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Abstract. We construct a new family of trivalent expanders tes-
sellating hyperbolic surfaces with large isometry groups. These
graphs are obtained from a family of Cayley graphs of nilpotent
groups via (∆−Y )-transformations. We study combinatorial, topo-
logical and spectral properties of our trivalent graphs and their
associated hyperbolic surfaces. We compare this family with Pla-
tonic graphs and their associated hyperbolic surfaces and see that
they are generally very different with only one hyperbolic surface in
the intersection. Finally, we provide a number theory free proof of
the Ramanujan property for Platonic graphs and a special family
of subgraphs.

1. Introduction

In this article we introduce a new family Tk of trivalent surface tessel-
lations derived via ∆−Y transformations from Cayley graphs of groups
Gk associated to a Euclidean building and we investigate combinatorial
topological properties of their underlying surfaces Sk. These graphs Tk

form a family of trivalent expanders and give rise to another family
of associated surfaces (tubes around them constructed via Y -pieces)
with a uniform lower bound on their first positive Laplace-Beltrami
eigenvalue.
Another prominent in the literature example where such an inter-

play between groups, graphs and hyperbolic surfaces has been utilized,
are finite quotients of PSL(2,Z) and co-compact arithmetic lattices
in PSL(2,R) (see, e.g., Buser [9], Brooks [6], and Lubotzky [19] and
the references therein). While many finite quotients of these examples
are simple, all our finite groups Gk are nilpotent and very different in
nature.
A well known family of such surface tessellations associated to finite

quotients of PSL(2,Z) are the Platonic graphs ΠN (see [13, 17]). We
show that, while our graph T2 in the surface S2 is dual to the Platonic
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graph Π8, there is no direct relation between our family of graphs
Tk and these Platonic graphs ΠN from k ≥ 3 onwards. Finally, we
provide an alternative number theory free proof of Gunnell’s Theorem
of the spectra of Platonic graphs Πp, p prime, and a family of induced
subgraphs Π′

p of them.

1.1. Statement of results. In Section 2, we present the construction
of our family of trivalent graphs Tk. They are (∆−Y )-transformations
of 6-valent Cayley graphs Xk of increasing nilpotent 2-groups Gk. The
details of the construction of these groups are given in Section 2.1. The
(∆− Y )-transformations are standard operations to simplify electrical
circuits, and were also used in [2] in connection with Colin de Verdiére’s
graph parameter.
The graphs Tk can be naturally embedded as tessellations into both

closed hyperbolic surfaces Sk and complete non-compact finite area
hyperbolic surfaces S∞

k . The edges of the tessellation of Sk are geo-
desic arcs and the vertices are their end points. The details of these
embeddings are presented in Subsection 2.2 via covering theory. (An al-
ternative direct construction is given in Subsection 2.4.) The following
proposition describes the combinatorial properties of the tessellations
Tk ⊂ Sk.

Proposition 1.1. Let k ≥ 2. Then the generators x0, x1, x3 of Gk have
all the same order 2nk with

(1) nk = ⌊log2 k⌋ + 1.

Let |Gk| = 2Nk and Vk, Ek and Fk denote the sets of vertices, edges,
and faces of the tesselation Tk ⊂ Sk, respectively. Then the isometry
group of Sk has order ≥ 2Nk , we have

(2) |Vk| = 2Nk+1, |Ek| = 3 · 2Nk and |Fk| = 3 · 2Nk−nk ,

and all faces of Tk ⊂ Sk are regular hyperbolic 2nk+1-gons with interior
angles 2π/3. Moreover, the genus of Sk is given by

g(Sk) = 1 + 2Nk−nk−1(2nk − 3).

A lower bound for the order 2Nk of the groups Gk was given in [21,
Cor. 2.3]:

(3) Nk ≥ 8⌊k/3⌋+ 3 · (kmod 3)− 1,

where kmod 3 ∈ {0, 1, 2}.
It is easily checked via Euler’s polyhedral formula that any triangu-

lation X of a compact oriented surface S satisfies

|E(X)| = 3(|V (X)| − 2) + 6g(S),
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i.e., the number of edges |E(X)| of every triangulation X with at least
two vertices is ≥ 6g(S). Therefore, the ratio

6g(S)
|E(X)| ≤ 1

measures the non-flatness of such a triangulation, i.e., how efficiently
the edges ofX are chosen to generate a surface of high genus. Note that,
for every k ≥ 2, the dual graph T ∗

k can be viewed as a triangulation of
Sk and that the number of edges of Tk and T ∗

k coincide. Then we have
the following asymptotic result, proved in Section 2.5.

Proposition 1.2. We have

(4) lim
k→∞

6g(Sk)

|E(T ∗
k )|

= 1,

where E(T ∗
k ) denotes the set of edges of T ∗

k .

In Section 3 we investigate spectral properties. Our first result is
that both families of graphs Tk and Xk are expanders:

Theorem 1.3. Let k ≥ 2. Then every eigenvalue λ ∈ [−3, 3] of Tk

gives rise to an eigenvalue µ = λ2 − 3 ∈ [−3, 6] on Xk. In particular,
there exists a positive constant C < 6 such that

(i) the graphs Xk are 6-valent expanders with spectrum in [−3, C]∪
{6},

(ii) the bipartite graphs Tk are trivalent expanders with spectrum in
[−

√
C + 3,

√
C + 3] ∪ {±3}.

The spectral properties of the graphs Tk carry over to the Laplace-
Beltrami operator of associated hyperbolic surfaces. Using the Brooks-
Burger transfer principle it can be shown that the first positive eigen-
values λ1(Sk) of the underlying closed surfaces Sk have a uniform lower
bound:

Theorem (see [14, Theorem 1.3]). There is a positive constant C1 > 0
such that we have for the compact hyperbolic surfaces Sk (k ≥ 2),

λ1(Sk) ≥ C1.

In Section 3.3 of this paper we introduce another family Ŝk of closed
surfaces associated to Tk by glueing together special Y -pieces whose
boundary curves have all length 2, as described in [8, Section 3]. It
follows from Buser’s results [8] that their smallest positive Laplace
eigenvalue has also a uniform positive lower bound:
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Proposition 1.4. The compact hyperbolic surfaces Ŝk (k ≥ 2) have
genus 1 + |Vk|/2 and isometry groups of order ≥ |Vk|/2. They form a
tower of coverings

· · · −→ Ŝk+1 −→ Ŝk −→ Ŝk−1 −→ · · · ,
where all the covering indices are powers of 2. There is a positive
constant C2 > 0 such that we have, for all k,

λ1(Ŝk) ≥ C2.

Proposition 1.4 is proved in Section 3.3. There is a well-known clas-
sical result by Randol [22] which is, in some sense, complementary to

this proposition, namely, there exist finite coverings S̃ of every closed
hyperbolic surface S with arbitrarily small first positive Laplace eigen-
value.
In Section 4 we compare our tessellations Tk ⊂ Sk to the well studied

tessellations of hyperbolic surfaces by Platonic graphs ΠN . It turns out
that both families agree in one tessellation (up to duality) but are,
otherwise, very different. Let us first define the graphs ΠN . Let N
be a positive integer ≥ 2. The vertices of ΠN are equivalence classes
[λ, µ] = {±(λ, µ)} with

{(λ, µ) ∈ ZN × ZN | gcd(λ, µ,N) = 1}.
Two vertices [λ, µ] and [ν, ω] are connected by an edge if and only if

det

(
λ ν
µ ω

)
= λω − µν = ±1.

As mentioned earlier, Π8 is isomorphic to the dual of T2 in S2. Since
the valence of the dual graph T ∗

k is a power of 2, any isomorphism of
T ∗
k with a Platonic graph ΠN would imply N = 2nk+1 with nk given

in (1). However, this leads to a contradiction for all k ≥ 3. The next
proposition summarizes these results.

