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Featured Application: Modeling the spatial distribution of PM2.5 with personal monitors and an
LUR approach may be useful for local authorities to make accountable public policy decisions.

Abstract: In this study, the spatial distribution of PM2.5 air pollution in Mexico City from 37 personal
exposures was modeled. Meteorological, demographic, geographic, and social data were also
included. Geographic information systems (GIS), spatial analysis, and Land-Use Regression (LUR)
were used to generate the final predictive model and the spatial distribution map which revealed two
areas with very high concentrations (up to 109.3 µg/m3) and two more with lower concentrations
(between 72 to 86.5 µg/m3) (p < 0.05). These results illustrate an overview trend of PM2.5 in relation
to human activity during the studied periods in Mexico City and show a general approach to
understanding the spatial variability of PM2.5.
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1. Introduction

Air pollution is a well-known health problem affecting several mega cities, especially those in
low- and middle-income countries where more than 80% of the population is exposed to dangerous air
quality levels, which frequently exceed the World Health Organization’s (WHO) air pollution guideline
limits [1].

Human exposure to air pollution is a major concern due to the related health effects, especially
when the pollutant in question is PM2.5, since it can originate from different sources at various sites
with a composition of a wide variety of chemical substances [2].

In Mexico City (formerly Distrito Federal), there is a severe air pollution problem due to the
presence of several diverse factors: (a) its geographical situation in the lacustrine plain of an endorheic
basin [3]; (b) its average altitude of 2240 m above sea level (masl) in its central part; (c) it is surrounded
by mountains with an average height of 1000 m above the basin level; and (d) unpredictable but frequent
meteorological phenomena that affect the environment (e.g., volcanic ash clouds, hurricanes, droughts,
floods, wildfires). Furthermore, (e) its demography aggravates the problem with its 16 boroughs
(geographical and governmental units within Mexico City) with an uneven population density [4];
(f) the overpopulation phenomenon has increased the number of automobiles by more than three
times—from 1,869,808 in 1980 to 5,725,574 in 2016—thus incrementing traffic and also the sources of
PM2.5 pollutants [5] (Figure 1).
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Figure 1. The geography of the Metropolitan Zone of the Valley of Mexico (MZVM). 
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[7], and a new regulation on PM2.5 [8]. Nevertheless, ten environmental contingencies were registered 
in 2016 [9]. The first epidemiological studies evaluating health problems related to air pollution in 
Mexico City [10–13] were made with ambient monitors. More recently, studies have been carried out 
following a personal monitoring method [14,15]; PM2.5 started to be measured in some stations of 
Mexico City’s automatic air quality monitoring network (Red Automática de Monitoreo Atmosférico, 
or RAMA) in 2004 [16]. 

Land-use regression (LUR) models developed by Briggs [17] have been successful in describing 
the spatial variations of pollutants. They also offer more advantages than other approaches because 
of the statistical relation between the pollutant concentration and the sites where pollutants are 
monitored, which could also be established with other factors such as population density, traffic, 
altitude, and weather conditions, amongst other aspects. This analysis has been used in Europe 
[18,19] and the United States to model air pollution exposure [20,21] and, more recently, in Asian and 
Middle Eastern countries like China [22,23], Iran [24], and India [25]. However, it has never been used 
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There is plenty of scientific information regarding air pollution problems in Mexico City; 
nonetheless, inhabitants’ personal exposure to PM2.5 air pollution has yet to be evaluated. Land-use 
regression models have been used to analyze air pollution spatial distribution using ambient 
monitors, although inhabitants’ exposure may still be questionable. [25,26] Land-use regression 
models have also been estimated with personal measurements of air pollution which could be better 
indicators of exposure since the analysis includes information about the inhabitants’ daily activities 
related to sources of air pollution in indoor environments [19,27]. 

The purpose of this study was to model the spatial distribution of PM2.5 air pollution with 
personal measurements of PM2.5 using Geographic Information Systems (GIS), a land-use regression 
approach, and indirect measurements of road speed limits (RSLs), as well as population density, 
weather conditions, topographic characteristics, and the Normalized Difference Vegetation Index 
(NDVI) [28]. 
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Several measures have been taken since 1990 to deal with the air pollution problem in Mexico City:
compulsory use of catalytic converters, introduction of unleaded fuel [6], the recent creation of the
Environmental Commission for the Megalopolis (Comisión Ambiental para la Metropolis CAMe) [7],
and a new regulation on PM2.5 [8]. Nevertheless, ten environmental contingencies were registered
in 2016 [9]. The first epidemiological studies evaluating health problems related to air pollution in
Mexico City [10–13] were made with ambient monitors. More recently, studies have been carried out
following a personal monitoring method [14,15]; PM2.5 started to be measured in some stations of
Mexico City’s automatic air quality monitoring network (Red Automática de Monitoreo Atmosférico,
or RAMA) in 2004 [16].

