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Abstract— Semantic segmentation-based scene parsing plays
an important role in automatic driving and autonomous nav-
igation. However, most of the previous models only consider
static images, and fail to parse sequential images because they
do not take the spatial-temporal continuity between consecutive
frames in a video into account. In this paper, we propose a depth
embedded recurrent predictive parsing network (RPPNet), which
analyzes preceding consecutive stereo pairs for parsing result.
In this way, RPPNet effectively learns the dynamic information
from historical stereo pairs, so as to correctly predict the
representations of the next frame. The other contribution of
this paper is to systematically study the video scene parsing
(VSP) task, in which we use the RPPNet to facilitate conventional
image paring features by adding spatial-temporal information.
The experimental results show that our proposed method RPPNet
can achieve fine predictive parsing results on cityscapes and
the predictive features of RPPNet can significantly improve
conventional image parsing networks in VSP task.

Index Terms— Recurrent predictive parsing network
(RPPNet), spatial-temporal continuity, video scene parsing,
depth embedded, long short term memory (LSTM).

I. INTRODUCTION

THE purpose of video scene parsing is to classify every
pixel of all frames in scene videos, which is useful for

many applications [1]. In recent years, convolutional neural
networks have been well applied to image scene parsing tasks
[2]–[6]. However, there are still some problems in applying
these networks to the Video Scene Parsing (VSP) task directly.
The most fundamental reason is that these networks can only
parse the scene of videos frame by frame, thus the correlation
and continuity between video sequences are neglected and will
bring much noise to the final results. Besides, video annotation
data is very scarce in present, since annotation is a labor-
intensive and time-consuming work. Therefore, we aim to find
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a solution in the paper that can parse the video scene images
in the circumstance where the video sequences are sufficient
while the annotations are in short. In view of the above
problems, Jin et al. [7] proposed a novel Predictive Parsing
Network (PPNet) to predict the parsing map of the target
frame given only its preceding frames, which is instructive
for our task. Even if the parsing results of PPNet are of some
referential, there is quite room for improvements.

Inspired by PPNet, we elaborately design a depth embed-
ded Recurrent Predictive Parsing Network (RPPNet) that has
the ability to predict the parsing map of the target frame
effectively. In this method, we learn the previous frames of
the target frame through a recurrent strategy, which can learn
the dynamic trend between frames and can bring about more
structural details for final predictive parsing results, but does
not require the ground-truth maps of the entire sequences.
There are two innovative components in our proposed network
to meet the above capabilities. First, in most networks, such
as PPNet, the input of them is a single image, while our
network takes a stereo image pair containing both the left
and right image of the same scene taken at the same time as
input. These binocular images of a sequence implicitly contain
depth information of the scene. In the video sequence, features
with depth information can effectively provide more dynamic
information of scene changes than that of single RGB features,
which can enhance the continuity and consistency between
frames. Therefore, compared with monocular images, binocu-
lar images can play a more important role in VSP task. Second,
for predicting scene maps, PPNet simply concatenates several
preceding frames, and then the network extracts features by
doing convolution operations. In our network, we use the Long
Short Term Memory (LSTM) network [8]–[10], a kind of
recurrent neural networks (RNN), to predict the features of the
target frame. The features extracted from the preceding frames
are chronologically inputted into the LSTM network, and then
the predictive parsing map can be obtained by convolving the
predicted features of the target image.

As mentioned above, image scene parsing networks should
not be directly applied to VSP task, which will bring noise and
discontinuity to the results. Therefore, we further adaptively
integrate the spatial-temporal features obtained from RPPNet
with features from any conventional image scene paring model
to learn more discriminative representations, and enhance
VSP performance substantially in the presence of the target
frames. For example, in the second row of Fig. 1, the areas
marked by the red boxes are discontinuous with context.
But these discontinuities in the fourth row of the figure
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Fig. 1. Illustration on predictive parsing results of the Recurrent Predictive Parsing Network (RPPNet) and examples of improved results for the traditional
image parsing network with the help of RPPNet. Top: five consecutive frames of a video from the Cityscapes dataset. Second row: the parsing results of
the above frames produced by the common image parsing network (CIPNet) based on VGGNet. We can see much noise marked by the yellow boxes and
discontinuities of objects marked by the red boxes. Third row: results from RPPNet, it can not only generate spatial-temporal parsing results but also help the
traditional image parsing networks. Fourth row: parsing maps produced by the integrated network (ITNet), which takes advantage of CIPNet (the second row)
and RPPNet (the third row). The noise of the yellow box are eliminated and the discontinuities marked by the red boxes are resolved. Bottom: ground-truth
annotation of the last frame. Best viewed in color and zoomed pdf.

are eliminated because of the adoption of spatial-temporal
information.

