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Abstract

Predicting the assembly of multiple proteins into specific complexes is critical to the understanding 

of their biological function in an organism, and thus the design of drugs to address their malfunction. 

Proteins are flexible molecules, and this inherently poses a problem to any protein docking 

computational method, where even a simple rearrangement of the side chain and backbone atoms at 

the interface of binding partners complicates the successful determination of the correct docked pose. 

Herein, we present a means of representing protein surface, electrostatics and local dynamics within 

a single volumetric descriptor. We show that our representations can be physically related to the 

surface accessible solvent area and mass of the protein. We then demonstrate that the application of 

this representation into a protein-protein docking scenario bypasses the need to compensate for, and 

predict, specific side chain packing at the interface of binding partners. This representation is 

leveraged in our de novo protein docking software, JabberDock, which we show can accurately and 

robustly predict difficult target complexes with an average success rate of >54%, which is comparable 

to or greater than currently available methods.

Keywords: protein-protein interaction; protein docking; molecular dynamics; JabberDock; particle 

swarm optimisation; CAPRI
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Introduction

Most functions in an organism are governed by interactions of proteins with specific substrates. To 

achieve their task, proteins often form homo- and heteromultimeric complexes.  A plethora of genetic 

diseases are connected to mutations altering protein structures, and consequently their capacity to 

interact with their binding partners1. Consequently, a great body of research and development focuses 

on methods for the elucidation of protein structures. In this context, computational techniques devised 

to predict the complex formed when two proteins bind can be of great help. In silico techniques can 

often be significantly cheaper and quicker than experimental methods, and their predictive capability 

can be harnessed to guide subsequent targeted experiments.

Protein-protein docking is a highly complex optimisation problem, requiring the generation of a 

considerable number of candidate arrangements. To accurately discriminate between correct and 

incorrect docked poses, an accurate scoring function is essential. Typical scoring functions used in 

this context involve a set of non-trivial physical or empirical terms, combined with custom weightings. 

An ideal scoring function should feature minimum mathematical uncertainty while accounting for 

protein structure and dynamics. In order to navigate the landscape of possible conformations in search 

of the specific arrangements that minimise this scoring function, a highly efficient exploration method 

is also required. The two are intimately linked, with the scoring function guiding the behaviour of the 

navigator.

The simplest and most widespread approaches for protein-protein docking involve a global, 

systematic, rigid-body docking search. Typically, a large number of solutions are generated from a 

pair of static molecular structures2–4, and a scoring function is then used to identify the most 

favourable arrangement. Treating proteins as fully rigid objects, while simultaneously using a scoring 

function that accounts for the specific position of each atom, leads to a modelling process that is 

excessively sensitive to the specific packing of atoms at the interface. In order to cater to protein 

dynamics, alterations to how models are built or how the scoring function assesses a protein 
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arrangement are required. Possible strategies include: rigid-body docking of ensembles of structures5–

7, additional refinement stages that take place after rigid-body docking8,9, scoring functions that 

feature soft potentials to allow minor molecular overlaps10,11, pseudo coarse-grained protein 

representations12, docking subunits connected by potentials13, matching protein surfaces represented 

as a collection of patches14, using normal modes to account for flexible conformational switches15 

and relaxing the interface of docking poses using techniques such as molecular dynamics (MD), 

Monte Carlo (MC) or simulated annealing10,12,16. Some methods, such as HADDOCK17 and IMP18, 

feature scoring functions that utilise a combination of terms that describe physical interactions and 

penalise models that do not recapitulate available experimental data. Overall, two approaches are 

used to describe amino acid side chains at the interface. They are either represented explicitly, thus 

requiring the docking method to determine their correct packing, or their presence is described by 

means of pseudo-coarse-grained representations. The first method requires highly sophisticated 

optimisation procedures that may still yield suboptimal arrangements while the second usually 

ignores the uncertainty in the position of the side chains that comes naturally with any time dynamics. 

In this work, we describe a new protein volumetric representation, named Spatial and Temporal 

Influence Density (STID) maps, capable of simultaneously describing protein shape, electrostatics, 

and local dynamics (see Figure 1(c)). We demonstrate that complementarity of these isosurfaces can 

help create suitable solutions in a protein-protein docking scenario. While surface complementarity 

techniques have been used for many years19, the representations from STID maps are superior to any 

surface method used to date. STID maps inherently consider any side chain flexibility by using the 

general motion of atomic point charges in time as a building block for the model. We demonstrate 

that the key consequence of this is the retention of accuracy between identified docking models 

regardless of their difficulty. 

Our STID map-based scoring method is embodied in JabberDock, a protein de novo docking software. 

