
Distributed Computing
https://doi.org/10.1007/s00446-020-00385-0

Time-space trade-offs in population protocols for themajority problem

Petra Berenbrink1 · Robert Elsässer2 · Tom Friedetzky3 · Dominik Kaaser1 · Peter Kling1 · Tomasz Radzik4

Received: 19 July 2019 / Accepted: 22 July 2020
© The Author(s) 2020

Abstract
Population protocols are amodel for distributed computing that is focused on simplicity and robustness. A systemof n identical
agents (finite state machines) performs a global task like electing a unique leader or determining the majority opinion when
each agent has one of two opinions. Agents communicate in pairwise interactions with randomly assigned communication
partners. Quality is measured in two ways: the number of interactions to complete the task and the number of states per agent.
We present protocols for the majority problem that allow for a trade-off between these two measures. Compared to the only
other trade-off result (Alistarh et al. in Proceedings of the 2015 ACM symposium on principles of distributed computing,
Donostia-San Sebastián, 2015), we improve the number of interactions by almost a linear factor. Furthermore, our protocols
can be made uniform (working correctly without any information on the population size n), yielding the first uniformmajority
protocols that stabilize in a subquadratic number of interactions.

Keywords Distributed computing · Majority · Population protocols · Stochastic processes

Contents

1 Introduction .
1.1 Our contribution .
1.2 Related literature .

2 Model & notation .
3 Auxiliary population protocols

B Peter Kling
peter.kling@uni-hamburg.de

Petra Berenbrink
petra.berenbrink@uni-hamburg.de

Robert Elsässer
elsa@cs.sbg.ac.at

Tom Friedetzky
tom.friedetzky@durham.ac.uk

Dominik Kaaser
dominik.kaaser@uni-hamburg.de

Tomasz Radzik
tomasz.radzik@kcl.ac.uk

1 Universität Hamburg, Vogt-Kölln-Str. 3, 22527 Hamburg,
Germany

2 University of Salzburg, Jakob-Haringer-Str. 2, 5020 Salzburg,
Austria

3 Durham University, Lower Mountjoy South Road, Durham
DH1 3LE, United Kingdom

4 King’s College London, Strand Campus Bush House, London
WC2B 4BG, United Kingdom

3.1 Junta .
3.1.1 Level calculation .
3.1.2 Junta calculation .
3.1.3 Auxiliary claims about the level calculation
3.1.4 Analysis of the junta calculation

3.2 Phase clock .
3.2.1 Phase clock protocol & synchronization
3.2.2 Fixing the odds and ends
3.2.3 Phase clock interface

4 Simple majority .
5 Stable majority .
6 Convergent majority .
7 A note on uniformity .
8 Conclusions & future work .
A Probabilistic tools .
B Auxiliary protocols: phase clock
References .

1 Introduction

In this article we consider themajority problem in the proba-
bilistic populationmodel. Majority is a fundamental problem
in distributed computing. There are n different agents, each
with one of two opinions, say A and B and the goal is to agree
on the opinion with the larger support. This problem occurs
when all elements of a distributed system have to reach con-
sensus on the value of some parameter which reflects the
prevailing opinion what this value should be. Because of its
importance, themajority problem is frequently used as a case

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-020-00385-0&domain=pdf
http://orcid.org/0000-0003-0000-8689

P. Berenbrink et al.

study in analysis and comparison of strengths and limitations
of various models of distributed computing.

The population model was introduced by Angluin et
al. [4,5] as a model to explore the computational power
of resource-limited, mobile agents. Agents are modeled as
finite-state machines. In every step, a pair of agents is chosen
uniformly at random, observe each other’s state, and perform
a deterministic state transition. This is called an interaction.
States are mapped to outputs by a problem-specific output
function. In the case of the majority problem, one can think
of an agent’s output as being A or B, indicating which opin-
ion the agent believes to be the majority.

The quality of a population protocol is measured in terms
of the number of interactions (the runtime) and the num-
ber of states per agent required to “successfully compute”
the desired output. The number of interactions is sometimes
expressed in parallel time, which divides the number of inter-
actions by n to account for the inherent parallelism of the
system. In order to avoid confusion, we stick to the actual
number of interactions throughout the article.

There are several definitions for what is conceived as a
“successful computation”. A typical requirement is that the
systemmust, eventually, reach a state with correct output and
which is stable—i.e., no possible future transition can change
the agents’ output. However, runtime notions differ in when
this strict guarantee must be achieved. A natural definition is
to measure the number t of interactions after which the sys-
tem is in such a stable state with correct output. This notion is
used in most recent publications, especially for lower bounds
(cf. Sect. 1.2). Another definition considers the number of
interactions t after which the current execution always gives
the correct output. The former runtime notion is typically
referred to as stabilization and the latter as convergence (see
Sect. 2).

One may wonder what the advantage in measuring the
convergence time instead of the stabilization time may be.
In [9] the authors introduce a hybrid protocol that com-
bines a “fast” protocol that might never converge to the
correct answer with a “slow” one that stabilizes at the cor-
rect answer. The hybrid protocol switches its output from the
fast protocol, which might be incorrect, to that of the slow
but always correct protocol when it is likely that the slow
protocol has finished. And therein lies the crux: without fur-
ther safeguards, it is possible, although with only negligible
probability, that a correct output reached by the fast protocol
at time t is later temporarily overwritten by a currently still
wrong output of the slow protocol. Hence, while the system
has converged at time t , it is not yet stable. It will stabilize
onlywhen the slow protocol does so. The convergence (to the
correct output) always happens by the time when the com-
putation stabilizes (on the correct output). The stabilization
may, however, be reached later, sometimes much later, than
convergence.