Land-use regression (LUR) models developed by Briggs [17] have been successful in describing
the spatial variations of pollutants. They also offer more advantages than other approaches because of
the statistical relation between the pollutant concentration and the sites where pollutants are monitored,
which could also be established with other factors such as population density, traffic, altitude, and
weather conditions, amongst other aspects. This analysis has been used in Europe [18,19] and the
United States to model air pollution exposure [20,21] and, more recently, in Asian and Middle Eastern
countries like China [22,23], Iran [24], and India [25]. However, it has never been used in Mexico City.

There is plenty of scientific information regarding air pollution problems in Mexico City;
nonetheless, inhabitants’ personal exposure to PM2.5 air pollution has yet to be evaluated. Land-use
regression models have been used to analyze air pollution spatial distribution using ambient monitors,
although inhabitants’ exposure may still be questionable [25,26]. Land-use regression models have
also been estimated with personal measurements of air pollution which could be better indicators
of exposure since the analysis includes information about the inhabitants’ daily activities related to
sources of air pollution in indoor environments [19,27].

The purpose of this study was to model the spatial distribution of PM2.5 air pollution with
personal measurements of PM2.5 using Geographic Information Systems (GIS), a land-use regression
approach, and indirect measurements of road speed limits (RSLs), as well as population density,
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weather conditions, topographic characteristics, and the Normalized Difference Vegetation Index
(NDVI) [28].

2. Materials and Methods

2.1. Participants and Meteorological Variables

The study was carried out between April and August 2002. Thirty-seven participants were included
their personal exposure monitors to PM2.5 were used, and they represented the first measurement of
PM2.5 air pollution in Mexico City. Exposure was measured using a pDR nephelometer calibrated
according to technical information [29].

Personal exposure periods were selected if the address was available and had a duration of at least
1 and half hours, then by means of participants’ written diaries. PM2.5 exposure periods were classified
as “daytime” from 11:00 to 12:30, and included 12 measurements, whereas those between 21:30 and
23:00 were classified as “nighttime” and included 25 measurements. Moreover, measurements were
also classified as within indoor or outdoor microenvironments in 30 min periods, thus, home or office
addresses were geo-localized as described below. No measurements were taken during weekends. All
participants lived in Mexico City in 13 of the 16 boroughs (see Figure 1). A detailed specification of the
equipment and the sampling method utilized in this research have been published elsewhere [30].

Average annual measurements of meteorological variables, such as relative humidity (RH, %),
temperature (TEMP, ◦C), wind speed (WSP, m/s), and wind direction (WDR, the azimuth direction
from which it originates) were taken from the meteorological network stations [31] located in the
areas closest to the participants’ addresses (distribution by geographical location of annual average
relative humidity and temperature is shown in Supplementary Materials Figure S1). Since pDR
measurements can be biased with an RH above 70%, the information was double-checked on the days
PM2.5 was measured and RH was lower than 70% according to RAMA [32–34]. Several measurements
were close to each other; thus, the median was calculated to improve the locations and reduce the
sample redundancy.

Weather conditions and PM2.5 personal measurements were compared between daytime and
nighttime and simultaneously among geographical locations. A non-parametric method was used
(Friedman test) since data distribution was different from the normal standard (Shapiro–Wilks p < 0.05).
Data are presented as median (interquartile range (IQR)). Statistical significance was considered with a
p-value > 0.05.

2.2. Geographic Information System

The PM2.5 personal exposure data were placed into a database containing the address of each
participant where the samples were taken; the coordinates of these locations were obtained using
Google Earth geocoding. With this database, each pair of coordinates was transformed into a point
using ArcGIS 10 [35]; subsequently, a series of interpolated surfaces was generated with the extension
Geostatistical Analyst and Spatial Analyst.

2.3. Raster Data and Interpolation

Annual average values of RH, WDR, WSP, and TEMP were interpolated using the Inverse Distance
Weighting (IDW) method [36,37]; the resulting maps were standardized using a pixel resolution of
500 m. A smooth surface was needed along with the preservation of the original average values.
According to the Red de Meteorología y Radiación Solar (REDMET), the stations are strategically
distributed across the basin; therefore, the distribution of points and the distance between them were
expected to be even (geographical location of the REDMET stations are provided in Supplementary
Materials Figure S1). Inverse distance weighting (IDW) assumes that each measured point has a local
influence that diminishes with distance. It gives greater weights to points closest to the predicted
location, and weights decline as a function of distance [36,37]. This principle fits perfectly with this
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kind of data since what was sought was not the identification of a trend, but a continuous hypothetical
surface based on the accumulated average values throughout a year.