JabberDock explores the surface complementarity space of two binding partners by means of a 

Particle Swarm Optimisation (PSO) algorithm supplied by the POWer optimisation environment20. 
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POWer features a modified version of the PSO algorithm, explicitly adapted to prevent premature 

convergence and maximise the diversity of solutions.

Hereafter, we first outline the theory behind our protein representation method and then present a set 

of benchmarks aimed at testing the accuracy of our protein-protein docking method in line with the 

CAPRI blind docking competition guidelines21. Results demonstrate that JabberDock can return 

models matching the quality of top de novo docking algorithms currently available.

Theory

The following theory is built upon the principle that a volumetric map can consider both the structural 

and dynamical properties of a protein. It is constructed from the inherent motion of charged atoms 

via the time-averaged dipoles forming within a localised space. The complete methodology, 

represented in Figure 1, is summarized as follows:

1. The PDB file of a protein structure is input along with the desired atomistic force field.

2. The protein is immersed in a water box with Na+ or Cl– acting as counter-ions and 

automatically subjected to energy minimisation, followed by an MD equilibration and 

production protocol.

3. A dipole map is derived based on the produced MD trajectory.

4. The dipole map is converted into a 3-dimensional grid of points, each containing a pseudo-

atom with a characteristic van der Waals radius.

5. Each pseudo-atom is used to define a local Gaussian distribution, with a standard deviation 

determined by the van der Waals radius of the pseudo-atom.
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6. A volumetric map is produced by summing, on each grid point, the value of local and 

neighbouring Gaussians. The resulting map is finally normalised.  

From Protein Structure to Dipole Map

The overall dynamics of a protein emerge from a combination of slow large-scale motions and fast 

local rearrangements. We start by sampling the fast motions of the side chains by means of a short 

MD simulation. Consistent with experimental NMR evidence22, we have found that 500 ps is enough 

for this purpose (see supplementary data and Figures S1-2). We align the resulting protein trajectory 

according to the centre of mass of the molecule, and arrange it within a stationary, cubic grid, wherein 

each voxel is 1 Å across in x, y and z (a parameter determined quantitatively in a benchmark shown 

in Figures S3-5). We use this information to calculate local dipoles on each grid point. To this end, 

we are expanding upon the theory laid out by Kirkwood23, Fröhlich24 and Neumann et al.25, which 

describe the fundamental theory of dielectrics.

Following the Onsager theory of dielectric polarisation, we represent each voxel, v, as a spherical 

solute with volume, Vv, with an internal permittivity, εv, embedded within a uniform dielectric 

continuum with permittivity εEx. The charge distribution inside the voxel is that of several point 

charges, with a dipole associated with the centre. Point charges within the neighbouring voxels on 

each Cartesian edge and corner (i.e., a total of 26 neighbours, a quantity determined in a benchmark 

shown in Figures S3-5) are also associated with the central voxel. A sliding window is applied 

spatially such that a point charge at a time, t, will contribute to 27 different voxels in total. Given the 

fluctuations of the dipole moment of the solute, Mv, observed over the simulation in a voxel, it is 

possible to calculate εv.

The Fröhlich-Kirkwood model states that εv is a function of the probability distribution of the total 

dipole’s second moment, with Mv given by:
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𝐌v =
𝑁

∑
𝑖 = 0

𝑞𝑖,v𝐫𝑖,v  , (1)

where qi,v is the charge of atom i at distance ri,v from the geometrical centre of voxel v. N is the 

number of atoms that contribute to a voxel’s dipole moment. The charges are obtained from the force 

field used for the simulation. For a solute with a net charge, which most voxels have, Mv is dependent 

on the origin, thus the grid is fixed in time and space. Therefore, we can produce a dipole map 

delivering a representation of local vectorial electrostatic characteristics of a region of space occupied 

by a molecule (see Figure 1(b)).

From Dipole Map to Spatial and Temporal Influence Density Map

We can now leverage on the obtained dipole map to derive volumetric information on a molecule, i.e., 

a quantity that is easier to visualise and to use in a protein-protein docking context. To this end, it is 

necessary to convert its dipolar vectorial representation into a scalar quantity. Under the Fröhlich-

Kirkwood model, we can relate the fluctuations of each dipole moment, Mv, to the voxel’s dielectric, 

εv:

⟨𝐌v
2⟩ ― ⟨𝐌v⟩2

3𝜖0𝑉v𝑘B𝑇v
=

(2𝜖Ex + 1)(𝜖v ― 1)
2𝜖Ex + 𝜖v

 . (2)

Where Tv is the temperature in a voxel, which we approximate as the temperature of the system. 

