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On spectral sequences from Khovanov homology

ANDREW LOBB

RAPHAEL ZENTNER

There are a number of homological knot invariants, each satisfying an unoriented
skein exact sequence, which can be realised as the limit page of a spectral sequence
starting at a version of the Khovanov chain complex. Compositions of elementary
1–handle movie moves induce a morphism of spectral sequences. These morphisms
remain unexploited in the literature, perhaps because there is still an open question
concerning the naturality of maps induced by general movies.

Here we focus on the spectral sequence due to Kronheimer and Mrowka from Kho-
vanov homology to instanton knot Floer homology, and on that due to Ozsváth and
Szabó to the Heegaard Floer homology of the branched double cover. For example,
we use the 1–handle morphisms to give new information about the filtrations on the
instanton knot Floer homology of the .4; 5/–torus knot, determining these up to an
ambiguity in a pair of degrees; to determine the Ozsváth–Szabó spectral sequence
for an infinite class of prime knots; and to show that higher differentials of both the
Kronheimer–Mrowka and the Ozsváth–Szabó spectral sequences necessarily lower
the delta grading for all pretzel knots.

57M25

1 Introduction

Recent work in the area of the 3–manifold invariants called knot homologies has
illuminated the relationship between Floer-theoretic knot homologies and “quantum”
knot homologies. The relationships observed take the form of spectral sequences
starting with a quantum invariant and abutting to a Floer invariant. A primary example
is due to Ozsváth and Szabó [18], in which a spectral sequence is constructed from
Khovanov homology of a knot (with Z=2–coefficients) to the Heegaard Floer homology
of the 3–manifold obtained as branched double cover over the knot. A later example
is due to Kronheimer and Mrowka, which gives a spectral sequence [12; 13] from
Khovanov homology to an instanton knot Floer homology.

There are automatically naturality questions about such spectral sequences. Both the
quantum homology and the Floer homology involved exhibit some functoriality with
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respect to link cobordism, and one can ask if the spectral sequences behave well with
respect to this functoriality. The project of demonstrating such naturality is important
(and is addressed, at least with Z=2–coefficients, in Baldwin, Hedden and Lobb [2]),
but in this paper we use the limited naturality already available (essentially naturality
for cobordisms presented as a movie of elementary 1–handle additions) to make some
computations. The basic idea is that if we are interested in the Floer homology of a
knot K, we find a cobordism to a knot K0 with a simple spectral sequence and then
use the Khovanov homology of K0 to draw conclusions on the Floer homology of K.

We are restricting ourselves to the Ozsváth–Szabó and Kronheimer–Mrowka spectral
sequences, but the technique should have wider applicability. In the next section we
review these Floer homologies; Section 3 then deals with the spectral sequences; and
Section 4 contains the computations.

A word of warning: as a matter of notational convenience, our Floer-theoretic invariant
of a knot or link or 3–manifold is really what in the literature would be the Floer
invariant of the mirror image of a knot or link or 3–manifold. This avoids permanent
use of the word “mirror” in the spectral sequences that we study.

1.1 Summary of results

We give three of the results that we deduce in the final section of this paper. We start
with a result in instanton knot Floer homology, specifically concerning the spectral
sequences due to Kronheimer and Mrowka from reduced Khovanov homology to a
flavour of instanton homology. There is no such nontrivial spectral sequence whose
structure is entirely known: the filtration on the instanton knot Floer homology is only
known for those knots whose spectral sequence collapses at the Khovanov page. The
most understood case is that of the torus knot T .4; 5/, for which the number of possible
spectral sequences is known to be at most eight; see [13, Section 11]. We manage to
restrict this from eight to two. Specifically we have the following proposition:

Proposition 1.1 The differential in the Kronheimer–Mrowka spectral sequence for
T .4; 5/ either goes from the generator at bigrading .2; 13/ to the generator at .9; 16/

or goes from .4; 13/ to .9; 16/.

(Our bigrading conventions are given in a later section.) This means, for example,
that the spectral sequence of T .4; 5/ corresponding to the quantum filtration has a
nontrivial differential either on page 8 or page 10.
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Next we turn to a general result that holds for all the spectral sequences under our
consideration. It has long been conjectured that the spectral sequence of Ozsváth
and Szabó should have differentials strictly lowering the delta grading (this is defined
precisely later on); see Greene [6, Conjecture 8.1]. We give a universal proof that
this holds for pretzel knots — the proof works for any of the spectral sequences under
our consideration. We state it here for the Kronheimer–Mrowka spectral sequences
(our filtration conventions are given in Section 2.1) and indicate the extension to the
Ozsváth–Szabó spectral sequence in the proof of Theorem 4.5.

Theorem 1.2 Let 2� p <minfq; rg. Then for any filtration determined by numbers
a and b , the Kronheimer–Mrowka spectral sequence, starting from the reduced Kho-
vanov homology Khr.P .�p; q; r// and abutting to the instanton knot Floer homology
I \.P .�p; q; r//, can only have nontrivial differentials that strictly lower the ı–grading.

To be slightly more precise, let EK be the Khovanov page of the spectral sequence.
Then, for any page Es with s �K of this spectral sequence, we have a decomposition
Es D Eu

s ˚El
s , where at EK this is the decomposition into the subspace with the

upper and the lower ı–grading, and the differential decomposes as

(1) ds D

�
0 0

dul
s 0

�
according to this decomposition, and hence induces a ı grading at any page inductively.

To state the theorem in other language, at each page Es for s �K we have that the
s–boundaries are contained in El

s , and the s–cycles contain El
s .

Finally, we mention here a constructive application to the Ozsváth–Szabó spectral
sequence. We show that for an infinite class of knots we can determine the (nontrivial)
spectral explicitly.

Proposition 1.3 The Ozsváth–Szabó spectral sequence for the knot P .�2; 3; 2nC 1/

is obtained by shifting the spectral sequence for P .�2; 3; 5/ by q2n�4 and taking the
direct sum with a trivial spectral sequence given by Tn DE2 DE1 .
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2 Review of Heegaard Floer and instanton Floer homology

While Khovanov homology is very simply defined and Heegaard Floer homology for
many is a relatively comfortable object, instanton Floer homology is far less known.
Therefore we are going to assume familiarity with Khovanov homology and devote the
first subsection merely to quoting a result from Heegaard Floer, while the remaining
subsections give a review of the relevant instanton Floer homology. We will work with
the reduced homology theories.

Remark All our results in this paper will be statements about the respective homology
theories with Q–coefficients in instanton Floer homology, and with Z=2–coefficients
in Heegaard Floer homology, although some statements should extend over to more
general coefficients.

2.1 Khovanov homology, and grading conventions

We are assuming familiarity with reduced Khovanov homology. Given a marked
link K with a diagram D we shall denote the reduced Khovanov chain complex
by .C.D/; dKhr.D// whose homology is the reduced Khovanov homology Khr.K/
of K. The vector space C.D/ is a bigraded complex .C.D/i;j /, where i denotes the
homological and j denotes the quantum grading. The differential dKhr is bigraded of
degree .1; 0/. The two gradings also define a descending filtration F i;j C.D/ indexed
by Z˚Z. With respect to these filtrations a morphism �W C.D/! C.D0/ is said
to be of order � .s; t/ if �.F i;j C.D// � F iCs;jCtC.D0/, where D0 is possibly a
different diagram, but not necessarily so.

We follow the standard convention that gives the reduced Khovanov chain complex
as a subcomplex of the Khovanov chain complex. This has the unfortunate effect that
the reduced Khovanov homology of the unknot is one copy of the ground ring (for us
either Q or Z=2) supported in gradings i D 0 and j D �1 (where one might think
j D 0 more natural). Nevertheless this brings us in line with most current usage.

Finally, we recall that the ı–grading in Khovanov homology is defined to be ıD j �2i

in terms of the homological grading i and the quantum grading j.

2.2 Heegaard Floer homology

We are concerned with �HF, the “hat” version of Heegaard Floer homology [17]. This is
an invariant of a closed 3–manifold equipped with a Spinc –structure and takes the form
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of a finitely generated vector space over Z=2. We are interested in 3–manifolds †.L/
that are obtained as branched double covers over the mirror images of links L� S3 ,
and, taking the sum over all Spinc –structures, we regard �HF simply as a vector space.