An interpolated surface was generated specifically for PM2.5 to create the dependent variable
map. We created a simple IDW interpolation just to show the raw values of PM2.5 graphically.
Nonetheless, an ordinary kriging interpolation method was used for analysis. Kriging has been
tested several times to measure its reliability as a predictor and can accurately predict unknown
values of a limited sample when contrasted to a set of known values, especially when the samples
are randomly distributed [36,38–40]. Kriging assumes stationary data, as in “the condition that the
probability of distribution of the variable is constant in time and/or space, meaning that the same
function of distribution probability could be expected anywhere and anytime” [41]. Due to the uniform
distribution of the particulate matter, it was presumed to be stationary since the sources of pollution
are located in fixed places, namely, roads, factories, houses, and public places. Therefore, the function
probability of these variables withholds its properties [42]. For example, it is more likely for the
surrounding area of a factory to be more contaminated than a place far away from it, which is the
underlying approach of autocorrelation. Accordingly, an interpolated map was produced using the
37 PM2.5 samples; in order to generate a better understanding of the spatial variability in PM2.5, if a
particular point had two different measurements (day or night), it was decided to use the one with the
highest value of PM2.5. It has been noticed that high values of ambient PM2.5 concentrations do not
necessarily reflect peaks of exposure [26,43,44]. We wanted to capture these high values, measured per
personal monitor, to consider a hypothetical and possible acute toxic effect for further focused research.

The nature of PM2.5 implies the use of anthropogenic and topographic data to evaluate the
relationship between the particles and the location of human activities [45]. It was assumed that the
higher the RSL, the higher the values of PM2.5 in the surrounding areas would be due to the way traffic
behaves [45]. Therefore, road line data were used to approximately reflect this variation and produce
a continuous surface for the RSL [4]. The lines of the roads were transformed into points separated
every 250 m, which were then interpolated using IDW with a resolution of 500 m. Hence, buffered
zones of the average speed value were used rather than fixed values. In the case of population density
(PD), the 2005 census was used [46] in addition to the electoral sections (Geoelectoral Census Statistics)
Estadísticas Censales a Escala Geoelectoral [46], since these were the most accurate sources available
that fulfilled our purpose. The centroid of each electoral section was extracted and given the value
of each polygon; then, an IDW interpolation was performed. Inverse distance weighting as used to
reflect data fuzziness due to the discrete nature of roads and districts.

The digital elevation model, which had already been interpolated from the original Shuttle Radar
Topography Mission (SRTM) source [47], was resampled to fit the 500 m resolution and used to produce
the slope and aspect maps. A map was created showing the incidence of wind over a surface (WIOS);
it combined the wind direction and the aspect maps since the values of the former were in degrees and
continuous data were needed to achieve better results with the canonical analysis. A raster file was
created to detect the incidence of the wind (wind direction) over a particular surface (aspect). The
windwards and leewards were identified and assigned a value depending on the angle of incidence of
the wind in contraposition to the aspect:

(a) A value of 0 meant that the wind ran in the same direction of the surface (leeward). Concerning
the contaminants, no deposits were assumed.

(b) A value of 1 meant that the angle of incidence of the wind according to the surface was parallel
and there could be either erosion or deposition.

(c) A value of 2 meant that wind impacted on the surface at angles between 30 and 60 degrees; that
is, oblique. High deposits and less erosion were expected.

(d) A value of 3 meant that the wind impacted the surface perpendicularly, that is, in angles, close
or equal to 90 degrees (windward). It was considered a surface where the possibility of high
deposition of contaminants exists. (Detailed information on the geographic, demographic, and
meteorological variables used is provided in Supplementary Materials Table S1).
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2.4. Multivariate Analysis

A matrix of the product–moment correlation coefficient (Pearson’s) was created to identify which
variables were correlated, as in how much of the variance was shared among them; those with
the strongest correlation coefficients (more than ±0.4) were separated into two groups. Due to the
geographical, social or meteorological conditions, in some cases, it was better to keep them together
even if they were highly correlated (e.g., slope and temperature) (the Pearson’s correlation coefficients
are detailed in Supplementary Materials Table S2). This analysis helped us to decide how to arrange
variables for the canonical correlation analysis. The RSL was included even though its correlation
coefficient was lower than 0.40 because of the well-known relationship with PM2.5 air pollution [45].

The canonical correlation analysis correlates simultaneously with both metric and non-metric
variables. Its strength relies on the possibility to correlate two sets of variables. Canonical correlation
analysis facilitates the study of linear interrelationships among two sets of variables [48].

In this case, the first set of canonical variables were altitude, RH, NDVI, WIOS, and WSP (p) (X1,
X2, . . . Xp), and the second set of variables were PD, slope, TEMP, and RSL (q) (Y1, Y2 . . . Yq).