Solving for εv:
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𝜖v =
1 +

⟨𝐌v
2⟩ ― ⟨𝐌v⟩2

3𝜖0𝑉v𝑘𝐵𝑇v

2𝜖Ex

(2𝜖Ex + 1)

1 ―
⟨𝐌v

2⟩ ― ⟨𝐌v⟩2

3𝜖0𝑉v𝑘𝐵𝑇v

1
(2𝜖Ex + 1)

 . (3)

Each εv value derived from the dipole map now encodes information on the local dynamics and atomic 

charges. Our next step is to convert the resulting dielectric map into a quantity that relates to a pseudo-

electron density. To do so, we place a pseudo-atom at the centre of each voxel and calculate its 

polarizability, αv, using the Clausius-Mossotti equation:

𝛼v =
3𝜖0

𝑁v (𝜖v ― 1
𝜖v + 2) , (4)

where Nv is the number density inside the voxel. Since Nv is derived from the number of pseudo-

atoms inside a voxel; i.e., one, we can simply set it as the inverse of Vv. αv can then be related to a 

van der Waals radius RvdW by a scaling relationship identified by Fedorov et al.26, based on the 

quantum Drude oscillator model:

𝑅vdW = 2.54𝛼v
(1 7) , (5)

where the constant 2.54 is a universal scaling factor between electron density and atomic volume at 

RvdW in atomic units. While Fedorov et al. note that a full derivation of this constant is still incomplete, 

they demonstrate that the relationship in Equation 5 gives theoretical quantities closer to experimental 

data than previous models based on classical hard-sphere representations.

The electrostatic and dynamic information encapsulated in the local RvdW values is now suitable to be 

transformed into a quantity encoding a pseudo-electron density. To this end, we assume that each 

pseudo-atom radius is equal to the full width at half maximum of a decaying function, here defined 

as a 3-dimensional Gaussian, with the maximum at the voxel’s centre. This allows each pseudo-
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electron density to ‘leak’ into neighbouring voxels, which is reasonable given that a central voxel’s 

behaviour is characterised by the atoms in its neighbourhood.  

Contributions from any Gaussians with a non-zero value present within a voxel are then summed, 

and the resulting map is finally normalised (an isosurface example is shown in Figure 1(c)), yielding 

a molecular representation we call Spatial and Temporal Influence Density (STID) maps. Because of 

this methodology, regions inside the protein’s conformational space that are visited often or are highly 

charged will have greater associated STID values. This property makes STID maps a useful 

representation in a protein-protein docking scenario, with the electrostatics arising from rapid side 

chain motions, often ignored with other docking software, now accounted for. 

Results

STID Map Cut-off Values and Solvent Accessible Surface Area of the Protein are Related

The global average STID, Davg., provides us with a direct comparison between the different structural 

and dynamic characteristics of a protein. The presence of both rigid and highly-charged regions within 

a protein contribute greater STID values to their respective voxels than a flexible or apolar residue. 

This is shown in Figure 2(a), where only the core regions of the protein are observed at greater 

isosurface cut-offs, but the more flexible regions can be seen at lower isovalues. Furthermore, we 

found that, while having a greater relative quantity of charged or polar residues did indeed increase 

the Davg., time-averaged dynamics and the structure had a considerably larger impact on the maps’ 

topography. 

We sought to determine whether a link exists between the characteristic Davg. of each protein and any 

of their physical quantities that are easily measurable. For this test, we select 118 proteins with various 

size, shape and secondary structure, and observed that the ratio between SASA and molecular weight, 
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Sm, is anticorrelated with Davg (see Figure 2(b)). The relationship could be fitted via a linear least 

square fit (Pearson correlation coefficient equal to -0.80):

𝐷avg. = 0.34𝑆m + 0.59 , (6)

Thus, each STID map is associated with a characteristic cut-off value, determined by the SASA and 

molecular weight of the protein. Important topographical features of the STID maps are entirely 

independent of the protein: core secondary structure features are always visible in and around an 

isovalue of 0.8, and highly charged atoms become isolated from the body of the protein at more 

stringent cut-offs beyond 0.9. This direct link between the structural characteristics of a protein and 

its associated volumetric isosurface’s shape makes STID maps an appropriate way of representing 

how a protein will be perceived by its immediate surroundings, such as a binding partner.

STID Maps are Effective to Score Protein-Protein Interactions

STID maps encapsulate information on the local dynamics of the atomic charges in a protein. This 

feature is particularly attractive in a protein-protein docking context, as it circumvents the need of 

determining the specific atomic position of each side chain at the interface between two binding 

partners. We, therefore, used this representation within a docking protocol, where the scoring function 

is determined by the surface complementarity of ligand and receptor STID map isosurfaces (see 

Methods). Benefitting from the fact that the structural characteristics reported by each STID map 

isovalue are protein-independent, we determined that an isovalue of 0.43 is the most appropriate to 

report on all electrostatic and dynamic features of any protein within our surface complementarity 

scheme (see benchmark in Figures S6-7). 