Proposition 1.5. The Platonic graph Π8 is isomorphic to the dual
of T2 in the unique compact genus 5 hyperbolic surface S2 with maxi-
mal automorphism group of order 192. For k ≥ 3, there is no graph
isomorphism between T ∗

k and ΠN , for any N ≥ 2.

In Section 5 we derive spectral properties of the graphs Πp, p prime,
and special induced subgraphs Π′

p. Π
′
p is obtained from Πp by removing

the set of vertices [λ, 0] with vanishing second coordinate and all their
adjacent edges. We will give an alternative number theory free proof
of the following result for Πp:
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Theorem (Gunnells [13, Theorem 4.2]). Let p be an odd prime. The
graph Πp has the following spectrum:

(i) p with multiplicity one,
(ii) −1 with multiplicity p, and
(iii) ±√

p with multiplicity (p− 1)2/4− 1, each.

In particular, the graph Πp is Ramanujan.

To our knowledge, all proofs for the Ramanujan property of the
graphs Πp in the literature (see, e.g., [13, 18, 12]) are based on some
amount of number theory (characters of representations). We think
it is remarkable that there is also an easy proof for the Ramanujan
properties of the graphs Πp and Π′

p with no reference to number the-
ory other than the irrationality of

√
p (see Section 5.3). Moreover, our

number theory free arguments apply also to the graphs Π′
p:

Theorem 1.6. Let p be an odd prime. Then the graphs Πp and Π′
p have

diameter 3 and maximal vertex connectivity p and p − 1, respectively.
Moreover, the spectrum of the graph Π′

p is given by

(i) p− 1 with multiplicity one,
(ii) −1 with multiplicity p− 1,
(iii) 0 with multiplicity (p− 3)/2, and
(iv) ±√

p with multiplicity (p− 1)(p− 3)/4, each.

In particular, the graph Π′
p is Ramanujan.
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about the articles [7] and [8]. They also acknowledge the support of the
EPSRC Grant EP/K016687/1 “Topology, Geometry and Laplacians of
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2. Combinatorial properties of the tessellations Tk ⊂ Sk

Let G̃ be the infinite group of seven generators and seven relations
given by

(5) G̃ = 〈x0, . . . , x6 | xixi+1xi+3 for i = 0, . . . , 6〉,
where the indices are taken modulo 7. As explained in [10, Thm 3.4],
this group acts simply transitively on the vertices of a thick Euclidean
building of type Ã2. Let S = {x±1

0 , x±1
1 , x±1

3 }. We consider the index

two subgroup G ≤ G̃, generated by S. (Note that x3 = x−1
1 x−1

0 .) G is
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explicitly given by G = 〈x0, x1 | r1, r2, r3〉 with

r1(x0, x1) = (x1x0)
3x−3

1 x−3
0 ,

r2(x0, x1) = x1x
−1
0 x−1

1 x−3
0 x2

1x
−1
0 x1x0x1,(6)

r3(x0, x1) = x3
1x

−1
0 x1x0x1x

2
0x

2
1x0x1x0.

For more details we refer the readers to [21].

2.1. A faithful matrix representation of G. Let us first recall the
faithful representation of G by infinite upper triangular Toeplitz ma-
trices, given in [21] and based on representations introduced in [10]. In
fact, every x ∈ G has a representation of the form

(7) x =




1 a11 a21 . . . ak1 0 0 . . . . . .

0 1 a12 a22 . . . ak2 0
. . .

0 0 1 a13 a23 . . . ak3 0
. . .

...
. . . 0 1 a11 a21 . . . ak1

. . .
...

. . .
. . . 1 a12 a22 . . .

. . .
...

. . .
. . . 1 a13 a23

. . .
...

. . .
. . .

. . .
. . .

. . .




,

where each element aij is in the set M(3,F2) of (3 × 3)-matries with
entries in F2, and 0 and 1 stand for the zero and identity matrix in
M(3,F2). Note the periodic pattern in the upper diagonals of the
matrix, i.e., the j-th upper diagonal is uniquely determined by the
first three entries aj = (aj1, aj2, aj3), which can be understood as a
(3 × 9)-matrix with values in F2. We use the short-hand notation
M0(a1, a2, . . . , ak) for the matrix in (7). If the first l upper diagonals
in (7) vanish, we also write Ml(al+1, . . . , ak). Let Gk be the subgroup
of all elements x ∈ G with vanishing first k upper diagonals in their
matrix representation. It follows from the structure of these matrices
that Gk is normal and that the quotient group Gk = G/Gk is a 2-group,
i.e., nilpotent.
Recall that we use the same notation for the generators x0, x1, x3

of G and their images in the quotient Gk. We will see later that the
faces of the tessellation Tk ⊂ Sk are determined by the orders of these
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generators in Gk. We will now determine these orders. Let

α0 =




0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 1
0 1 1 0 1 1 0 1 1


 , β0 =




0 0 0 0 0 0 0 0 0
0 1 1 0 1 1 0 1 1
0 1 0 0 1 0 0 1 0


 ,

α1 =




0 0 0 0 1 1 0 1 0
0 1 0 1 0 0 0 0 1
1 1 1 0 0 0 0 1 0


 , β1 =




0 0 0 0 1 1 0 1 0
0 1 0 1 0 0 0 0 1
1 1 1 0 0 0 0 1 0


 ,

α3 =




0 0 0 0 1 1 0 1 0
0 1 1 1 0 1 0 0 0
1 0 0 0 1 1 0 0 1


 , β3 =




0 0 0 0 0 1 0 1 1
1 1 0 0 1 1 0 0 0
0 1 1 0 0 1 1 0 0


 .

Then we have xi = M0(αi, . . . ) for i = 0, 1, 3, and we obtain the
following fact about the leading diagonal of their 2-powers.

Lemma 2.1. We have for i ∈ {0, 1, 3} and l ≥ 0:

(8) x2l

i =

{
M2l−1(αi, . . . ), if l is even,

M2l−1(βi, . . . ), if l is odd.

This implies, in particular, for k ∈ N that the order of xi in Gk is 2nk

with nk given in (1).

Proof. Since Gk is a 2-group, ordGk
(xi) has to be a power of 2. The

formulas (8) follow via a straightforward calculation using Prop. 2.5 in
[21]. This implies that ordGk

(xi) = 2l if and only if 2l−1 ≤ k < 2l, i.e.,
l = ⌊log2 k⌋ + 1 = nk. �

2.2. The surfaces Sk and S∞
k via covering theory. Let Xk be the

Cayley graph Cay(Gk, S). We will now explain how to construct the
closed hyperbolic surfaces Sk: We start with an orbifold S0 by glu-
ing together two compact hyperbolic triangles T1, T2 ⊂ H2 with angles
π/ordGk

(x0), π/ordGk
(x1) and π/ordGk

(x3) along their corresponding
sides. Both triangles are equilateral since, by Lemma 2.1, we have
ordGk

(x0) = ordGk
(x1) = ordGk

(x3) = 2nk . It is useful to think of the
two triangles T1 and T2 in S0 to be coloured black and white, respec-
tively. Let P0, P1, P2 ∈ S0 be the singular points (i.e., the identified
vertices of the triangles T1 and T2 in S0) and Q ∈ S0 be the center
of the white triangle T1. Note that S0\{P0, P1, P2} carries a hyper-
bolic metric induced by the triangles T1, T2. Choose a geometric basis
γ0, γ1, γ2 of the fundamental group π1(S0\{P0, P1, P2}, Q) such that γi
is a simple loop (starting and ending at Q) around the singular point
Pi ∈ S0 and γ0γ1γ2 = e. Note that π1(S0\{P0, P1, P2}, Q) is a free
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group in the generators γ0, γ1. The surjective homomorphism

Ψ : π1(S0\{P0, P1, P2}, Q) → Gk,

given by Ψ(γ0) = x0, Ψ(γ1) = x1 and Ψ(γ2) = x3, induces a branched
covering π : Sk → S0, by Riemann’s existence theorem (see [25, Thms.
4.27 and 4.32] or [4, (17)]) with all ramification indices equals 2nk and,
therefore, the closed surface Sk carries a hyperbolic metric such that
the restriction

π : Sk\π−1({P0, P1, P2}) → S0\{P0, P1, P2}
is a Riemannian covering. The surface Sk is a Belyi surface since it
is a branched covering over S0 ramified at the three points P0, P1, P2.
Moreover, Sk is tessellated by 2|Gk| = 2Nk+1 equilateral hyperbolic
triangles, half of them black and the others white. Hurwitz’s formula
yields

(9) g(Sk) = 1 +
1− µk

2
|Gk|,

where

(10) µk =
1

ord(x0)
+

1

ord(x1)
+

1

ord(x3)
=

3

2nk

.

