
Walker, P, et al. 2019 ARBTools: A Tricubic Spline Interpolator for
Three-Dimensional Scalar or Vector Fields. Journal of Open Research
Software, 7: 12. DOI: https://doi.org/10.5334/jors.258

Journal of
open research software

SOFTWARE METAPAPER

ARBTools: A Tricubic Spline Interpolator for
Three-Dimensional Scalar or Vector Fields
Paul Walker1, Ulrich Krohn1 and David Carty1,2

1	Department of Physics, Durham University, Durham, UK
2	Department of Chemistry, Durham University, Durham, UK
Corresponding author: Paul Walker (paul.a.walker@durham.ac.uk)

ARBTools is a Python library containing a Lekien-Marsden type tricubic spline method for interpolating
three-dimensional scalar or vector fields presented as a set of discrete data points on a regular cuboid
grid. ARBTools was developed for simulations of magnetic molecular traps, in which the magnitude,
gradient and vector components of a magnetic field are required. Numerical integrators for solving particle
trajectories are included, but the core interpolator can be used for any scalar or vector field. The only
additional system requirements are NumPy.

Keywords: Python; three-dimensional interpolation; spline; vector field; scalar field; smoothing
Funding statement: This software was developed as part of research funded by EPSRC grant number
EP/N509462/1.

(1) Overview
Introduction
It is often necessary to smoothly interpolate vector or scalar
fields known as a set of discrete data points across a grid. For
one- and two-dimensional problems cubic and bicubic spline
implementations exist (for example, in the SciPy interpolate
library [1]), but three-dimensional problems are more
difficult. This software was developed for use in modelling
the three-dimensional motion of paramagnetic neutral
particles through Zeeman decelerators [2] and magnetic
traps [3]. These fields are produced by combinations of
permanent magnetic and electromagnetic elements with
generally no analytic solution. The potentials are calculated,
for example using finite element analysis methods, as a
series of data points on a grid, which must be interpolated
to return the required values for an arbitrary point within
the region of interest.

The tricubic method described by Lekien and Marsden
[4] implements cubic spline interpolation in three
dimensions, in an efficient and accurate way. The method
was originally motivated by studies of current flow in
ocean dynamics [5]; high-frequency radar data give a two-
dimensional vector map of the surface of the ocean as a
series of discrete points, measured at regular intervals in
time. The authors developed their method to smoothly
interpolate the time evolution of this velocity field, and
note it can equivalently operate on time-independent
three-dimensional fields.

There are several commonly available implementations
of this interpolator in a variety of programming languages,

but none were suitable for the specific requirements of
our work. ARBTools was written in Python [8], allowing
easy modification of the software if needed. Unlike
many tools with complex software dependencies the
only additional requirement for ARBTools is NumPy [9].
The careful use of NumPy libraries has also allowed the
package to be efficient, and in tests it is only moderately
slower than an equivalent C implementation. The main
difference in ARBTools, however, is the direct availability
of the derivatives of an interpolated scalar field, knowledge
of these derivatives being a prerequisite for calculating
the force arising due to a potential gradient. (Unlike
other interpolation methods in which the gradients are
recovered via finite-differences, in the tricubic scheme the
approximating polynomial function can be analytically
differentiated). The software can also directly work with
a vector field; for example, in the context of molecular
and atomic traps this is needed when calculating the
probabilities of non-adiabatic spin transitions [6], or
simulating laser-cooling interactions [7].

Interpolation coefficients are calculated on-the-fly and
subsequently reused where required to reduce processor
time. For arbitrary points inside the interpolation
volume the field magnitude, partial derivatives and
vector components are readily accessible from a single
query. Separate query methods are included for dealing
with interpolation of a single point, or for multiple
simultaneous coordinates. A fourth-order Runge-Kutta
[10] algorithm is implemented for numerically solving
particle motion.

https://doi.org/10.5334/jors.258
mailto:paul.a.walker@durham.ac.uk

Walker et al: ARBToolsArt. 12, page 2 of 5

Although produced for the specific application of
modelling low-field-seeking neutral particles, this software
has been developed to be more general. It can work directly
with either a scalar or vector field input, and is suitable for
a variety of applications with any field supplied across a
regular, cuboid grid.