It is worthwhile to list the contributions of our work,

1) We propose a novel depth embedded recurrent predictive
parsing network (RPPNet) for VSP task, which takes
binocular images as input, so it can capture more dynamic
information between frames to ensure the temporal and
spatial consistency of features. In addition, the advan-
tage of the predictive capability of LSTM network is
applied to continuous sequences so as to obtain predictive
features;

2) In order to generate more accurate video parsing maps,
the predicted features and the features obtained from
conventional image parsing models are fused to further
improve the performance of conventional models on VSP
task;

3) The experiments on the popular city scene dataset
show that RPPNet produces instructive predictive parsing
results and our method can significantly improve the
performance of conventional parsing methods on video
sequences, especially on the classes with small areas,
such as pole and pedestrian.

The rest of the paper is organized as follows. We first review
existing architectures of parsing tasks and the functions of
LSTM in Section 2. Details of our RPPNet and approaches

are introduced in Section 3. Experimental results are described
in Section 4, and the last is a brief conclusion of the whole
paper in Section 5.

II. RELATED WORK

A. Scene Parsing Networks

Recently, convolutional neural architectures [11]–[14] have
obtained remarkable results in image parsing tasks and played
an important role in many applications, such as autonomous
driving and navigation. Among them, fully convolutional net-
work (FCN) [2] and Deeplab [13], [15], [16] are the most
prominent. However, these networks mostly act on individual
and static images, and lack the consideration of continuous
video frames. In this article, our task is to parse video
sequences. It is obviously not good enough to apply the
above parsing methods directly to every frame of the video
sequences because these methods ignore the temporal and
spatial consistency between frames and lead to bad results.
The coherence information between consecutive frames is
especially important for capturing and predicting dynamic
objects of videos in our predictive parsing task. In order to
get consistency between frames, some methods [17], [18]
try to utilize 3D data which contains more spatial motion
information or seek help from optical flow [19]. With more and
more datasets containing depth images, there is an increasing
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Fig. 2. (a) The upper part of the figure with blue flow line is the framework of the recurrent predictive parsing network (RPPNet). E NRP P Net and
DNRP P Net represent the encoder and decoder of RPPNet respectively. RPPNet feeds the features extracted from the historical image pairs {Pt−N , ..., Pt−1}
to LSTM in chronological order and DNRP P Net decodes the predictive features Ft of the target image generated by LSTM to obtain the predictive parsing
result Y1. (b) The bottom part of the figure with green flow lines is the framework of the integrated network (ITNet). Similarly, E NC I P Net represents the
encoder of the conventional image parsing network (CIPNet) and DNI T Net represents the decoder of ITNet. First, ITNet combines the predictive features
Ft processed by AdaptNet with features Ct of the target image encoded by CIPNet. Second, DNI T Net decodes the fused features Ut to get the final parsing
result Y2.

number of methods using RGB-D images for scene parsing
task [17], [20], [21]. We also consider using depth information
to improve the accuracy of capturing dynamic transformations
and obtaining structural details. However, different from [17],
[18], [22], we take a simpler but more efficient method by
taking advantage of 3D structure hiding in stereo pairs instead
of using depth images directly. Jin et al. [7] firstly proposed
a novel predictive feature learning method called PPNet to
predict the parsing result of the target image using preceding
consecutive sequences. This network can learn the features
of spatial-temporal coherence between the target frame and
its previous frames effectively. Inspired by [7], we also learn
from anterior sequence frames to obtain features of the target
frame, but the difference is the adoption of stereo image pairs
and recurrent network in our method.

B. LSTM

The main purpose of recurrent neural networks (RNNs)
[23]–[25] is to process and predict sequence data. RNN can
not only mine sequential information in data but also make full
use of the great power of expression of semantic information,
so it has made a breakthrough in speech recognition [26],
machine translation [27], [28] and time series analysis [29]
etc. LSTM [8], a special kind of RNN, is designed to solve
the problem of long-term dependence in RNN. For many tasks,
recurrent neural networks using LSTM are better than standard
recurrent neural networks. Different from prediction technique
of [7], we draw support from sequence prediction ability of

LSTM and classify the features predicted by LSTM to get
final predictive parsing results.

III. APPROACH

In this paper, our approach solves two problems in different
settings with two steps: first, how to get the predictive parsing
results of the target frames in advance when the target images
are not available; second, can we integrate temporal continuity
obtained by the former with the target image features so as to
further improve the performance of the parsing results in the
circumstance that the target images are available.