Recall that the orders 2nk of xi (i = 0, 1, 3) were given in Lemma 2.1. In
the case k = 2 we have |G2| = 32 and ord(x0) = ord(x1) = ord(x3) = 4,
which leads to

g(S2) = 1 +
1

8
· 32 = 5.

Gk acts simply transitive on the black triangles of Sk. Let

(11) V = π−1(Q)

and Vwhite, Vblack ⊂ V be the sets of centers of white and black trian-
gles, respectively. Choose a reference point Q0 ∈ Vwhite, and identify
the vertices of the Cayley graph Xk = Cay(Gk, S) with the points in
Vwhite by Gk ∋ h 7→ hQ0 ∈ Vwhite. Then two adjacent vertices in Xk are
the centers of two white triangles which share a black triangle as their
common neighbour. The corresponding edge in Xk can then be repre-
sented by the minimal geodesic passing through these three triangles
and connecting these two vertices. Moreover, Gk acts on the surface
Sk by isometries and we have S0 = Sk/Gk, i.e., the isometry group of
Sk has order ≥ |Gk| = 2Nk .
We could also start the process by gluing together two ideal hy-

perbolic triangles T ∞
1 and T ∞

2 , coloured black and white, along their
corresponding edges. Each edge of T ∞

i (i = 1, 2) has a unique inter-
section point (tick mark) with the incircle of the triangle, and these
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tick-marks of corresponding edges of T ∞
1 and T ∞

2 are identified under
the gluing. The resulting surface S∞

0 is topologically a 3-punctured
sphere, carrying a complete hyperbolic metric of finite volume, and the
same arguments as above then lead to an embedding of the graphs Xk

into complete non-compact finite area hyperbolic surfaces S∞
k , trian-

gulated by ideal black and white triangles, where the vertices of Xk

correspond to the centers of the white ideal triangles in S∞
k , and we

have S∞
0 = S∞

k /Gk.

x0

x0

x0

x0

x0

x1

x1 x1

x1

x1

x3

x3

x3

x3

x3 1
0

3

v

Figure 1. The lifts of the Cayley graph X2 (left) and
of the (∆−Y )-transformation T2 (right) to the Poincaré
unit disc D2

2.3. From the Cayley graphs Xk to the trivalent graphs Tk. For
the transition fromXk to Tk we use the (∆−Y )-transformation. In this
transformation, we add a new vertex v for every combinatorial triangle
of the original graph, remove the three edges of this triangle and replace
them by three edges connecting v with the vertices of this triangle. We
apply this rule to our graph Xk and obtain a graph Tk, which we
can view again as an embedding in Sk with the following properties:
The vertex set of Tk coincides with V given in (11), and there is an
edge (minimal geodesic segment) connecting every black/white vertex
in V with the vertices in the three neighbouring white/black triangles.
The best way to illustrate this transformation is to present it in the
universal covering of the surface Sk, i.e., the Poincaré unit disc D

2 (see
Figure 1, the new vertices replacing every triangle are green). Note that
Tk has twice as many vertices as Xk, which shows that the isometry
group of the above compact surface Sk has order ≥ |Gk| = |Vk|/2,



10 I. IVRISSIMTZIS, N. PEYERIMHOFF AND A. VDOVINA

where Vk denotes the vertex set of TK . Moreover, Tk is the dual of the
triangulation of Sk by the above-mentioned compact black and white
triangles.

2.4. A direct construction of Sk and S∞
k from Tk. There is an-

other method to obtain the hyperbolic surfaces Sk and S∞
k using the

construction in [7, Section 4] (see also [20, Chapter 1]). The start data
are our trivalent graphs Tk with a suitable orientation.

Definition 2.2. An orientation O on a trivalent graph T is a choice,
at each vertex v of T , of a cyclic ordering of the three edges emanating
from it.

Let us first introduce an orientation Ok on Tk. We start with the
Cayley graph Xk and orient its edges such that they only carry the
Cayley graph labels x0, x1 and x3, and not their inverses (see the Figure
1 on the left). Every triangle in Xk forms then an oriented cycle with
consecutive labels x0, x1, x3. This orientation induces an orientation on
the new green vertex in Tk corresponding to this triangle, as illustrated
by the oriented green circular arcs in the Figure 1 on the right. A blue
vertex v of Tk stems from a vertex of Xk, and we can give the labels
0, 1, 3 to the three edges in Tk emanating from v, agreeing with the
label of the edge in the corresponding triangle of Xk not adjacent to v
(see again Figure 1 for illustration). The orientation of the three edges
emanating from v in Tk (illustrated by an oriented blue circular arc) is
then given by the cyclic ordering 0, 3, 1.
Now we follow the explanations in [20, Sections 1.1-1.4] closely. Let

T ⊂ D2 be an oriented compact equilateral hyperbolic triangle with
interior angles π/2nk . We refer to the mid-points of the sides of T
as tick-marks. The orientation of T ⊂ D2 induces a cyclic order on
these tick-marks. Connect the center of T with the three tick-marks
by geodesic arcs and assume that these arcs are coloured red. Then
we paste a copy of T ⊂ D2 on each vertex v of Tk such that its center
agrees with v, its tick-marks agree with the mid-points of the edges
of Tk emanating from v, and that the cyclic orders of these egdes and
of the tick-marks agree. Observe that, even though the mid-points of
adjacent sides of triangles meet up at mid-points of edges of Tk, we
have not yet identified the sides of these triangles. This identification
is made in such a way that the orientations of adjacent triangles match
up. The resulting hyperbolic surface Sk carries then a global orientation
and the union of the red geodesic arcs from their mid-points to their
tick-marks in the triangles provide an embedding of the graph Tk into
this surface such that the faces are regular 2nk-gons.
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The complete non-compact finite area hyperbolic surfaces S∞
k are

obtained in the same way by starting instead with an oriented ideal
hyperbolic triangle T ⊂ D2 with tick-marks. As explained at the end
of [20, Section 1.4], the cusps of S∞

k are then in bijection with the left-
hand-turn pathes in (Tk,Ok). This construction is useful for the proof
of Theorem 1.3 in [14].

2.5. Proofs of Propositions 1.1 and 1.2.

Proof of Proposition 1.1. The orders of x0, x1, x3 ∈ Gk were given in
Lemma 2.1. It was explained in Section 2.2 that the isometry group
of Sk has order ≥ |Gk| = 2Nk , and in Section 2.3 that |Vk| = 2|Gk| =
2Nk+1. Lemma 2.1 implies that the faces of the triangulation Tk ⊂ Sk

are regular 2nk+1-gons, which yields 2|Ek| = 3|Vk| = 2nk+1|Fk|, proving
(2). The genus g(Sk) can be derived either from Hurwitz’s formula (9)
or from the Euler characteristic χ(Sk) = |Vk|−|Ek|+ |Fk|. This finishes
the proof of Proposition 1.1. �

Remark 2.3. The number of cusps of the surface S∞
k agrees with the

number of faces of the tessellation Tk ⊂ Sk. For example, the genus
five surface S2 mentioned in Section 2.2 is tessellated into 24 octagons,
and the surface S∞

2 has, therefore, 24 cusps.