Theorem 2.1 (Ozsváth and Szabó [18]) Given a link L � S3 , there is a spectral
sequence (which a priori depends on a choice of link diagram) abutting to �HF.†.L//
with E1 page equal to the reduced Khovanov chain complex and E2 page equal
to the reduced Khovanov homology Khr.L/ (where everything has been taken with
Z=2–coefficients).

In general this theorem implies that the rank of �HF.†.K// is bounded above by the
rank of Khr.K/.

For a knot K the number of Spinc structures on †.K/ is equal to jdet.K/j, from which
by an Euler characteristic argument it follows that the rank of �HF.†.K// is bounded
below by jdet.K/j, and, when this bound is tight, †.K/ is called an L–space. It is a
quick check that if K is a knot with thin Khovanov homology then the rank of Khr.K/
is exactly jdet.K/j and hence the spectral sequence collapses at the E2 page.

Computations of nontrivial spectral sequences for specific prime knots were given by
Baldwin [1], and he observed that the spectral sequences he found had differentials
that strictly decreased the ı–grading on Khovanov homology. Later in this paper we
extend Baldwin’s examples to an infinite class of prime knots and furthermore show
that the Ozsváth–Szabó spectral sequence has differentials which strictly decrease the
ı–grading for all pretzel knots.

2.3 Instanton knot Floer homology

Instanton knot Floer homology as constructed by Kronheimer and Mrowka [11; 12; 13]
is an invariant of pairs consisting of links in 3–manifolds. In the manifestation that
interests us, we shall be restricting our attention to the case of knots and links inside
the 3–sphere K � S3 .

Reduced instanton knot Floer homology I \.K/ of a link K with a marked compo-
nent in the 3–sphere S3 is, roughly speaking, defined via the Morse homology of a
Chern–Simons functional on a space of connections that have a prescribed asymptotic
holonomy around the link K [13]. It is an abelian group with an absolute Z=4–
grading [12] (usually instanton Floer homology comes with relative Z=4–gradings, but
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in [12, Sections 4.5 and 7.4] absolute gradings are given). We denote by .C.K/\; d \/
the Z=4–graded complex whose homology is I \.K/. The differential d \ lowers the
Z=4–grading by 1. Involved in the construction of this complex are various choices
of perturbations one has made, but we have suppressed these in the notation as our
computations will not use the definition.

Remark For a matter of notation we denote by I \.K/ what Kronheimer and Mrowka
denote as I \.K/, the reduced instanton Floer homology of the mirror image of K.

Kronheimer and Mrowka have shown in [12; 13] that this admits a definition in which
the underlying chain complex has a description via a cube of resolutions, just as in the
case of Khovanov homology. Furthermore, the differentials have close ties with those
of the Khovanov complex, as we shall now recall.

Theorem 2.2 (Kronheimer and Mrowka) Let D be a diagram of a knot or link K

in S3 . When working with Khovanov homology and instanton Floer homology with
Z–coefficients we have the following:

(i) There is a differential d\.D/ on the module C.D/ whose homology is isomor-
phic to the reduced instanton knot Floer homology I \.K/. More precisely , the
bigrading .i; j / gives a Z=4–grading on C.D/ by j �i�1 mod 4. The differen-
tial d\.D/ lowers this Z=4–grading by 1. With these gradings , there is a quasi-
isomorphism of Z=4–graded chain complexes .C.K/\; d \/! .C.D/; d\.D//.

(ii) The difference d\.D/� dKhr.D/ is filtered of order � .1; 2/.

This statement appears, with the exception of the explicit identification of the Z=4–
grading, as [13, Theorem 1.1] for the unreduced theory which computes the unreduced
instanton knot Floer homology I #.K/ from unreduced Khovanov homology. The
remark after Proposition 1.5 in the same reference states that exactly the same statement
also holds for the reduced theory, realising I \.K/ as the final page of a spectral sequence
starting at Khr.K/.

With the exception of the additional statement about the filtration coming from the
bigrading, Theorem 1.1 of [13] is a consequence of [12, Theorem 6.8, Corollary 6.9
and Proposition 7.8]. For the sake both of completeness and exposition, we briefly
review how this result is derived by Kronheimer and Mrowka.

Theorem 6.8 in [12] is essentially an iterated skein exact triangle.
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If we inscribe a regular tetrahedron inside a 3–ball, each pair of opposite edges yields
the three “skein configurations” of unknotted edges. One then starts with a knot or
link K in a 3–manifold Y with n chosen balls where each ball intersects K in an
unknotted pair of strands corresponding to one of the skein configurations. One may
think of these as “crossing balls”.

One then considers the knots obtained from K by replacing the skein configuration
inside the n 3–balls with one of the other two skein configurations.

Given n crossing balls, there are 2n configurations one can derive from K through cross-
ing changes, where any crossing is resolved in one of the two possible ways (denoted
by K0 or K1 in Figure 1 in the case of a single crossing, with KDK2 ). These can be
thought of as sitting on the vertices f0; 1gn of an n–dimensional cube Œ0; 1�n . One de-
notes by Ku the resolution of K corresponding to u2 f0; 1gn . There is a natural cobor-
dism Svu (which is a product cobordism outside the crossing balls) between any two
of them, where u; v 2 f0; 1gn denote the crossing change data. (But motivated by Kho-
vanov homology, one just considers cobordisms if v � u later on in the construction.)

To any resolution Ku there is an associated singular instanton knot homology group
I!.Y;Ku/. Here ! is an arc from some component of K to some other, and the
bundle in the construction is chosen to have a second Stiefel–Whitney class Poincaré
dual to ! . (This is to avoid reducible connections.)

Kronheimer and Mrowka define the module

C WD
M

u2f0;1gn

Cu

“on the cube”, where Cu WD I!.Y;Ku/, together with a differential F constructed
as follows. A cobordism Svu , in which k crossings are changed, comes with a
.k�1/–dimensional family of metrics. A map

mvuW Cv!Cu

is defined by making a count of a 0–dimensional moduli space of antiselfdual connec-
tions singular along the cobordism Svu , and parametrised by the .k�1/–dimensional
family of metrics. This map mvu is then corrected by a sign to produce a map
fvuW Cv!Cu . The map F W C !C is then defined as the direct sum of the maps fvu .
In this setup, F 2 D 0, so .C ;F / is a complex.

Kronheimer and Mrowka then prove that the homology of this complex is isomorphic
to the singular instanton knot Floer homology I!.Y;K/ of the original knot or link
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K � Y one has started with,

(2) I!.Y;K/ŠH..C ;F //:

The proof is by induction on the number of crossings and quite involved. For a single
crossing, this reduces to a long exact sequence induced by the mapping cone of a skein
cobordism. On the algebraic side it makes use of the exact triangle detection lemma
first appearing in Ozsváth and Szabó’s work [18] as Lemma 4.2 for Z=2–coefficients,
and as [12, Lemma 7.1] for Z–coefficients.

This general approach is applied to the situation in Theorem 2.2 as follows: One starts
with an n–crossing diagram D of a knot or link K � S3 . Neighborhoods of these n

crossings of D appear as the crossing balls in the description above.

In order to make the singular instanton knot Floer homology well defined, one needs a
suitable SO.3/–bundle to work with. To this end, one adds the boundary of a meridional
disk of some component of K, resulting in a link denoted by K\ ; see for instance
[12, Figure 2]. Then the arc ! is chosen to be a radial arc in the chosen meridional
disk from K to the boundary of this meridional disk, which we call an earring.

In this setup, all 2n resolutions of K\ result in unlinks, one of whose components
carries an earring (and this 2–component link is a Hopf link). If u 2 f0; 1gn labels
a possible resolution of K\ , then I!.S3;K

\
u/ is identified with the same Z–module

that appears in the complex constructing reduced Khovanov homology. This is shown
in [12, Section 8], and in particular in Section 8.7 of this reference for the reduced
theory. Hence, in the above notation, .C ;F / is a complex with the same underlying
Z–module structure as Khovanov homology, which we have denoted by C.D/ in the
statement of Theorem 2.2. The differential F is denoted by d\.D/ since it a priori
depends on the chosen diagram through the crossing regions.