Implementation and architecture
ARBTools is written in Python [8], with extensive use of
NumPy [9]. ‘ARBInterp’ contains the tricubic interpolator
and query methods. Any source data presented across a
regular grid as either a scalar or vector field can be input
into the interpolator, allowing the values of the data to
be calculated for arbitrary points within the set. For scalar
data the derivatives are directly accessible. Although
designed for magnetic fields this software could be used
with a wide variety of systems, such as modelling heat
flow, or in data processing to smooth contour plots or
heatmaps. Example magnetic fields, as both magnitudes
and vectors, are available to download along with scripts
illustrating the use of the interpolator. These example
files also illustrate the expected input format of the data.

The ‘ARBTraj’ module contains functions to create a
random sample of argon atoms and solve its motion
through a quadrupole field. By simply changing mass
and magnetic moment values this can be adapted for
different atomic species, or a differently shaped magnetic
potential could be specified. The included Runge-Kutta
integrator can be easily modified to solve particle motion
in alternative systems – for example, we have recently
discussed simulating the operation of an atomic tweezer
apparatus with a colleague.

Installation
To install on Linux run ‘sudo python setup.py install’. The
interpolator is contained in a file called ‘ARBInterp.py’ and
the command ‘from ARBTools.ARBInterp import tricubic’
will import the interpolation class.

Usage
To instantiate the class, pass it a source field – e.g. ‘interp =
tricubic (sourcefield)’ will create an instance called ‘interp’.
Input can be either a scalar field U(x, y, z) as an N × 4 (x, y,
z, U) array or a vector field B(x, y, z) as an N × 6 (x, y, z, Bx,

By, Bz) array. If an N × 4 field is passed, the interpolator
will automatically default to return the magnitude and
gradient of the field. If an N × 6 field is passed it will
accept an optional ‘mode’ keyword argument to select
one of three modes, (e.g. interp = tricubic (sourcefield,
mode = ‘kw’)):

•	 Norm: takes the norm of the vector field and return
the magnitude and gradient (as three partial deriva-
tives)

•	 Vector: returns the interpolated vector components
•	 Both: takes vector norm, and returns the magnitude

and norm of the vector plus the vector components at
the interpolation point

If no keyword is passed, the interpolator defaults to
vector mode. Two query modes are implemented: ‘sQuery’
interpolates a single point within the volume, accepting
an input in the form ([x, y, z]). ‘rQuery’ accepts a range
of coordinates for simultaneous interpolation, as an array
([x1, y1, z1]…[xn, yn, zn]). For multiple queries rQuery is much
more efficient than running sQuery in a loop.

Figure 1 shows an interpolation example. The
quadrupole electric field produced by four point charges
was calculated as a grid of 4003 data points; the left plot
is a 2D slice through the central plane. A less dense grid
of 403 points was then calculated, and the middle image
shows a plot through the centre. Lastly, the sparse grid
was interpolated to reproduce the 4003 data, and is shown
on the right.

Quality control
ARBTools was written with Python 2.7.12 and NumPy
1.13.3 on Linux Mint 18.3, and has been tested with
Python 3.5.2 on the same platform. It has also been tested
on Enthought Canopy v2.1.9 on Microsoft Windows 7
and 10.

Example input fields and query scripts are available
to download from the source repository. Performance
benchmarking on 64-bit Linux with an Intel Core i7 CPU
shows 100 unique interpolations for a given data set take
between 20 and 50 ms, depending on which components
are being returned. As expected, there is a linear
relationship between number of queries and run time.

Figure 1: A quadrupole electric field, left, 400 × 400 pixel analytic solution, centre, 40 × 40 pixel exported subset, right,
400 × 400 pixel interpolation of the subset.

Walker et al: ARBTools Art.12, page 3 of 5

The main constraint when using ARBTools is the
amount of memory required to load the source file; this
is determined by the size of the input grid. For example;
a cubic volume 20 mm on a side with a grid spacing of
0.5 mm contains 413 = 68921 grid points, which will load
in less than a second with negligible memory usage. The
same data sampled at 0.25 mm intervals contains 531441
points, this may take several seconds to load and consume
≈500 MB memory. At 0.125 mm intervals we have
4173281 points, this may take up to a minute to load and
consume over 5 GB of memory. Once loaded, however,
querying these different datasets takes almost exactly the
same amount of time.