A desirable feature of population protocols is uniformity,
in the sense that a single algorithm should be designed to
work for populations of any size. Due to the simplicity of
transition-based algorithms and the uniformity, uniform pop-
ulation protocols are well suited to model real-world systems
that consist of many but comparatively simple agents, like a
flock of birds or large sensor networks aggregating informa-
tion (count, sum, average, extrema, median, or histogram). In
both scenarios the agents’ computational power is bounded
and the algorithms should not depend on the number of
agents.

The underlying theme of this article is to exhibit trade-
offs in population protocols between the running time and
the required number of states, highlighting methods which
help achieving fast stability (in addition to convergence) and
uniformity of protocols.

1.1 Our contribution

Our protocols for the majority problem in the population
model provide an integer parameter s ≥ 2 that enables a
trade-off between the number of states and the runtime. Our
results also depend on the absolute bias α, which is the initial
absolute difference between the number of agents supporting
opinion A and B, respectively. In the following we state the
results for the tightest case when α = 1; see the correspond-
ing theorems for the full statements.

Our first result is a comparatively simple protocol that,
with high probability1, determines the exact majority in O

(
n ·

(log n)2/log s
)
interactions and uses �(s + log log n) states

(Theorem 3). While this high-probability guarantee is com-
paratively weak with respect to the typical requirement of
stabilization or even just convergence (since high-probability
correctness allows for some low but positive probability of a
permanent error), this protocol is an important building block
for the following main results of this article.

1. We present two hybrid exact majority protocols, both
having a runtime of T = O

(
n · (log n)2/log s

)
. One

converges with high probability in T interactions and
uses �(s + log log n) states (Theorem 5). The other sta-
bilizes with high probability in T interactions but uses
�

(
s · logs n

)
states (Theorem 4).

2. For a constant s, we provide a uniform version of
the second of the above two majority protocols. This
protocol has essentially the same guarantee for the sta-
bilization time. However, with high probability it uses
O

(
s · logs n · log log n)

states (Theorem 6).

1 We say a property of a protocol holds with high probability if for
each constant a, the constant parameters of the protocol can be set such
that the property holds for each sufficiently large population size n with
probability at least 1 − n−a .

123

Time-space trade-offs in population protocols for the majority problem

All protocols above except for the uniform one need knowl-
edge of �log log n�. Note that the state space of the uniform
protocol is bounded only with high probability; with negligi-
ble probability, an agent might need arbitrarily many states.
Since this is not covered in the original population model
(where agents are finite-state machines), for this protocol we
adopt a generalized model [14] in which agents are modeled
as Turing machines (see Sect. 7).

We highlight a few implications of the above results. For
a constant s, our majority results underline an important dif-
ference between stabilization and convergence. While the
�(log n) number of states in our stable protocol (Theorem
4) is asymptotically tight for any protocol that stabilizes
with high probability in a subquadratic number of interac-
tions2 [3], our protocol with �(log log n) states (Theorem
5) shows that the �(log n) lower bound can be bypassed if
one considers convergence instead of stabilization.

When choosing s = log log n, our majority proto-
cols converge and stabilize with high probability in O

(
n ·

(log n)2/log log log n
)
interactions. These and the proto-

cols presented in [11] are the first majority protocols with
O (polylog n) states that work in o

(
n · (log n)2

)
interactions.

When choosing s = nε , where ε > 0 is an arbitrary
positive constant,weobtain amajority protocol that stabilizes
within asymptotically optimal O (n log n) interactions using
�(nε) states. Before our work, achieving this optimal time
required �

(
n3/2

)
states [21].

For a constant parameter s, our uniform protocol that
stabilizes in O

(
n · (log n)2

)
interactions and uses O(log n ·

log log n) states (Theorem6) is the first uniformmajority pro-
tocol that stabilizes in a subquadratic number of interactions,
regardless of the required number of states.

An import ingredient for our results is an improvement
to the phase clock from [18]—a distributed synchronization
mechanism for population protocols. Although this phase
clock itself requires just a constant number of states, it is
driven by a junta of nε agents (for a constant ε ∈ [0, 1)), and
selecting such a junta requires�(log log n) states. By careful
changes to the internals of the junta selection protocol and
the interplay between the junta and the phase clocks, we not
only simplify the phase clock protocol but also allow agents
to “forget” some of the values required to select the junta.
This enables us to reduce the number of states required by
our majority protocols from a factor of �(log log n) to an
additive term of the same order. See Sect. 3.2 for detailed
explanations.

2 Conditioned on some natural properties satisfied by any known pro-
tocol, see Sect. 1.2.

1.2 Related literature

The original population model was introduced by Angluin et
al. [4,5], assuming that the number of states per agent is con-
stant. Together with Angluin et al. [6,7], their results show
that semilinear predicates (which include, e.g., parity and
majority) are stably computable in this model. Subsequent
results focused on quantifying the runtime and state require-
ments for specific problems, in particular for the majority
and the leader election problems, and on generalizing the
model. In the following overview we concentrate on results
in the population model for the majority problem. Bear in
mind that, asmentioned above,we state any runtime results in
terms of the required number of interactions, evenwhen orig-
inal sources state bounds in parallel time only. For a broader
overview of the extent of research and results on protocols
for the population model the reader is referred to the survey
papers [10] and [17].

Angluin et al. [8] present a protocol with three states and
show that, with high probability, the agents agree on the
majority after O (n log n) interactions if the initial difference
between both opinions (the absolute bias α) is ω

(√
n log n

)
.

Mertzios et al. [20] show that, if agents are required to suc-
ceed with probability 1, at least four states are necessary.
They also provide a four state protocol that stabilizes with
high probability in O

(
n2 log n

)
interactions. The same four

state protocol was independently (and earlier) studied by
Draief and Vojnovic [16], who proved similar results. Alis-
tarh et al. [1] showa lower boundof�

(
n2/α

)
on the expected

interactions for any four state protocol. For any number of
states, they show a lower bound of�(n log n) expected inter-
actions.