Let {Pw/o/Pw, Gt } denotes a video or an image sequence,
where Pw/o = {Pt−N , . . . , Pt−1} stands for N − 1 con-
secutive image pairs before the target frame, and Pw =
{Pt−N , . . . , Pt−1, Pt } represents image pairs with the target
frame, where, Pt is the target frame. Here each image pair Pi is
consist of pair-wised stereo images, including a left image Li

and a right image Ri . Let Gt denote ground-truth annotation
with C classes of the target left image Lt . The task of first
setting can be considered as seeking a function F1 that maps
Pw/o to the predictive parsing map of Lt , and which can be
expressed as a formula Y1 = F1(Pw/o), where Y1 stands for
parsing result of Lt . Similarly, Y2 = F2(Pw) is the formula
related to the second setting, where Y2 is the direct parsing
result of Lt too. The biggest difference between the two tasks
is that there are only preceding frames in the former setting,
while the latter has the target frame Pt available in advance.
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Fig. 3. The encoder part of RPPNet (E NRP P Net ). It takes a left image
Li in size H × W × 3 and its corresponding right image Ri as input. After
concatenation and several convolution operations, E NRP P Net outputs the
features in size H/16 × W/16 × 1024.

In the following subsections, we will describe the proposed
RPPNet in detail. Fist, two important components, including
depth embedded convolution and recurrent network, and the
general framework of RPPNet will be introduced in subsection
A and subsection B respectively, and then how to enhance
the parsing performance of the conventional image parsing
networks by adopting predictive features will be explained in
subsection C.

A. Depth Embedded and Recurrent Network

If the regularity of dynamic change between consecutive
frames can be learned more accurately, the feature of next
frame can be predicted more reliably, which is the key
component to improve the performance of scene predictive
parsing. The proposed RPPNet is inspired from this point, thus
we put emphasize on tracking spatial-temporal dynamics in the
network architecture design. There are two novel strategies to
make full use of context information and capture dynamics in
our scene predictive parsing network. One is the adoption of
stereo images as input, the other is the long-short term memory
(LSTM) is employed to predict features of the target frame.

1) Depth Embedded: Most scene parsing networks only
use monocular images as input, but recently, the role of
depth information in scene parsing tasks has attracted much
attention, and many works try to bring it into full play in the
field of deep learning tasks such as scene parsing [11], [12] and
object detection [30], and we are also agree with the positive
role of depth information in the scene parsing task. For one
hand, depth information can provide more structural details of
the scene, and for the other hand, it can supplement dynamic
information in video sequences and thus beneficial to predict
the changes of objects in the next frame. Therefore, we employ
this important clue in our network. However, different from
these methods [17], [18], we do not use RGB-D images
directly, nor do we explicitly calculate the depth or disparity
map of the input images [22]. Imitating the human eyes,
RPPNet simultaneously processes a pair of images in the
same scene, as shown in Fig. 3. We concatenate the left
image Li and the right image Ri as a whole, which is then

TABLE I

DETAILED PARAMETERS OF E NRP P Net . WHERE, k IS THE KERNEL SIZE,
c IS THE NUMBER OF CHANNELS, s REPRESENTS THE STRIDE, AND d

STANDS FOR THE DILATION RATE. [·] MEANS NUMBER OF TIMES

OF EXECUTIONS, AND THE ‘×’ IN FIRST COLUMN HAS THE

SAME MEANING

fed into the encoder part of RPPNet. Therefore, by adopting
the latent depth information in binocular images, the encoder
of RPPNet can learn more precise structural information of
objects comparing to traditional single image encoder. The
parameters of the encoder part of RPPNet can be found in
Tab. I.

2) Recurrent Network: Another key element of RPPNet is
the usage of LSTM to learn predictive features from the images
of preceding frames. Each frame in a video is related to its
previous frames, because they are temporally and spatially
continuous. Conventional neural networks has the problem that
it cannot use the information of the previous frames, which
can be well solved by recurrent neural networks (RNNs). The
most prominent characteristic of RNN is some outputs of its
neurons can be transferred as input again, thus RNN can take
advantage of previous information, in other words, the network
has memory. LSTM is a special version of RNN. The biggest
difference between it and ordinary RNNs is that LSTM is able
to remember information far from the current input without the
phenomenon of gradient disappearance because of its specially
designed gate operations. The application of LSTM to predict
target features is illustrated in Fig. 2. Therefore, the encoder
of RPPNet (denoted as E NR P P Net ) maps each image pair of
the sequence Pw/o to spatial-temporal representations, which
are then fed to the followed LSTM network in chronological
order to produce predictive representations Ft of the target
frame.