The tricubic interpolation method values smoothness
of the interpolated function and its first derivatives over
absolute accuracy [4]. In order to quantify the errors in
this method two types of model were considered; the

quadrupole electric field produced by a series of point
charges, which can be solved analytically (Figure 1),
and a magnetic field produced by a permanent magnet,
calculated using finite-element analysis with the ‘FEMM’
[11] software package (see Figure 2). (Of course, if an
analytic solution is available there is no need to interpolate
– this is simply a useful calibration tool!).

For both cases a high-resolution source dataset was
created, and then a sparse subset of this data was
interpolated and compared with it. Figure 3 shows the
root-mean-squared errors between the interpolated
and ‘true’ values of the calculated fields for a variety
of grid intervals. It can be seen that for a given level of
accuracy the analytic solution can tolerate a larger grid
spacing – this is due to the high gradients at the interface
between two materials in finite-element (or boundary
volume integral [12]) analysis. In general, consideration

Figure 2: The magnitude of the magnetic field around a ring magnet, left, 400 × 400 pixel finite-element analysis
model, centre, 40 × 40 pixel exported subset, right, 400 × 400 pixel interpolation of the subset.

Figure 3: Root-mean-square error in interpolated data as compared to ‘true’ values from either a finite-element analysis
model or an analytic solution.

Walker et al: ARBToolsArt. 12, page 4 of 5

of the nature of the data set being interpolated and its
structure will inform the grid spacing chosen, which is
a compromise between inaccuracy and unwieldiness.
These tests were repeated with the interpolator in the ‘EQ
Tools’ library [13]; although it does not provide the field
derivatives, the magnitudes were found to be the same to
within 1 × 10–6%.

(2) Availability
Operating system
ARBTools was developed on Linux Mint 18.3, and has been
tested on Windows 7 and 10.

Programming language
ARBTools was developed in Python 2.7.12 and has been
tested on 3.5.2. Any version of Python from 2.7 upwards
should be suitable.

Additional system requirements
Several GB of RAM should be suitable for most
applications. ARBTools has been used with large datasets
on the Durham university supercomputer.

Dependencies
Written using NumPy 1.13.3. Earlier versions may work.

Software location
Name: ARBTools
�Persistent identifier: https://doi.org/10.5281/zenodo.​
2548609
Publisher: Paul A. Walker
Version published: v1.3
Repository: GitHub
�Persistent identifier: https://github.com/Durham​
DecLab/ARBInterp
Licence: GPL-3.0
Date published: 15/02/2019

Language
English

(3) Reuse potential
The core of ARBTools is the tricubic interpolator, which
can be used with any suitably-formatted input field, for
many possible tasks – for example, visualising the shape
of a three-dimensional potential or extracting coherent
Lagrangian structures from a time-dependent two-
dimensional flow. The interpolator has been designed
to be imported as a library in Python, and the output
from the evaluation methods can easily be passed into
third-party code, or output to file for use in non-Python
systems.

As is, ARBTools can be used to model the trajectories of
low-field-seeking argon atoms in a magnetic field. Simply
altering the mass and magnetic moment parameters
would allow other species to be modelled. If the functions
defining the acceleration due to a potential are replaced,
trajectories in alternative systems could easily be
modelled, for example, the motion of charges in electric
fields, or masses moving under gravity.

Support may be requested through the project GitHub
page: (https://github.com/DurhamDecLab/ARBInterp).
The source code is available and may be reused or modified
at will subject to the details of the GPL-3.0 licence.

Acknowledgements
Many thanks to Dr. Lewis McArd for his invaluable advice
on this and other projects.

Competing Interests
The authors have no competing interests to declare.

References
1.	 ‘Interpolation (scipy.interpolate) – SciPy v0.19.0

Reference Guide’ 2017 SciPy.org. Available at: https://
docs.scipy.org/doc/scipy/reference/interpolate.html.

