustrate how the minimization
of Ohmic losses is achieved. Ohmic losses are larger for higher
electric current densities, yet for lower ones, the same total current
imposed on the boundary has to travel a longer distance inside the
crust that eventually leads to a larger integration volume. Thus,
if the conductivity is kept constant, the current will follow a path
compromizing these two effects. Once the conductivity varies with
depth, the current will travel even deeper as this will allow it to
cross a region of lower resistivity and thus suffer less Ohmic losses,
despite the total path being longer. Joule heating is higher near the
surface and decreases towards the base of the crust. This variation
is more pronounced for the realistic conductivity profile, as there
the conductivity increases by several orders of magnitude as one
approaches the base of the crust. The maximum Joule heating occurs
at the rim of the polar cap. This is because the bulk of the current
enters the crust through this location leading to formally infinite
current density. The total Joule heating scales with the magnetic
field as ∝B2, and with period as ∝P−2.5.

We note that the total Ohmic losses occurring in the crust are
negligible compared to the total radiated spin-down power (typically
10 orders of magnitude smaller). This implies that the coupling
between the crust and the electric current is strong. Furthermore,
while the coupling with the crust is essential for the pulsar spin-
down, its effect on the global pulsar electric circuit is minimal.

4.2 Torque

As we saw in the previous section, the global torque approximates
quite accurately the spin-down torque calculated through the mag-
netosphere. An interesting point here is that there is a significant
amount of localized spin-up torque that is of course overwhelmed
by the spin-down torque. The reversal occurs along the surface
∂I/∂r = 0, where the current flow-lines become radial. The spin-up
torque is mostly exerted on the part of the star where θ > θpc, due
to the spreading of the electric current at latitudes smaller than that
of the polar cap (see Fig. 4).

The maximum torque per unit volume occurs in the region below
the rim of the polar cap, and is due to the high-electric current density
there. In the rapidly spinning model (A1), the bulk of the spin-down
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Table 1. Summary of the models studied. The first column is the name of the model. P and Ṗ are the period and period derivative, B is the spin-down dipole
magnetic field of an orthogonal rotator in vacuum corresponding to the period and period derivative mentioned before, θpc is the semi-opening angle of the
polar cap, the depth is the lowest value of r for I = 1

2 Imax, Ntot,T is the torque obtained through the integration of equation (14) using the boundary condition
from Timokhin (2006), and Ntot,G is the torque using the polynomial approximation of Gralla et al. (2016), Nalign is the torque evaluated through equation (18),
POhm is the total Ohmic losses using the polynomial approximation of Gralla et al. (2016). The last column indicates whether the conductivity is set equal to a
constant (c) or depends on radius according to equation (11) (v).

Model P Ṗ B θpc depth Ntot,T Ntot,G Nalign POhm σ

(s) (G) (deg) (× 100 cm) (dyn cm) (dyn cm) (dyn cm) (erg s−1)

A1 0.01 9.77e-18 1010 9.24 740 8.7e32 8.5e32 8.7e32 1.2e19 v
A2 0.01 9.77e-18 1010 9.24 280 8.8e32 8.6e32 8.7e32 2.5e16 c
B1 0.1 9.77e-15 1012 2.91 310 8.8e32 8.6e33 8.7e33 4.9e19 v
B2 0.1 9.77e-15 1012 2.91 100 8.8e32 8.6e33 8.7e33 6.6e16 c
C1 1 9.77e-16 1012 0.92 100 8.8e32 8.7e30 8.7e30 2.1e16 v
C2 1 9.77e-16 1012 0.92 40 8.7e32 8.5e30 8.7e30 1.7e13 c
D1 5 1.95e-12 1014 0.41 50 7.1e32 7.1e32 7.0e32 9.4e17 v
D2 5 1.95e-12 1014 0.41 20 6.8e32 6.6e32 7.0e32 4.7e14 c
SGR 1806−20 7.5 4.95e-12 2 × 1015 0.33 40 8.4e32 8.0e34 8.2e34 6.2e19 v

Figure 2. Plots of electric current flow-lines in black and Joule heating per unit volume in colour for models A1, B1, C1, and D1. Horizontal and vertical
distances in units of rns. Continuous thin line: outer stellar surface. Dotted thin line: base of the crust.

torque is exerted close to the base of the crust. For slower rotating
models, the bulk of the torque is exerted closer to the surface.