Proof of Proposition 1.2. We conclude from (9), |Vk| = 2|Gk|, |E(T ∗
K)| =

|Ek|, and the trivalence of Tk that

6g(S(Tk))

|E(T ∗
k )|

= 6
1 + (1− µk)|Vk|/4

3|Vk|/2
.

Note that |Vk| = 2|Gk| = 2Nk+1 → ∞ because of (3), which implies
that

lim
k→∞

6g(Sk)

|E(T ∗
k )|

= 1− lim
k→∞

µk.

Recall from (10) and (1) that µk = 3/2nk → 0 as k → ∞, finishing the
proof of (4). �

3. Spectral properties of the graphs Xk and Tk

In this section, we establish the expander properties ofXk and Tk and
relations between their eigenfunctions and eigenvalues, which proves
Theorem 1.3. We also investigate Ramanujan properties of these fam-
ilies of graphs.
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3.1. Precise relations between eigenfunctions and eigenvalues.

As before, let G̃ be the group defined in (5) and G be the index two

subgroup generated by S. Then both groups G̃ and G have Kazhdan
property (T) (see [21, Section 3]). Using [19, Prop. 3.3.1], we conclude
that the Cayley graphs Xk = Cay(Gk, S) are expanders.
The adjacency operator AX , acting on functions on the vertices of a

graph X , is defined as

AXf(v) =
∑

w∼v

f(w),

where w ∼ v means that the vertices v and w are adjacent. It is easy to
see that the eigenvalues of the adjacency operator of a finite n-regular
graph lie in the interval [−n, n].
Recall that the set V (Xk) of vertices of our 6-valent graph Xk is a

subset of the vertex set Vk of the trivalent graph Tk. We have the fol-
lowing relations between the eigenfunctions of the adjacency operators
on Xk and Tk.

Theorem 3.1. (a) Every eigenfunction F on Tk to an eigenvalue
λ ∈ [−3, 3] gives rise to an eigenfunction f to the eigenvalue
µ = λ2 − 3 ∈ [−3, 6] on Xk (with f(v) = F (v) for all v ∈
V (Xk)).

(b) Every eigenfunction f on Xk to an eigenvalue µ ∈ [−6, 6] −
{−3} gives rise to two eigenfunctions F± to the eigenvalues
±√

µ+ 3 on Tk with

F±(v) =

{
f(v) if v ∈ V (Xk),

± 1√
µ+3

∑
w∼v f(w) if v ∈ Vk − V (Xk).

(c) An eigenfunction f on Xk to the eigenvalue −3 gives rise to an
eigenfunction F to the eigenvalue 0 of Tk with

F (v) =

{
f(v) if v ∈ V (Xk),

0 if v ∈ Vk − V (Xk),

if and only if we have, for all triangles ∆ ⊂ V (Xk),
∑

v∈∆ f(v) =
0.

In the following proof, we use ∼ for adjacency in Tk and ∼Xk
for

adjacency in Xk. Moreover, dTk
denotes the combinatorial distance

function on the vertex set Vk of Tk.
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Proof. (a) Let f and F be two functions on Xk and Tk, related by
f(v) = F (v) for all v ∈ V (Xk). Then

AXk
f(v) =

∑

w∼X
k
v

f(w) =
∑

dTk (w,v)=2

F (w) = (ATk
)2F (v)− 3F (v),

which can also be written as AXk
= (ATk

)2 − 3. This implies immedi-
ately the connection between the eigenfunctions and eigenvalues.
(b) Let AXk

f = µf and F± be defined as in the theorem. Let
λ = ±√

µ+ 3. Then we have for v ∈ V (Xk):

ATk
F±(v) =

∑

w∼v

F±(w) =
1

λ

∑

w∼v

∑

x∼w

F±(x)

=
1

λ


 ∑

w∼Xk
v

f(w) + 3f(v)


 =

µ+ 3

λ
f(v) = λF±(v),

and for v ∈ Vk − V (Xk):

ATk
F±(v) =

∑

w∼v

F±(w) = λ

(
1

λ

∑

w∼v

f(w)

)
= λF±(v).

Note that 1/λ is well defined since µ 6= −3 and, therefore, λ =
±√

µ+ 3 6= 0.
(c) In the case of µ = −3 we have λ = 0, and

ATk
F (v) =

∑

w∼v

F (w) = 0

holds trivially for v ∈ V (Xk). For all vertices v ∈ Vk − V (Xk), the
conditions

0 = ATk
F (v) =

∑

w∼v

f(v)

translate into the condition that the summation of f over the vertices
of every triangle in Xk must vanish. �

An immediate consequence of Theorem 3.1 is that the expander prop-
erty of the family Xk carries over to the graphs Tk (with the spectral
bounds given in Theorem 1.3). Moreover, the spectrum of Xk cannot
contain eigenvalues in the interval [−6,−3), since this would lead to
non-real eigenvalues of Tk. Therefore, these arguments also complete
the proof of Theorem 1.3.

Remark 3.2. It would be interesting to find an explicit value for the
constant C > 0 in Theorem 1.3. This would be possible if we were
able to estimate the Kazdhan constant of the index two subgroup G
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of G̃ (with respect to some choice of generators). While the Kazhdan

constant of G̃ with respect to the the standard set of seven generators
was explicitly computed in [11], it seems to be a difficult and challenging
question to obtain an explicit estimate for the Kazhdan constant of the
subgroup G.

3.2. Ramanujan properties. Recall that a finite n-regular graph X
is Ramanujan if all non-trivial eigenvalues λ 6= ±n lie in the interval
[−2

√
n− 1, 2

√
n− 1]. Since the 6-regular graphs Xk are Cayley graphs

of quotients of the groupG with property (T), [19, Prop. 4.5.7]) implies
that not all of these graphs are Ramanujan. The following results imply
that, in fact, only two of them are Ramanujan. We obtain via MAGMA
computations:

graph number of vertices largest non-trivial eigenvalue

X2 32 2.828427. . .
X3 128 4.340172. . .
X4 1024 4.475244. . .
X5 8192 5.160252. . .

This implies that only X2 and X3 are Ramanujan; their largest non-
trivial eigenvalue needs to be < 2

√
5 = 4.472135 . . . , which is no longer

true for k = 4. Moreover, since Xk+1 is a lift of Xk, the spectrum of
Xk is contained in the spectrum of Xk+1.
Next, we consider Ramanujan properties of the graphs Tk. Theorem

3.1 implies that Tk is Ramanujan if and only if the largest non-trivial
eigenvalue of Xk is ≤ 5. Therefore, the above numerical results imply
that only T2, T3, T4 are Ramanujan. Here are the numerical results for
the largest non-trivial eigenvalues λ1(Tk) of the first Tk’s:

graph number of vertices λ1(Tk)

T2 64 2.414213. . .
T3 256 2.709275. . .
T4 2048 2.734089. . .
T5 16384 2.856615. . .

Note that the spectrum of Tk is symmetric around the origin since
the graphs Tk are bipartite.

3.3. A lower eigenvalue estimate for the surfaces Ŝk. It remains
to prove Proposition 1.4 from the Introduction. The explicit construc-

tion of the surfaces Ŝk is explained in Buser [8, Section 3.2].
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Proof of Proposition 1.4. The identity 2g−2 = |Vk| between the genus

of the surface Ŝk and the number of vertices of the trivalent graph Tk is
easily checked. Moreover, every automorphism of the graph Tk induces
an isometry on Ŝk. Since the graphs Tk form a power of coverings with
powers of 2 as covering indices, the same holds true for the associated

surfaces Ŝk.
Next we prove the uniform lower eigenvalue bound of the family Ŝk.

