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Abstract
The ability to quantify the relationship between the ocean and the atmo-
sphere is an enduring challenge for global-scale science. This paper analyzes
the World Ocean Circulation Experiment (WOCE, 1990–2002), an inter-
national oceanographic program that aimed to provide data for decadal-
scale climate modeling and for the first time produce a “snapshot” of ocean
circulation against which future change could be measured. WOCE was an
ambitious project that drew on extensive international collaboration and
emerging technologies that continue to play a significant role in how
the global environment is known and governed. However, a main outcome
of WOCE was an encounter with ocean variability: the notion that the
ocean is governed not by the circular currents shown in the popular
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“conveyor-belt” diagram but by eddies, filaments, jets, and other nonlinear
forces. This paper suggests the concept of “productive limits” as an analytic
for understanding how ocean variability both prompted new forms of
knowledge and the development of a global knowledge infrastructure that is
contingent, uneven, and fully entwined with geopolitical dynamics.

Keywords
oceanography, complex systems dynamics, climate change, ocean, space/
place/scale dynamics

Introduction

Uniting sea and sky, the ocean-atmosphere system is essential to notions of

a planetary-scale environment that underpin contemporary environmental

change science and politics. Along with climatology, oceanography has

been privileged among ways of knowing this vast and complex system.

As the end of the twentieth century approached, the future of oceanography

seemed to be both literally and figuratively on the horizon; a new satellite

had been launched to measure sea surface height, allowing scientists to see

and measure ocean surface currents across the globe, and a global-scale

system of unmanned ocean sensors that would continuously measure a

range of ocean properties was newly within the range of technical possibil-

ity (Lamy 2018). But the future was also coming too fast: a changing

climate was calling for these developments more rapidly than they could

emerge. A series of concerns—ozone depletion, acid rain, nuclear winter,

and anthropogenic climate change—raised the specter of oceanic cata-

strophe (Edwards 2010). In its vast complexity, its physical inhospitality

to human bodies and most technologies, and in our ever-greater realization

of its central role in phenomena like international shipping, food systems,

weather, and climate, the ocean poses immense and urgent challenges to our

systems of knowledge. As the need to model the global climate became

clearer as a new millennium approached, “the ocean was the 800-pound

gorilla in the room” (Oceanographer 1 [US], interview, April 2014).

In this paper, I draw on interviews with scientists and document analysis

to unpack the World Ocean Circulation Experiment (WOCE), an interna-

tional project in physical oceanography, which took place from 1990 to

2002.1 This project, costing between $US 0.5 and 1.5 billion, entailed a

complex and wide-ranging program of data collection for modeling and
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establishing a baseline understanding of ocean characteristics against which

future changes could be compared (Thompson et al. 2001; Gould 2002, 86).

WOCE enrolled a diverse set of human and nonhuman actors, seeking to

gather observational data in order to generate a baseline state of the ocean’s

physical characteristics for climate change modeling and monitoring. This

entailed large-scale international cooperation in collecting, processing, and

sharing ocean data, and this effort, combined with the emergence of new

technologies such as satellite altimetry, led to a large and highly significant

data set that is still used widely today. Yet, during WOCE, the ocean that

scientists encountered appeared highly variable, intensifying notions of the

ocean’s unpredictability and volatility.

As Colebrook (2014) writes, the “indispensable concept” (p. 10) of a

global climate requires a “radical alteration of knowledge and affect”

(p. 11). Although we are surrounded with representations of the Earth as

a globe, and of the ocean as a global system, in our everyday lives, global

environments are not self-evident. No one has unmediated, embodied expe-

rience of global systems and how they change; as Paul Edwards (2010, 4)

puts it, “no one lives in a ‘global’ climate.” Field sciences—among them

oceanography—chiefly aim to transcend the localities they study, finding

“ways to make knowledge claims at higher scales” (Vetter 2010, 2). More-

over, knowledge of planetary systems is the achievement of what Edwards

(2010) has called a global knowledge infrastructure. Knowing global envir-

onments is thus both the result of specific, contingent, material encounters,

and of knowledge infrastructures, or “enduring, widely shared, sociotech-

nical systems[s]” (Edwards 2010, 17; see also Camprubı́ and Lehmann

2018). To understand how planetary environmental systems come to be

understood as such, we must attend to both the embodied entanglements

of world-making and how these encounters and their results are made

legible and durable. As Mahony and Hulme (2018, 405) state, we must

“consider the links between the constitutive spaces of science and the

spaces which science constructs as epistemic categories.” In the context

of this study, the ways in which the ocean-atmosphere system is studied can

tell us about the politics and practices of the planetary scale.

As a project of global knowledge, WOCE is indicative of a wider strug-

gle in oceanographic science to make planetary-scale knowledge about the

ocean and produce a “reliable witness” to changing seas (Latour 2012).