B. Recurrent Predictive Parsing Network (RPPNet)

The framework of RPPNet is illustrated in the upper
part of Fig. 2. The RPPNet consists of three compo-
nents, i.e. the encoder part E NR P P Net , which learns fea-
tures Ei = E NR P P Net (Pi ) from the preceding image pairs,
the LSTM network, which generates predictive features of
the target image Ft = LST M(Et−N , . . . , Et−1), and the
up-sampling part (denoted as DNR P P Net ), which first assigns
each point of the shrunken feature map Ft with a predefined
label, and then generates the final predictive parsing result Y1
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by up-sampling the preliminary result and expanding its size
to the same size as the original input image.

There are many encoding architectures, often represented
by the two most common networks VGGNet [31] and ResNet
[32], for E NR P P Net to choose. But considering that the input
is an image sequence, especially the sequence consists of
multiple image pairs, we abandon the above two networks,
instead we redesign a feature extraction network as the encoder
for RPPNet elaborately, and we refer the reader to Fig. 3
for more details. For the design of this part, we follow two
criterias. First, it is proposed in [31] that the use of stacked
small-kernel convolution instead of large-kernel convolution
not only reduces the number of parameters but also learns
more features because of containing more linear transforma-
tions. So we only use small-kernel convolution for stacking in
the network. Second, we adopt atrous convolution at the end
of the network with reference to [13]. Atrous convolution can
not only play the role of downsampling, but also avoid the
resolution of feature map becoming too small. For an image
pair Pi with the size of H × W × 3 at time i , it is first
concatenated into size of H × W × 6 by E NR P P Net , which is
then followed by a series of convolution operations. Note that
all images must be normalized before entering the network and
each convolution layer is followed by a batch normalized (BN)
layer, because BN can both accelerate network convergence
and prevent over-fitting. In the multiple convolutional layers
of the network, down-sampling is performed for feature maps
by setting the stride to 2 in order to enlarge the receptive
field. On the back of the E NR P P Net , we add several atrous
convolution layers to avoid feature maps being too small
to lose more important structural information. At last, for
N previous consequent image pairs {Pi−N , . . . , Pi−2, Pi−1},
we can get N feature maps {Ei−N , . . . , Ei−2, Ei−1} with size
of H/16 × W/16 × 1024, and then these feature maps are fed
to LSTM network in chronological order to predict features
Ft of the target image, as illustrated in Fig. 2. For the LSTM
part, although there are many variants of LSTM, we adopt the
basic structure without major changes since the comparative
experiments of Greff et al. in 2015 [33] show that effects
on LSTM variations are similar and they are just different in
certain tasks.

Throughout the feature extraction phase, E NR P P Net makes
full use of the context information of the video data and
produces predictive features for our first task. It adopts binoc-
ular images simply but efficiently, which can provide more
structural information for predictive features implicitly and
facilitate the network to capture more dynamic information.
In addition, to generate the predictive feature map, the pre-
ceding information should be applied to improve the accuracy
of prediction, thus the LSTM network is employed in our
predictive parsing task to remember the previous information.
For the first task of generating predictive result, since the
absence of the target image, we use its preceding sequence
in the video to learn its representations. DNR P P Net classifies
the predictive features by making a 1 × 1 convolutional
operation on it, and gets the preliminary parsing result of size
H/16 × W/16 × C , where C is the category number of each
pixel. Then the preliminary parsing result are followed by four

continuous deconvolution layers, which are all with the kernel
size of 4 × 4 and the stride size of 2. These deconvolutional
operations expand the size of the preliminary parsing result
to H × W × C . The reason we choose deconvolutional layers
for upsampling is that they can restore more structural details
compared with simple linear interpolation. At last, a softmax is
exploited to generate the final predictive parsing result. Given
a sequence of m image pairs, we can use cross entropy to
define the loss function for training RPPNet as,

L1(Y1|Pw/o, θR P P Net )

= − 1

2m

m∑

t=0

∑

(p,q)∈Lt

∑

i∈C

(Gt(p,q,i) logY1(p,q,i)

+ (1 − Gt(p,q,i) )log(1 − Y1(p,q,i) )) + λ
∑

w∈θRP P Net

w2, (1)

where, θR P P Net is the parameter of RPPNet. m is the batch
size for training, Y1(p,q,i) denotes the predictive parsing prob-
ability of class i at location (p, q) for the predictive parsing
result Y1, and Gt(p,q,i) has similar meaning but for ground-
truth. λ is the balancing coefficient for the regularization term.
Since the Eq. 1 is a differentiable function, we can minimize it
to obtain optimal parameters by applying Stochastic Gradient
Descent (SGD) during training.