The differential d\.D/ is filtered with respect to the homological degree in Khovanov
homology (equal to juj1 , the l1 –norm, at the vertex u 2 f0; 1gn ). To the leading
homological order, d\.D/ is equal to the (reduced) Khovanov differential. This is
shown in [12, Section 8]. Hence, in the spectral sequence associated to this homological
filtration, the E2 page is identified with reduced Khovanov homology. The more refined
statement with respect to the bidegree is the content of [13]. Finally, the statement
about the Z=4–grading appears as [12, Proposition 7.8].

As a consequence of the second point in Theorem 2.2, both the homological and the
quantum filtrations on the Khovanov complex induce a filtration on the instanton knot
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Floer homology. This is a novum of [13] compared to [12]. A priori these filtrations
might depend on the chosen diagram, but it is not the case. In fact, Kronheimer
and Mrowka have shown that the induced filtrations are invariants of the link K

[13, Theorem 1.2 and Corollary 1.3], therefore yielding the following result:

Theorem 2.3 [13, Theorem 1.2 and Corollary 1.3] Let K be a link in S3 and let
D be a diagram of K. Let a; b � 1. The descending filtrations induced by ai C bj

on C.D/ is preserved by d\.D/, and the induced filtration on I \.K/ depends on the
link K only. The pages of the associated Leray spectral sequence .Er ; dr /, converging
to I \.K/, are invariants of K for r � aC 1. There are no differentials before the Ea

page, and the page EaC1 is the reduced Khovanov homology of K.

For instance, the homological filtration induces a spectral sequence abutting to I \.K/

whose E2 page is Khovanov homology, and the quantum filtration induces a spectral
sequence whose E1 page is Khovanov homology.

The statement in the last sentence is not explicit in [13] but is easily checked from
Kronheimer and Mrowka’s Theorem 2.2.

2.4 The Alexander polynomial

In [11], Kronheimer and Mrowka developed an instanton Floer homology of sutured
manifolds, yielding a Z=4–graded link homology group KHI.K/ of a link K. Kro-
nheimer and Mrowka [10], and independently Lim [14], show that this is related to
the Alexander polynomial. In fact, KHI.K/ carries two commuting operators whose
common eigenspace decompositions give KHI.K/ a .Z˚Z=2/–grading. For a knot K

and working with rational coefficients, the “graded Euler characteristic” of KHI.KIQ/
is equal to minus the Conway-normalised Alexander polynomial �K [10, Theorem 1.1]:

(3) ��K .t/D
X

h2Z; i2Z=2

.�1/i th dim.KHIi;h.KIQ//:

On the other hand, by [12, Proposition 1.4] there is an isomorphism between the rational
instanton homology I \.KIQ/ and the rational sutured instanton homology of the knot
complement, KHI.KIQ/. The following proposition is then immediate and was used
by Kronheimer and Mrowka in [13, Section 11] when considering I \.T .4; 5/IQ/ for
T .4; 5/ the .4; 5/ torus knot.

Proposition 2.4 The dimension of I \.KIQ/ is bounded below by the sum of the
absolute values of the coefficients of the Alexander polynomial �K .
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2.5 Thin Khovanov homology

The reduced Khovanov homology of an oriented link L is a bigraded vector space
over the rational numbers Khr.L/ which categorifies the Jones polynomial VL.q/,
normalised such that for the unknot U one has VU .q/D q�1 . More precisely, one has
the formula

(4)
X

i;j2Z

.�1/iqj rk.Khri;j .L//D VL.q/I

see for instance [9].

A link L is said to have thin Khovanov homology if all nontrivial vector spaces
Khri;j .L/ occur on one line where j � 2i is constant. Kronheimer and Mrowka
have shown that their spectral sequence from reduced Khovanov homology Khr.K/ to
reduced instanton knot Floer homology I \.K/ has no nontrivial differential after the
Khovanov page if K is a quasialternating knot; see [12, Corollary 1.6]. Their result
can easily be strengthened a little bit.

Proposition 2.5 Suppose that K is a knot that has thin reduced Khovanov homology.
Then the Kronheimer–Mrowka spectral sequence Khr.K/) I \.K/ has no nonzero
differential (over Q). The total rank of Khr.K/ and I \.K/ then agree with the
determinant of K given by j�K .�1/j D jVK .�1/j.

Proof Suppose the reduced Khovanov homology Khri;j .K/ of K is supported on the
line j D 2i C s for some even integer s . Then from formula (4) above it follows that

VK .�1/D VK .
p
�1

2
/D

X
i2Z

.�1/i.�1/iCs=2 rk.Khri;2iCs.K//

D .�1/s=2 rk.Khr.K//:

Therefore, the determinant is equal to the total rank of the reduced Khovanov homology
of K. On the other hand, Proposition 2.4 above gives the same lower bound. As
therefore the rank of reduced Khovanov homology Khr.K/ and I \.K/ have to coincide,
there is no nonzero differential in the spectral sequence.

An analogous result holds in Heegaard Floer homology: knots with thin Khovanov
homology have branched double covers which are Heegaard Floer L–spaces.

As a consequence of the spectral sequence, the total rank of Khovanov homology
provides an upper bound for the rank of instanton homology. In the case where these
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K0 K1

K2

Figure 1: The links K0 , K1 and K2 form an unoriented skein triple.

ranks agree, all the information about the filtration on instanton homology is contained
in Khovanov homology.

2.6 Unoriented skein exact triangles

Both Khovanov homology and instanton knot Floer homology have unoriented skein
exact triangles, of which we shall make extensive use in our computational section.
The statement for instanton Floer homology is a corollary of [12, Theorem 6.8]; see
the paragraph after the statement of Theorem 6.8 in this reference. The cobordisms
inducing the maps in knot Floer homology are the subject of [12, Section 6.1], while
the maps themselves are constructed in [12, Section 6.2].

The statement of the skein exact sequence in Khovanov homology is already present
in [8].

Proposition 2.6 Suppose K0 , K1 and K2 are three links with diagrams D0 , D1

and D2 , respectively , that look the same except near a crossing of D2 , where they differ
as in Figure 1. Then there is a long exact triangle relating the groups I \.K0/, I \.K1/

and I \.K2/, and likewise for the reduced Khovanov homology groups Khr.K0/,
Khr.K1/ and Khr.K2/:

I \.K0/ I \.K1/ Khr.K0/ Khr.K1/

I \.K2/ Khr.K2/

All maps are induced by standard cobordisms corresponding to 1–handle attachment in
both theories.
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2.7 Knot cobordisms and functoriality

The instanton knot Floer homology I \.K/ groups are functorial for decorated knot and
link cobordisms [12]. Given two decorated oriented embedded links K0 and K1 , and an
isotopy class (rel boundary) of decorated cobordism S � Œ0; 1��S3 from K0�f0g�S3

to K1 � f1g �S3 , there is an induced morphism I \.S/W I \.K0/! I \.K1/ which is
well defined up to an overall sign. Furthermore, the morphism induced by a composite
decorated cobordism is the composition of the morphisms of the decorated cobordisms.

The decorations referred to consist of basepoints of the boundary links together with
normal directions at the basepoints and a path on the cobordism between the basepoints
also equipped with a normal direction at each point on the path. These decorations are
important to make sense of functoriality — for example a module should be associated to
a decorated link, rather than just an isomorphism class of module. For the computational
results of this paper, however, it will be enough to identity the rank and nullity of maps
induced by cobordism (when working over a field), instead of determining the maps
completely.

We make use of the following proposition:

Proposition 2.7 [13, Proposition 1.5] Let S be a cobordism from a link K0 to a
link K1 . Let D0 and D1 be diagrams for K0 and K1 . Then the map I \.S/W I \.K0/!

I \.K1/ is induced by a chain map cW C.D0/! C.D1/ which has order

�
�

1
2
.S �S/; �.S/C 3

2
.S �S/

�
;

where �.S/ denotes the Euler characteristic of S and S �S denotes the self-intersection
number of S with the boundary condition that a pushoff at the ends is required to have
linking number 0 with K0 , respectively K1 .