Scholars of science and technology show that global knowledge always

relies upon uneven local encounters embedded in particular historical and

geographical contexts, as well as embodied everyday engagements with the

technologies and practices of knowledge production. And yet, the spaces in
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which global knowledge is made, that is, the links among knowledge,

politics, and aesthetics of the global scale, are still underexplored (Lehman

2020; Helmreich 2019; Jasanoff 2004; Miller, 2004a). Moreover, global or

planetary knowledge is often treated as a monolithic and omniscient insti-

tution, presented as a kind of foil against which other forms of knowledge

that are seen as more partial, responsive, flexible, and even ethical are

transposed (e.g., Hulme 2010; Castree 2015). Following calls to analyze

the spatiality of science, this paper sheds light on the scale-defying pro-

cesses and specific spatial practices that make planetary knowledge (Fin-

negan 2008; Mahony and Hulme 2018). I adopt a co-productionist approach

to ask how “micro- and macro-categories, actors, and dynamics connect

up,” such that global knowledge infrastructures “simultaneously reconfi-

gure their ideas, their institutional forms, and the cognitive and social land-

scapes they inhabit” (Miller 2004a, 48; Jasanoff 2004).

More precisely, this paper reveals some of the technological, historical,

and geographical contexts of Western understandings of the ocean and

atmosphere together, a key part of contemporary attempts not only to know

the ocean but also to model the climate as one planetary system.2 The desire

or imperative on the part of science to know the ocean and atmosphere as

one dynamic system is tied to widespread efforts to think the systematicity

of the planet in the Anthropocene (Latour 2017; Lorimer 2017; Stengers

2015). Complex systems science, which by now underwrites contemporary

thought on a wide variety of modern processes, has sought to understand the

self-organizing nature of socioenvironmental systems, characterized by

scale-independent mechanisms of interacting feedback loops, bifurcations,

and attractors, among others (see, e.g., Clarke and Hansen 2009; Holling

2001; Miller 2004b). In recent decades, scholars have historicized systems

thinking and, in part, indicated how their roots in cybernetics and informa-

tion theory embroil these logics in Cold War politics of surveillance, con-

trol, and mastery over planned worlds and imagined futures (e.g., Edwards

1997; Hayles 1999; Mirowski 2002; Pickering 2010; Wolfe 1998). At the

same time, several authors point out systems theory’s novel and influential

approaches to a gamut of topics, including the development of the ecosys-

tem concept (e.g., Edwards 2010; Hayles 1999). Moreover, broadly speak-

ing, systems-theoretical ideas and images of the globe have conjoined to

produce a notion of a planetary environment that underpins much of con-

temporary environmental politics and global change science (Lövbrand,

Stripple, and Wyman 2009).

Overall, this exploration of WOCE reveals what I call the productive

limits that constitute Western knowledge of the planet’s systemic character.
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The concept of productive limits builds on studies of knowledge infrastruc-

tures (and infrastructures more generally) that analyze not simply the devel-

opment, concretization, and stabilization of infrastructures but also their

multiplicities, seams, and heterogeneities (e.g., Benson 2012; Beuret

2017; Howe et al. 2016; Vertesi 2014). It also contributes to a literature

that theorizes the complex relationships between uncertainty, fact, and

unknowability in scientific knowledge production and the worlds that sci-

entific practice makes. This literature takes neither scientific knowledge nor

its failures as absolute but rather seeks more nuanced conceptions of laws,

facts, and their constraints; to explain a world “whose laws are plotted and

pieced” (Cartwright 1999, 2). Productive limits are gaps, inconsistencies,

and even “failures” that, paradoxically, both produce new knowledge and

generate a scientific and infrastructural apparatus to deal with them, thus

making worlds in a way that is of interest to scholars of science and tech-

nology. In contrast to some previous studies on uncertainty and the limits of

scientific knowledge, my notion of productive limits resolutely demands

attention to both scientific knowledge and its infrastructures together, shed-

ding the “bifocal conception of science” that holds apart universal knowl-

edge from the concrete places and practices from which it emerges (Latour

2017, 127). Moreover, I take “infrastructures” to mean not simply instru-

ments, data stores, and institutional arrangements but the complex of social,

political, and economic relations that sustain them. Therefore, the notion of

productive limits fully integrates scientific knowledge production with the

broader conditions in which knowledge and uncertainty are coproduced

(Jasanoff 2004).

I analyze the encounter with ocean variability during WOCE as engen-

dering productive limits to planetary knowledge about the ocean and its

relation to Earth systems dynamics. Although WOCE is frequently heralded

in the oceanographic community as a great success, the project’s findings

unsettled conventional understandings of the ocean. In particular, the dis-

covery of the extent of ocean variability called into question any notion of a

“mean ocean state,” or an ocean-atmosphere system at equilibrium, and

vastly complicated the popular “conveyor-belt diagram” of ocean circula-

tion. Ultimately, I argue that the encounter with ocean variability during

WOCE suggested limits to oceanographic knowledge, but that these limits

have in fact produced a global knowledge infrastructure in a particular

geopolitical configuration. This analysis advances robust understandings

of the politics and practices of planetary systems science. It is also relevant

to a broader effort to cultivate new conceptions of, and relations with,

uncertainty, unknowability, and the notion of limits to knowledge.
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A Global Project for Estimating the World Ocean