C. Integrated Parsing Network (ITNet)

The conventional image parsing network (short for CIPNet)
should not be directly applied to video sequences because
it cannot capture the connections between the target images
and the preceding frames. Video sequences are continuous
and integrated, thus we should not handle them separately.
However, the representations of the target images obtained
from CIPNet are also very important, thus combining the target
features and the predictive features together is an effective way
to achieve complementary effect. In this section, we propose
an integrated network, namely ITNet, to integrate RPPNet
and CIPNet into a joint architecture to improve the parsing
performance.

The ITNet takes advantage of spatial-temporal features of
RPPNet and independent ones of CIPNet. As shown in the
below part of Fig. 2, the predictive feature F ′

t , which is
the output of the adaptive network, and the feature Ct of
CIPNet are concatenated to generate the joint feature Ut .
E NC I P Net is the encoder part of CIPNet by removing the
classification layers, and can generate a dense feature map for
the input image. For CIPNet, various existing image parsing
networks, such as FCN [2] and Deeplab [13], [15], [16] can
be employed. In the paper, we pick two popular image parsing
networks which are based on the two most widely-used feature
extraction networks VGGNet and ResNet, and more details
will be given in Section 4.1.

Note that the predictive features and target image features
cannot be combined simply, because they have different scales
and distributions. As mentioned in [34], naively concatenated
features may cause that the “large” features overwrite the
“smaller” ones, and lead to poor performance. This issue is
also considered in [7], which adopts a similar method to [34]
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TABLE II

PER-CLASS RESULTS OF THE CONTRAST EXPERIMENT BETWEEN PPNET AND RPPNET ON THE CITYSCAPES TEST SET

but powerful approach to solve the problem. In our method,
we use an adaptive networks, namely AdapNet, which draws
on their experience. Concretely, when the sizes of the two
feature maps do not match, a deconvolutional operation is
utilized on the smaller one. After that, a convolutional layer
with a kernel of 1 × 1 is conducted to generate the predictive
features F ′

t to make consistent with Ct . Although this opera-
tion of AdapNet is just a simple linear transformation, it eases
the parameter adjustment complexity in the deconvolution
operation of the integrated network during training.

After that, we concatenate F ′
t and Ct to generate the joint

feature Ut . Same as RPPNet, ITNet also uses deconvolutional
layers to enlarge the parsing map as same as RPPNet, and we
denote these deconvolutional layers and softmax operation as
DNI T Net . Finally, the loss function of the integrated network
can be defined same as the loss function of RPPNet,

L2(Y2|Pw, θI T Net )

= − 1

2m

m∑

t=0

∑

(p,q)∈Lt

∑

i∈C

(Gt(p,q,i) logY2(p,q,i)

+ (1 − Gt(p,q,i) )log(1 − Y2(p,q,i) )) + α
∑

w∈θI T Net

w2, (2)

where, α controls the balance of the two items. The Eq. 2
is also a differentiable function, thus we can optimize it by
applying Stochastic Gradient Descent (SGD) during training
too.

IV. EXPERIMENTS

A. Experimental Settings and Implementation Details

1) Dataset and Evaluational Metrics: In our experiment,
we choose Cityscapes dataset [35] for our testing. There
are two reasons for that, first, it is a big and rich dataset
compared with the datasets like CamVid [36] and Leuven
[37]. Cityscapes is tailored for urban scene understanding and
the data is recorded from 50 different cities, ensuring to fully
capture the polymorphism and complexity of real-world urban
scenes. Second, the data type contained in the dataset is very
suitable for our experiments. Cityscapes have 5000 sequences
with fine pixel-wise annotations for the nineteenth frame
per sequence. Among the 5000 sequences, there are 2975 for
training, 500 for validation and 1525 for testing. Specially,
Cityscapes provides the right image for every corresponding
left image, which is the guarantee for taking image pairs as
input. There are 34 visual classes for annotation, which are
grouped into eight coarse categories. But some classes are
too rare, and only 19 classes of them are included in this
assessment, which can be seen Fig. 1.

TABLE III

COMPARISON BETWEEN PPNET AND RPPNET ON TWO METRICS

OF PA AND MIOU ON THE CITYSCAPES TEST SET

In accordance with conventional methods, we use
Intersection-over-Union (IoU) [38] and Pixel Accuracy (PA)
as evaluation metrics for Cityscapes. Given an image, the IoU
metric stands for the similarity between the computed parsing
region and the ground truth region in a selected class, and is
defined as the size of the intersection divided by the union of
the two regions [39]. The IoU metric can take into account the
problems of class imbalance that generally exist in such prob-
lem settings. For example, if an algorithm predicts that each
pixel of the image is the background, the IoU measurement
can effectively penalize it because the intersection between
the predicted region and the ground truth region will be zero,
resulting in a zero IoU count. PA is defined as the ratio of
all correctly classified pixels to all valid pixels. In addition,
we also add mIoU as another indicator, which is defined as
the average of all IoU values from 19 classes.