In general, a movie M between diagrams D0 and D1 consisting of 0–, 1– and 2–
handle attachments, and of Reidemeister moves, induces a cobordism SM between the
corresponding knots K0 and K1 . Such a movie induces a morphism c.M /W C.D0/!

C.D1/ between the corresponding Khovanov complexes by composing the Khovanov
morphisms from handle attachments and the chain homotopy equivalences coming
from the Reidemeister moves in the respective order. In particular, there is a resulting
map Khr.M / from the Khovanov homology of K0 to K1 .
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3 Constraints on Floer homology

In this section we show how conclusions on the Kronheimer–Mrowka or Ozsváth–Szabó
spectral sequences for a specific knot or link might be made from link cobordisms.

3.1 Morphisms of spectral sequences

Given two spectral sequences .Er ; dr / and .E0r ; d
0
r /, a collection of morphisms

.fr W Er !E0r / is said to be a morphism of spectral sequences if

� for any r the morphism fr is a morphism of chain complexes from the complex
.Er ; dr / to .E0r ; d

0
r /, ie fr intertwines the differentials dr and d 0r , and

� the morphism frC1 is the morphism induced by fr on homology under the
isomorphisms H.Er ; dr /ŠErC1 and H.E0r ; d

0
r /ŠE0

rC1
for any r 2N .

For instance, having filtered complexes .C; d/ and .C 0; d 0/, filtered by families
.FnC /n and .G nC 0/n , and a morphism of chain complexes f W C ! C 0 that respects
the filtrations — meaning that f .FnC / � G nC 0 for all n — the map f induces a
morphism between the two spectral sequences coming from the filtrations.

Definition 3.1 We say that an element x 2Es is an s–boundary if x is in the image
of ds , and we say that x is an s–cycle if ds.x/D 0. We say that an element x 2Es is
an 1–cycle if x lies in the kernel of ds and its homology class Œx�t is a .tC1/–cycle
for all t � s .

Lemma 3.2 Let .fr /W .Er ; dr /! .E0r ; d
0
r / be a morphism of spectral sequences.

(i) If x 2Es is an s–cycle then fs.x/ 2E0s is an s–cycle.

(ii) If x 2Es is an s–boundary then fs.x/ 2E0s is an s–boundary.

(iii) If x 2Es is an 1–cycle then fs.x/ 2E0s is an 1–cycle.

Proof The result follows from the fact that morphisms of chain complexes preserve
cycles and boundaries.

A chain map cW C.D0/ ! C.D1/ as in Proposition 2.7 respects the filtrations by
Z˚Z on the two complexes C.D0/ and C.D1/ up to a global shift. Therefore, such
a chain map induces a graded morphism of spectral sequences .cr /W .Er .D0// !

.Er .D1//, where .Er .Di// is the spectral sequence converging to the Floer homology
group I \.Ki/. The grading of this graded morphism agrees with the global shift.
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In the spectral sequences E�.Di/, each page after the Khovanov pages is a topological
invariant, ie depends on the links Ki only. In the proof of Proposition 2.7 above in [13],
the chain map c is in fact obtained by representing the cobordism S by a movie M

between diagrams D0 and D1 for K0 and K1 , respectively, and by then checking the
claim for the map induced on reduced instanton knot Floer homology by the particular
handle and Reidemeister moves.

One is tempted to believe that at the Khovanov page, the corresponding morphism c.M /

between the instanton Floer chain complexes as in the last proposition is just equal
to the map Khr.M /W Khr.K0/! Khr.K1/ in Khovanov homology. In fact, such a
functoriality property remains open in [13]. What we can say, however, is that there is
such a result in a particular situation.

Proposition 3.3 Let D0 and D1 be diagrams of knots K0 and K1 . Let S be a
cobordism from K0 to K1 that is represented by a movie M between the diagrams D0

and D1 . Let us assume this movie consists only of isotopies of the diagrams (outside
of balls containing the crossings) and handle attachment of index 1 (excluding Reide-
meister moves). Then the map I \.S/W I \.K0/! I \.K1/ is induced by a morphism of
chain complexes

c.M /W .C.D0/; d\.D0//! .C.D1/; d\.D1//

respecting the bifiltration by Z˚Z, and this morphism induces the map

Khr.M /W Khr.K0/! Khr.K1/

at the Khovanov page of the Kronheimer–Mrowka spectral sequence.

Proof This is, in the language of [2], asking that the spectral sequence satisfy the
second condition required of a Khovanov–Floer theory. An argument for this, valid for
arbitrary coefficients, is given in Proposition 5.2 of [2].

The corresponding result for the Ozsváth–Szabó spectral sequence seems to be known
and follows the same line of argument.

Proposition 3.4 Let D0 , D1 , K0 , K1 , S and M be as above. Working now of
course with Z=2–coefficients, the map �HF.†.S//W �HF.K0/! �HF.K1/ is induced by a
morphism of filtered chain complexes inducing the map Khr.M /W Khr.K0/!Khr.K1/

at the E2 page of the Ozsváth–Szabó spectral sequence.
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Suppose now that S is a link cobordism between K0 and K1 with only index 1

critical points. In fact, it is not too hard to see that there exist diagrams D0 and D1

and a movie M (presenting K0 , K1 and S ) which satisfy the requirements of the
propositions above. For those wanting details of how to construct such a movie M we
refer them to the proof of Theorem 1.6 of [15].

For knots K0 , K1 and K2 related by the unoriented skein moves via

Khr.K0/ Khr.K1/

Khr.K2/

the maps in the long exact sequence on Khovanov homology are each induced by some
1–handle attachment up to Reidemeister-isomorphism. Applying Proposition 3.3 in
this case gives us the following:

Proposition 3.5 Suppose we are given knots or links K0;K1 and K2 that only differ
inside a ball by the unoriented skein moves; then there are obvious cobordisms S01

from K0 to K1 , S12 from K1 to K2 , and S20 from K2 to K0 such that each Sij

has a single critical point of index 1. Then , fixing i 2 f0; 1; 2g, we can arrange that the
map I \.Si;iC1/W I

\.Ki/! I \.KiC1/ is induced by a filtered map on chain complexes

cW .C.Di/; d\.Di//! .C.DiC1/; d\.DiC1//;

with Di and DiC1 being diagrams for Ki and KiC1 , and such that the induced
morphism between the resulting Kronheimer–Mrowka spectral sequences fits into an
exact triangle at the Khovanov page relating Khr.K0/, Khr.K1/ and Khr.K2/.

Proposition 3.6 The analogue of the previous proposition holds for the Ozsváth–
Szabó spectral sequence as well.

4 Computations

Essentially most of the arguments in this section progress by finding cobordisms
between knots whose spectral sequences we wish to know and knots whose spectral
sequences are necessarily trivial after the Khovanov page.

4.1 The .4; 5/ torus knot and instanton homology

In this subsection we work exclusively with Q–coefficients.
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In [13, Section 11] the example of the .4; 5/ torus knot T .4; 5/ is analysed and it is
determined that there is exactly one nontrivial differential in the spectral sequence after
the Khovanov page. Furthermore, it is shown that this differential would cancel exactly
one of eight explicit pairs of generators in the Khovanov homology.

The technique in this paper almost determines the spectral sequence completely: we
are able reduce the number of possible pairs to two, enabling us to give the filtration
on I \.K/ in almost all degrees. More precisely, after proving Proposition 1.1 we can
write I \.K/D V 6˚W 1 where V and W are filtered vector spaces of dimensions 6

and 1, respectively, and we know the filtration on V completely and there are two
possibilities for the filtration on W .

We note that none of the techniques currently available to constrain the filtered instan-
ton homology (our technique included) discriminates between the various filtrations
corresponding to choices .a; b/ 2 Z˚ Z for a; b � 1. A priori it is possible that
different choices of .a; b/ give different spectral sequences, and so it may be the case
that, of the two possible canceling pairs in the spectral sequence for T .4; 5/, each pair
does in fact occur for different choices of filtration.