WOCE is a paradigmatic project of global-scale technoscience. Its over-

arching goal was to obtain a global, quantified “picture” of ocean circula-

tion such that climate predictions on the decadal scale could be made

(Thompson et al. 2001). Although global ocean circulation had been esti-

mated through rather piecemeal projects in the past, WOCE marked the

most comprehensive project yet to undertake these measurements at a glo-

bal scale and with the level of numerical precision to make them useful to

emerging climate models. Throughout WOCE, the production of global

knowledge about the ocean-atmosphere system was uneven, heterogeneous,

and contingent, not simply in who planned and executed it but also in the

methods undertaken to do so. Moreover, attempts to create a global knowl-

edge infrastructure for ocean monitoring must contend profoundly with

depth and volume, two defining characteristics of ocean space (Steinberg

and Peters 2015).

At the project’s outset, the WOCE leadership team, consisting primarily

of scientists from the US, Europe, Russia, and Japan, drew up a detailed

science plan; essentially a “wish list” of data to be collected (WOCE Project

Manager, interview, February 2014). Two main types of programs were

delineated: repeat hydrography and process studies. Repeat hydrography

consists primarily of sections, or a series of stations along prescribed lines

of latitude or longitude, at which certain data (usually temperature, salinity,

dissolved oxygen, and others) are collected at various depths. This strategy

of data collection aimed at a global “snapshot” of ocean circulation, in part

to provide baseline data for future studies. Process studies entail more

intensive measurements taken on a smaller scale, aiming to improve under-

standing of specific ocean mechanisms such as gyre formation or air-sea

fluxes that can then be generalized across broader and different locations.

Hydrographic and process studies often require different sampling technol-

ogies; for example, process studies are more likely to use moorings, while

repeat hydrography relies primarily on ship-based measurements. In both

methods, the ocean is simultaneously encountered as depth and surface, “as

a set of fixed locations but also as an ungraspable space that is continually

being reproduced by mobile molecules” (Steinberg and Peters 2015, 252).

While the initial WOCE plans called for ambitious programs of both repeat

hydrography and process studies, financial difficulties ensued and global

scale measurements, that is, the repeat hydrography program, were eventually

prioritized over the program of process studies (Oceanographer 1 [US], inter-

view, April 2014; see also Ocean Studies Board 1999). Figure 1 shows the
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global survey of WOCE, while Figure 2 shows stations that were occupied

repeatedly and areas of intensive study.

WOCE’s ship-based program was augmented by observations from

other in situ instruments and from new satellites; the geography of measur-

ing the sea extended to the sky. The US/French designated altimetric sat-

ellite TOPEX/Poseidon was launched at the outset of WOCE, and the

program also benefited from, among others, Europe’s ERS-1 satellite and

Japan’s ADEOS mission (Lamy 2018). As satellites can only measure the

Figure 1. WOCE one-time survey lines. Source: WOCE Southern Ocean Atlas.
Reproduced with permission.

Figure 2. WOCE repeat hydrography study lines. Shading indicates areas of intense
study. Source: WOCE Southern Ocean Atlas. Reproduced with permission.
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ocean’s surface, a range of additional technologies were marshaled for

WOCE, in addition to ship-based sampling. Some of these technologies

were fixed in place, such as ocean moorings, while others were mobile.

Some were autonomous, while some required scientists to operate. The

diversity of these technologies shows the difficulty of contending with the

ocean’s physical properties on a global scale.3 Many of these technologies,

especially the autonomous and semi-autonomous sensors, are recent ances-

tors of the sensing networks that play key roles in contemporary ocean

monitoring (see e.g., Gabrys 2016; Helmreich 2019; Lehman 2018).

Participating scientists were responsible for collecting the data and

reporting it to the WOCE Data Assembly Centers. WOCE had significantly

higher standards for both data collection and reporting than most previous

projects in global oceanography (Fofonoff 1992). The project’s staff scien-

tist was tasked with reminding the investigators of their obligation to report

data in a timely and open fashion (WOCE Project Manager, interview,

February 2014). Data Assembly Centers staff were also tasked with a high

degree of quality control, toward which they took measures both before and

after data collection. As the project’s staff scientist explained:

The different data types all had their own specifications, and that was a

deliberate policy to reduce the uncertainties due to poor data quality. [ . . . ]

So every single bit of data, every profile, and every segment in a time series

was examined visually by a human being who knew what they were doing, so

we could flag data [ . . . ] And that was a massive challenge, and also that was

another example of cooperation. (interview, February 2014)

Thanks largely to these efforts, likely the most important output of WOCE

was a series of high-quality data sets that are still available on the Internet

free of charge. These data were also packaged in a variety of outputs,

including a series of regional atlases that include visualizations of the

different kinds of data collected.

Encountering Ocean Variability

The terms in which scientists speak of the project’s overarching aims point

to the degree to which the ocean was unknown prior to WOCE and conse-

quently to the complexity and necessity of the questions it sought to answer.