We implemented this calibrated STID map-based scoring into our de novo protein docking algorithm: 

JabberDock. The program utilised the PSO algorithm within the POWer environment to explore the 
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energy landscape associated with the arrangement of two binding partners, in search of the 

arrangement maximising our complementarity score. We assessed the performance of JabberDock 

against all the 230 test cases featured in the most recent iteration of the standard protein-protein 

interaction benchmark27 (6 cases excluded for the presence of non-standard amino acids). According 

to the RMSD between unbound and known bound state, 151 of these cases are classified as rigid-

body (easy), 45 as medium, and 34 as difficult (see Methods). To gather further information on the 

relationship between docking quality and the conformational change proteins undergo upon binding, 

we selected a diverse subset of 32 cases (20 easy, 7 medium and 5 difficult) that were also treated as 

bound cases. In these cases, the subunits used to predict the assemblies were proteins extracted from 

the known complex. We classified the quality of all our modelling runs according to the three CAPRI 

categories - acceptable, intermediate and high (see definition in Methods). Hereon, we qualify a test 

case as a success if at least one model in the top 10 ranked solutions is at least of acceptable quality. 

Against the 32 bound cases, JabberDock was successful in 85.0% of the easy, 71.4% of the medium, 

and 20.0% of the difficult cases. Challenged with the full unbound benchmark set, JabberDock 

yielded successful predictions for 56.3% of the easy, 60.0% of the medium, and 54.9% of the difficult 

cases. While no high-quality predictions were found for any of the test cases, intermediate quality 

results were found for 29.2% of the easy, 22.2% of the medium, and 25.8% of the difficult cases. 

Overall, these results indicate that JabberDock performance is mostly unaffected by the case difficulty 

(full details are provided in Table S1). These results compare favourably against four of the most 

commonly used protein-protein docking algorithms: SwarmDock15, pyDock28, ZDOCK2 and 

HADDOCK17. As reported by Vreven et al. while setting the benchmark set used in this work27, their 

acceptable success rate for rigid-body cases ranges between 31% and 50%, whereas for the medium 

and difficult cases substantially lower success rates (between 4% and 22%) are observed. Regarding 

intermediate success rates, 13 to 18% success rates are reported. It is only when considering the 

percentage of high-quality models, where success rates <6% are reported, that JabberDock is 

outperformed. 

Page 11 of 34

ACS Paragon Plus Environment

Journal of Chemical Theory and Computation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



The reason behind JabberDock’s consistent performance throughout cases of different difficulty lies 

in its ability to correctly identify interfacial amino acids. Indeed, while the RMSD of models versus 

the known complex is lower for cases with more flexible subunits, the average ratio of correct contact 

residues (fnat) remains nearly unaltered (Figures 3(b) and S8). The relationship between the number 

of candidate models selected from JabberDock’s ranked solutions and the resulting success rate 

features an initial steep gradient (Figure 3(c)). This indicates that the ranking of JabberDock’s first 

successful model is most likely to be high. Still, by increasing the number of candidate models to 

100, results with significantly smaller RMSD and higher fnat can be found (Figure S8).  Thus, while 

most successful models usually rank high according to our scoring function, better models may well 

be available when we consider a larger pool of solutions. For instance, in 98.6% of easy cases, our 

full datasets of 300 solutions always contain at least one acceptable pose (Figure 3(c)). 

By aligning each monomeric subunit to their counterpart in the complex and assessing the score 

achieved by such a pose, we observed that four of the easy and one of the difficult cases yielded 

scores higher than anything found by JabberDock (see Table S1). One example is the xyloglucan-

specific endo-beta-1,4-glucanase (PDB: 3VLB), where the two binding partners are highly 

interlocked. In this case, unsuccess was not caused by an unsuitable scoring function, but by an 

underperforming optimiser, which was unable to navigate into the complex binding site. Many of the 

successful unbound cases feature interlocked arrangements. In such cases, if the optimiser can 

identify the narrow set of roto-translation allowing the binding partners to interlock, the resulting 

model will have a high score. A successful example is that of the β-Lactamase TEM1 (PDB: 1BTL) 

– Ribonuclease A (PDB: 9RSA) complex, involving a significantly large and complex contact region, 

whereby almost the entire circumference of β-Lactamase’s STID map is buried (see Figure 3(a)). 