To achieve fast runtime, Mocquard et al. [21] consider
the population model allowing a super-constant number of
states per agent. They present a protocol that calculates the
signed difference between the two opinions’ support with
high probability in asymptotically optimal O (n log n) inter-
actions but uses polynomial �

(
n3/2

)
number of states. The

constant-state but slow quadratic-time protocols [16,20] on
the one hand and the fast but polynomial-state protocol [21]
on the other, posed the quite natural question of designing
fast O (n polylog n)-time majority protocols which use a rel-
atively small O (polylog n) number of states.

Alistarh et al. [2] show a lower bound on the required
number of interactions for population protocols with a
small number of states. For majority, their bound states
that protocols with less than (log log n)/2 states require
�

(
n2/ polylog(n)

)
interactions in expectation in order to sta-

bilize. Alistarh et al. [3] further improve this lower bound, by
showing that any protocol that solves majority and stabilizes
in n2−�(1) expected interactions requires �(log n) states.
Both these lower bounds require certain natural monotonic-

123

P. Berenbrink et al.

ity assumptions which are satisfied by all known majority
protocols.

A recent series of papers [1–3,11,13] showed upper
bounds. Alistarh et al. [3] present a protocol that stabilizes
with high probability in O

(
n · (log n)2

)
interactions and

requires O (log n) states. In a recently published result [11],
we present a population protocol formajority that reduces the
number of interactions to O

(
n · (log n)5/3

)
, both in expecta-

tion and with high probability.
The subquadratic-time protocols for majority presented

in [1–3,11,13,21] are not uniform. To work correctly, they
need an estimate of the size of the population; more pre-
cisely, they need a value which is �(log n). They also, with
exception of protocols proposed in [1], provide no means to
trade runtime for the number of states required per agent,
as our protocols do. Alistarh et al. [1] is the only paper we
know ofwhich presentsmajority protocols with a trade-off of
similar nature. For a parameter m ≤ n, their algorithm uses
O (m + log n · logm) states and stabilizes with high proba-
bility in O

(
n2 · (log n)/(α · m) + n · (log n)2

)
interactions.

In parallel to our work, Kosowski and Uznanski [19]
recently designed population protocols, including twomajor-
ity protocols that converge in O

(
n(log n)3

)
and O

(
n1+ε

)

interactions and use O (log log n) and constant f (ε) num-
ber of states, respectively. Here, ε is an arbitrarily chosen
positive constant.

With the only exception of [8], all majority protocolsmen-
tioned above solve exact majority. That is, they eventually
output the correct majority opinion with probability 1. This
holds even if the initial bias towards one opinion is as small
as only 1.

2 Model & notation

Population protocols are a computational model for a dis-
tributed system consisting of n agents, in the following also
referred to as nodes. Nodes are assumed to be identical
finite-state machines.3 In each time step, an ordered pair
of nodes (u, v) is chosen independently and uniformly at
random. Node u is called the initiator and node v is called
the responder. Let su be the state of u and sv be the state
of v at the beginning of such an interaction. Both nodes
observe each other’s state and update themselves accord-
ing to a fixed, deterministic transition function of the form
(su, sv) �→ (s′

u, s
′
v). At any time, the global state of the sys-

tem can be fully described by a function c that maps each
node to its current state. This function c is called the config-
uration of the system at that time.

3 For our uniform protocol, Sect. 7 introduces a generalized model
where agents are Turing machines.

Nodes try to reach and stay in a set of target configurations,
whose definition depends on the considered problem. It is
not required, indeed not possible in this model, that nodes
realize when a target configuration has been reached. Target
configurations are specified via an output function of the form
s �→ o that maps a state s to a (problem specific) output value
o.

We are interested in population protocols for the majority
problem, where nodes start in one of two different states
(also called opinions). We seek a configuration in which all
nodes agree on the opinion with the initially larger support.
The absolute bias α is the absolute difference between the
initial number of supporters for each opinion. We assume
α ≥ 1. The output function maps each state s to an output
o ∈ {+1,−1}, representing one of the two opinions. The
target configurations are all configurations in which node
states map all to +1, if +1 represents the initial majority
opinion, ormap all to−1, if−1 represents the initialmajority.

The quality of a protocol is measured in terms of the num-
ber of interactions and the number of states per node required
to reach and stay in target configurations. There are two com-
mon ways to formalize what exactly is meant by “reach and
stay”: stabilization time and convergence time.4

Convergence Time: The convergence time TC of a proto-
col is the random variable that measures the number of
interactions until the protocol has reached and remains
in the set of target configurations.
StabilizationTime:Wesay a configuration c is stable, if in
any configuration c′ that is reachable from c bya sequence
of interactions, each node has the same output as in c.
The stabilization time TST of a protocol is the random
variable that measures the number of interactions until
the protocol has reached a stable target configuration.

Clearly, TC ≤ TST, since reaching a stable target configu-
ration implies that, whatever future interactions may be, the
system will always remain in a target configuration. The sta-
bilization time TST can, however, be strictly larger than the
convergence time TC.

As bounds on the convergence and stabilization time are
given in probabilistic terms, one often additionally empha-
sizes whether a protocol is guaranteed to, eventually, reach
a stable target configuration (i.e., whether TST < ∞ holds
with probability 1). Such protocols are called exact or always
correct.

The newer results on population protocols, for exam-
ple [3,18], tend to consider the stabilization time for exact
protocols. However, from a practical point of view, con-

4 The notions as defined here are the ones used predominantly in pop-
ulation protocols in recent literature. However, note that some previous
publications (e.g., [2,13]) refer to stabilization time as convergence time.