As one oceanographer who worked on the project stated, “[WOCE] was

driven by, basically there was a question about what actually is the ocean

circulation like? You know, how strong is the Gulf Stream, really? And at
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that time, we still only had vague numbers on that” (Oceanographer 2 [US],

interview, April 2014). The project’s manager identified similar concerns:

“You know, you have typically kind of a cartoon picture in your mind of

what the general ocean circulation looks like. And we just didn’t know what

the current, heat transport of these sections really was” (interview, February

2014).

To understand the significance of WOCE to the global infrastructure that

makes the ocean-atmosphere knowable, we might begin by thinking with a

diagram: the “conveyor-belt” heuristic of ocean circulation. The deep sea

was once thought to be stagnant and devoid of interest to humans (Rozwa-

dowski 2005). Currents and tides, basic elements of ocean circulation,

became of interest to oceanographers as the scientific perspective became

the main way by which oceans were known. This transformation took place

in the nineteenth century, perhaps most exemplified by the Challenger

expeditions of 1872–1876 (Reidy and Rozwadowski 2014). Yet it was not

until the postwar period that international collaborations, such as the Inter-

national Geophysical Year, began to obtain a clearer picture of global-scale

ocean circulation (Lehman 2020). Decades prior to the advent of ocean-

atmosphere modeling capabilities, scientists began to call the ocean the

“flywheel” of the climate system (e.g., Bretherton 1982; McGowan and

Field 2002; Sullivan 1961). In other words, the ocean is believed to act

as a “governor on climate variability” through its motion and slow release

of energy and other properties (McGowan and Field 2002, 9). While the

ocean’s impact on climate has long been suggested, the extent and mechan-

isms of this relationship have been relatively underexplored. As eminent

oceanographer Walter Munk (2002, 135) wrote, “the oceans are the prin-

cipal reservoir for the storage of CO2, of heat and of ignorance.”

In the years preceding WOCE, global ocean circulation and its role in

climate was summarized by geochemist Wallace Broecker’s (1987)

“conveyor-belt diagram,” which first appeared in the November 1987 issue

of the popular science magazine Natural History and soon after became the

logo for the Global Change Research Initiative (GCRI; Figure 3; see also

Broeker 1991). The use of the conveyor-belt diagram as the logo for the

GCRI suggested that “changes in the Atlantic’s thermohaline circulation

were responsible for the abrupt and large climatic changes experienced by

the North Atlantic basin during the last glacial period” and thus emphasized

the emerging concern that “complex interconnections among the elements

of our Earth’s climate system will greatly complicate our task of predicting

the consequences of global pollution” (Broeker 1991, 79). Thermohaline

circulation refers to ocean circulation caused by heat and salt differentials,
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rather than surface winds or ocean bathymetry, and is the primary mechan-

ism of interest, particularly when it comes to climate. The conveyor-belt

diagram illustrates the ocean’s role in climate by showing how currents

distribute warm and cool waters around the globe. The diagram, still pro-

duced in oceanography textbooks and popular science media, conveys a

picture of ocean circulation as moving sinuously around the globe, cyclical

with regard both to deep-shallow current patterns and to global surface

extent; the diagram “implies that if one were to inject a tracer substance

into one of the conveyor’s segments it would travel around the loop as a

neat package eventually returning to its starting point” (Broeker 1991, 79).

The popularity of the conveyor-belt diagram belied scientific debate

about its accuracy in characterizing global ocean circulation. Even at the

time of the diagram’s publication, Broeker (1991) acknowledged that it is a

rough approximation, stating that the diagram’s suggestion of the ocean’s

simple circularity was in fact its “main problem,” and that different circula-

tion “loops” and mixing processes surely exist (p. 79). This view was

informed by the results of the Mid-ocean Dynamics Experiment (MODE),

an American–Soviet collaboration undertaken in 1973 to understand mesos-

cale features by American and Soviet scientists, independently and in col-

laboration, using a new generation of current meters and drifting buoys

(Oceanographer 3 [South Africa], interview, October 2014; see also

Figure 3. Wallace Broeker’s conveyor belt diagram (illustration by Joe Le Monnier
for Natural History Magazine, 1978). Reproduced with permission.
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Wunsch 1999; Stammer and Böning 1992). MODE “provided conclusive

evidence of the existence of mid-ocean eddies and serve[d] as the basis for

future experiments,” such as the Tropical Ocean Global Atmosphere Pro-

gram (The MODE Group 1978, 859). Due to the advances of the MODE

and related projects, “[oceanographers became] aware that the oceans were

as variable as the atmosphere. Before that, the view was that the oceans

were rather sluggish, slow-moving and passive in a sense” (Oceanographer

4 [UK], interview, February 2014). New satellites corroborated this evol-

ving image, showing the widespread presence of eddies, in contrast to the

smooth loops of the conveyor-belt diagram. These mid-ocean mesoscale

eddies lacked unifying characteristics, appearing to vary so greatly that

oceanographers wrote of “new animals for the eddy zoo” (Richards and

Gould 1996, 63). Lack of systematic and frequent ocean sampling had

missed crucial eddy formations: “Incredible as it may seem, for one hun-

dred years this dominant component of ocean circulation had slipped

through the coarse grid of traditional sampling” (Munk 2002, 137).