2) Implementation Details: Both of our two models includ-
ing RPPNet and ITNet are implemented based on the public
deep learning architecture TensorFlow [40]. Throughout the
training, we crop the images randomly same as that done
in the literature [14] and set the batch size to 1 due to the
limited GPU memory. We take two strategies to prevent over-
fitting, one is that we add the dropout operation to some layers
of the networks during training; the other is that we add L2
regularization of parameters for the loss functions, as shown
in Eq. 1 and Eq. 2. During training, λ and α are set to 0.2, and
we choose Adam optimizer, which is computationally efficient
and requires relatively less memory and leads to widely usage
in many applications. The learning rate is reduced from 0.01 to
0.0001 by using the “exponential decay” policy.

RPPNet contains a total of approximately 140M trainable
parameters, and we first train them from the scratch for about
60K iterations. Then the parameters of RPPNet are utilized as
pre-trained parameters of ITNet. For the conventional image
parsing part of ITNet, that is E NC I P Net , when it is based
on VGGNet, we randomly initialize its parameters; while
it is based on ResNet, we adopt the pre-trained parameters
from ImageNet [41]. The modified baselines based on the two
architectures will be elaborated in the following part.

B. Comparison With Other Predictive Parsing Network

As we have known, there is only one deep predictive
parsing work, Predictive Parsing Network (PPNet) [7], for
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Fig. 4. Visual comparison of the parsing results of PPNet and RPPNet on the Cityscapes test set. Top row: Five consecutive left images of a sequence.
Second row: Predictive parsing maps produced by PPNet, of which each map is predicted from 4 preceding frames of the current image. Unsatisfactory
parts highlighted by yellow can be amended by RPPNet (the third row). Third row: Predictive parsing maps produced by RPPNet. Bottom: the ground-truth
annotation (with red boundary) of the frame t provided by the dataset. Best viewed in color and zoomed pdf.

video scene predictive parsing. Although PPNet also predicts
the result of the target image with the help of preceding frames
and tries to capture spatial-temporal dynamic information, its
structure is too simple to make full use of the preceding
frames and cannot predict more structural details of the
scene, while our method can make significant improvement
in capturing dynamic information and predicting structural
information.

To proof that our RPPNet is superior in the predictive
scene parsing task, we compare our RPPNet with PPNet and
recorded the results in Table III. According to [7], PPNet
only uses 4 previous frames, thus for the sake of fairness,
we also use the preceding 4 frames by setting N to 4. As shown
in Table III, our method exceeds PPNet greatly by 1.67 and
3.86 and reaches 89.02 and 41.49 in terms of PA(%) and
mIoU(%) respectively. More details of per-class values are also
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TABLE IV

PER-CLASS VALUES OF IOU FOR DIFFERENT N ON THE CITYSCAPES VALIDATION SET

TABLE V

COMPARISON OF THE TEST RESULTS OF MODELS WITH DIFFERENT

INPUTS ON TWO METRICS OF PA AND MIOU ON THE

CITYSCAPES TEST SET

listed in Table II, which shows that the results of our RPPNet
are significantly better than that of PPNet and 16 out of the
19 classes of our RPPNet achieve higher performance. The
qualitative contrast experimental result, as illustrated in Fig. 4,
also proves that RPPNet predicts the parsing map of the target
frame more accurately than PPNet. The Fig. 4 shows the
predictive parsing results of several sequences, note that each
result is obtained with only 4 preceding frames. In this figure,
the second row and the third row list the predictive parsing
results of PPNet and RPPNet respectively.

Overall, our results have three outstanding advantages. First,
the parsing results of PPNet are coarse, but our results are
smoother. Second, the results of RPPNet contain more accurate
and detailed architectures, since it can process the structures
of small objects such as poles more elaborately because of
the usage of binocular images. Last, RPPNet is more sensitive
to dynamic information, such as the example of the second
sequence in Fig. 4, the car should appear in the left yellow
box is ignored by PPNet, while RPPNet can predict it.