From a classical result by Tanner [24] or Alon-Milman [1] we know that

3− λ1(Tk)

2
≤ h(Tk) := inf

E

#(E)

min{#(A),#(A′)} ,

where E ⊂ Ek runs through all collection of edges such that Tk\Ek

disconnects into two components with disjoint vertex sets A ⊂ Vk and
A′ ⊂ Vk. This implies together with Theorem 1.3(ii) that the combi-
natorial Cheeger constants h(Tk) have the following uniform positive
lower bound

(12) h0 =
3−

√
C + 3

2
≤ h(Tk).

Moreover, we know from [8, (4.1)] that

λ1(Ŝk) ≥
1

144π2
h(Tk).

Combining this with (12) leads to

λ1(Ŝk) ≥
3−

√
C + 3

288π2

with the constant C > 0 from Theorem 1.3. This finishes the proof of
Proposition 1.4. �

4. Comparison with Platonic graphs

4.1. Basics about Platonic graphs. The Platonic graphs ΠN were
already introduced combinatorially in the Introduction. These graphs
can also be viewed as triangulations of finite area surfaces S∞(ΠN) =
H2/Γ(N) by ideal hyperbolic triangles, where H2 denotes the hyper-
bolic upper half plane and

(13) Γ(N) =

{
γ =

(
a b
c d

)
∈ PSL(2,Z) | γ ≡ ±

(
1 0
0 1

)
mod N

}

is the principal congruence subgroup of the modular group Γ = PSL(2,Z)
which is normal in Γ. The vertices of this triangulation are the cusps
of S∞(ΠN ). These and related graphs have been thoroughly investi-
gated by several different communities. For example, in the general
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framework of regular maps, they were studied by D. Singerman and
co-authors (see [16, 23, 15]).
Let us now recall a few useful facts about these graphs ΠN and the

surfaces S∞(ΠN). For more details see, e.g., [15]. Let F be the Farey
tessellation of the hyperbolic upper half plane H2, and let Ω(F) be the
set of oriented geodesics in F . Recall that the Farey tessellation is a
triangulation ofH2 with vertices on the line at infinity R∪{∞}, namely,
the subset of extended rationals Q ∪ {∞}. Two rational vertices with
reduced forms a/c and b/d are joined by an edge, a geodesic of H2,
if and only if ad − bc = ±1 (see [15, Fig. 1] for an illustration of
the Farey tessellation). The group of conformal transformations of H2

that leave F invariant is the modular group Γ = PSL(2,Z), which acts
transitively on Ω(F).
It is well known (see, e.g, [15]) that F/Γ(N) and ΠN are isomorphic,

and F/Γ(N) is a triangulation of the surface S∞(ΠN) = H2/Γ(N) by
ideal triangles (the vertices are, in fact, the cusps of S∞(ΠN)). The
tessellation ΠN ⊂ S∞(ΠN ) can be interpreted as a map MN in the
sense of Jones/Singerman [16]. The group Aut(MN) of automorphisms
of MN is the group of orientation preserving isometries of S∞(ΠN)
preserving the triangulation. As Γ(N) is normal in Γ, we have that the
map MN is regular, meaning that Aut(MN) acts transitively on the
set of directed edges of ΠN (see [16, Thm 6.3]). Moreover, by [16, Thm
3.8],

Aut(MN) ∼= Γ/Γ(N) ∼= PSL(2,ZN).

(Note that in the case of a prime power N = pr, PSL(2,ZN) is the
group defined over the ring ZN = Z/(NZ) and not over the field Fq

with q = pr elements.) Let N ≥ 7. Noticing that all vertices of ΠN have
degree N , we obtain a smooth compact surface S(ΠN ) by substituting
every ideal triangle in ΠN ⊂ S∞(ΠN) by a compact equilateral hyper-
bolic triangle with interior angles 2π/N , and glueing them along their
edges in the same way as the ideal triangles of S∞(ΠN). The group
of orientation preserving isometries of S(ΠN ) preserving this triangu-
lation is, again, isomorphic to PSL(2,ZN). Hence, the automorphism
group of the triangulation Π8 ⊂ S(Π8) is PSL(2,Z8) of order 192. This
implies that S(Π8) is the unique compact hyperbolic surface of genus
5 with maximal automorphism group (see [3]).

4.2. Duality between T2 and Π8 in S2. The Π8-triangulation of
S(Π8) is illustrated in Figure 2; the black-white pattern on the trian-
gles is a first test whether this triangulation can be isomorphic to the
T ∗
2 -triangulation of S2. (The ΠN -triangulations for 3 ≤ N ≤ 7 can be

found in Figs. 3 and 4 of [15].) PSL(2,Z8) acts simply transitively
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[4,1]
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[1,3]

[3,0]

[4,3]

[3,4]

[2,3]

[1,2] [6,3]

[3,0]

[1,3]

[1,4]

[7,3]

[7,2]

[3,3]

[3,0]
[3,4]

[4,3]
[5,2]

[0,3][3,0]

[1,4][1,3]
[3,2]

[5,3]

[3,0]

[0,3]

[3,4]

[6,3]

[2,3]

[2,1]

[6,1]

[1,1]

[7,2]

[5,3]

[1,2]

[3,3]

[5,2]

[3,4]

[0,3]

[3,0]

[7,3]

[0,1]

[6,3]

[3,1]

[1,0]

[5,1]

[7,1]

Figure 2. The Platonic graph Π8: Each triangle cor-
responds to a hyperbolic (π/4, π/4, π/4)-triangle of the
tessellation of S(Π8). The edges along the boundary path
are pairwise glued to obtain S(Π8).

on the directed edges of this triangulation. Consider now a refine-
ment of this triangulation by subdividing each (π/4, π/4, π/4)-triangle
into six (π/2, π/3, π/8)-triangles. It is easily checked that the smaller
(π/2, π/3, π/8)-triangles admit also a black-white colouring such that
the neighbours of all smaller black triangles are white triangles and vice
versa (see Figure 3). Each black (π/2, π/3, π/8)-triangle is in 1-1 cor-
respondence to a half-edge of Π8 which, in turn, can be identified with
a directed edge of Π8. Consequently, the orientation preserving isome-
tries of the surface S(Π8) corresponding to the elements in PSL(2,Z8)
act simply transitively on the black (π/2, π/3, π/8)-triangles. In fact,
PSL(2,Z8) can be interpreted as a quotient of the triangle group ∆+(2, 3, 8),
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namely,
PSL(2,Z8) ∼= 〈x2, y3, z8 | xyz, (xz2xz5)2〉,

where x, y, z correspond to rotations by π, 2π/3, π/4 about the three
vertices of a given (π/2, π/3, π/8)-triangle.

A B

C

π/8

π/6

Figure 3. Subdivision of the (π/4, π/4 π/4)-triangle
∆ABC into six (π/2, π/3, π/8)-triangles with black-
white colouring.

MAGMA computations show that PSL(2,Z8) has a unique normal
subgroup N of index 6, generated by the elements X = x−1z2x, Y =
y−1z2y and Z = z2, which is isomorphic to the triangle group quotient
∆+(4, 4, 4)/P2(∆

+(4, 4, 4)) via the explicit isomorphism

(14) X 7→
(
−1 0
2 −1

)
, Y 7→

(
−1 2
−2 3

)
, Z 7→

(
1 2
0 1

)
,

where P2(∆
+(4, 4, 4)) is a group in the lower exponent-2 series of ∆+(4, 4, 4).