Unsuccessful cases, such as the Profilin – β-actin complex (PDB: 2BTF), most often feature a flat 

binding site. In these cases, the surface complementarity score alone struggles to discriminate 

between binding and non-binding regions due to a lack of characteristic surface features, and thus 

successful models do not rank high. Addressing these cases requires capturing additional properties 
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of protein-protein interactions. To this end, we explored the possibility of reranking JabberDock 

models accounting to the vectoral alignment of neighbouring dipoles at the interface via the dipole 

maps used to build the STID maps (see Supplementary Data). Preliminary results indicate that such 

a post-processing reranking, while not increasing the overall success rate, significantly improved the 

quality of poses for 12% of the dataset.

The most flexible model for which we had a successful prediction was the histone chaperone 

CIA/ASF1-double bromodomain complex (PDB: 3AAD), with an RMSD between known unbound 

and bound state of 4.37 Å. The 46 kDa complex formed by thioredoxin reductase (thioredoxin) and 

the NADP+ analogue AADP+ (PDB: 1F6M) was more flexible, exhibiting domain movements 

associated to an RMSD of 4.9 Å. As no top 10 model produced by JabberDock had an RMSD lower 

than 10 Å from the known bound state, this case was declared unsuccessful. However, a top 10 model 

featured a fnat of 0.419 (rank 7, see Table S1), indicating that the binding site was partially identified. 

Thus, while in terms of RMSD several cases were unsuccessful, JabberDock could still identify their 

binding site (see Figure 3b).

Following from this, an interesting unbound case is that of the UBA domain from Cbl-b ubiquitin 

ligase (PDB: 2OOA), a small 11 kDa protein. Although it is crystallised as a homodimer, it is its 

monomer that participates in the formation of a heteromultimer (PDB: 2OOB) with ubiquitin. 

Simulating a 2OOA monomer and using its associated STID map within JabberDock to predict the 

2OOB complex yielded no successful results. On the other hand, generating a STID map using a 

monomer extracted from the simulation of its dimer gave intermediate quality results. This indicates 

that the dynamics of a Cbl-b ubiquitin ligase as part of a homodimer or a heteromultimer were similar, 

and this similarity could be harnessed to improve the predictive power of our surface complementarity 

scoring. This approach was also tested with the significantly larger Integrin I domain of complement 

receptor 3 complex (PDB: 4M76), but in this scenario, no good pose was found. Thus, protein docking 

involving small proteins, and possibly very flexible ones, may benefit from information about their 

bound dynamics extracted from other known complexes these proteins are part of.
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Discussion and Conclusion

We have presented STID maps, a strategy to represent how a molecule is perceived by its immediate 

surroundings. Our physical formalism encompasses the localised electrostatic nature of the space 

occupied by a molecule, and the dynamics of the protein itself, into a series of local dipole vectors, 

which is ultimately cast into a volumetric representation. 

We have demonstrated that the average STID quantity of each protein is linearly anticorrelated with 

the ratio between protein SASA and molecular weight, Sm, and that typical structural elements are 

always discernible at the same isovalue, independently from the protein under study (Figure 2(b)).  

This means that proteins with similar mass and aspect, but different secondary structure will have a 

different Davg. value. This is because different secondary structure elements contribute to the STID 

voxel system in different ways, determined by their characteristic structure and dynamics. For 

instance, a greater number of unstructured coils will produce a greater number of occupied voxels as 

the protein explores a relatively greater region of the available space, but these will have smaller 

associated non-zero STID values, decreasing Davg. In previous electron density modelling and 3D 

reconstruction software yielding volumetric representations, choices of isovalue cut-off to display 

isosurfaces have been arbitrary29. Their choice is often chosen based on what is deemed by the authors 

to be most appropriate for the work, with no clear link made between a defining characteristic of a 

protein and the isosurface shown. In contrast, this work has shown that our STID map-based 

representations can be directly related to a physical, and easily measurable quantity.

We have then shown that STID maps representations are suitable for the definition of an accurate 

protein-protein docking scoring function. To this end, we have performed a comprehensive set of 

benchmarks to determine the optimal value of each parameter required for the construction and usage 

of STID maps for protein docking. The results show that JabberDock can provide predicted 

complexes on par with a competitive range of blind protein-protein docking software and is highly 

robust across a range of difficult cases – an achievement not observed in other docking algorithms. 
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The strength of JabberDock to yield comparable results across the dataset indicates that the ability of 

the STID maps to encapsulate high-frequency atomic motions accommodates for different amounts 

of flexibility in interacting proteins. In case of complexes characterized by flat and relatively 

featureless binding sites, the surface complementarity function is likely to fail in highlighting a single 

most suitable docking position. On the other hand, when an interface is exceedingly complex, small 

perturbations about the docked pose are likely to lead to clashes, hindering the optimiser in its 

exploration of this region of the energy landscape. These represent JabberDock’s boundary conditions. 