During WOCE, scientists were faced with an image of ocean circulation

that was far more complex than even the critics of the conveyor-belt model

had anticipated. The data obtained from satellites and other new or

improved forms of sampling began to suggest that eddies were not (only)

deviations from the mean ocean circulation but in fact were formative

features of the state of the ocean at any given time. In other words, ocean

circulation is characterized less by the steady flows of the conveyor-belt

heuristic and more by swirling, fluctuating, meandering features that follow

the laws of chaos and complexity rather than linear calculation. These

eddies and related features indicate complex mixing between vertical layers

of water, which has profound influence on how the ocean interacts with the

atmosphere (Wunsch 1999). Hence, WOCE scientists were forced to grap-

ple with this newly complex view of ocean circulation, as the first and

largest attempt to understand the ocean in dynamical terms on a global

scale.

Particularly challenging was the imperative to model the ocean to con-

tend with this massive complexity. To quantify global ocean circulation in

order to run models that can predict future change, one must obtain mean or

average values (or parameters) for factors such as momentum, transport,

volume, and others. In other words, models ultimately require some approx-

imation of the average state of the ocean, and how and when the ocean

diverges from the average. This is especially important for understanding

climate change: baselines are needed to determine whether and how it is

changing, and on what scales. Understandings of the ocean as governed by
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the nonlinear dynamics of mid-ocean eddies greatly complicated this endea-

vor. The physical conditions of the ocean already make measuring it diffi-

cult, and observational data are thus scarce. These difficulties are

compounded by challenges around how and when one should measure an

entity that is always changing. A strategy of annual sampling cannot capture

seasonal variability, whereas more frequent measurement might miss long-

term changes and might generate data in excess of existing computational

capacity. Furthermore, because of the scarcity of ocean observations, scien-

tists have treated ocean data that were gathered over long time frames as

simultaneously collected (Oceanographer 5 [US], interview, April 2014;

see also Wunsch 1992). In fact, it has been suggested that it is not even

possible to conceive of a mean state of ocean circulation (Wunsch 1992).

The WOCE encounter with ocean variability can be understood as an

encounter with the potential limits of planetary-scale knowledge. This

clearly marks an epistemic limit; it may not be possible to know the ocean

on a planetary scale. It also marks an infrastructural limit; even if such

knowledge is possible, what vast, global infrastructure would be sufficient

for quantifying it? These limits, however, do not necessarily block or curtail

scientific activity; rather, attention to WOCE and its aftermath shows that

they have been productive of scientific thought as well as world-making

ocean sensing practices. Edwards (2010, 9) follows other scholars of infra-

structure to explain that “because infrastructure is big, layered, and com-

plex, and because it means different things locally, it is never changed from

above. Changes require time, negotiation, and adjustment with other aspects

of the systems involved.” The unevenness of the changes in the develop-

ment of the global ocean knowledge infrastructure following WOCE is

enmeshed with global environmental politics more broadly.

WOCE and the Global Oceanographic Infrastructure

In order to understand WOCE as a productive limit for global oceano-

graphic knowledge, we must first better understand how it was both situated

in and productive of networks of global oceanographic expertise. The con-

cept of the ocean as characterized by variability “drives one to expensive

observational and modeling strategies involving synoptic pictures of the

entire global ocean” (Wunsch 1999, 13235; see also Lehman 2016). Thus,

although WOCE provided valuable baseline data for evaluating climate

change, ocean variability continues to be a topic that places great demands

on oceanographic research worldwide. While WOCE suggested that ocean

variability is a limit to oceanographic knowledge, this limit has produced a
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global knowledge infrastructure whose development, like other infrastruc-

tures, “is marked by struggle” (Edwards 2010, 12). But going beyond the

work of Edwards, we can see that this global knowledge infrastructure does

not simply create knowledge or even stabilize a certain image of the ocean.

It is a world-making apparatus in other ways as well, coproducing a global

oceanographic community and advancing a particular knowledge agenda.

From the outset of WOCE, the uncertainty about the large-scale

dynamics of the world ocean called for an international approach, and the

collaborative nature of the project was emphasized in interviews and offi-

cial documents. Among the oceanographic community, WOCE is fre-

quently celebrated as having achieved ambitious scientific goals and

successfully undertaking a perhaps-unprecedented project of collaboration.