In the plot below we show the reduced Khovanov homology over Q of T .4; 5/ as the
solid discs. The horizontal axis is the homological grading i, and we follow Kronheimer
and Mrowka in making the vertical coordinate j � i, where j is the quantum grading.
In [13] it is shown that there is exactly one nontrivial differential in their spectral
sequence.

Using the Z=4–grading on I \.K/, Kronheimer and Mrowka showed that this differ-
ential will go from one of the three generators on line j � i D 13 to one of the three
generators on the line j � i D 16. The exception is that a differential from .6; 13/

to .5; 16/ is impossible. In fact, as quoted in Theorem 2.2, the differential d\ that
computes the instanton Floer homology I \ from a resolution cube in the spectral
sequence preserves the descending quantum filtrations. Hence there are a priori eight
possible differentials.

We now turn to the proof of Proposition 1.1, which we break into two lemmas.

Lemma 4.1 The generators at bigradings .5; 16/ and .7; 16/ are never boundaries
after the Khovanov page in the spectral sequence. Hence, since we know there is exactly
one nontrivial differential, the generator at .9; 16/ must be the boundary.

Proof We consider the genus 1 knot cobordism † obtained as follows. First express
T .4; 5/ as a braid closure. Changing the sign of a crossing between the first two strands
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of the braid gives a knot, which we shall call K. Using time as the second coordinate,
we have a cylinder embedded in S3 � Œ0; 1� with a single point of self-intersection
which has boundary T .4; 5/ � S3 � f0g and K � S3 � f1g. Replacing the point of
self-intersection with a piece of genus gives a knot cobordism † between T .4; 5/

and K.

We observe by computer calculation that the rank (over Q) of the reduced Khovanov
homology of K is 9 and the sum of the absolute values of the Alexander polynomial
of K is also 9. Hence the Kronheimer–Mrowka spectral sequence associated to K

collapses at the Khovanov page by Proposition 2.4.

In this plot we show the reduced Khovanov homology over Q of T .4; 5/ and of K :

0 2 4 6 8

9

11

13

15

The discs correspond to generators of the homology of T .4; 5/, the circles to generators
of the homology of K. For the axes we take our conventions from [13, Section 11].
Kronheimer and Mrowka use the convention that the reduced Khovanov homology of
the unknot is supported in bidegree .i; j / D .0;�1/, and in this plot the horizontal
axis is i, while the vertical axis is j � i.

The cobordism † being oriented, it induces a map on the Khovanov homology which
preserves the homological grading and lowers the quantum grading by 2. Hence the
rank of this map is at most 6, and we have drawn the 6 possibly nonzero components
of this map.

We split the cobordism † into the composition of two cobordisms †1 and †2 where
†1 is a cobordism obtained by adding a 1–handle to T .4; 5/ to obtain a 2–component
link L, and where †2 is obtained by adding a 1–handle to L to obtain the knot K.
We can think of L as being obtained by taking the vertical smoothing of a crossing
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between the first two strands of a standard braid presentation of T .4; 5/. When we
replace the crossing in question by the horizontal smoothing we obtain the trefoil knot.

So we can use Proposition 3.5 to see that there exists a movie presentation of †
inducing a morphism of Kronheimer–Mrowka spectral sequences that at the Khovanov
page is the composition of two maps

Khr.T .4; 5//
Khr.†1/
�����! Khr.L/

Khr.†2/
�����! Khr.K/;

each of which has cone equal to the reduced Khovanov homology of the trefoil. The
rank of the reduced Khovanov homology of the trefoil knot is 3, hence if the rank
of Kh.L/ is 6C 2b then the ranks of the maps Khr.†1/ and Khr.†2/ are both 6C b

since
3D rk

�
Cone.Khr.†i//

�
D 9C 6C 2b� 2 rk.Khr.†i//:

Hence the rank of Khr.†/ is at least .6C b/C .6C b/� .6C 2b/D 6, but we have
already seen that the rank is at most 6.

So we see by Lemma 3.2 that, since the generators at .5; 16/ and .7; 16/ are mapped
nontrivially under Khr.†/, they are never boundaries after the Khovanov page, and

Figure 2: The dotted line represents a blackboard-framed 1–handle attach-
ment which gives a knot cobordism from the knot 52 to T .4; 5/ .
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hence they survive the spectral sequence. Thus the generator at .9; 16/ is the target of
some nonzero differential.

Next we try to narrow down the possible generators from which the differential of the
spectral sequence emerges.

Lemma 4.2 The generator at bigrading .6; 13/ on the Khovanov page is an 1–cycle.

Proof There is a cobordism topologically equivalent to a punctured Möbius band from
the knot 52 in Rolfsen’s knot table to T .4; 5/. This is presented as a single 1–handle
attachment in Figure 2.

This 1–handle attachment induces a morphism of Kronheimer–Mrowka spectral se-
quences, which we are again able to compute explicitly on the Khovanov page.

On the Khovanov page the map raises the homological grading by 11 and raises the
quantum grading by 32. The possible nonzero components of this map are shown
below:

�5 �3 �1 1 3 5 7 9

�8

�6

�4

�2

0

2

4

6

8

10

12

14

16
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In fact, each component is nonzero, since the Khovanov homology of the cone (again,
computed from the unoriented skein exact sequence) has homological width 2.

Since 52 is alternating, the spectral sequence has only trivial differentials past the
Khovanov page. This implies, again by Lemma 3.2, that the generator of the Khovanov
homology of T .4; 5/ that occurs at grading .i; j � i/ D .6; 13/ has to survive the
spectral sequence (since it must be an 1–cycle).

Thus we have shown that there are only two remaining possibilities for the nontrivial
differential in the spectral sequence, hence verifying Proposition 1.1.

4.2 Three-stranded pretzel knots

We will now apply our method to draw conclusions about the Floer homology of
3–stranded pretzel knots P .p; q; r/. To avoid confusion we shall state this first about
instanton homology and indicate at the end how the proof for the Heegaard Floer
homology of the branched double cover differs. Firstly, then, we work over Q.

To avoid trivialities, we assume all of p , q and r are nonzero. Notice also that
P .p; q; r/ is invariant under permutation of the numbers p , q and r , and that reflection
of P .p; q; r/ yields P .�p;�q;�r/. We will restrict ourselves to the cases where
P .p; q; r/ is a knot, and this is so if and only if at most one of the numbers p , q and r

is even.

Firstly, we identify some families of pretzel knots whose reduced Khovanov homology
is supported in a single delta grading — those pretzel knots which are alternating or,
more generally, quasialternating.

If the absolute value of one of the numbers p , q or r is 1 then P .p; q; r/ is easily
seen to be a 2–bridge link, and hence alternating.

From now on we assume p; q; r � 2.

Note that P .p; q; r/ is alternating in its standard diagram. Moreover, by results of
Greene [5] and Champanerkar and Kofman [3] the 3–stranded pretzel links P .�p; q; r/

are nonquasialternating if and only if p �minfq; rg.

Starkston [21] has conjectured and Qazaqzeh [20] has shown that the Khovanov
homology of P .�p; q; r/ is thin if p Dminfq; rg, and Manion [16] has proved that it
is not thin if p <minfq; rg.
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As a consequence of these results, the only 3–stranded pretzel knots which do not
have their reduced instanton knot Floer homology determined by the collapsing of
the Kronheimer–Mrowka spectral sequence are the knots P .�p; q; r/ with 2� p <

minfq; rg.

The following is a consequence of Manion’s result [16, Theorem 1.1]:

Proposition 4.3 Let 2 � p < minfq; rg. The reduced Khovanov homology over Q

of the pretzel knot P .�p; q; r/ is supported in two neighbouring ı–gradings and is
given by

Khr.P .�p; q; r//ŠQp2�1
˚Q.q�p/.r�p/�1

if all of p , q and r are odd or only q or r is even, and is given by

Khr.P .�p; q; r//ŠQp2

˚Q.q�p/.r�p/

if p is even. In both cases, the first summand denotes the reduced Khovanov homology
of the upper ı–grading (say ı D u.P .�p; q; r//) and the second summand the one
with the ı–grading which is two lower (say ı D l.P .�p; q; r//).

Manion also makes precise the respective ı–gradings u and l .