The successful (and most typical) docking cases feature topographical complexities that enable both 

the scoring function and the optimiser to work harmoniously and effectively. This is the significant 

middle ground where the coupling of POWer and STID maps provide excellent results, as indicated 

by the prediction of accurate protein complexes for most of the benchmark. These observations are 

expected to hold for any complex not requiring refolding or domain-level movements at the interface 

between binding partners.

JabberDock utilises two individual PDB files with a well-parameterised force field to generate STID 

maps. These are used to guide the docking process, at the end of which all candidate models, typically 

several thousand, are clustered and returned to the user (in this work, 300 solutions are returned). The 

models themselves are built using the last snapshot from the pool of conformations explored by the 

binding partners in their respective MD simulations. Combinations of other conformations within the 

monomers’ simulations (see Figure S9), and dimeric arrangements within the full collection of 

candidate assemblies may be closer to that found in the crystallised bound state. In future versions of 

JabberDock, we will explore the possibility of leveraging on this additional source of structural 

information to provide the user with more accurate models.

We have observed that using a protein’s STID map reporting on its dynamics when bound to an 

alternative complex can improve JabberDock’s performance. While our benchmark shows that 

docking proteins represented by the STID map of their monomeric state yield a good number of 

successes, more accurate predictions may be obtained by harnessing the dynamics of the bound 
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complex. Other areas of future investigation will include the adoption of different functions as a 

model for the pseudo-electron density (e.g., a Lorentzian), using JabberDock for rescoring models 

predicted by other protein docking methods, a reranking process building upon our preliminary results 

on the usage of a dipole complementarity score, the use of a different atomistic forcefield (including 

a polarizable one) to explore the impact on the STID maps, and an additional post-processing step 

based on MD or MC techniques to refine the best docking poses. In this context, we also foresee that 

the use of optimisation algorithms requiring no weighting could be beneficial30.  Overall, 

enhancements in the scoring function and solutions reranking will help improve the performance of 

JabberDock against cases with low interface complexity, whilst refining the optimisation engine will 

reinforce its performance against cases with highly complex ones.

Supporting Information

 Analysis of side chain motion convergence during MD simulations; determination of voxel 

size parameters for STID maps; benchmark on the best choice of isovalue for the STID map 

and cut-off for the distance between two surfaces during docking; mathematical details for 

the dipole alignment re-ranking method that can be employed; information on computational 

resources used and associated execution times; analysis of the quality of the best docked pose 

within the top 100 results for each protein; analysis of RMSD variation observed during the 

MD simulations; comparison of docking score vs RMSD and fnat for three example protein 

complex cases; analysis of relationship between mass of protein complex and time to complete 

the POWer optimisation search; Figures S1-10 (file: Supp_Info.pdf).

 Table of results for all cases in the protein docking benchmark. It contains, for each of the 

easy, medium and difficult cases (and a subset of bound cases therein): the highest ranking 

acceptable and intermediate results (shown in Figure 3); the lowest RMSD in the top 10 poses, 
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with corresponding rank, fnat and interfacial RMSD; the largest fnat in the top 10 poses, with 

corresponding rank, RMSD and interfacial RMSD (file: Table_S1.xlsx).

This information is available free of charge via the Internet at http://pubs.acs.org.
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Methods

Molecular Dynamics

All simulations are run on the Gromacs31 molecular dynamics engine, with Amber14sb force field32. 

Systems are prepared by immersing the protein of interest in a TIP3P water box, neutralised with Na+ 

or Cl– counterions. The system is then energy minimised using a steepest descent algorithm, with a 

tolerance threshold set to 200 kJ mol–1 nm–1. The initial step size is set to 1 pm, the maximum number 

of allowed steps to 5 × 106. The cut-offs for both Coulombic and van der Waals interactions are set 

to 1.2 nm.

The protein is then equilibrated for 500 ps within a canonical ensemble, with T set to 310.15 K with 

2 fs step size, and the constraint algorithm LINCS applied to the bonds33. A particle mesh Ewald 

summation is used to treat long-range interactions, and a velocity-rescale temperature coupling 

method applied separately to protein and non-protein atoms, the coupling constant is set to 0.1 ps. 

Velocities are randomly assigned from a Boltzmann distribution of velocities at T. 

Finally, production occurs over a 500 ps timescale, for reasons shown in Figure S1, in an isothermal-

isobaric ensemble. T is set as above; the pressure is set to 1 bar. Berendsen temperature and pressure 

coupling methods are used, again keeping the protein and non-protein groups separate. The 

temperature coupling is as above, with the pressure coupling constant set to 10 ps. The compressibility 

for both is set to 4.5 × 10–5 bar–1. Atomic coordinates are saved every 5 ps.