123

Time-space trade-offs in population protocols for the majority problem

vergence may provide similarly strong runtime guarantees
while enabling more efficient protocols. Indeed, our Theo-
rem 5 shows that the lower bound on the number of states
required by any majority protocol that stabilizes in n2−�(1)

expected interactions does not apply if one considers conver-
gence instead.

In the remainder of this article, we define N as the set of
natural numbers without zero and N0 := N ∪ {0}.

3 Auxiliary population protocols

In this section we introduce a few auxiliary population proto-
cols that we use as subroutines. These protocols, or variants
of them, are well known and have been used in other work
on population protocols, as indicated below.

We start with two comparatively simple primitives: One-
way Epidemic and Load Balancing. Afterward we proceed
to describe two more involved protocols, one for the creation
of a junta (Sect. 3.1) and one for the creation of a phase
clock (Sect. 3.2), both of which require slight adaptions and
rephrasing to fit into our setting.

One-way Epidemic A one-way epidemic for n nodes is
a population protocol with state space {0, 1} and transition
function (x, y) �→ (x,max{x, y}). Nodes with value 0 are
referred to as susceptible and nodes with value 1 as infected.
We define the infection time TINFas the number of interac-
tions required by a one-way epidemic starting with a single
infected node to infect the whole population. The following
upper and lower high-probability bounds on TINFhave been
shown in [9].

Lemma 1 ([9, Lemma 2]) For any constant a > 0 there exist
constants c1, c2 > 0 such that we have the inequality Pr[c1 ·
n log n ≤ TINF ≤ c2 · n log n] ≥ 1 − n−a.

Load balancing We define a simple population proto-
col for load balancing over n nodes. The state space is
{−Λ,−(Λ − 1), . . . , Λ − 1,Λ}, where Λ ∈ N is a positive
integer (whichmay depend on n).We say a node in state x has
load x . The transition function is (x, y) �→ (
 x+y

2 �, � x+y
2 �).

Let Δ(t) denote the discrepancy after t interactions, which
is the difference between the maximum and minimum load
among all nodes, and set Δ := Δ(0). We define the load
balancing time TLBas the number of interactions required to
reduce the initial discrepancy to at most 2. The following
upper high-probability bound on TLBhas been shown in [12].

Lemma 2 ([12, from Theorem 1]) For any constant a > 0,
there exists a constant c > 0 such that we have the inequality
Pr[TLB ≤ c · n log(n · Δ)] ≥ 1 − n−a.

3.1 Junta

The next protocol rapidly elects a non-empty junta of size at
most n1−�(1). It is a variant of a protocol from [18], where
each node calculates a level from a range of �(log log n)

values and all nodes with the highest level form the junta.
The original protocol is modified such that we can not only
provide an upper bound on the highest level reached by any
node (as in [18]) but also a lower bound. This change also
simplifies the protocol and allows the nodes to realize when
the junta selection has finished. Thus, in contrast to [18],
nodes are not required to store their level ad infinitum. This
is important when using the junta selection as a subprotocol,
as storing the level would then increase the number of states
per node by a factor of �(log log n).

We first describe in Sect. 3.1.1 how the levels are calcu-
lated. Thenwe continue to describe how this level calculation
can be used to calculate a junta with the desired properties
and state the main result for the junta election process in
Sect. 3.1.2. The protocol’s analysis is given in Sects. 3.1.3
and 3.1.4.

3.1.1 Level calculation

For the level calculation, the state of a node is a tuple of
the form (l, a), where the level l ∈ N0 is a counter and the
activity bit a ∈ {0, 1} indicates whether a node is active or
not. Initially, all nodes have state (l, a) = (0, 1). That is, they
are at level 0 and active.

Todescribe the transition function,wedistinguishbetween
a node’s first interaction and any of its subsequent interac-
tions. During its first interaction, a node u adopts state (1, 1)
if it is the initiator and state (0, 0) if it is the responder. Since
the interacting nodes are chosen randomly, this simulates a
fair coin toss to decidewhether the node should remain active
andmove up to level 1, or whether it should become inactive.

During any following interaction, u changes its state only
if it is still active (a = 1) and if it is the initiator of the
interaction. In this case, when interacting with a responder
in state (l ′, a′), node u updates its state as follows:

[
(l, 1), (l ′, a′)

] �→
{

(l + 1, 1) if l ′ ≥ l and

(l , 0) otherwise.
(1)

In words, a node remains active and increases its level as
long as it does not encounter a node with a lower level. The
only difference to the protocol from [18] is how nodes behave
in their first interaction, which allows us to provide a lower
bound on the maximum level reached by any node (Lemma
4). We use the random variable L∗ to denote this maximum
level. Moreover, for l ∈ N0 we define Bl as the number of
nodes that reach level at least l before becoming inactive.

123

P. Berenbrink et al.

3.1.2 Junta calculation

We now describe how the above level calculation can be used
to calculate a suitable junta. In addition to the level l and
activity bit a, each node stores a marker bit b ∈ {0, 1} that
indicates whether the node is a member of the junta (b = 1)
or not (b = 0) and a finished bit f ∈ {0, 1} that indicates
whether a node knows that there is at least one marked node
(f = 1) or not (f = 0). Initially, all nodes have b = 0 and
f = 0. If two nodes with finished bit 0 interact, they update
their levels as described in Sect. 3.1.1. Any node that reaches
level lmax := �log log n�− 3 sets its marker bit b = 1 and its
finished bit f = 1. If two nodes interact and at least one of
them has its finished bit set to 1, both nodes set their finished
bit to 1; no further state updates happen in this case.