4.3 Maxwell stresses

The distribution of the magnetospheric current of the force-free
solution is such that the current enters the star through the central
part and most of the area of the polar cap, and leaves the star through
a narrow ring and mostly through a current sheet flowing on the
separatrix between the open and closed magnetic field lines (here we
have assumed that the magnetic moment and the angular momentum
are parallel). Because of the singularity in the density of the current

sheet, the Lorentz force and torque per unit volume become formally
infinite at the edge of the polar cap. This is illustrated in Figs 2–6
by the convergence of the current flow lines at the edge of the polar
cap. We note, however, that these are integrable singularities and
the physical quantities associated to them (i.e. torque, net force)
remain finite once we integrate over the corresponding volume. The
possibility of crust yielding does not depend on the local value of
the force density, but rather by comparing the Maxwell stress to
the breaking stress, i.e. equations (16) and (17). Indeed, Maxwell
stresses remain finite and are a few orders of magnitude below τ br

for models A1 and C1. The crust does not yield either in model
B1, but the ratio becomes Mrφ /τ br = 0.2 at the outermost layer of
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Figure 3. Electric current flow-lines in black and Joule heating per unit
volume in colour for models A2. Here the conductivity is constant and the
current remains at a shallower depth compared to model A1 (Fig. 2, top left
panel).

the integration domain. On the contrary, in model D1 the maximum
shear stress becomes Mmax

rφ = 5.1 × 1020 erg cm−3 close to surface,
which is high enough to cause crust yielding for a few meters
(∼10 m) below the surface (see Fig. 5). Quite remarkably, the stress
does not peak below the rim of the polar cap, where the current sheet
enters the neutron star and the electric current density is the highest,
but at some intermediate angle θ ≈ 0.8θpc. This is because the
Maxwell stress is proportional to Bφ = 2I/(crsin θ ), which becomes
maximum at some intermediate angle. The Maxwell stress is zero on
the axis (θ = 0). This is because the I(rrmns, θ ) becomes proportional
to sin 2θ as θ → 0 (Timokhin 2006). Thus, if there is a part of the
crust more likely to yield, this will be a ring of semi-opening angle
≈0.8θpc, rather than the region where the torque reverses from
spin-down to spin-up, or even the axis.

The possibility of crust yielding and the maximum depth where
this could occur depend strongly on the detailed physics of the
outer crust. As the maximum stresses appear near the conventional
surface of the neutron star (ρ ∼ 106 g cm−3), this essentially lies at
the interface between the ocean and the ion lattice. A hotter neutron
star could have a deeper ocean. In practice, this implies that these
stresses act on the fluid part of the crust, where equation (17) is no
longer applicable.

Pushing the question of crust yielding to the extreme, we have
also considered the magnetar with the highest known magnetic
field SGR 1806−20 (Woods et al. 2007), which has a long period
P = 7.54 s and thus a very small polar cap θpc = 0.33

◦
. Its

inferred dipole magnetic field is B = 2 × 1015 G, and is the most
prominent candidate for crust yielding. Integrating equation (8)
we find that the current reaches a depth of only 40 m beneath
the surface. The spin-down torque Ntot,G = 8.0 × 1034 erg is in
agreement within 2 per cent with Nalign = 8.2 × 1034 erg. We find
that Mmax

rφ = 1.1 × 1023 erg cm−3 near the surface, which implies
that the magnetospheric current will be extremely high to cause
crust yielding to about 30 m below the surface (see Fig. 6). Such an
event will be energetically unimportant compared to the energy that
could potentially be released by magnetar activity. Nevertheless,
it may impact the coupling between the magnetosphere and the
crust, and therefore, the spin-down efficiency. This could be related
to the higher timing irregularities that are observed in strongly
magnetized neutron stars and magnetars (Hobbs, Lyne & Kramer
2010). The timing noise in neutron stars with polar magnetic fields
below 1012 G is independent of the magnetic field strength, whereas,
in neutron stars with magnetic fields above this value it tends to

increase and scale strongly with the magnetic field strength (Tsang
& Gourgouliatos 2013). It is conceivable that such behaviour is
related with crust yielding near the surface. Stronger magnetic fields
lead to deeper crust failure. Given the episodic nature of crust failure
(Thompson, Yang & Ortiz 2017), the loss and recovery of the spin-
down current coupling with the neutron star could manifest itself as
erratic variations of the spin-down, i.e. practically as timing noise.

A possible consequence of the shallow penetration of the electric
current and consequently the inefficient coupling between the spin-
down current and the crust, can be the lack of isolated neutron
stars with long periods, with a cut-off period in the range of
24 s across the entire pulsar population (Tan et al. 2018). This
effect has been previously attributed to magnetic field decay (Pons
et al. 2013), alignment between the magnetic axis (Johnston &
Karastergiou 2017), and observational selection effects (Faucher-
Giguère & Kaspi 2006). In the current picture, we note that a pulsar
with a rotation period of 15 s will have a polar cap opening angle of
0.2

◦
and the electric current will penetrate to a depth of 30m which

could lead to poor coupling and inefficient spin-down, therefore, it
would be even harder for these pulsars to move to lower periods.