As the project manager said,

[Prior to WOCE] individual experiments had been done, [but] they were all

sort of analyzed individually, and there wasn’t this sort of coherent global

effort to come up with a very large picture with everybody sort of contribut-

ing to it. I mean, it was hugely ambitious, I think, [ . . . ] to get the cooperation

of an entire international community. It’s fantastic, an amazing thing to do, I

think, and something that hasn’t been repeated, and I don’t know if it ever will

be repeated. (interview, February 2014)

Of course, statements like this leave unacknowledged that oceanographic

science has been tied to Western imperialism from the outset, already

shaping the terms for the “international community” (see Reidy and Roz-

wadowski 2014). Moreover, in many projects in international oceanogra-

phy, notions of global cooperation in the name of universal knowledge for

the broader good can mask hierarchical power structures, from the choices

of what scientific questions get prioritized to the actual execution of the

research and the processing and sharing of the data. These tendencies can be

seen in WOCE. Attempts to understand and quantify the ocean-atmosphere

system must be understood as both located within and productive of the

politics of oceanographic knowledge, and the knowledge infrastructures

that reflect them.

WOCE received support from the Special Committee for Oceanographic

Research to finance the international project office (IPO) in the UK and to

fund workshops and meetings. The funding for the research had to come

from the participating nations’ science budgets (WOCE Project Manager,

interview, February 2014; SCOR Representative, interview, October 2014).

Nations designated scientific funds for participation in WOCE for various
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reasons, as discussed in more detail below. Yet the statements of those

closely involved with WOCE are indicative of the complex interplay of

international collaboration and top-down management that characterized

WOCE from the start. While in hindsight (or even at the time) WOCE

seems like a natural or even inevitable development in oceanographic sci-

ence, its extent and success were due in no small part to the championing of

its early advocates, most of whom were located in prestigious oceano-

graphic institutes in Europe and the United States. Exceptional among these

was Carl Wunsch, then of the Woods Hole Oceanographic Institute; one

oceanographer even joked with me that the WOCE acronym most accu-

rately stands for “Wunsch’s Own Circulation Experiment” (Oceanographer

3 [South Africa], interview, October 2014). Another put it somewhat more

generously: “Carl was remarkable because he was sort of the, in a sense the

political leader of this thing [ . . . ] And at the same time he was doing all this

wonderful science” (Oceanographer 2 [US], interview, April 2014).

Wunsch was able to mobilize a small but influential network of collabora-

tors to launch WOCE as a project of the new World Climate Change

Research Program. The influence of this small group of European and North

American oceanographers also set a precedent for WOCE to be led from

established centers of oceanographic research. As WOCE expanded its

international purview, decision-making became somewhat more demo-

cratic, although it would continue to be led by the Scientific Steering Group,

composed mainly of members from hegemonic oceanographic science cen-

ters. The machinations of WOCE are counter-indicative of a view of global

knowledge infrastructures as evenly distributed, apolitical nodes through

which data freely flow.

Despite the postproject laudatory language, WOCE had numerous com-

plications. Some of them had to do with the phenomenon of study itself;

certain segments of the hydrographic program, especially in the Southern

Ocean, proved difficult to execute due to the remoteness and rough seas

(Oceanographer 4 [UK], interview, February 2014). Other problems had

distinctly geopolitical and technopolitical dimensions. The years preceding

and encompassing WOCE bore witness to global transitions that affected

the oceanographic program. For example, the collapse of the Soviet Union

led to the withdrawal of many Soviet scientists and their advanced fleet of

research vessels (Oceanographer 4 [UK], February 2014). Worldwide eco-

nomic recession between the planning and implementation phases of

WOCE also necessitated significant adjustments to the program (Oceano-

grapher 4 [UK], February 2014). And while new communication technol-

ogies such as email and electronic file sharing improved international
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coordination, they did not make exchange seamless. For example, despite a

significant amount of communication between the directors of South Afri-

ca’s WOCE program and the IPO in 1990–1991, just a few years later, there

was much confusion as to whether any WOCE cruises had been executed,

and the status and location of the resulting data (WOCE Project Manager,

interview, February 2014). The field program was extended from five to

seven years in part to contend with some of these challenges.

The geography of WOCE shows that global knowledge infrastructures

are not simply distributed unevenly throughout the globe but are also tied to

specific geopolitical events and ideologies. Moreover, the connections that

make global data, in Edwards’ (2010) words, are themselves uneven and

require coordination and maintenance, especially under dynamic under-

standings of the ocean that seem to call for more continuous and global

monitoring. These efforts not only shape scientific views of the ocean but

also what counts as global ocean research, setting priorities for international

oceanography and reinforcing global economic and political regimes of

ocean governance. In this sense, I build here on coproductionist approaches

to show that not only is “scientific knowledge [ . . . ] constituted by social

practices” but also that social, economic, and political regimes are influ-

enced by scientific knowledge activities, and not just the “facts” that result

(Jasanoff 2004, 19).