Our proof also requires understanding the Khovanov homology and spectral sequence
of the 2–component torus link T .2; 2n/ (for n ¤ 0). For any n � 1 the T .2; 2n/

torus link is an alternating nonsplit two component link, and has reduced rational
Khovanov homology supported in delta grading ı D 1

2
.2n� 1/ (in other words it has

thin homology).

Before stating our theorem we prove a simple lemma. Proposition 2.5 does not im-
mediately apply to conclude that the spectral sequence to I \.T .2; 2n// is trivial even
though it has thin homology because the excision isomorphism I \.K/Š KHI.K/ is
just stated for knots in [12].

Lemma 4.4 The T .2; 2n/ torus link has trivial Kronheimer–Mrowka spectral se-
quence from Khr.T .2; 2n// to I \.T .2; 2n//. Both groups have total rank 2n.

Proof We use the exact triangle from Proposition 2.6 twice. The torus knot K D

T .2; 2nC1/ in its standard diagram has a crossing such that the link K0 resulting from
the 0–resolution of that crossing is the torus link T .2; 2n/, and the knot K1 resulting
from 1–resolution is the unknot U. For the ranks we have rk

�
Khr.T .2; 2nC 1//

�
D
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2nC1 and rk.Khr.U //D 1. Therefore, by the exact triangle the rank of Khr.T .2; 2n//

is either 2nC 2 or 2n.

The torus link LD T .2; 2n/ has a crossing in its standard diagram such that the two
resolutions are the torus knot T .2; 2n� 1/ and the unknot U, respectively. The exact
triangle implies this time that the rank of Khr.T .2; 2n// is either 2n or 2n� 2. Thus
the rank of Khr.T .2; 2n// is 2n.

The torus knots T .2; 2nC 1/ are alternating, so have trivial spectral sequence. The
exact triangle argument just above, but this time applied to reduced instanton homology,
implies the claim.

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2 For the time being, we assume q and r are odd numbers, and
without loss of generality we can assume q � r . For any p � 2, the pretzel knots
P .�p; q; r/, P .�.p� 1/; q; r/ and the torus link T .2; qC r/ are related by a skein
triangle. By Proposition 3.5 there is a morphism of spectral sequences ‰ from the
Kronheimer–Mrowka spectral sequence for P .�.p� 1/; q; r/ to that of P .�p; q; r/

such that at the Khovanov page the morphism  fits into an exact triangle

(5)
Khr.P .�.p� 1/; q; r// Khr.P .�p; q; r//

Khr.T .2; qC r//

 

fg

Let us here be explicit about the delta gradings. In this exact triangle, the map  takes
the summand in grading ıD u.P .�.p�1/; q; r// and ıD l.P .�.p�1/; q; r// to the
summand in grading ı D u.P .�p; q; r// and ı D l.P .�p; q; r//, respectively. The
map f takes the summand in grading ı D u.P .�p; q; r// to the summand in grading
ı D 1

2
.2n� 1/ (recall that Khr.T .2; q C r// is supported in this grading). Finally,

the map g takes the summand in grading ı D 1
2
.2n� 1/ to the summand in grading

ı D l
�
P .�.p� 1/; q; r/

�
.

Consider the exact triangle (5), and let the inductive hypothesis H.p; s/ for 1� p � q

and s �K consist of the following statements:

(i) At page Es DEu
s ˚El

s we have that El
s contains the s–boundaries.

(ii) At page Es we have that the s–cycles contain El
s .

Algebraic & Geometric Topology, Volume 20 (2020)



On spectral sequences from Khovanov homology 553

(iii) If p � 2, then at page Es the map ‰s splits as the direct sum of maps

‰l
sW E

l
s.P .�.p� 1/; q; r//!El

s.P .�p; q; r//

and
‰u

s W E
u
s .P .�.p� 1/; q; r//!Eu

s .P .�p; q; r//:

(iv) If p � 2, ‰l
s is surjective.

(v) If p � 2, ‰u
s is injective.

We start the induction at the Khovanov page.

First observe that at the Khovanov page EK the long exact sequence (5) implies that  
always satisfies (iii), (iv) and (v) of H.p;K/ due to the support of Khr.T .2; qC r//

in a single delta grading and the gradings of the maps ‰ , f , and g .

Now observe that P .�1; q; r/ is 2–bridge and P .�q; q; r/ has thin Khovanov ho-
mology by Qazaqzeh’s result [20] and hence both have trivial Kronheimer–Mrowka
spectral sequence by Proposition 2.5. Hence we have that H.1;K/ and H.q;K/ are
trivially satisfied.

Next see that if (i) of H.p;K/ is satisfied then (i) of H.p� 1;K/ is implied by (v)
of H.p;K/ and Lemma 3.2. Hence by induction on p decreasing with p D q as the
root case we have established (i) for all H.p;K/.

Finally see that if (ii) of H.p;K/ is satisfied then (ii) of H.pC 1;K/ is implied by
(iv) of H.pC 1;K/ and Lemma 3.2. Hence by induction on p increasing with p D 1

as the root case we have established (ii) for all H.p;K/.

Hence we have H.p;K/ for all p .

Next we notice that the shape of the differential (1) at the Khovanov page EK implies
that there is a well-defined delta grading on the homology of the Khovanov page, which
is page EKC1 of the spectral sequence. We also realise that in the upper delta grading of
this next page we obtain a subspace of the upper delta grading of Khovanov homology —
the kernel of the differential — whereas the lower delta grading is a quotient of the
lower delta grading of Khovanov homology — the cokernel of the differential. As a
consequence the morphism ‰K , induced by the map ‰ above, maps the upper delta
grading of this page for P .�.p� 1/; q; r/ injectively into the upper delta grading of
this page for P .�p; q; r/, and likewise maps the lower delta grading surjectively onto
the respective lower delta grading.
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In other words, we see that (iii), (iv) and (v) hold for each H.p;KC 1/, and again we
have that H.1;KC 1/ and H.q;KC 1/ are trivially satisfied. Then the induction can
proceed exactly as before, so that we see that H.p;KC 1/ holds for all p . Then we
take homology to move to the next page of the spectral sequence and so on. Hence we
have H.p; s/ for all p and s .

So far we have proved the theorem for all cases where both q and r are odd numbers.
Assume now without loss of generality that q is even and p and r are both odd.

The pretzel knots P .�p; q; r/ and P .�p; qC1; r/ and the torus link T .2; r�p/ also
form an exact triangle to which we apply Proposition 3.5 and Lemma 3.2 another time.
There is a morphism of spectral sequences ‰ from the Kronheimer–Mrowka spectral
sequence of P .�p; qC 1; r/ to that of P .�p; q; r/ such that the morphism  at the
Khovanov page fits into the exact triangle

Khr.P .�p; qC 1; r// Khr.P .�p; q; r//

Khr.T .2; r �p//

 

Again, if we consider gradings, this morphism  has to map the summand with the
lower delta grading of the group Khr.�p; qC 1; r/ onto the lower delta grading of
Khr.P .�p; q; r//, and we can use the theorem for the pretzel knot P .�p; qC 1; r/

to draw the conclusion that there is no nontrivial differential when restricted to the
summand with the lower delta grading, at any page of the Kronheimer–Mrowka spectral
sequence for P .�p; q; r/.

Similarly, the pretzel knots P .�p; q; r/, P .�p; q�1; r/ and the torus link T .2; r�p/

also form an exact triangle to which we apply Proposition 3.5. There is a morphism of
spectral sequences ‰ from the Kronheimer–Mrowka spectral sequence of P .�p; q; r/

to that of P .�p; q � 1; r/ such that the morphism  at the Khovanov page fits into
the exact triangle

Khr.P .�p; q; r// Khr.P .�p; q� 1; r//

Khr.T .2; r �p//

 

Again, this morphism has to map the summand with the upper delta grading of the group
Khr.�p; q; r/ injectively into the upper delta grading of Khr.P .�p; q� 1; r//. Using
the same method as before, we can use the theorem for the pretzel knot P .�p; q�1; r/
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to draw the conclusion that the differentials for P .�p; q; r/ will have no nontriv-
ial projection onto the summand with the upper delta grading, at any page of the
Kronheimer–Mrowka spectral sequence for P .�p; q; r/.