Since RPPNet uses binocular images as input, it is inevitably
more time-consuming than PPNet in terms of predicting
parsing results, where parsing time for each frame of PPNet
is about 0.18s, and that of RPPNet is about 0.33s. Both the
models are implemented based on the public deep learning
architecture TensorFlow [40] and tested on single NVIDIA
GeForce GTX1080. However, if we use more efficient deep
learning architectures such as Caffe [42] and adopt more
powerful graphic cards, the predictive parsing time for each
frame is bound to be greatly reduced.

C. Effect of the Stereo Image Pair

In order to confirm that the stereo image pair is indeed
more effective for parsing, we also conduct experiment with
our method acting on monocular images. Since ground-truth is
labeled for the left images in the Cityscapes dataset, we replace
the input of the RPPNet with the left images of the image pairs.

TABLE VI

RESULTS OF SETTING DIFFERENT TOTAL N OF THE HISTORY FRAMES FOR

RPPNET ON THE CITYSCAPSES VALIDATION SET. IT IS IMPORTANT

TO DETERMINE THE NUMBER OF HISTORICAL FRAMES FOR THE
PREDICTIVE PARSING TASK, WE CAN SEE N = 5 WORKS BEST

Apart from this, the network has the same structure as the
original RPPNet. Performance comparisons between predictive
parsing results from the models with different inputs are shown
in Table V. The quantitative result of the model using the
binocular images as input is superior to the result of that using
the monocular images as input on both PA(%) and mIOU(%).

D. Hyper-Parameter

It is important to choose the number of preceding frames
to predict the parsing result of the current frame carefully,
thus in this subsection, we conduct experiment on different
previous frames number N used in our method. Before that,
we can see that considerable predictive parsing results can be
generated when N is equal to 4 by another predictive parsing
work PPNet [7]. Based on this, we initially set the number
of historical frames around 4 in the experiment. As we have
known that if N is too small, RPPNet will not correctly capture
the dynamic change between the sequence so that we cannot
take advantage of the long term memory of LSTM, but if N is
too large, it will lead to big computational burden. Besides, too
far frames contribute little to current parsing work. Therefore,
after comprehensive consideration, we set N to 3, 4, 5 and 6
respectively in this experiment.

When RPPNet takes different values of N, we train each
model on the training set and compare their performance
on the validation set so as to choose the most appropriate
value for N. Note that for each model with a new N value,
we randomly initialize all trainable parameters and train the
model from scratch. Two values of PA(%) and mIOU(%) on
the validation set are recorded in Table VI. We can observe that
both the metrics reach the maximum when N is equal to 5, and
when the parameter N equals 6, the performance of RPPNet
drops sharply. The reason for this is that over-distant frames
bring too much interference information to predictive parsing



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHOU et al.: DEPTH EMBEDDED RPPNet FOR VIDEO SCENES 9

TABLE VII

PER-CLASS RESULTS OF THE CONTRAST EXPERIMENT BETWEEN ITNETS AND THEIR RESPECTIVE BASELINES ON THE CITYSCAPES TEST SET

Fig. 5. Visual comparison of the parsing results of VGGNet-baseline and VGGNet-ITNet on Cityscapes test set. Top row: Six consecutive left images
of a sequence. Second row: Parsing maps produced by VGGNet-baseline, and each map is generated using its single corresponding frame. Third row:
Predictive parsing maps produced by RPPNet, and each map is predicted from 5 preceding frames of current time. Fourth row: Parsing results produced by
VGGNet-ITNet. Bottom: the ground-truth annotation (with red boundary) of the frame t provided by the dataset. Best viewed in color and zoomed pdf.

results. Table IV shows per-class IoU values on different N ,
and when N = 5 we can achieve best performance in most
circumstances.

E. Experiments About Integrated Parsing Network (ITNet)

In order to prove that our predictive features of RPPNet
can improve the performance of conventional image parsing

networks (CIPNets) effectively, we choose two typical network
architectures as baselines. One is based on VGGNet, and the
other is based on ResNet.

1) VGGNet-ITNet: Fully convolutional network (FCN)
based on 16-layer VGGNet has achieved remarkable results
in the image parsing task. We make some modifications
to VGGNet as our E NC I P Net to fit our task. Concretely,
the original stride of the layers ‘pool4’ and ‘pool5’ is reduced
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Fig. 6. Visual comparison of the parsing results of ResNet-baseline and ResNet-ITNet on Cityscapes test set. Top row: Six consecutive left images of a
sequence. Second row: Parsing maps produced by ResNet-baseline, and each map is generated using its single corresponding frame. Third row: Predictive
parsing maps produced by RPPNet, and each map is predicted from 5 preceding frames of current time. Fourth row: Parsing results produced by ResNet-ITNet.
Bottom: the ground-truth annotation (with red boundary) of the frame t provided by the dataset. Best viewed in color and zoomed pdf.