The main objective of canonical correlation is to identify the r lineal combinations within the
first variables.

U1 = a11X1 + a12X2 + . . . + a1pXp

U2 = a21X1 + a22X2 + . . . + a2pXp

Ur = ar1X1 + ar2X2 + . . . + arpXp

(1)

and within the second variables:

V1 = b11Y1 + b12Y2 + . . . + b1qYq

V2 = b21Y1 + b22Y2 + . . . + b2qYq

Vr = br1Y1 + br2Y2 + . . . + brqYq

(2)

The most significant correlation coefficient will be shown between U1 and V1. The second one
will be between U2 and V2 under the condition that there is no correlation between U1 and U2, and
between V1 and V2. Finally, the third most significant correlation will be shown between U3 and V3
and, as previously mentioned, there should be no correlation between U3 and U1 and U2, and between
V3 and V1 and V2. These combinations are called the canonical variables.

The raw canonical coefficients, which define the linear relationship among the variables, can be
interpreted in the same way as regression coefficients [49], so they were used to create a predictive
surface to identify where the occurrence of contaminated sites was more likely to occur. The aim was
to know the effect that the estimated linear coefficients of the proposed variables have over each other,
thus providing a general adjustment (canonical coefficients are detailed in Supplementary Materials
Table S3).

Geographic Resources Analysis Support System-Geographic Information System (GRASS GIS) [50]
was used to create the predictive surface and to produce a series of cross-tabulate tables (r.stats module)
among all the predictors using data points from personal PM2.5 exposures.

The predictive surface map was created using map algebra, where each linear coefficient from
the canonical model multiplies its related predictor variable using a simple linear predictor function
f (i), which is the final estimation resulting from the combination of the predictor variables and the
PM2.5 concentration:

f (i) = β0 + β1xi1 + · · · . + βpxip + e (3)

where β0 is the intersection that, in this case, is the value of the concentrations of PM2.5 in the
interpolated surface; 1 . . . p are the linear coefficients of the canonical correlation analysis indicating the
relative effect of a particular predictor on the outcome [49]. For instance, if the predictor variable was
the RH, then each interpolated pixel with a given value for RH was multiplied by its own coefficient.

In order to have an estimated value of PM2.5 driven from the linear function used for the
construction of the map of the spatial distribution of PM2.5, normalized values were calculated with
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the largest concentrations of PM2.5 obtained from the kriging interpolation (122.4040) and from the
linear function of the multivariate analysis (109.64) with the following formula:

Normalized values of PM2.5 =
(122.4040 × Values of PM2.5 estimated by the linear function)

109.64

The internal validity of the final predictive surface was tested first by generating a cross tabulation
to extract the raster values from the Ordinary Kriging model; then, the RMS of the adjusted model and
the residual error were estimated. Performance between original samples, ordinary kriging estimates,
and fitted values from the predicted surface were evaluated with Boostrap and K-fold cross validations.

3. Results

3.1. Comparison of the Ambient Distribution of Meteorological Variables and PM2.5 Air Pollution within Each
Borough between Day and Night

Annual average RH and TEMP are shown in Supplementary Materials Figure S1. Relative
humidity (RH) as well as TEMP obeyed seasonal variations during the year. Relative humidity showed
minor variations throughout Mexico City’s territory; however, it was lower during the dry season,
rising up to 99% during the rainy season. The TEMP had similar behavior, with temperatures relatively
constant along the year with small variations (14 to 16 ◦C); however, for some days during the winter,
temperatures could drop to 0 ◦C or rise up to 31 ◦C during the spring.

Regarding the wind, its predominant direction (WDR) was from north to south/southeast. Yet,
another pattern was identified from north and northwest where the winds seemed to blow towards
the northeast. In the south, the wind’s direction was also from north to south. Average wind speed
(WSP) along the year was relatively constant, ranging from 0.0019 to 3.72 m/s depending on the season
(graphical information on wind direction is provided in Supplementary Materials Figure S2).

Throughout the period of this study, fewer variations were identified apart from the obvious
differences in the weather conditions between day and night. In general, nights were more humid
(RH 71.1% (65.5–79.9%)) and cooler (TEMP 16.3 ◦C (14.8–16.8 ◦C)) than days (RH 54.1% (45.4–61.3%)
and TEMP 19.7 ◦C (18.3–21.1 ◦C)). The WSP varied more during the night (1.5 m/s (0.95–2.3 m/s)) than
during the day (1.2 m/s (1.1–1.5 m/s)) (detailed information on the weather conditions by geographical
distribution between days and nights is provided in Supplementary Materials Table S4).