4.4 Twisted magnetospheres

In rotation powered radio pulsars, electric currents are associated
with their spin-down. On the contrary, strongly magnetized neutron
stars may have electric currents that support twisted magnetospheric
structures (Beloborodov 2009). According to this paradigm, electric
current bundles form near the surface of the star and accelerate
particles that bombard the surface of magnetars, thus generating
X-ray emission. To determine the crustal current that supports such
structures, one can follow the internal magnetic field evolution and
solve self-consistently for the crust and the magnetosphere (Akgün
et al. 2018), or alternatively consider an MHD equilibrium state
taking into account the internal and external field (Glampedakis,
Lander & Andersson 2014). Under the approach presented in
this work, one can use the minimization technique proposed to
determine the minimum crustal electric current required to generate
such a bundle. Using order-of-magnitude estimates, we find that
the current supporting the bundle will be very much higher than
the spin-down current, scaling approximately by a factor (rlc/lb)2,
where lb is the size of the bundle. Assuming that the bundle is
comparable to the thickness of the crust, and considering a slowly
spinning magnetar, this factor could be on the order of 1012. This
would thus bring the magnetic energy dissipation rate in the range
of 1032 erg s−1. This implies that a non-negligible fraction of the
bundle energy may be dissipated inside the crust.

5 C O N C L U S I O N S

In this study we have explored the closure of the magnetospheric
electric current through the neutron star crust in the simplest case
of axisymmetry and steady-state. We have treated the crust and the
magnetosphere as a global electric circuit, where the stellar rotation
generates a poloidal electric current along the ‘infinitely conducting
magnetic field wires’ in the magnetosphere. This is very different
from previous studies which proposed that the current penetrates
only within a thin surface layer in a manner similar to the interaction
of electromagnetic waves with the surface charges of a perfect
conductor (Michel 1991; Beskin, Gurevich & Istomin 1993; Beskin
& Nokhrina 2007). Skin-depth penetration refers to the interaction
of an externally generated electromagnetic wave with a conductor.
In our case, the magnetic field already penetrates deep into the stellar
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Figure 4. Plots of electric current flow-lines in black and torque per unit volume in colour for models A1, B1, C1, and D1.

Figure 5. Plots of electric current flow-lines in black and the ratio of Mrφ /τ br in colour for models A1, B1, C1, and D1.
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Figure 6. Magnetic stresses normalized to the breaking stress for the SGR
1806−20 model. Top: the entire polar cap. Bottom: zoom-in at the surface.

interior because the latter is the source of the magnetic field, and the
stellar rotation is the generator (battery) of the large-scale poloidal
electric current. We must acknowledge, though, that, while the
axisymmetric case offers important insight on the overall properties
of this current, a more interesting and complicated situation arises
once the three-dimensional magnetosphere is considered. Indeed,
if the magnetic and rotation axes are not aligned, calculating the
electric current distribution in the stellar interior becomes highly
non-trivial.

We also remark, that the adopted dipolar form for the magnetic
field, while being the norm in models of pulsar magnetospheres, it
could be a simplified picture of the realistic magnetic field structure.
More complex magnetic fields are likely to be present in magnetars
and even older neutron stars (Gourgouliatos & Hollerbach 2018). If
this is the case, the solution for the magnetosphere and consequently
the crustal electric current would become more complicated (Gralla,
Lupsasca & Philippov 2017).

We have found that the magnetospheric current, responsible for
the pulsar spin-down, enters the crust and reaches its base only if we
consider rapidly rotating millisecond pulsars. In the case of slower
pulsars, with periods longer than 1 s, the bulk of the electric current
reaches depths less than 100 m. Even in the case of shallow current,
the crust remains within its elastic limit without yielding, provided
the magnetic field of the star is 1012 G or less. Ohmic losses in
the crust are found to be orders of magnitude below the spin-down
power.

While slower spinning neutron stars (old radio pulsars close to
the death line, young magnetars) have rather small polar caps and
the whole magnetospheric current closes through a narrow and
shallow region of the crust, we find no stresses that exceed the
elastic limit, except possibly in the outer few meters of the crust
(as e.g. in SGR 1806−20). Energetically, such an effect may be
insignificant compared to the X-ray power radiated by strongly
magnetized neutron stars. Nevertheless, it affects the efficiency of
the coupling and generates timing noise due to torque variations.
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APPEN D IX: MINIMIZATION O F OHMIC
LOSSES

Here we present the derivation equation (6) through a minimization
principle. Let

E(B) =
∫

V

(∇ × B)2

σ
dV , (A1)

and consider a variation h that vanishes at the boundary of V so that
h|∂V = 0, as the magnetic field B is given on the boundaries of the
domain. We then define

V (B, h) = lim
ε→0

E(B + εh) − E(B)

ε

= 2
∫

V

(∇ × B) · (∇ × h)

σ
dV . (A2)

E(B) will have a minimum, as E > 0 if V(B, h) = 0. Let us further
define

A = ∇ × B
σ

, (A3)

and use from vector calculus the identity:

∇ · (A × h) = −A · ∇ × h + h · ∇ × A. (A4)

Then equation (A2) becomes:∫
V

A · ∇ × h dV

=
∫

V

h · (∇ × A) dV −
∫

V

∇ · (A × h) dV

=
∫

V

h · (∇ × A) dV +
∫

∂V

(A × h) · dS , (A5)

where we have used the divergence theorem. The second integral
in the last equation is zero as h vanishes on the boundary of the
domain. The first integral needs to be zero for any choice of h. This
is possible only if ∇ × A = 0, thus

∇ ×
(∇ × B

σ

)
= 0 , (A6)

which is equation (6).
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