2.	 McArd, L M 2017 ‘A Travelling Wave Zeeman
Decelerator For Atoms and Molecules’. PhD thesis,
Durham University.

3.	 Walker, P A 2019 ‘MT-MOT: A Hybrid Magnetic
Trap/Magneto-Optical Trap’. MSci thesis, Durham
University.

4.	 Lekien, F and Marsden, J 2005 ‘Tricubic interpolation
in three dimensions’. International Journal for
Numerical Methods in Engineering, 63(3): 455–471.
DOI: https://doi.org/10.1002/nme.1296

5.	 Lekien, F, Coulliette, J and Marsden, J 2003
‘Lagrangian Structures in Very HighFrequency
Radar Data and Optimal Pollution Timing’. AIP
Conference Proceedings 676, 162. DOI: https://doi.
org/10.1063/1.1612209

6.	 Majorana, E 1932 ‘Atomi orientati in campo
magnetico variabile’. Nuovo Cimento, 9: 43–50. DOI:
https://doi.org/10.1007/BF02960953

7.	 Hanley, R K, Huillery, P, Keegan, N C, Bounds,
A D, Boddy, D, Faoro, R and Jones, M P A 2018
‘Quantitative simulation of a magneto- optical trap
operating near the photon recoil limit’. Journal of
Modern Optics, 65: 667–676. DOI: https://doi.org/10.
1080/09500340.2017.1401679

8.	 van Rossum, G 1995 Python tutorial, Technical Report
CS-R9526, Centrum voor Wiskunde en Informatica
(CWI), Amsterdam.

9.	 van der Walt, S, Colbert, S C and Varoquaux, G 2011
‘The NumPy array: A structure for efficient numerical
computation’. Computing in Science and Engineering, 13:
22–30. DOI: https://doi.org/10.1109/MCSE.2011.37

10.	‘Runge-Kutta methods’ 2017 Wikipedia. Available at:
https://en.wikipedia.org/wiki/Runge-Kutta_methods
[Accessed April 2017].

11.	‘Finite Element Method Magnetics’ 2019 Meeker, D.
Available at: http://www.femm.info/wiki/HomePage.

12.	Elleaume, P, Chubar, O and Chavanne, J 1997
‘Computing 3D Magnetic Field from Insertion Devices’.
Proc. of the PAC97 Conference, 3509–3511.

13.	Chilenski, M A, Faust, I C and Walk, J R 2017 ‘eqtools:
Modular, extensible, open-source, cross-machine
Python tools for working with magnetic equilibria’.
Computer Physics Communications, 210: 155–162.
DOI: https://doi.org/10.1016/j.cpc.2016.09.011

https://doi.org/10.5281/zenodo.2548609
https://doi.org/10.5281/zenodo.2548609
https://github.com/DurhamDecLab/ARBInterp
https://github.com/DurhamDecLab/ARBInterp
https://github.com/DurhamDecLab/ARBInterp
http://SciPy.org
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://docs.scipy.org/doc/scipy/reference/interpolate.html
https://doi.org/10.1002/nme.1296
https://doi.org/10.1063/1.1612209
https://doi.org/10.1063/1.1612209
https://doi.org/10.1007/BF02960953
https://doi.org/10.1080/09500340.2017.1401679
https://doi.org/10.1080/09500340.2017.1401679
https://doi.org/10.1109/MCSE.2011.37
https://en.wikipedia.org/wiki/Runge-Kutta_methods
http://www.femm.info/wiki/HomePage
https://doi.org/10.1016/j.cpc.2016.09.011

Walker et al: ARBTools Art.12, page 5 of 5

How to cite this article: Walker, P, Krohn, U and Carty, D 2019 ARBTools: A Tricubic Spline Interpolator for Three-Dimensional
Scalar or Vector Fields. Journal of Open Research Software, 7: 12. DOI: https://doi.org/10.5334/jors.258

Submitted: 12 February 2019 Accepted: 27 March 2019 Published: 18 April 2019

Copyright: © 2019 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

OPEN ACCESSJournal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press.

https://doi.org/10.5334/jors.258
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Installation
	Usage
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	Software location
	Language

	(3) Reuse potential
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