No meaningful differences were observed in relation to TEMP and RH by geographical location;
however, the most humid area during both day and night was the southeast (day: 62.4% (51.9–63.4%),
night: (76.7% (68.5–81%) (p = NS)). The WSP showed no significant differences, neither geographically
nor between day and night (detailed information on the weather conditions by geographical distribution
between days and nights is provided in Supplementary Materials Table S4).

The PM2.5 personal measurements obtained in this study are shown in Figure 2. During daytime,
concentrations of PM2.5 were above national standards for the year 2002 (65 µg/m3)—the current
national standard is 45 µg/m3 in the 13 boroughs [8]. The highest levels of PM2.5 were identified in
Cuauhtémoc (180 µg/m3), Benito Juarez (108 µg/m3 (69–160 µg/m3)), and Miguel Hidalgo (118 µg/m3)
in the center of the city, and Azcapotzalco (112 µg/m3), which is located in the north part of the city.
Incidentally, there was a gap between the city center and the eastern area, with low concentrations that
incremented in the center of Iztapalapa (133 µg/m3), which is a borough in the southeast part of the
city. The lowest concentrations were observed in the boroughs of Coyoacan (66 (63–69 µg/m3)) and
Magdalena Contreras (77 µg/m3), located in the southwest (Figure 2A).
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Figure 2. Personal concentrations of PM2.5 during the days and nights in Mexico City. The left side (A)
of the figure represents the geometric mean of personal concentrations of PM2.5 during the day, and the
right side (B) of the figure represents the geometric mean of personal concentrations of PM2.5 during
the night.

During the night, PM2.5 median concentrations throughout Mexico City were lower than during
the day; the highest median concentrations were detected in Tlalpan (96 µg/m3 (64–118 µg/m3)) in
the south of the city, and in Iztacalco (87 µg/m3) in the center; followed by Coyoacan (63 µg/m3

(27–74 µg/m3)) in the southwest, and Cuauhtémoc (59 µg/m3 (55–62 µg/m3)) in the center. The lowest
PM2.5 concentrations were registered in the southeast in Xochimilco (37 µg/m3) and in the southwest
in Magdalena Contreras (26 µg/m3) (Figure 2B).

Meaningful differences in PM2.5 concentrations were detected among boroughs, despite the
differences observed between day (94 µg/m3 (73–126 µg/m3)) and night (49 µg/m3 (39–74 µg/m3)
(p = 0.0006)) (detailed information is provided in Supplementary Materials Table S4).

3.2. Spatial Distribution of PM2.5

The spatial distribution of PM2.5 is represented in Figure 3, where personal monitor measurements
of PM2.5 were used as the dependent variable. The map resulting from the LUR model shows four
areas with different spatial distributions of PM2.5. The first and largest one is represented by a
diagonal running from the northwest to east, covering six boroughs: Azcapotzalco, Miguel Hidalgo,
Cuauhtemoc, Benito Juarez, Iztacalco, and Iztapalapa. In this area, the median concentration of
normalized PM2.5 was 79.1 µg/m3 with an interquartile range between 67.1 to 89.9 µg/m3.



Appl. Sci. 2019, 9, 2936 8 of 16
Appl. Sci. 2019, 9, x FOR PEER REVIEW 8 of 16 

 
Figure 3. Spatial distribution of PM2.5 in Mexico City. 

The second area is situated in the southwest part of the basin, in the boroughs of Tlalpan and 
Magdalena Contreras. Since the latter is a transition area between the two boroughs, the median 
concentration of normalized PM2.5 was only approximately 78.2 µg/m3 with an interquartile range 
67.8 to 104.1 µg/m3. 

The third area runs from the northeast in the borough Gustavo A. Madero, crosses Cuauhtemoc 
in the center, and ends in Venustiano Carranza, which is located in the northeastern part of the basin; 
in this case, the median concentration of normalized PM2.5 was 47.5 µg/m3 with an interquartile range 
between 39.5 to 48 µg/m3. 

The fourth and last area was in the southwestern part of the basin, and covered the southern 
areas of Coyoacan and Iztapalapa, plus the northern part of Xochimilco. The median concentration 
of normalized PM2.5 was 60.6 µg/m3 with an interquartile range between 51 to 68.6 µg/m3. 

The first and second areas showed the largest concentrations of normalized PM2.5 in Magdalena 
Contreras, Cuauhtemoc, and Azcapotzalco (78.1 µg/m3 (two measurements with the same values) 
81.8 µg/m3 (75.4–103.4 µg/m3), and 90.7 µg/m3 (one measurement), respectively); whereas, the lowest 
concentrations were observed in the third area, more precisely in Gustavo A. Madero and Venustiano 
Carranza (43.5 µg/m3 (35.2–47.7 µg/m3), 58.8 µg/m3 (one measurement), respectively). Finally, it is 
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The second area is situated in the southwest part of the basin, in the boroughs of Tlalpan and
Magdalena Contreras. Since the latter is a transition area between the two boroughs, the median
concentration of normalized PM2.5 was only approximately 78.2 µg/m3 with an interquartile range 67.8
to 104.1 µg/m3.