By analyzing the configurations of global oceanography in the wake of

WOCE, we can see that productive limits do not simply result in new and

extended infrastructures but entrench political and social inequalities. The

international ambit of WOCE has already been revealed to be unevenly

distributed, with power located in a few centers. But the encounter with

ocean variability, and the limits to oceanographic knowledge that it

revealed, also produced further unevenness, rather than simply extending

global networks. This occurred precisely through the promotion of a certain

kind of global-scale oceanographic research in response to the challenges of

ocean variability as they were encountered by the networks of expertise

discussed above. In the administrative and conceptual organization of ocea-

nographic science, a division is frequently made between coastal and

“open-ocean” research. Coastal oceanography focuses mainly on concerns

regarding fisheries, coastal tourism, and the pollution and health of coastal

ecosystems, and it is frequently subject to local or national governance as it

occurs mainly in territorial waters. Coastal research is most often prioritized

by nations without large budgets for scientific research (Oceanographer 6

[South Africa], interview, November 2014). Open-ocean research occurs

mainly in international waters or the high seas and therefore often requires
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greater international coordination on the diplomatic level. Open-ocean

research is usually concerned with macro- and mesoscale dynamics, such

as ocean circulation, eddy formation, and current transport. However, many

of these dynamics, such as eddy formation and other kinds of variability,

have impacts at and across a variety of scales; in the United States, this is

acknowledged by recent increased emphasis on cross-scalar studies at the

level of the National Science Foundation (NSF Officer, interview, August

2014). Ocean variability might even have greater impacts in coastal envir-

onments because the seabed geology, landmass influence, and local weather

patterns compound the complexity (Oceanographer 7 [South Africa], inter-

view, February 2016). Further, “global oceanography” could also be

defined as regarding issues faced by coastal communities across the globe.

However, this has not been the case.

The open-ocean research community coheres around nation-states that

invest capital in oceanography; national income is a large contributing

factor and frequently a condition of possibility. During WOCE national

investment in oceanography and geographic range and extent of oceano-

graphic surveys were directly related. National programs with significant

historical investment in oceanography also pioneered technologies and data

reporting strategies. Countries with smaller budgets, however, emphasized

the need for project activities to demonstrate national benefits and to

include training and capacity building for their scientists. Furthermore, for

these countries project activities were carried out as part of normal opera-

tions, requiring simply added data reporting and sometimes new technolo-

gical investments, in contrast to wealthier nations that undertook more

intensified cruise programs.4 Accordingly, nations with fewer oceano-

graphic resources tended to work on their own coasts or nearby oceans

while countries with larger budgets and hence research vessels capable of

being at sea for many days, ranged more widely over the globe. And as the

most significant collaborator, the US program “went everywhere, yeah.

Anywhere” (WOCE Project Manager, interview, February 2014).

But investment in oceanography is a function of territorial power, not

just wealth or expertise. Countries with larger areas of marine jurisdiction,

such as exclusive economic zones (EEZs), and greater international respon-

sibility for providing marine meteorological data, are more likely to be

invested in global-scale research projects, while countries with smaller

EEZs and fewer international obligations are frequently more concerned

with coastal issues such as fishing, tourism, and coastal degradation (Ocea-

nographer 6 [South Africa], interview, November 2014). For example, the

only country on the African continent with responsibilities for marine
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meteorological forecasts (due to their participation in the Antarctic Treaty)

is South Africa; thus, it was the only African country to participate in

WOCE (Oceanographer 6 [South Africa], interview, November 2014).

Moreover, WOCE contributed to iterative cycles of expertise and

investment. Patterns of responsibility and reputation for oceanographic

research are of course self-reproducing: countries with reputations for

excellent global oceanography are asked to be scientific and monitoring

partners and are better able to benefit from their marine resources. Like-

wise, WOCE provided the initial funding impetus for many national pro-

grams that have continued to develop, such as the US’s studies on air-sea

fluxes (Oceanographer 1 [US], interview, April 2014). In addition, the

project created a framework for the reinvigoration of participating ocea-

nographic programs, such as the refurbishment of research vessels and

development of new float technologies (Oceanographer 4 [UK], inter-

view, April 2014; Oceanographer 5 [US], interview, April 2014). When

it came to the ships, this was no small undertaking; at least three major

research vessels were “chopped in half, lengthened, given longer endur-

ance, bigger scientific party; really equipped [for] the century” (Oceano-

grapher 4 [UK], interview, April 2014).

This discussion of the aftermath of WOCE shows how the encounter

with ocean variability can be understood as not simply suggesting a limit

to oceanographic knowledge but also as demanding a response. Thus, this

limit is productive, engendering a particular configuration of global sci-

ence, coproduced by social, political, and material forces. WOCE shows

indeed that “the resolution of any significantly new problems in science is

seen as requiring situated and specific (re)structurings of social order,

without which scientific authority itself would be put in jeopardy” (Jasan-

off 2004, 31). Yet, the “problem” of ocean variability and its relationship

to the very systematicity of the Earth should be considered as the posing of

a potential limit without clear resolution: it may not be possible to know

something so fundamental as the mean state of the ocean. In other words,

it may not be achievable to move from knowledge of the ocean’s capa-

cities to the estimates of its regular activities that are required for accurate

climate modeling (Cartwright 1999). At the same time, productive

limits should not be understood as producing something entirely new.