Note that the matrices in (14), viewed as elements in PSL(2,Z), gen-
erate a group acting simply transitively on the black triangles of the
Farey tessellation in H2, as illustrated in Figure 4. The images of a
black triangle T with vertices 0, 1,∞ under {X±1, Y ±1, Z±1} are the
six black triangles each sharing a common white triangle with T .
MAGMA computations also show that we have the explicit isomor-

phism
N = 〈X, Y, Z〉 ∼= G2 = 〈x0, x1, x3〉,

given by X 7→ x0, Y 7→ x1, Z 7→ x3. The normal group N ⊳ PSL(2,Z8)
is of order 32 and the quotient S0 = S(Π8)/N is an orbifold consisting
of two hyperbolic (π/4, π/4, π/4)-triangles (one of them black and the
other white). We conclude from the explicit isomorphism N ∼= G2
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0 1 2 3

X Y

Z−1

YX−1
−1

Z

−1−2

Figure 4. The action of the elements X±1, Y ±1, Z±1 ∈
PSL(2,Z) on a triangle T with vertices 0, 1,∞ of the
Farey tessellation.

that the covering procedure discussed in Section 2.2 leads to isometric
surfaces S(Π8) ∼= S2, and that the tessellation Π8 ⊂ S(Π8) is dual to
the tessellation T2 ⊂ S(T2) via this isometry of surfaces. This confirms
the first statement of Proposition 1.5.

Remark 4.1. For k = 2, the (∆ − Y )-transformation X2 → T2 has

a group theoretical interpretation. There exists a group extension G̃2

of G2 by Z2, generated by involutions A,B,C satisfying X = AB,

Y = BC and Z = CA, and T2 is the Cayley graph of G̃2 with respect
to the generators A,B,C. This group theoretic interpretation of the
(∆− Y )-transformation fails for k ≥ 5. In fact, the group

T = 〈A,B,C | A2, B2, C2, r1(AB,BC), r2(AB,BC), r3(AB,BC)〉
with r1, r2, r3 given in (6) is finite and of order 6144. If the introduc-
tion of the above involutions A,B,C would lead to a group extension

G̃k, then G̃k would have to be of order 2|Gk| and a quotient of T and,
therefore, of order ≤ 6144. However, we have 2|G5| = 16384 in contra-
diction to the second condition. Thus we do not obtain a Cayley graph
representation of the graphs Tk for k ≥ 5 via this procedure.

4.3. Non-duality of Tk ⊂ Sk and Platonic graphs for k ≥ 3. Let
V (ΠN) denote the vertex set of ΠN . Then we have

|V (ΠN)| =
N2

2

∏

p|N

(
1− 1

p2

)
,
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where the product runs over all primes p dividing N . This formula can
be found in [15, p. 441], where ΠN is viewed as a triangular map and
denoted by M3(N). An isomorphism T ∗

k
∼= ΠN leads to N = 2nk+1,

since all vertices of T ∗
k have degree 2nk+1 (see Proposition 1.1) and all

vertices of ΠN have degree N . In this case, the formula for the number
of vertices of ΠN simplifies to

|V (Π2nk
+1)| = 22nk+2

2

(
1− 1

4

)
= 3 · 22nk−1.

On the other hand, if V (T ∗
k ) denotes the vertex set of T ∗

k , we conclude
from Proposition 1.1,

|V (T ∗
k )| = 3 · 2Nk−nk .

Hence, an isomorphism T ∗
k
∼= ΠN leads to the identity 2nk−1 = Nk−nk,

i.e.,

3⌊log2 k⌋+ 3 = 3nk = Nk + 1 ≥ 8⌊k/3⌋+ 3 · (kmod 3),

by (1) and (3). But one easily checks that this inequality holds only
for k = 1, 2. (In the case k = 1, we have Π4 = T ∗

1 , since T1 is combi-
natorially the cube and Π4 is the octagon.) This shows that the graph
family ΠN cannot contain any of the dual graphs T ∗

k , for indices k ≥ 3.
This finishes the proof of Proposition 1.5.

5. The Platonic graphs and their modifications

In this section we restrict our considerations to the case that N is a
prime number p.

5.1. Algebraic description of vertices, axes, and Π′
p. Let us briefly

recall some algebraic facts from [15]. Both groups Γ = PSL(2,Z) and
PSL(2,Zp) act on V (Πp) via(

a b
c d

)
[λ, µ] = [aλ+ bµ, cλ+ dµ],

and there is a 1-1 correspondence between the vertex set V (Πp) and
the cosets Γ/Γ1(p). Here, Γ1(p) is the congruence subgroup given by

Γ1(p) =

{(
a b
c d

)
∈ Γ |

(
a b
c d

)
≡ ±

(
1 ∗
0 1

)
mod p

}
.

In [15], the set of vertices was partitioned into axes. Two vertices
belong to the same axis if they have the same stabilizer in PSL(2,Zp).
Since PSL(2,Zp) acts transitively on V (Πp), all axes have the same
number of vertices. An interesting observation is that if an element of
PSL(2,Zp) leaves a vertex [λ, µ] invariant, then any vertex [ν, ω] with
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λω − µν = 0 is also invariant under the same element. Thus the axis
containing [1, 0] is given by

(15) Aprinc = {[λ, 0] | gcd(λ, p) = 1},
and we call this axis the principal axis of Πp. There is a 1-1 correspon-
dence between the axes of Πp and the cosets Γ/Γ0(p), where Γ0(p) is
the congruence subgroup

Γ0(p) =

{(
a b
c d

)
∈ Γ |

(
a b
c d

)
≡
(
∗ ∗
0 ∗

)
mod p

}
.

Note that the graph Π′
p was defined in the Introduction as the in-

duced subgraph of Πp with vertex sets V (Πp) − Aprinc. Alternatively,
Π′

p can also described as the Cayley graph Cay(Up, S) with

Up =

{(
∗ ∗
0 ∗

)
∈ PSL(2,Zp)

}
∼= Γ0(p)/Γ(p) andS =

{(
∗ 1
0 ∗

)
∈ Up

}
.

The vertices [λ, µ] ∈ V (Π′
p) (with non-vanishing second coordinate µ)

are then identified with the matrices

(
µ−1 λ
0 µ

)
∈ Up.

5.2. Vertex connectivity of Πp and Π′
p. Let p be a fixed odd prime

and n = (p − 1)/2. The wheel structure of Πp was already discussed
in [17, Thm 2.1]. Let us present this and other geometric facts in our
terminology. The principal axis of Πp is given by

Aprinc = {[i, 0] ∈ V (Πp) | 1 ≤ i ≤ n}.
The vertices of Aprinc and their 1-ring neighbours form a partition of
V (Πp) into n components with p + 1 vertices each. We call these
components the wheels of Πp, see Figure 5. The wheel with center [i, 0]
(1 ≤ i ≤ n) is denoted by Wi and is a subgraph of Πp with p+1 vertices
and 2p edges. We also use the notation ∂Wi for the induced subgraph
with vertex set V (∂Wi) = V (Wi)−{[i, 0]}. We call ∂Wi the boundary
of the i-th wheel. Note that ∂Wi is isomorphic to the cyclic graph of p
vertices.
Every vertex that is not in Aprinc is adjacent to exactly two vertices

of the boundary of any given wheel Wi, 1 ≤ i ≤ n. Indeed, because
PSL(2,Zp) acts transitively on V (Πp), we may consider, w.l.o.g., the
vertex [0, 1] ∈ ∂W1. The p − 1 vertices adjacent to [0, 1] that are not
in Aprinc are [1, x] with x ∈ {1, 2, . . . , p− 1}. To find the vertices [1, x]
in ∂Wi, we need to solve

det

(
1 i
x 0

)
= ±1,
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which has exactly two solution x = ±i−1 (where we think of i ∈ Zp)
which correspond to two distinct vertices of Πp.

Figure 5. Πp consists of n = (p − 1)/2 wheels. Each
vertex at the boundary of a wheel is connected with the
center of its wheel and exactly two points on the bound-
ary of any wheel (including itself).

Lemma 5.1. Let i, j ∈ {1, 2, . . . , n}. Then we have the following facts.