Theorem 4.5 Let 2 � p < minfq; rg. Then the Ozsváth–Szabó spectral sequence,
starting from the reduced Khovanov homology Khr.P .�p; q; r// and abutting to the
Heegaard Floer homology of the branched double cover of the mirror �HF.†.K//, can
only have nontrivial differentials that strictly lower the ı–grading.

Proof The only substantial difference is that we are now working over the 2–element
field Z=2. With these coefficients one may be worried that the reduced Khovanov
homology of a pretzel link may not be supported in two adjacent ı–gradings, but
this turns out not to be the case, for example by appealing to Manion’s result [16,
Theorem 1.1], in which he proved that the reduced Khovanov homology of a pretzel
knot over Z is torsion-free.

Remark We have observed above that for the torus knot T .4; 5/ the same conclusion
holds: all possible nonzero differentials in the Kronheimer–Mrowka spectral sequence
strictly lower the ı–grading.

Based on these results we state the following conjecture:

Conjecture 4.6 For any knot, all nontrivial differentials in the Kronheimer–Mrowka
spectral sequence strictly lower the ı–grading.

In another direction, we make the following observation:

Proposition 4.7 The suite of pretzel knots P .�2; 3; 2nC 1/ all have trivial Kron-
heimer–Mrowka spectral sequence.

Proof The sum of the absolute values of the coefficients of the Alexander polynomial
of P .�2; 3; 2nC 1/ is equal to 2nC 3. Therefore, I \.P .�2; 3; 2nC 1// has rank
bounded below by 2nC 3 by Proposition 2.4. On the other hand, Manion’s result
says that the rank of Khr.P .�2; 3; 2nC 1// is also equal to 2nC 3. Hence, the
Kronheimer–Mrowka spectral sequence is trivial.

It is not the case that these knots P .�2; 3; 2nC1/ have trivial Ozsváth–Szabó spectral
sequence. In fact, in Proposition 1.3 we determine explicitly the Ozsváth–Szabó spectral
sequences for these knots.
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4.3 The .�2 ; 3; 2nC 1/ pretzel knots and the Ozsváth–Szabó spectral
sequence

We have seen earlier that the Kronheimer–Mrowka spectral sequence collapses at the
Khovanov page for all pretzel knots P .�2; 3; 2nC 1/. This however is not the case
for the Ozsváth–Szabó spectral sequence.

In this subsection we work over Z=2. In [1], Baldwin considered the pretzel knot
P .�2; 3; 5/ and determined the pages of the Ozsváth–Szabó spectral sequence from
the reduced Khovanov homology of P .�2; 3; 5/ to the Heegaard Floer homology of
the branched double cover (which in this case is the Poincaré homology 3–sphere).

The reduced Khovanov homology of P .�2; 3; 5/ is given by

Khr.P .�2; 3; 5//D t0q8
C t2q12

C t3q14
C t4q14

C t5q18
C t6q18

C t7q20;

where we have been cavalier about the distinction between the homology groups and
the Poincaré polynomial (we shall continue to be cavalier). Baldwin showed that t0q8

survives the spectral sequence and the remaining six elements cancel in pairs

.t2q12; t4q14/; .t5q18; t7q20/; .t3q14; t6q18/;

where the first two pairs cancel from the E2 page to the E3 page, and the third pair
cancel from the E3 to the E4 page.

Manion’s result [16] implies that the reduced Khovanov homology of P .�2; 3; 2nC1/

is supported in two adjacent delta gradings (where ı is defined as half the quantum
grading minus the homological grading). It has rank 2n�1 in delta grading ıD nC1

and rank 4 in delta grading ı D nC 2. In fact, we can write

Khr.P .�2; 3; 2nC 1//

D q2n�4 Khr.P .�2; 3; 5//C t8q2nC18.1C tq2
C .tq2/2C � � �C .tq2/2n�5/;

where n� 3. We write this as

Khr.P .�2; 3; 2nC 1//D q2n�4 Khr.P .�2; 3; 5//˚Tn;

where Tn stands for tail. We note that for degree reasons each bihomogenous element
of Khr.P .�2; 3; 2nC 1// lies either in q2n�4 Khr.P .�2; 3; 5// or in Tn .

Proof of Proposition 1.3 Firstly we want to see that the element t0q2nC4 in the
homology Khr.P .�2; 3; 2nC 1// has to survive the spectral sequence. To see this
we just observe that Baldwin’s argument for the case nD 2 actually works for n� 2.
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Essentially since P .�2; 3; 2nC 1/ is a positive knot and the Khovanov homology is
of rank 1 in homological degree 0, it follows that Plamenevskaya’s element [19] is
exactly the element t0q2nC4 . Baldwin shows that Plamenevskaya’s element represents
a cycle in every page of the spectral sequence and, since the Ozsváth–Szabó differentials
always increase the homological grading, this implies that t0q2nC4 survives to the
E1 page.

Next we note that there is a orientable knot cobordism induced by the addition of 2n�4

1–handles from P .�2; 3; 2nC1/ to P .�2; 3; 5/. Now this induces a map on Khovanov
homologies

�W Khr.P .�2; 3; 2nC 1//! Khr.P .�2; 3; 5//

such that

� � is of bidegree .0; 4� 2n/,

� � is the map on the E2 pages of a morphism between the Ozsváth–Szabó
spectral sequences of the two knots,

� � is onto.

The last bullet point follows from the unoriented skein exact sequence in Khovanov
homology and a comparison of ranks.

As an example, below we have drawn the reduced Khovanov homology (with Z=2–
coefficients) of P .�2; 3; 11/:

0 2 4 6 8 10 12 14
14

16

18

20

22

24

26

28

30

32

34

36

38
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We have used the convention that the reduced Khovanov homology of the unknot should
be supported in bidegree .i; j /D .0; 0/, and in our plot the horizontal axis is i, while
the vertical axis is j.

The discs correspond to generators whose image under � is nonzero, the circles are
generators in the kernel of � . The arrows are the higher differentials of the spectral
sequence which we are trying to prove exist.

Now each differential on the nth page En in the Ozsváth–Szabó spectral sequence
raises the homological grading by n. We know from the previous section that each
differential in the spectral sequence for a pretzel knot has to lower the delta grading
by 1. Hence each differential on the nth page is of bidegree .n; 2.n� 1//.

Let us now look at the map between the E2 pages, we have the commutative diagram

t2q2nC8

�
��

d2
// t4q2nC10

�
��

t2q12 D2
// t4q14

where the bottom row is part of the E2 page for P .�2; 3; 5/ and the top row is part of
the E2 page for P .�2; 3; 2nC 1/. The differential d2 is forced to be nonzero since
all other arrows are nonzero. Hence .t2q2nC8; t4q2nC10/ is a canceling pair on the
E2 page for P .�2; 3; 2nC1/. A similar argument tells us that .t5q2nC14; t7q2nC16/

is another canceling pair on the E2 page.

Now we look at the E3 page. Again the bottom row is P .�2; 3; 5/; the top row is
P .�2; 3; 2nC 1/:

Œt3q2nC10�3

Œ��3
��

d3
// Œt6q2nC14�3

Œ��3
��

t3q14 D3
// t6q18

The bottom row is just the differential that we know exists on the E3 page for
P .�2; 3; 5/. The arrows labelled Œ��3 are components of the map induced by the
map � between the two E2 pages. The terms labelled Œt3q2nC10�3 and Œt6q2nC14�3

are the images in the E3 page of two generators of the E2 page and d3 is a potentially
nonzero differential between them. In fact it is clear from the commutativity of the
diagram that d3 ¤ 0 so long as both Œt3q2nC10�3 ¤ 0 and Œt6q2nC14�3 ¤ 0. And this
is certainly true since there are no generators of the E2 page of the spectral sequence
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for P .�2; 3; 2nC 1/ with the correct bidegrees to cancel with these generators at that
page. Hence d3 ¤ 0 and .t3q2nC10; t6q2nC14/ is a canceling pair at the E3 page.

We note that there is no homogenous generator in the tail Tn with the correct bidegree
to cancel before the E4 page.