We refer to this protocol as FormJunta. An important
difference to the junta protocol from [18] is under which
circumstances a node is assumed to be part of the junta.While
our protocol starts with an empty junta and marks a node as
part of the junta when it reaches level lmax, the protocol from
[18] assumes that a node is in the junta as long as it has not
encountered a node with a higher level. In particular, initially
the junta from [18] has linear size and decreases gradually
over time. Protocols using a junta typically rely on a junta
of size at most n1−�(1). Dealing with the initially oversize
junta requires some care, a difficulty avoided by our protocol.
Another benefit of our protocol is that once a node sets its
finished bit, its level value (and activity bit) are no longer
of any relevance and need not be stored any longer. These
benefits comewith the caveat that our protocol may not finish
with a non-zero (but, as wewill show, negligible) probability.
That is, it is possible that no node is ever marked/finished.

The remainder of this section proves the following theo-
rem.

Theorem 1 Fix any constant a > 0 and let n be sufficiently
large with respect to a. With probability at least 1 − n−a,
protocol FormJunta calculates a non-empty junta (with all
nodes being finished) of size at most n0.98 within O (n log n)

interactions. It uses 2 · (lmax + 1) = �(log log n) states
per node. Finished nodes are in one of exactly two states,
indicating whether the node is in the junta or not.

Note that our analysis of Theorem 1 is not designed to keep
the involved constants small but instead to make the asymp-
totic analysis as clear as possible. For example, the current,
simple asymptotic analysis wold require an exorbitant large
value for n (≥ e800). These numbers arise simply out of con-
venient choices and it is not difficult (if tedious) to improve
them to more realistic values. In fact, simple experimental
simulations show that these protocols work already well in
practice for values of n ≥ 106.

3.1.3 Auxiliary claims about the level calculation

In this sectionwe state and prove some auxiliary claims about
the level calculation described in Sect. 3.1.1. We start with
upper and lower bounds on the number B1 of nodes that
proceed from level 0 to level 1 (Claim 1). Afterward, we
provide both upper and lower bounds on the number of nodes
that proceed from level l to level l + 1 for l ∈ N (Claim
2). Finally, we bound how many levels nodes can proceed
beyond any level that is reached by at most O

(
n1/3

)
nodes

(Claim 3).

Claim 1 Fix any two constants a, ε > 0 and let n be suffi-
ciently large with respect to a and ε. Then, Pr[|B1 − n/2| <

ε · n/2] ≥ 1 − n−a .

Proof For a node u let the first interaction tu of u denote
the earliest interaction during which u was either initiator or
responder. We say u is a singleton if tu �= tv for all nodes
v �= u. Two nodes u �= v with tu = tv are called twins. Let
S denote the set of all singletons and T the set of all nodes
that have a twin.

For each node u we define the binary random variable Xu

to be 1 if and only if u is the initiator of tu . Note that Pr[Xu =
1] = 1/2 and that B1 = ∑

u Xu . We would like to treat B1 as
a binomial distribution Bin(n, 1/2). Unfortunately, the vari-
ables Xu are not independent: for twins u and v, exactly one
of Xu and Xv is 1. To fix this, define K ∈ {1, 2, . . . , �n/2�}
as the number of pairs u and v that are twins and let us con-
dition on a fixed K = k. The n − 2k variables Xu with
u ∈ S are completely independent of the remaining process
(a node becomes initiator or responder independently with
probability 1/2). For the 2k variables corresponding to twins,
note that their sum is exactly k. We pick an arbitrary subset
T1 ⊆ T of k twins and define X ′

u := 1 for all u ∈ T1 as
well as X ′

u := 0 for all u ∈ T \ T1. For u ∈ S, we define
X ′
u := Xu . Obviously, we have B1 = ∑

u Xu = ∑
u X

′
u

and the set of all X ′
u is mutually independent. Moreover,

E[B1|K = k] = k · 1 + k · 0 + (n − 2k)/2 = n/2. For any
constant b > 0, Chernoff (Eq. (21)) gives

Pr[|B1 − n/2| ≥ δ · n/2|K = k] ≤ 2n−b,

where δ := √
6b · log(n)/n = o (1). Using the law of total

probability to get rid of the conditioning yields the inequality
Pr[|B1 − n/2| ≤ ε · n/2] ≥ 1 − 2n−b, which implies the
claim’s statement by choosing the constant b = a + 1. ��
Claim 2 Fix any two constants a > 0 and ε ∈ (0, 1] and let
n be sufficiently large with respect to a and ε. For all l ∈ N,
ξU ∈ [n−1/3, 1), and ξL ∈ [n−1/2 ln n, 1) we have

1. Pr[Bl+1 < (1 + ε)ξ2U · n |Bl ≤ ξU · n] ≥ 1 − n−a and
2. Pr[Bl+1 > (1 − ε)ξ2L · n/4|Bl ≥ ξL · n] ≥ 1 − n−a .

123

Time-space trade-offs in population protocols for the majority problem

Proof Fix an l ∈ N and consider a node u that just reached
level l. Node u is still active and will either become inactive
or proceed to level l + 1 during its next interaction. Let t be
u’s next interaction.