WOCE shows that the “social order” of the global oceanographic com-

munity, and global ocean governance, is iterative and recursive even as it

attempts to deal with the “new problem,” or productive limit, of ocean

variability.
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Conclusion: Variability, Productive Limits,
and Planetary Systems

WOCE marks a departure in planetary oceanographic knowledge from the

steady, self-regulating world ocean of the sinuous, connected loops of the

conveyor-belt diagram. But the limit to planetary knowledge suggested by

the encounter with ocean variability during WOCE is more than a sugges-

tion of ocean’s unknowability or of the contingency of global-scale knowl-

edge. Although scientists themselves recognize that “scientific reliability is

situated, bound to the constraints of its production” (Stengers 2011, 9), even

approximations and estimations suggest that a “mirror model” might be

possible given enough data. WOCE challenges this assumption, showing

that increased data led not to a straightforwardly more accurate picture of

the ocean but rather to fundamental uncertainty about how the ocean

operates.

As a result of WOCE, scientists came to understand ocean circulation as

characterized by eddies, jets, filaments, and other rapidly changing mesos-

cale features rather than mostly by big, slow currents; in other words, the

ocean was discovered to be much more variable than previously suspected,

and this variability has profound consequences for exchanges of heat with

the atmosphere. This new understanding of the significance of ocean varia-

bility posed a problem for conventional ways of knowing and modeling the

ocean especially in relation to the atmosphere at the very moment when

doing so was becoming increasingly urgent. Thus, reading WOCE for its

productive limits may not challenge the notion that science creates truths

about the world but may instead prompt a different understanding of the

nature of the truths that are created. Scientific knowledge is not simply

partial, situated, and coproduced; it is shaped through affective encounters

with material forces, perhaps along the lines of Ruddick’s (2010) argument

that “thought emerges through the violence of the encounter––not recogni-

tion or joy, but when one is forced to think” (p. 36; see also Pickering 1995).

The scientific thinker, then, is not so much objective and distanced as

confused, conflicted, even sometimes adrift.

In her writing on systems-theory informed views of the Earth as a

bounded, self-referential, cohesive entity, Colebrook (2012, 39) advocates

doing away with such “whole-Earth” images and on the contrary searching

for and nurturing “forces that resist recuperation, incorporation and com-

prehension—forces that operate beyond intentionality and synthesis.”

Reading WOCE for its productive limits shows that these forces may be

found within systems dynamics themselves (see also Braun 2015; Nelson
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2014). The elements of ocean variability impact systemic relations

between the ocean and atmosphere, but they do not lend themselves to a

notion of self-healing interconnectedness. Moreover, it cannot be said that

the ocean exhibits great variability but returns over time to a steady state;

despite the ocean’s role as a regulator of climate, the most advanced

scientific methods cannot determine over what timescales this holds true.

In fact, studies suggest that on long time scales, the ocean is highly

unstable and drives instability in the ocean-atmosphere system and thus

for life on Earth.

To fully understand the implications of this uncertainty, however, the

notion of productive limits insists that the results of global-scale science and

the conditions under which it is executed be considered together. Productive

limits, as I have employed the term here, is useful because it recognizes the

potential of the ocean to be fundamentally unknowable to Western science,

but it does not allow scholars of science and technology to stop at this

material intractability. Along with understanding the limitations of science

in its modern form to address complex questions, we also have to reckon

with the ways in which science has defined the questions we ask, as well as

the questions we believe can, should, and must be asked. In this way, we can

continue to challenge the “bifocal conception of science” that holds apart

universal knowledge from the concrete places and practices from which it

emerges (Latour 2017, 127). This is all the more important given the enor-

mous knowledge infrastructures and increasing explanatory power of pla-

netary scientific knowledge. A major task for scholars of science and

technology is to engage with the power of these knowledge structures, while

seeking to cultivate new relations to what can be known, and to limits in all

of their productive ambiguities.
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Notes

1. This project draws on in-depth interviews carried out between 2014 and 2016

with oceanographers from the United States, UK, and South Africa, the World

Ocean Circulation Experiment (WOCE) international project manager, and con-

temporary officers of the National Science Foundation (US) and the Scientific

Committee on Oceanographic Research. Some of the interviewees worked

directly on WOCE while others provide insight on its legacies. I have anon-

ymized the interviewees here but do identify them by their roles and national

affiliations (where relevant).

2. While many nations participated in WOCE, they did so under a framework of

Western oceanography which informs Western understandings of planetary sys-

tematicity (see Reidy and Rozwadowski 2014). Non-Western understandings of

ocean dynamics and planetary interconnectedness deserve their own attention,

and are beyond the scope of this paper.

3. See Fofonoff 1992 for a summary of WOCE data collection methods; for data

sets and summaries see World Ocean Circulation Experiment Global Data

Resource, WOCE Data and Summaries at http://www.nodc.noaa.gov/woce/

wdiu/diu_summaries/default.htm.

4. A suggested National Program for WOCE South Africa by Lutjeharms, Johann.

February 1986, South Africa, WOCE archive, National Oceanography Centre

Library, University of Southampton, Southampton UK.
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