Particle Swarm Optimisation

An initial starting point with the two input monomers’ centres of mass centred at the origin is used 

prior to generating any models. JabberDock uses a seven-dimensional space for implementation 

comfort when roto-translating the STID maps. Three dimensions define ligand translation in the 

Cartesian space, three dimensions define an axis of rotation for this ligand, and one dimension defines 
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a rotation angle around this axis. Translation values are limited by the size of the receptor, the axis of 

rotation is normalised (and thus has values ranging from -1 to 1), and the rotation angle in radians 

ranges between 0 and 2π.

In order to navigate the potential energy surface (PES) associated with the scoring function (see next 

section) and produce an ensemble of possible docked poses, JabberDock leverages a distributed 

heuristic global optimization algorithm featured in the POWer optimisation environment – particle 

swarm optimisation “kick and reseed” (PSO-KaR). 20 PSO-KaR was used to explore the PES over 

300 iterations using 80 randomly initialised agents (“particles”). According to the “kick and reseed” 

procedure, particles converging to a local minimum (i.e. with a velocity decaying to less than 4% of 

the search space dimension in each direction) were randomly restarted, and a repulsion potential 

placed at their convergence location. The whole optimization process was repeated three times, with 

the memory of previous repulsion potentials retained from one repetition to the next. In sum, this 

docking procedure requires the evaluation of 72000 docking poses. To obtain a diverse ensemble of 

solutions, 300 poses were finally selected as representatives from the pool of poses having a positive 

score using a K-means clustering algorithm on the 7-dimensional coordinates associated with each 

model.

JabberDock’s Scoring Function

JabberDock uses a surface complementarity assessment that takes advantage of the STID maps to 

generate the PES explored by the particle swarm optimisation algorithm implemented in the POWer 

optimisation engine. 

Following a roto-translation of a model requested by the optimiser, a quick test is first performed to 

identify poses featuring no contact, or unphysical atomic overlaps between the ligand and the receptor. 

Suitable poses, featuring a negative Lennard-Jones potential between the alpha carbon atoms of 
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receptor and ligand, are scored according to their surface complementary S. The shape of the 

isosurfaces analysed by JabberDock are determined by an isovalue cut-off, an appropriate value of 

0.43 was chosen based on the benchmark discussed in Figures S6-7. The score between the STID of 

the receptor and that of the ligand is given by:

𝑆 =
{𝑆AB} + {𝑆BA}

2   , (7)

where the curly brackets indicate that we used the median of the score for protein A into B and vice 

versa, where the scores are given by:  

𝑆AB = (nA ⋅ n′B)exp( ―𝑤|xA ― x′A|2)𝜈A

𝑉A
  , (8)

where nA is the normal from a region of interest on A’s surface, nB’ the anti-normal from the closest 

point on B to that point on A. w (0.5 Å–2) is an arbitrary weighting found by Lawrence & Coleman34, 

|xA – xA’| is the physical distance between the two points. νA is the total number of successful contact 

points on A in contact with B inside some arbitrary distance cut-off, an optimal cut-off of 1.6 Å was 

chosen based on the work discussed in Figures S3-5. VA is the total number of points describing the 

surface of A. These last two terms are used to avoid minor contact points providing good scores. The 

larger S, the better the fit, thus the optimiser is set up to maximise the score. Only positive scores are 

accepted by POWer. Figure S10 provides examples of how these scores match with a corresponding 

RMSD and fnat for three complexes. 

STID benchmark

118 non-redundant proteins (maximum 30% homology) were extracted from the PDB-REDO 

databank34. All structures were soluble proteins featuring solely standard amino acids, none required 

the application of a biomatrix, and all were composed of more than 30 amino acids.
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The SASA of each structure in the benchmark set was calculated using the Shrake-Rupley algorithm35, 

with the solvent probe radius set to 1.4 Å to represent that of water. For each protein, we report the 

average SASA over 500 ps production cycle (one structure every 5 ps, excluding the first 50 ps). 

Molecular weights were calculated accounting for all atoms present in the atomic structures.

Case Difficulty Classification

Protein-protein docking cases are classified under three levels of difficulty which is associated with 

their flexibility, and RMSD difference between the Cα atoms at the interface after superposing the 

bound and unbound interfaces. Cases can be classified as either rigid-body (or easy), medium 

difficulty or difficult. Easy cases are those with minimal difference between the unbound crystallised 

structures and the bound: usually < 1 Å difference. In medium cases, the RMSD difference is between 

1 Å and ~ 2.5 Å. Finally, difficult cases can be anything greater than 2.5 Å. Thus, the difficult cases 

are accordingly significantly more difficult than the other two, particularly given that the 

requirements for an acceptable success are close to the upper boundaries that define the difficult cases. 