The third area runs from the northeast in the borough Gustavo A. Madero, crosses Cuauhtemoc
in the center, and ends in Venustiano Carranza, which is located in the northeastern part of the basin;
in this case, the median concentration of normalized PM2.5 was 47.5 µg/m3 with an interquartile range
between 39.5 to 48 µg/m3.

The fourth and last area was in the southwestern part of the basin, and covered the southern
areas of Coyoacan and Iztapalapa, plus the northern part of Xochimilco. The median concentration of
normalized PM2.5 was 60.6 µg/m3 with an interquartile range between 51 to 68.6 µg/m3.

The first and second areas showed the largest concentrations of normalized PM2.5 in Magdalena
Contreras, Cuauhtemoc, and Azcapotzalco (78.1 µg/m3 (two measurements with the same values)
81.8 µg/m3 (75.4–103.4 µg/m3), and 90.7 µg/m3 (one measurement), respectively); whereas, the lowest
concentrations were observed in the third area, more precisely in Gustavo A. Madero and Venustiano
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Carranza (43.5 µg/m3 (35.2–47.7 µg/m3), 58.8 µg/m3 (one measurement), respectively). Finally, it is
important to outline the overestimation identified in the concentration of PM2.5 in the normalized
values when compared to the personal measurements originally taken (Table 1).

Table 1. Comparison of raw and normalized values of PM2.5 concentrations.

Boroughs within Map Areas Raw Values of PM2.5
δ Normalized Values of PM2.5

ϕ

First Area 87.4 (53.3–117.3) 79.1 (67.1–89.9)
Azcapotzalco 111.6 * 80 *
Miguel Hidalgo 78.6 (39.1–118.1) 77 (61.9–92)
Cuauhtemoc 85.2 (58.9–144.3) 81.8 (75.4–103.4)
Benito Juarez 69 (46.6–160.2) 67.1 (65–118.9)
Iztacalco 87.4 * 79.1 *
Iztapalapa 79.6 (37.8–112.1) 76.7 (40.5–89.9)
Second Area 79.8 (48.5–112.1) 78.2 (67.8–104.1)
Tlalpan 80.9 (79.8–112.1) 68.1 (67.8–104.1)
Magdalena Contreras 51.3 (26.3–77.1) 78.1 **
Third Area 42.8 (39.7–46.5) 47.5 (39.5–48)
Gustavo A. Madero 41.3 (43.3–45.8) 43.5 (35.2–47.7)
Venustiano Carranza 46.5 * 50.8 *
Fourth Area 62.9 (39–71.7) 60.6 (51–68.6)
Alvaro Obregon 60.8 (41.3–80.3) 69.6 **
Coyoacan 63 (62.7–69.2) 55.5 (51.4–65.7)
Xochimilco 36.8 * 50.6 *

* One measure of PM2.5. ** Inter quartile range (IQR)was the same, comparison of PM2.5 levels among the four
areas. δ Raw p = NS. ϕ Normalized p < 0.05.

Post-processed data showed a reasonable estimate of prediction. The RMS from the fitted model
(38.94641) and from the residual error (38.03686) differed only by 2.2% (standardized RMS = 1.022); the
validity of Kriging interpolation through Bootstrap and K-fold cross performed similar to that of the
predictive surface. Therefore, both the interpolation method and the adjusted interpolated method
using the fitted variables were reliable.

4. Discussion

This is the first study of a PM2.5 spatial modeling distribution made in Mexico City with personal
monitors and with an LUR approach, even though the sampled data were from the year 2002. We
considered that it was important to show how inhabitants are exposed to high levels of PM2.5 at the
personal level, that air pollution varies throughout Mexico City, and that environmental conditions
then and at present remain far from optimal. As a matter of fact, ten environmental contingencies were
recorded just in 2016 [9] despite the new regulatory limits for PM2.5 air pollution [8] and the creation
of the Environmental Commission of the Megalopolis (Comisión Ambiental para la Megalópolis,
CAMe) [7,51].

Several studies have tried to understand the occurrence of air pollution by using a holistic model,
where a broad-spectrum of variables tackled the complex dynamism of larger cities. An LUR model
can be used as an alternative approach to a dispersion model, and it allows to obtain a statistical
relationship between land use characteristics and pollutant concentrations measured through sampling
at a limited number of sites. The relationship is used to predict pollutant concentrations at unmeasured
locations throughout a given domain [25].