TABLE VIII

COMPARISON BETWEEN IPNETS AND THEIR RESPECTIVE BASELINES ON

TWO INDICATORS OF PA AND MIOU ON THE CITYSCAPSES TEST SET

from 2 to 1, and we replace all layers of ‘conv5’ to be atrous
convolutional layers by setting their dilation size to 2 so that
its receptive field can be further expanded. Besides, we reduce
the original 4096 feature maps in ‘fc6’ to 1024, which greatly
reduce the number of parameters. As a result, we get the
feature map with the scale of 1/8 according to the input size
after ‘fc7’. As for the baseline method, which is named as
‘VGGNet-baseline’ in Tab. VIII, we use the same E NC I P Net

as its encoder, and add three deconvolutional layers with a
stride of 2, same as decoder of ITNet, and a softmax layer to
finish its parsing network.

2) ResNet-ITNet: The ITNet based on ResNet is built upon
DeepLab [13], which employ the atrous convolution in scene
parsing, and can get better results comparing to its previous

versions. In this experiment, we don’t make any major change
to the whole DeepLab except for some necessary requirements
in our task setting. Concretely, the classification layer of
ResNet is removed and the left part is set as E NC I P Net , and
the decoder is same as that in DeepLab. Besides, for the sake
of fairness, the baseline method ‘ResNet-baseline’ in Tab. VIII
is exactly the unmodified DeepLab.

Table VIII shows the comparing results of two base-
lines with their improved networks on the test set. Our
two ITNets both achieve better results, where VGGNet-
ITNet exceeds VGGNet-baseline by 1.02/1.45 and reaches
91.66/62.24 according to PA(%) and mIOU(%) respectively,
meanwhile, ResNet-ITNet yields 94.46/67.08 and exceeds
ResNet-baseline by the gap of 1.88/1.87 respectively. More
details about the IoU values of each class are displayed
in Table VII, from which we can observe that the IoU values
of most classes are improved due to the spatial-temporal
continuity introduced by the predictive features of RPPNet.

Fig. 5 and Fig. 6 show the visual results of our two ITNet,
and demonstrate that our predictive features of RPPNet have
strong ability to assist CIPNets to improve the performance
of scene parsing by applying the predictive features. In these
figures, the second row of every instance shows the parsing
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TABLE IX

THE TRANSFER RESULTS OF RPPNET AND RESNET-ITNET
ON THE KITTI DATASET

Fig. 7. Visual transfer results of RPPNet and ResNet-ITNet on the KITTI
dataset. For each column we list the images of to be parsed (a), RPPNet (b),
ResNet-ITNet (c), and Ground Truth (d).

results produced by CIPNet, the third row illustrates the result
of the RPPNet, and the fourth row is the result of ITNet,
which can be considered as the fused results from both CIPNet
and RPPNet. From the figures, we can discover that the
continuity of parsing maps between frames in the second row
is significantly improved, especially the discontinuous parts in
the second row highlighted in yellow are compensated in the
fourth row.

F. The Transferability of RPPNet and ITNet

We test the transferability of the models we proposed on
the KITTI [43] dataset. The data format and metrics for
semantic segmentation in the KITTI dataset are conform with
the Cityscapes dataset. We test the model on the KITTI dataset
directly which is trained on the Cityscapes dataset. The test
results on the KITTI dataset are shown in Table IX. We can
see that the values of PA and mIOU on the KITTI dataset
are a little lower because of no transfer learning or fine-tune
conducted on the KITTI dataset. However, Qualitative results
in Fig. 7 reflect the parsing results have certain reference
significance.

V. CONCLUSION

This paper proposed a novel video scene predictive parsing
model RPPNet, which can not only predict the image parsing
results of the future frames, but also be used to assist the
conventional image parsing of current frame. The superior-
ity of RPPNet benefits from two strategies applied in our
method. First, the adoption of binocular stereo images, which
can mine 3D structural information, has greatly improve the
performance of finding small objects such as poles. Second,
the LSTM network is used skillfully to predict the features
of the target frame, which can discover the spatial-temporal
consistence between the preceding frames and current target
frame, and make the parsing results more accuracy for moving
objects, such as vehicles and pedestrians. In addition, the pre-
dictive features of RPPNet can be further used to assist the

traditional image parsing networks to parse video scenes. The
experiments on the Cityscapes prove that the proposed RPPNet
can well solve the both tasks of predictive image parsing
and conventional image parsing, and show the superiority
comparing to some state-of-the-art methods.
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