Assessment of Models Accuracy

We use three metrics to determine the quality of a model: the ratio of correct contact residues (a valid 

contact defined as an atom within 5 Å of the binding partner) to the number of residues in the 

predicted complex, fnat, the RMSD between the alpha carbons of the known crystal pose and the 

predicted pose, and the RMSD of the two poses between the alpha carbons at the interface (defined 

as within 10 Å of the binding partner). CAPRI guidelines specify four levels of possible success 

criteria: (1) incorrect, where RMSD > 10.0 Å and interfacial RMSD > 4.0 Å OR fnat < 0; (2) acceptable 

quality, where RMSD ≤ 10.0 Å or interfacial RMSD ≤ 4.0 Å and 0.1 ≤ fnat < 0.3 OR fnat ≥ 0.3 and 

RMSD > 5.0 Å and interfacial RMSD > 2.0 Å; (3) intermediate quality, where RMSD ≤ 5.0 Å or 
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interfacial RMSD ≤ 2 Å and 0.3 ≤ fnat < 0.5 OR fnat ≥ 0.5 and RMSD > 1.0 Å and interfacial RMSD > 

1.0 Å; (4) high quality, where RMSD ≤ 1.0 Å and interfacial RMSD ≤ 1.0 Å and fnat ≥ 0.5. The 

protocol for applying this list of inequalities follows the order provided, beginning with defining the 

incorrect predictions. In the text, we qualify the result of a test as of high, intermediate or acceptable 

quality if at least one in the top 10 ranked models matches the criteria above.

Software implementation

Software to generate STID maps is developed in Python, using numpy, scipy and cython packages. 

An automated bash script that prepares all the necessary Gromacs files and runs them is used to 

generate the trajectories. JabberDock is implemented as a POWer Python module. All software is 

freely available at github.com/degiacom/JabberDock. 
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Figure 1: The pipeline for the generation of the STID maps. (a) Superimposition of multiple 

structures from the molecular dynamics simulation of Ribonuclease A (PDB: 9RSA), coloured by 

secondary structure (alpha helices as blue, 310 helices as light purple, beta sheets as red, unstructured 

coils as white and turns as grey). (b) Superimposed dipole map generated from the simulation. For 

clarity, only dipoles greater than 0.8 D are shown (c) The final STID map, derived from the dipole 

map.
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Figure 2: (a) Ribonuclease A (PDB: 9RSA) embedded in its associated STID map. Two isosurface 

selections are shown. The transparent isosurface, at an isovalue of 0.43, shows how the local side 

chains contribute to the isosurface’s topography. The opaque one, at 0.8, illustrates primarily the core 

secondary structure features and charged residues. (b) Bottom left: Variation of average non-zero 

STID value versus the protein’s SASA divided by its molecular weight (shown in palatinate). The 

fitted grey line was found via a linear least square fit, with a Pearson correlation coefficient of -0.80.  

Top: Residual between the points and the fitted line. Bottom right: Representation of the points as the 

STID average against number density in palatinate, with a non-linear least square fitted Gaussian 

shown in grey.  
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Figure 3: (a) (1) The STID map of two binding partners is calculated using their respective MD 

simulations. (2) The STID map representation of both binding partners is leveraged by JabberDock, 

our de novo protein docking algorithm, to accurately predict the complex. The image shows the 

intermediate quality model of Ribonuclease A complexed with its inhibitor (PDB: 1DFJ). (b) Quality 

of best models within the top 10 results for every docking case. For each case, the lowest alpha carbon 

RMSD between prediction and crystallised complex is presented, against their associated native 

residue fraction (fnat). Point colours indicate the case difficulty, while the dark to light shaded regions 

represents the criteria for high, intermediate and acceptable quality results, respectively. Thus, a point 

landing in one of these regions indicates that the corresponding success was found within the top 10 

ranked JabberDock solutions. The top and right adjoining subplots show, respectively, the 

distribution of RMSDs and fnat across the models. (c) Percentage of test cases yielding an acceptable 
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(top) and intermediate (bottom) success, as a function of the number of ranked structures considered 

as candidate models. Data is reported independently, in different colours, per case difficulty. The 

region corresponding to the top 10 models is shaded and magnified in the insets. In this region, 

JabberDock’s success rate is consistent versus easy, medium and difficult docking cases. In the larger 

pool of 300 models, an acceptable solution is always found for the easy cases. 
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