Even when the LUR model allows to integrate geographic, topographic, social, and environmental
variables altogether to evaluate the effect of one or more atmospheric pollutants, the criteria for
including specific variables into the model could be as diverse as the city itself [18]. In general, the
demographics, as well as the environmental conditions, are considered when the authors indicate that
they used LUR. The use of road and traffic information to deploy the analysis is also typical [52–56].
The richness of this approach is its versatility; therefore, the uses of variables and the ways in which
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they are correlated are not determined [57]. An estimate of the adjustment for all other variables
included in the LUR model with their respective canonical weight will be provided by using the
canonical correlation to estimate the covariance of these variables.

This study documented the use of an LUR model involving the use of GIS for the construction of
map layers and linear statistical methods to estimate the exposure in which predictor variables were
selected and obtained from different sources such as population density, RSL, topography, weather
conditions, and personal monitor samples of PM2.5 concentrations. Contaminants’ dynamics were
determined by meteorological variables; yet, their distribution among complex urbanscapes like
Mexico City should be understood considering geography, urban and social characteristics.

This study also shows that some pollution emission sources tend to be located along main roads or
places that are highly frequented due to the fact of a certain mobility paradigm, interconnection nodes,
supply and financial centers or public services, making them relatively stationary [58]. Thus, roads
were considered as an indirect and dynamic type of a stationary pollution emission source related to
primary nodes and peak hours.

The use of personal monitors to estimate population exposure is crucial since they are the only
tools that could sample the variability of air quality to which people are exposed. Personal monitors
allow to take samples at the human scale whenever necessary, and hypothetically, we could sample
this complexity either in indoor environments such as homes, offices, and schools, or outdoors such
as along the road, on the bus, in the middle of a park, next to a factory, and so forth. Additionally,
it is important to consider that people spend most of their time in indoor environments which have
their own sources of contaminants [59]. Recent studies have found that personal exposure is higher
than those measured in fixed sites [23,60] and that it is determined by people’s activities, especially
in indoor environments [27,61]. This study showed that the spatial distribution of PM2.5 identified
two areas in which PM2.5 levels were very high, and two more with lower ones; these areas were
distant from each other, with very different social, economic, and topographic conditions, where local
stratified sampling methods might be used in further studies.

When the variables were chosen, we expected to find a spatial relationship among them, as
well as between their locations and interactions [62]. The basin of Mexico is not a flat surface with
standard meteorological and topographical conditions; it is neither homogenous in its social, economic,
commercial, and transport networks. On the contrary, the city is a mixture of micro-environments
entangled within an intricate collection of geomorphological features in which conditions can change
from one place to another, including the induced biological effects caused by a different composition of
the particulate matter [63,64].

The results showed how the abovementioned conditions might influence the spatial distribution
of contaminants such as PM2.5. For instance, the spatial distribution of PM2.5 was the lowest in the
northern area of Xochimilco, located in the south part of the basin (Figure 1, borough 13), which is well
known for its chinampas (part of the UNESCO’s list of human heritage). This area is one of the least
contaminated regions in the city. This could be related to the high levels of humidity due to the amount
of lakes, canals, and trees. This region presented some of the highest continuous NDVI indexes in the
study area (approximately 174 ha with an index value of more than 0.3, just in the wetlands with a
maximum of 0.489). Furthermore, this borough is in some ways protected by the Iztapalapa peninsula
and the Huizachtecatl volcano, which serve as a wall that impedes the free flow of wind from north to
south. Moreover, most of the population is located on a flat surface that is interrupted by the piedmont
of the volcanic field of the Sierra Chichinautzin; therefore, the dispersion of contaminants could be
more efficient and the region cleaner.

It is worth mentioning that the spatial distribution of PM2.5 was higher in other areas. For
instance, the spatial distribution of PM2.5 was among the highest in the borough of Iztapalapa,
located in the southeast part of the basin (Figure 1, borough 7) (Figure 3). This does not come as a
surprise since the borough has intrinsic characteristics such as its high population density (Instituto de
Vivienda del Distrito Federal, Comisión Nacional de Fomento a la Vivienda, & Universidad Autónoma
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Metropolitana, 2007) and its particular topography consisting of a small mountain formation called
Iztapalapa Peninsula. This formation extends all the way to the Santa Catalina range. The Huizachtecatl
volcano, or the Star mountain, is located almost in the center of the borough. As previously said, these
three formations range from 2400 to 2900 masl and constitute a natural wall that prevents the wind
from flowing from north to south. Therefore, it is possible for the wind to deposit the pollution at
the north facing slope of these topographical formations. The Central de Abasto (Supply Center) is
also located in Iztapalapa, north of these mountains, and is one of the busiest places in the whole
country. According to the Supply Center webpage [65], this market distributes up to 35% of fruits and
vegetables in the country, handles over 30,000 tons of merchandise per day, is attended by more than
500,000 people per day, and has 62,000 vehicles in transit within its borders.