1. The probability for u to proceed to level l+1 during inter-
action t is at most Bl/n. This holds for all Bl nodes that
reach level at least l. By a straightforward coupling argu-
ment5, we get that Bl+1 is stochastically dominated by
a binomially distributed random variable Bin(Bl , Bl/n).
Conditioned on Bl ≤ ξ · n we can apply Chernoff (Equa-
tion (17)) to get

Pr[Bl+1 ≥ (1 + ε) · ξ2 · n|Bl ≤ ξ · n]
≤ e− ε2 ·ξ2 ·n

3 ≤ e− ε2 ·n1/3
3 ,

(2)

implying the desired statement.
2. If u is among the last Bl/2 nodes that try to proceed from

level l to level l+1, its probability to proceed to level l+1
is at least Bl/(2n). By a straightforward coupling argu-
ment6 shows that Bl+1 stochastically dominates a bino-
mially distributed random variable Bin(Bl/2, Bl/(2n)).
Conditioned on Bl ≥ ξ · n we can apply Chernoff (Equa-
tion (16)) to get

Pr[Bl+1 ≤ (1 − ε) · ξ2 · n/4|Bl ≥ ξ · n]
≤ e− ε2 ·ξ2 ·n/4

2 ≤ e− ε2 ·(ln n)2
8 ,

(3)

implying the desired statement. ��

Claim 3 Fix any integer constant a ≥ 1 and let n be suffi-
ciently large. For all l ∈ N, we have

Pr[Bl+4a = 0|Bl < 2n1/3] ≥ 1 − n−a . (4)

Proof Note that Bl < 2n1/3 implies Bl ′ ≤ Bl < 2n1/3 for
all l ′ ≥ l. By Markov’s inequality, we have

Pr[Bl ′+1 ≥ 1|Bl ′ < 2n1/3]
≤ E[Bl ′+1|Bl ′ < 2n1/3] ≤ 4n−1/3.

(5)

5 Run the original process and mark all nodes that reach level l. Then
run the coupled process and use the same random choices. Proceeding
from level l ′ to l ′ + 1 for l ′ ∈ N0 \ {l} works as in the original process.
However, for a node to proceed from level l to l + 1 its interaction
partner must have been marked in the original process.
6 Run the original process and let b denote the number of nodes that
reach level l. Mark the first b/2 nodes that try to proceed from level l
to level l + 1. Then run the coupled process and use the same random
choices. Proceeding to the next level works as in the original process,
except for the last b/2 nodes that try to proceed from level l to level l+1:
such nodes proceed only if their interaction partner has been marked in
the original process.

We apply Markov’s inequality to the next 4a levels and get
Pr[Bl+4a ≥ 1|Bl < 2n1/3] ≤ (4n−1/3)

4a ≤ n−a . ��

3.1.4 Analysis of the junta calculation

Equipped with the auxiliary claims from Sect. 3.1.3, we
continue with the analysis of the junta calculation. First,
we bound the time it takes until all nodes become inactive
(Lemma 3). Next, we give upper and lower bounds on the
maximum level L∗ reached by the nodes (Lemma 4) as well
as an upper bound on the number Blmax of nodes that reach
level lmax (Lemma 5). Finally, the proof of Theorem 1 is
given at the end of this section.

Lemma 3 Fix any constant a > 0 and let n be sufficiently
large with respect to a. With probability at least 1 − n−a

all nodes become inactive during the first (6a + 12) · n ln n
interactions.

Proof The probability that a given node does not interact in
a given interaction is 1 − 1/n. Thus, the probability that a
given node does not interact at all during the first c · n ln n
interactions is at most (1 − 1/n)c·n ln n ≤ n−c for any c > 0.
By a union bound, we get that all nodes interacted at least
once after the first c · n ln n interactions with probability at
least 1 − n−c+1. Together with Claim 1 and a union bound,
we know that, with probability 1− 2n−c+1, there are at least
n/3 nodes in state (0, 0) after c · n ln n interactions.

From that point on, the probability for any fixed node
to become inactive during a given interaction is at least
1
3n (the node is chosen as the initiator of the interaction
and its communication partner is one of the n/3 nodes
in state (0, 0)). Thus, the probability that any fixed node
remains active during the next c · n ln n interactions is at
most (1 − 1/(3n))c·n ln n ≤ n−c/3. By a union bound, all
nodes become inactive during the next c · n ln n interactions
with probability at least 1−n−c/3+1. Combining, we get that
all nodes become inactive within 2c · n ln n interaction with
probability at least 1−2n−c+1−n−c/3+1 ≥ 1−3n−c/3+1.We
can make this probability to be at least 1− n−a by choosing
c = 3a + 6. ��

Lemma 4 Fix any constant a > 0 and let n be sufficiently
large with respect to a. With probability at least 1− n−a we
have

�log log n� − 3 ≤ L∗ ≤ log log n + 4 · (a + 1). (6)

Proof Let δ := 1/10, ξ̂0 = ξ̌0 := 1, and define for l ∈ N

ξ̂l := (1 + δ)2
l−1 · 2−2l−1

and ξ̌l := (1 − δ)2
l−1 · 2−3·2l−1+2.

(7)

123

P. Berenbrink et al.

Note that ξ̂l and ξ̌l are monotonically decreasing in l and
that for l ∈ N0 we have ξ̂l+1 = (1 + δ) · ξ̂2l and ξ̌l+1 =
(1 − δ) · ξ̌2l /4.

For the upper bound on L∗, apply Claim 1 and Claim 2.1,
to get that, for any l ∈ N with ξ̂l−1 ≥ n−1/3 and for any
constant a > 0,

Pr[Bl < ξ̂l · n|Bl−1 ≤ ξ̂l−1 · n] ≥ 1 − n−a−1. (8)

(Note that, since ξ̂0 = 1 and B0 = n, the conditioning is void
for l = 1.) Since ξ̂l < n−1/3 for l ≥ log log n, we can apply
Eq. (8) iteratively to see that there is an l ≤ log log n such
that Pr[Bl < n2/3] ≥ 1 − l · n−a−1. Together with another
application of Claim 2.1, we get an l ≤ log log n + 1 such
that Pr[Bl < (1+ δ) · n1/3] ≥ 1− l · n−a−1. Combined with
Claim 3 we get an l ≤ log log n + 1 + 4 · (a + 1) such that
Pr[Bl = 0] ≥ 1 − l · n−a−1.