(a) Let x1, x2 be two different vertices in ∂Wi and also y1, y2 be two
different vertices in the same set ∂Wi ({x1, x2} ∩ {y1, y2} 6= ∅
is allowed). Then there exists a permutation σ ∈ Sym(2) and
two vertex distinct paths p1, p2 in ∂Wi, such that p1 connects x1

with yσ(1) and p2 connects x2 with yσ(2).
(b) Every x ∈ ∂Wi has precisely two neighbours in ∂Wj .
(c) Assume additionally that i 6= j. Then there exists a bijective

map Φ : V (∂Wi) → V (∂Wj) such that v ∼ Φ(v) for all vertices
v ∈ ∂Wi.

Proof. Note that ∂Wi is isomorphic to the cyclic graph of p vertices. (a)
is then a straighforward inspection of all possible cases. (b) is already
proved by our previous arguments. It remains to prove (c): Think
of i, j ∈ Zp − {0}. Then the vertices in ∂Wi are of the form [µ, i−1]
and the vertices in ∂Wj of the form [ν, j−1] with µ, ν ∈ Zp. The map
φ : Zp → Zp, defined by φ(µ) = i+ ij−1µ, is obviously a bijection, and
we have [µ, i−1] ∼ [φ(µ), j−1], finishing the proof. �

Note that the wheel structure is not confined to the choice of the
principal axis. Since the group PSL(2,Zp) maps axes to axes and acts
transitively on them, we can choose any axis A as the centers of the n
wheels, and Lemma 5.1 is still valid in this setting.

Now we prove that Πp is p-vertex-connected. Notice that the argu-
ments in this proof also give diam(Πp) ≤ 3 as a by-product.
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Proof. We will show that for any two vertices of Πp, we can find p
vertex disjoint paths connecting them. Then the result will follow from
Menger’s Theorem.
Since PSL(2,Zp) acts transitively on V (Πp), we can assume that the

start vertex is [1, 0] ∈ W1. Separating three cases, we will find p vertex
distinct paths to

(i) the vertices in ∂W1,
(ii) the vertices in any ∂Wj with 2 ≤ j ≤ n,
(iii) the other vertices in Ap.

Ad (i): Assume that the end vertex is [ν, 1]. Then we already have
three vertex disjoint paths given by

[1, 0] → [ν, 1], [1, 0] → [ν ± 1, 1] → [ν, 1].

We need to find vertex disjoint paths starting with [1, 0] → [ν ± i, 1]
and ending at [ν, 1], for 2 ≤ i ≤ n. By Lemma 5.1(c), we can find two
different vertices x1, x2 ∈ ∂Wi such that [ν−i, 1] ∼ x1 and [ν+i, 1] ∼ x2.
By Lemma 5.1(b), [ν, 1] has two different neighbours {y1, y2} in ∂Wi.
We now use Lemma 5.1(a) to complete the paths.
Ad (ii): We assume p ≥ 5, for otherwise there is nothing to prove.

Let us assume that the end vertex is in ∂Wi with 2 ≤ i ≤ n, and
let us denote this vertex by w ∈ ∂Wi. Let v−, v+ ∈ ∂W1 be the
two neighbours of w in the first wheel. Choose three different vertices
v1, v2, v3 ∈ ∂W1−{v−, v+}, and use Lemma 5.1(c) to find three different
vertices w1, w2, w3 ∈ ∂Wi − {w} such that vj ∼ wj for 1 ≤ j ≤ 3.
W.l.o.g., we can assume that the pair {w1, w3} separates w2 and w
within ∂Wi. Let q1, q3 be the two vertex disjoint paths in ∂Wi − {w2}
connecting w with w1 and w3, respectively. Then we already have five
vertex disjoint paths given by

[1, 0] → v± → v, [1, 0] → v2 → w2 → [i, 0] → w,

and
[1, 0] → v1 → w1

q1−→ w, [1, 0] → v3 → w3
q3−→ w.

Notice that for any wheel Wj with j 6∈ {1, i}, we have not yet used any
edges with one vertex in ∂Wj . We will see that every such wheel allows
us to create two more vertex disjoint paths from [1, 0] to w, finishing
this case. Let y1, y2 be the two different vertices in wheel ∂Wj adjacent
to w. Choose two different vertices v′, v′′ ∈ ∂W1 which have not been
used yet and associate to them two different vertices x1, x2 ∈ ∂Wj such
that v′ ∼ x1 and v′′ ∼ x2, using Lemma 5.1(c). Then we can use
Lemma 5.1(a) to complete the paths within ∂Wj .
Ad (iii): This is the easiest case. Assume that the end vertex is

[i, 0] ∈ Wi with 2 ≤ i ≤ n. We use the bijection Φ : V (∂W1) → V (∂Wi)
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in Lemma 5.1(c) to create the p vertex disjoint paths

[1, 0] → [0, µ] → Φ([0, µ]) → [i, 0]

with 1 ≤ µ ≤ p. �

Next, we present the proof that Π′
p is (p − 1)-vertex-connected. In

contrast to the previous proof, the arguments given here do not imply
that diam(Π′

p) ≤ 3.

Proof. Let v, w ∈ Π′
p be two different vertices with v ∈ ∂Wi and w ∈

∂Wj . We consider the two cases i = j and i 6= j separately:
Case i = j: Obviously, we can choose two vertex disjoint paths

within ∂Wi to connect v and w. Next, we show that every wheel
∂Wj with j 6= i gives rise to two additional vertex disjoint paths. Let
x1, x2 ∈ ∂Wj be the two distinct neighbours of v, and y1, y2 ∈ ∂Wj be
the two distinct neighbours of w. Then we can use Lemma 5.1(a) to
complete the paths within ∂Wj .
Case i 6= j: Let w1, w2 ∈ ∂Wj be the neighbours of v and v1, v2 ∈

∂Wi be the neighbours of w. Then, using only additional edges in
∂Wi ∪ ∂Wj , we can find four vertex disjoint paths v → · · · → vk → w,
v → wk → · · · → w (for k = 1, 2). Again, every wheelWl with l 6∈ {i, j}
will give rise to two more vertex disjoint paths. Let x1, x2 ∈ ∂Wl be the
neighbours of v, and y1, y2 ∈ ∂Wl be the neighbours of w. Use Lemma
5.1(c) to complete the paths within ∂Wl. �

Finally, we prove diam(Π′
p) = 3.

Proof. Let us first confirm that any two different vertices in the same
wheel can be connected by a path of length 2: Let 1 ≤ i ≤ n and
[µ, i−1], [ν, i−1] ∈ ∂Wi (thinking of i ∈ Zp) be the two vertices. The
required path is then given by

[µ, i−1] → [2(µ− ν)−1µi− i, 2(µ− ν)−1] → [ν, i−1].

Now choose two vertices v ∈ ∂Wi and w ∈ ∂Wj on different wheels.
Let v′ ∈ ∂Wi be one of the two neighbours of w in the i-th wheel.
Connecting v and v′ by a path of length 2 (as shown before) implies
that d(v, w) ≤ d(v, v′) + 1 ≤ 3. �

5.3. Ramanujan properties ”without number theory”. As be-
fore, we assume that p is a fixed odd prime and n = (p − 1)/2. The
considerations of the previous section show also that Πp is a n-fold cov-
ering π : Πp → Kp+1 of the complete graph Kp+1, where the preimages
π−1(v) correspond to the axes of Πp. It is useful to think of the vertices
in Kp+1 as the points in the finite projective line over the field Zp, i.e.,



TRIVALENT EXPANDERS AND HYPERBOLIC SURFACES 25

V (Kp+1) = {0, 1, . . . , p − 1,∞} and the covering map is then given,
algebraically, by

π([λ, µ]) = λµ−1,

with the usual convention ∞−1 = 0 and 0−1 = ∞. In particular, we
have Aprinc = π−1(∞). Note that PSL(2,Zp) acts also on the vertices
of Kp+1 via (

α β
γ δ

)
z = (αz + β)(γz + δ)−1.