The spatial distribution of PM2.5 in the western and northwestern parts of the basin was the
highest (Figure 3). This region had relatively high levels of humidity related mainly to the Chapultepec
Park, located in Miguel Hidalgo (Figure 1, borough 16), where the NDVI ranges from 0 to 0.2, the
population density is low and there is a relatively large density of trees. The boroughs in this region
are considered some of the wealthiest within the city. However, the area is composed of a mixture of
at least three major commercial–touristic–business corridors that lack a proper and efficient public
transportation system to support the mobility of all the people that operate in this area. Most of the
workers drive to work during peak hours, causing traffic jams and delaying people coming from the
eastern part of the city, who have to drive for at least two hours to get to work or home. The privation
of a sustainable and well-planned urban development program has generated a gentrification problem
that results in the excessive use of cars, destruction of green areas, the construction of skyscrapers,
shopping malls, residential buildings, parking lots, and toll highways that expel low-income residents
to slum areas [66]. This excessive urbanization process has contributed to a temperature increment of
0.39 ◦C per decade in Mexico City [67–70].

Another surprising result was the very high spatial distribution of PM2.5 found in Tlalpan
(Figure 3), located in the southwestern part of the basin (Figure 1, Borough 12). It is the second largest
borough in Mexico City with a total surface of 312 km2 (20.7% of Mexico City’s total area). Tlalpan
also has the lowest population density (1878 inhabitants per square kilometer), and it is considered
one of the main “lungs” of the entire basin since it is one of the most extensively forested areas of
Mexico City. Due to the presence of geological features and the amounts of rainfall, Tlalpan is an
important hydrological deposit area of the city. It has a large surface that is protected by the legal
entities of Land Conservation and Natural Protected Areas [71], which aims to preserve, restore, and
reforest the area to maintain the ecological balance not only within the borough but the whole basin.
However, some peculiarities could increase the spatial distribution of PM2.5 in Tlalpan. On the one
hand, the population density is irregular, with urban communities in the north, and suburban and
rural communities in the south, all mixed among healthy vegetation areas (NDVI ranges from −0.39 to
0.58, and about 94 ha with an index of more than 0.3). On the other hand, the wind flow tends to go
from north to south in the basin (Figure 3), making this area potentially risky. In the afternoon, all
the contaminants are transported to the south and deposited on the piedmont of the Chichinautzin
mountain range, where they are slowed down by the increment in humidity and the decrement in
temperature. A strong correlation between the particulate matter and the windward was observed,
which suggests that in the south/southwest region of the basin, the spatial distribution of PM2.5 is
higher during the afternoon than during the night due to the dispersion and deposition processes.

5. Study Limitations

The sample size used in this study can be considered somewhat small. Kriging interpolation was
used to overcome this limitation since it is a well-known method to accurately predict unknown values
from a limited sample [36,38–40].

The occupational composition distribution of the sample was simple and balanced and failed to
represent that of the study area. Ideally, however, and not possible for this study, a stratified systematic
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sampling method should be used to represent the variability of activities—spatially and temporally—in
the city, monitoring individuals 24/7 from different strata (activity and region) during an entire year.
However, the evaluation of the occupational exposure goes beyond the purpose of this study.

Statistical modelling was based on PM2.5 personal exposure, whereas meteorological conditions
were taken from ambient monitors; however, environmental variables showed an important correlation
between outdoor and indoor environments. In fact, most epidemiological studies of PM2.5 air
pollution have relied on measurements taken by ambient monitors. Furthermore, outdoor weather
conditions—air temperature and relative humidity—might influence indoor environments, but also
housing characteristics such as the integrity of a building’s envelope, state of mechanical heating,
ventilation and air conditioning systems can modify indoor microenvironments [72]. Several studies
have demonstrated that outdoor temperatures highly correlate with indoor ones [72–74]. Temperature
and relative humidity are tightly correlated; the combination of both is used as an index (humidex)
that reflects the perceived temperature. Both temperature and relative humidity can vary widely
depending on the location and the season [72].

6. Conclusions

Most of Mexico City´s dwellers live in an unhealthy atmosphere because of the unplanned
urbanization process, over-population, increasing vehicle fleet, and the scarcity of green areas in the
city. The holistic analytic approach using LUR models allows the integration of variables with an
atypical behavior into a dispersion model that could better explain the patterns of exposure to PM2.5

air pollution. Even though more studies are needed to deepen the investigation of the exposure to
PM2.5 air pollution patterns of Mexico City’s residents, the results presented here could help local
authorities make accountable decisions on the inhabitants’ exposure patterns that could lead to the
development of control strategies at the local level, which will certainly improve the health of both
citizens and the ecosystem.
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