For the lower bound on L∗, similarly apply Claim 1 and
Claim 2.2 to get that, for any l ∈ N with ξ̌l−1 ≥ n−1/3 and
for any constant a > 0,

Pr[Bl > ξ̌l · n|Bl−1 ≥ ξ̌l−1 · n] ≥ 1 − n−a−1 (9)

(As above, since ξ̌0 = 1 and B0 = n, the conditioning is void
for l = 1.) Since ξ̌l ≥ n−1/3 for all l ≤ log log n − 3, we can
apply Eq. (9) iteratively to see that, for l = �log log n� − 3,
Pr[Bl > n2/3] ≥ 1 − l · n−a−1.

The lemma’s statement follows via a union bound. ��
Lemma 5 Fix any constant a > 0 and let n be sufficiently
large with respect to a. Then we have the bound Pr[Blmax <

n0.98] ≥ 1 − n−a.

Proof Define δ and ξ̂l as in the proof of Lemma 4. By their
definition and since lmax = �log log n� − 3, we have for any
n ∈ N \ {1}

ξ̂lmax = (1 + δ)2
lmax−1 · 2−2lmax−1

≤ (1 + δ)2
log log n−4−1 · 2−2log log n−4−1

= 1

1 + δ
· (1 + δ)log(n)/16 · 2− log(n)/32

= 1

1 + δ
· nlog(1+δ)/16 · n−1/32

= 1

1 + δ
· n 2 log(1+δ)−1

32 < n−0.02.

(10)

Let ε := 1 − 0.02 = 0.98. Analogously to the proof of
Lemma 4, we have for any l ∈ N with ξ̂l−1 ≥ nε−1 and for
any constant a > 0

Pr[Bl < ξ̂l · n|Bl−1 ≤ ξ̂l−1 · n] ≥ 1 − n−a−1. (11)

Since ξ̂l < nε−1 for l ≥ lmax (by Eq. (10) and by the mono-
tonicity of ξ̂l), we can apply Eq. (11) iteratively to see that

there is an l ≤ lmax such that Pr[Bl < nε] ≥ 1− l · n−a−1 ≥
1 − l · n−a . This implies the lemma’s statement. ��
Proof of Theorem 1 We first prove the bound on the runtime.
Lemma 3 states that, with high probability, all nodes become
inactive within O (n log n) interactions. Lemma 4 states that,
with high probability, at least one node reaches level lmax

and, thus, sets its marked and finished bits. Lemma 5 states
that, with high probability, at most n0.98 nodes reach level
lmax. Finally, by Lemma 1 the finished bit (which spreads via
a one-way epidemic) is, with high probability, set in all nodes
after O (n log n) additional interactions. A union bound over
all these results yields the desired runtime bound.

The number of states per node required for FormJunta
is

2
|

activity bit

× lmax
|

level

+ 2
|

marker bit

. (12)

Note that a node’s activity bit and level counter become irrel-
evant once its finished bit is set (which happens at latest when
reaching level lmax). Thus, when a node’s finished bit is set,
it leaves the 2lmax states that store the activity bit and the
levels 0, 1, . . . , lmax − 1 and enters one of two states: one
indicating that it has finished and has the marker bit not set,
and one indicating that it has finished and has the marker bit
set. ��

3.2 Phase clock

Distributed protocols often benefit from some form of syn-
chronization. Phase clocks [9] are one way to synchronize
nodes in a population protocol. The idea is to equip each
node with a clock that measures time in (let’s say) hours
consisting of m ∈ N minutes. These clocks do not run at
a consistent speed and are not fully synchronized (a node’s
clock might run faster during a period in which the node
is activated uncharacteristically often). However, the clocks
can be set up such that, with high probability, each of the first
poly(n) hours

1. lasts �(n log n) interactions for each node and
2. all nodes simultaneously spend�(n log n) interactions in

each such hour.

We adapt the phase clock implementation from [18] to
our needs. Each node has a phase counter p ∈ N0 that keeps
track of the current time in minutes. The value m ∈ N rep-
resents the number of minutes per hour. Its exact value must
be chosen carefully as specified by Lemma 6 and its proof.
The time for a node with phase counter p can be expressed
as �p/m� hours and p mod m minutes. To limit the number
of states per node, we do arithmetic on the phase counter

123

Time-space trade-offs in population protocols for the majority problem

modulo h ·m for a parameter h ∈ N. We use PhaseClockh
to refer to the protocol that uses the parameter h7 (whichmay
be a constant or growwith n, depending on the protocol using
the phase clock). We also allow h = ∞, which means that
PhaseClockh uses exact phase counters that may become
arbitrarily large.

We continue with a formal description of the phase clock
implementation in Sect. 3.2.1. That section also states the key
result (Lemma 6) regarding the synchronization properties of
PhaseClockh . Theprotocol description is basedon two sim-
plifying assumptions. Section 3.2.2 explains how to get rid
of these. To simplify the usage of the phase clock protocol in
the description of other population protocols, Sect. 3.2.3
describes an interface and its guarantees (extracted from
Lemma 6) to access the phase clock, resulting in this sec-
tion’s main result (Theorem 2).

3.2.1 Phase clock protocol & synchronization

The state of a node is a tuple of the form (p, b). The phase
counter p ∈ N0 indicates the total number ofminutes passed.
Initially, all nodes have p = 0. The marker bit b ∈ {0, 1}
indicates whether the node is marked (b = 1) or not (b =
0). We make two simplifying assumptions for the following
description:

1. We assume h = ∞ (so we describe PhaseClock∞). In
particular, the phase counters are unbounded.

2. We assume that the number of marked nodes lies in the
interval [1, n1−ξ] at the start of any interaction. Here,
ξ ∈ (0, 1] is an arbitrary constant. Note that the iden-
tity as well as the number of marked nodes is allowed to
change arbitrarily from interaction to interaction, as long
as the number ofmarked nodes stayswithin thementioned
interval.