One easily checks that π(gv) = gπ(v) for all g ∈ PSL(2,Zp) and
v ∈ V (Πp).
Let us now explicitely derive the spectra of the graphs Πp and Π′

p.
We will use the following notation: For a linear operator T on a fi-
nite dimensional vector space, we denote the eigenspace of T to the
eigenvalue λ by E(T, λ).
We start with a “number theory free” proof of Theorem 4.2 in [13],

using the covering π : Πp → Kp+1.

Proof. Every eigenfunction f of Kp+1 gives rise to an eigenfunction
F : V (Πp) → C of the same eigenvalue via F (v) = f(π(v)). The
spectrum of the adjacency operator on Kp+1 is given by (see, e.g., [5,
p. 17])

σ(Kp+1) = {p,−1, . . . ,−1︸ ︷︷ ︸
p times

}.

This implies that σ(Πp) contains the eigenvalue p with multiplicity one
and the eigenvalue −1 with multiplicity ≥ p.
Our next aim is to prove that the eigenspace E(A2, p) of the square

of the adjacency operator on Πp has dimension (p + 1)(p − 3)/2. Let
f : V (Πp) → C be a function satisfying

(16) A2f(v) = pf(v) for all v ∈ V (Πp).

Note that (16) can be viewed as a homogenous system of (p2 − 1)/2
linear equations. The key observation is that all linear equations corre-
sponding to vertices of the same axis coincide, i.e., we end up with only
p+1 linear independent homogeneous equations (since p+1 equals the
number of axes), showing that the eigenspace has dimension at least

|V (Πp)| − (p+ 1) =
p2 − 1

2
− (p+ 1) =

(p+ 1)(p− 3)

2
.

Indeed, since PSL(2,Zp) acts transitively on the vertices, we only need
to show that the linear equations of (16) corresponding to the vertices
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in the principal axisAp coincide. Recall that Πp has the wheel-structure
given in Figure 5. Let v ∈ Ap. Then we have

(17) A2f(v) = pf(v) + 2
n∑

i=1

∑

w∈∂Wi

f(w),

since there are exactly p paths of length 2 from v to itself, no paths
of length 2 from the centers of all the other wheels to v, and for every
w ∈ ∪i∂Wi there are exactly 2 paths from w to v of length 2, because of
Lemma 5.1(b). Note that the combination of (16) and (17) simplifies
to

n∑

i=1

∑

w∈∂Wi

f(w) = 0,

independently of the choice of v ∈ Ap. This shows that dim E(A2, p) ≥
(p+1)(p− 3)/2. Adding up the multiplicities of all eigenvalues, we see
that dim E(A2, p) = (p+ 1)(p− 3)/2.
If f1, . . . , fK span the space E(A2, p), then the 2K functions

√
pf1 ±Af1, . . . ,

√
pfK ± AfK

are eigenfunctions of A to the eigenvalues ±√
p, and they also span

E(A2, p). This shows that we have

E(A2, p) = E(A,√p)⊕ E(A,−√
p).

Finally, the equality

dim E(A,√p) = dim E(A,−√
p) =

(p+ 1)(p− 3)

4
follows from Lemma 5.2 below. �

Lemma 5.2. Let T be a square matrix with rational entries and K be
a positive integer which is not a square. Then we have

dim E(T,
√
K) = dim E(T,−

√
K).

Proof. The proof is based on the fact that
√
K is irrational. Let p(z) ∈

Q[z] be the characteristic polynomial of T . We split p(z) into its even
and odd part, i.e.,

p(z) = peven(z) + podd(z)z,

with even polynomials peven(z), podd(z). Note that we have

p(
√
K) = peven(

√
K) + podd(

√
K)

√
K

and peven(
√
K), podd(

√
K) ∈ Q. Therefore, if

√
K is a root of p(z), then√

K is also a root of both polynomials peven(z) and podd(z), separately.

This implies that −
√
K is also a root of p(z). We can then split off the
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factor z2 −K from p(z), and repeat the procedure with the remaining
polynomial. �

Next we derive the spectrum of the modified graph Π′
p, using the

n-fold covering map π : Π′
p → Kp and the wheel-structure, which

partitions the vertex set V (Π′
p) into n disjoint sets ∂Wi of p vertices,

each. This will finish the proof of Theorem 1.6.

Proof. The proof of the spectral statements in Theorem 1.6 proceeds
in steps.
(i) Let W be the vector space of all functions which are constant on

the wheels. We first introduce a basis of eigenfunctions of this vector
space. Let ζn = e2πi/n and, for 0 ≤ j ≤ n− 1, define

fj(v) = ζ ijn if v ∈ ∂Wi.

Note that f0 is the constant function to the eigenvalue p − 1. It is
easily checked that Afj = 0 for j ≥ 1. Since these functions are linearly
independent, they form a basis of W. Moreover, we have dim E(A, 0) ≥
n− 1 = (p− 3)/2.
(ii) Let V be the vector space of all functions which are constant along

all axes. Every such function is a lift F (v) = f(π(v)) of a function f on
Kp. Note that eigenfunctions of Kp are lifted to eigenfunctions to the
same eigenvalue, so V can be viewed as the span of a constant function
and p − 1 linear independent eigenfunctions to the eigenvalue −1. In
particular, we have dim E(A,−1) ≥ p− 1.
(iii) Note that W∩V = span(f0). By the orthogonality of eigenfunc-

tions, it only remains to study the eigenfunctions in the orthogonal
complement (W + V)⊥ of dimension

|V (Π′
p)| − (dimW + dimV) + 1 =

(p− 1)(p− 3)

2
= K.

Let g1, . . . , gK be a basis of this orthogonal complement by eigenfunc-
tions with Agi = λigi. We now extend each gi trivially to a function g̃i
on Πp by setting g̃i(v) = 0 for all v ∈ Ap. Note that these extensions
are eigenfunctions of the Platonic graph Πp to the same eigenvalue,
i.e., Ag̃i = λig̃i. Therefore, we must have λi ∈ {p + 1,−1,±√

p}. As
discussed in the previous proof, the span of the eigenfunctions of Πp to
the eigenvalues −1 and p+ 1 is obtained via lifting the eigenfunctions
of Kp+1, and the restriction of these functions to Π′

p must therefore lie
in V. This shows that we must have λi = ±√

p.
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(iv) Adding up the multiplicities of all eigenvalues, we conclude that

dim E(A,√p)⊕ E(A,−√
p) = (p− 1)(p− 3)/2,

dim E(A, 0) = (p− 3)/2,

dim E(A,−1) = p− 1.

We finally obtain

dim E(A,√p) = dim E(A,−√
p) =

(p− 1)(p− 3)

4
,

by applying, again, Lemma 5.2. �
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[20] D. Mangoubi, Riemann Surfaces and 3-regular Graphs, M.Sc. Thesis (Tech-
nion, 2001) under the direction of Robert Brooks, arXiv:math/0202156.

[21] N. Peyerimhoff and A. Vdovina, Cayley graph expanders and groups of finite
width, J. Pure Appl. Algebra 215(11) (2011), 2780–2788.

[22] B. Randol, Small eigenvalues of the Laplace operator on compact Riemann
surfaces, Bull. Amer. Math. Soc. 80 (1974), 996–1000.

[23] D. Singerman, Universal tessellations, Rev. Mat. Univ. Complut. Madrid 1(1-
3) (1988), 111–123.

[24] R. M. Tanner, Explicit concentrators from generalized N -gons, SIAM J. Alge-
braic Discrete Methods 5(3) (1984), 287–293.

[25] H. Völklein, Groups as Galois groups, Cambridge Studies in Advanced Math-
ematics 53, Cambridge University Press, Cambridge, 1996.

Durham University, DH1 3LE, Great Britain

E-mail address : ioannis.ivrissimtzis@durham.ac.uk

E-mail address : norbert.peyerimhoff@durham.ac.uk

University of Newcastle, NE1 7RU, Great Britain

E-mail address : alina.vdovina@ncl.ac.uk