It remains to see that this is where the spectral sequence for P .�2; 3; 2nC 1/ ends:
E4 DE1 . We are left at the E4 page with

E4 D t0q2nC4
˚Tn:

By Theorem 4.5, there can be no canceling pair entirely within Tn since Tn is supported
in a single delta grading. Furthermore we already know that t0q2nC4 survives the
spectral sequence.

4.4 The .�3; 5; 7/ pretzel knot

In this subsection we consider the problem of attempting to restrict the possible differ-
entials of the Kronheimer–Mrowka spectral sequence of P .�3; 5; 7/ in order to deduce
more information about the filtrations on I \.P .�3; 5; 7//. This is to illustrate that
the techniques of this paper can give more information on the Kronheimer–Mrowka
spectral sequence of a pretzel knot than just that they decrease the ı–grading.

The pretzel knot P .�3; 5; 7/ has trivial Alexander polynomial �.P .�3; 5; 7// D 1.
The rank of the reduced Khovanov homology Khr.P .�3; 5; 7// is 15, hence a priori
the rank of I \.P .�3; 5; 7// is some odd integer between 1 and 15. Since I \ detects
the unknot we can immediately do a little better and exclude the possibility that
I \.P .�3; 5; 7// has rank 1!

It is not too hard in fact to see that the rank of I \.P .�3; 5; 7// is at least 11, simply
by using the long exact sequence

I \.P .�3; 6; 7// I \.P .�3; 5; 7//

I \.T .2; 4//

(where we write T .2; 4/ for the .2; 4/ torus link), and computing that the rank of
I \.P .�3; 6; 7// has to be at least 15 since that is the sum of the absolute values of the
coefficients of its Alexander polynomial.

Let us now consider the unoriented skein long exact triangle in Khovanov homology
induced by taking resolutions of a crossing in the second of the three twisted regions.
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This induces a long exact triangle of the form

Khr.P .�3; 5; 7// Khr.P .�3; 4; 7//

Khr.T .2; 4//

We compute the ranks jKhr.P .�3; 4; 7//j D 11 and jKhr.T .2; 4//j D 4 and the sums
of absolute values of coefficients of the Alexander polynomial j�.P .�3; 4; 7//j D 11.
Hence we conclude that the spectral sequence for P .�3; 4; 7/ is trivial and moreover
that the map Khr.P .�3; 5; 7//! Khr.P .�3; 4; 7// is of rank 11. By considering the
bidegree of this map we can write down the bigradings of 11 linearly independent
bigraded generators of Khr.P .�3; 5; 7// which are mapped to nonzero elements of
Khr.P .�3; 4; 7//.

Below we have drawn the bigrading of Khr.P .�3; 5; 7//. We have followed Kron-
heimer and Mrowka’s conventions in taking i along the horizontal axis and j � i in the
vertical direction and normalising by taking the homology of the unknot to be supported
in bidegree .i; j /D .0;�1/. We have indicated by solid discs these 11 generators:

�3 �1 1 3 5 7 9

5

7

9

11

13

15

Since we know by Proposition 3.5 that we can realize this map Khr.P .�3; 5; 7//!

Khr.P .�3; 4; 7// as the induced map at the Khovanov page of a morphism between
the two Kronheimer–Mrowka spectral sequences, we can apply Lemma 3.2. Since the
spectral sequence for P .�3; 4; 7/ is trivial, none of these elements represented by solid
discs can be the target of differentials in the spectral sequence for P .�3; 5; 7/. We
have drawn circles to indicate the 4 remaining bigraded generators of Khr.P .�3; 5; 7//

which may be targets of differentials in the spectral sequence.
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Next we consider the long exact sequence in Khovanov homology obtained by resolving
a crossing in the first of the three twisted regions of P .�3; 5; 7/. This gives a long
exact sequence of the form

Khr.P .�3; 5; 7// Khr.T .2; 12//

Khr.P .�2; 5; 7//

We compute ranks jKhr.P .�2; 5; 7//j D 19 and jKhr.T .2; 12//j D 12 and the sum
of absolute values of the coefficients j�.P .�2; 5; 7//j D 19. Hence we can conclude
that the spectral sequence for P .�2; 5; 7/ is trivial and that the rank of the map
Khr.P .�2; 5; 7//! Khr.P .�3; 5; 7// is 11.

By considering the bigraded degree of this map we can give the bigradings of a bigraded
basis for its image, none of whose elements can be sources of nontrivial differentials in
the Kronheimer–Mrowka spectral sequence for P .�3; 5; 7/ (again by Proposition 3.5
and Lemma 3.2). In the diagram below we have indicated by circles the bigradings of
the remaining 4 bigraded generators of Khr.P .�3; 5; 7// which may be the source of
nontrivial differentials in the spectral sequence:

�3 �1 1 3 5 7 9

5

7

9

11

13

15

We now consider the Z=4–grading which is just the reduction modulo 4 of the grading
j � i. Any nontrivial differential in the spectral sequence changes this grading by 3

modulo 4. We can conclude that there are at most 4 possibilities for differentials in
the spectral sequence, at most two of which can actually occur. We have drawn these
four possibilities in Figure 3.

We observe that there are 8 generators which certainly survive the spectral sequence
and whose bigradings we know explicitly.
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�3 �1 1 3 5 7 9

5

7

9

11

13

15

Figure 3

4.5 Relation to representation spaces

Given a knot K and a meridian m of K, one may define the space of representations

R.KI i /D f� 2 Hom.�1.S
3
nK/;SU.2// j tr.�.m//D 0g:

Here we also denote by m the class of a meridian in �1.S
3 nK/, well defined up to

conjugacy, and a representation is required to send this element to the conjugacy class
of traceless matrices in SU.2/.

Reduced instanton knot Floer homology I \.K/ of a knot K is by definition the
homology of a complex .C.K/\; d \/. This is, in some sense, the Morse homology
of a Chern–Simons functional, suitably perturbed so as to obtain transversality of the
involved instanton moduli spaces. The critical space of the unperturbed functional is
related to the space R.KI i / as follows (see [12; 11; 7]): each conjugacy class of an
irreducible representation in R.KI i / accounts for a circle, and the conjugacy class of
the reducible representation accounts for a point.

In the most generic situation, R.KI i / consists of only finitely many conjugacy classes.
In this situation, after perturbation of the Chern–Simons functional, each critical circle
is expected to yield two critical points. This has been described explicitly by Hedden,
Herald and Kirk in [7] in a quite general setting. In this situation, the complex C.K/\ is
a free Q–vector space of dimension 1C2n, where n is the number of conjugacy classes
of irreducible representations in R.KI i /. The reduced instanton homology I \.K/ is
then bounded above by 1C 2n as well.
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It is an interesting fact that the upper bound from Khovanov homology seems to be
better than the upper bound from the representation space for pretzel knots, whereas
for torus knots the converse seems to be the case in general (except for the torus
knots T .3; n/). We list a few cases explicitly. The claims on the representation spaces
of pretzel knots can be found in [4; 22].

� For the pretzel knot P .�3; 5; 7/ we have rk
�
Khr.P .�3; 5; 7//

�
D 15, whereas

R.P .�3; 5; 7/I i / contains the conjugacy class of the reducible and 16 conjugacy
classes of irreducible nonbinary dihedral representations (see the table of the
example in [22], where 3 errors occur that yield a total error of 1 which multiplied
by two gave the wrong claim of 18 conjugacy classes).

� For the pretzel knots P .�2; 3; 2nC 1/ we have rk
�
Khr.P .�2; 3; 2nC 1//

�
D

2nC 3. The representation space R.P .�2; 3; 2nC 1/I i / contains the conju-
gacy class of the reducible representation, 2n� 6 irreducible binary dihedral
representations, and

�
8
3
n
˘

conjugacy classes of irreducible nonbinary dihedral
representations, therefore yielding an upper bound to I \.P .�2; 3; 2nC 1// by��

4C 2
3

�
n� 5

˘
.

� Torus knots T .p; q/ with p; q � 4 seem to have a faster growth in reduced
Khovanov homology than in the bound coming from representation spaces; see
[7, Section 12.5].
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