Section 3.2.2 explains how to get rid of these assumptions.
Consider an interaction between an initiator u with

state (p, b) and a responder in state (p′, b′). Protocol
PhaseClock∞ causes node u to update its state according
to the following transition function (from [18]):

[
(p, b), (p′, b′)

] �→
{

(max{p, p′ + 1}, b) if b = 1 and

(max{p, p′ }, b) otherwise.

(13)

The responder’s state remains unchanged.

7 Technically, m could also appear as a parameter in the index. How-
ever, for all our applications m will be a constant with respect to n.
Thus, we omit m in the index and always assume it is chosen suitably
according to Lemma 6.

SynchronizationProperties.Remember that them denotes
the number ofminutes in an hour.We define the hour Hu(t) ∈
N0 of node u with phase counter p(t) after t interactions as
Hu(t) := �p(t)/m�. We say a node reached hour i ∈ N0 if
its phase counter is at least i · m.

We now define the notion of rounds, which represents a
period of interactions during which all nodes have the same
hour. Let RStart(i) (start of round i) denote the interaction
during which the last node reaches hour i . Similarly, let
REnd(i) (end of round i) denote the interaction during which
the first node reaches hour i + 1. If RStart(i) ≤ REnd(i)
(which is not necessarily true), thenREnd(i)−RStart(i) equals
the number of interactions t for which all nodes u have,
simultaneously, the same hour Hu(t) = i . Thus, for any
i ∈ N0 we define the length of round i as RLength(i) :=
max{0,REnd(i) − RStart(i)}. We also define the stretch of
round i as RStretch(i) := REnd(i) − REnd(i − 1). In other
words, the stretch of round i denotes the time it takes for the
first node to reach hour i +1 after the first node reached hour
i . In particular, we always have RLength(i) ≤ RStretch(i).

A key property of the above phase clock construction is
captured by the following lemma. It states that, by carefully
choosing the phase clock parameter m, we can ensure that
both the round length and stretch of the first poly(n) many
rounds are �(n log n). It is a reformulation of [18, Theo-
rem 3.1] to fit our setting and proofs. A brief proof based on
a technical lemma from [18] is given in “Appendix B”.

Lemma 6 Let a, c, d1 > 0 be constants and assume n to be
sufficiently large with respect to them. There is a constant
parameter m ∈ N (from the definition of PhaseClock∞)
and a constant d2 > 0 such that, with probability at least
1 − n−a, for all i ∈ {0, 1, . . . , nc}

1. RLength(i) ≥ d1 · n log n.

2. RStretch(i) ≤ d2 · n log n.

Note that in the above lemma, the constant parameter m
depends on the involved constants a, c, and d1. In partic-
ular, it increases with the exponent a of the desired error
probability.

3.2.2 Fixing the odds and ends

Webriefly explain how the simplifying assumptionswemade
for the protocol description can be avoided.

Computing a junta on the fly Our protocol description in
Sect. 3.2.1 assumes that the number of marked nodes lies in
the interval [1, n1−ξ] at the start of any interaction, where
ξ ∈ (0, 1] is an arbitrary constant. Instead of assuming a
priori the existence of such a junta in each round, we can use
protocol FormJunta from Sect. 3.1 to generate such a junta
(with ξ = 0.02) with high probability within O (n log n)

123

P. Berenbrink et al.

interactions using 2 · (�log log n� − 2) states per node (see
Theorem 1).

The state of a node is a tuple (l, a, b, f , p). The (sub-)
tuple (l, a, b, f) is used as the state for the junta protocol and
consists of the level l ∈ {0, 1, . . . , �log log n�−3}, the activ-
ity bit a ∈ {0, 1}, the marker bit b ∈ {0, 1}, and the finished
bit f ∈ {0, 1}. The (sub-) tuple (p, b) is used for the phase
clock protocol and consists of the phase counter p ∈ N0 and
the marker bit b ∈ {0, 1}. Note that the marker bit b is used
by both protocols. All nodes start in state (0, 1, 0, 0, 0) (with
only the activity bit set) and execute protocol FormJunta
on the (sub-) tuple (l, a, b, f). Once the finished bit f of a
node is set it starts to execute the phase clock protocol from
Sect. 3.2.1 on the (sub-) tuple (p, b). We make two simple
observations:

1. PhaseClock∞ starts only when (if) the first node in
FormJunta becomes marked (and, thus, finished). By
Theorem 1, this happens with high probability within
O (n log n) interactions. Additionally, since the finished
bit spreads via a one-way epidemic, with high probability
all nodes start to execute PhaseClock∞ in O (n log n)

interactions (by Lemma 1).
2. When PhaseClockh starts, it does so with a junta of

size exactly 1. During its execution, the junta might grow
(due to more nodes becoming marked in FormJunta).
However, by Theorem 1, with high probability the junta
does not grow beyond size n0.98.

It follows that Lemma 6 holds also if the junta is com-
puted on the fly, with the only difference being that it takes
O (n log n) interactions before the first node starts to increase
its phase counter. This yields the following observation.

Observation 1 We can change PhaseClock∞ such that,
with high probability, it computes a non-empty junta (marked
nodes) of size atmost n0.98 on the fly andLemma6 still holds.

Unbounded state spaceThepopulationprotocol as described
in Sect. 3.2.1 requires an unbounded number of states, since
a node’s phase counter p is unbounded. We can avoid this
by performing any arithmetic on the phase counter modulo
h · m. Here, h ∈ N is a parameter that controls how many
hours nodes can count exactly (a node reaching hour h cannot
tell whether it has hour h or hour 0).

Note that Lemma 6 implies that during the first poly(n)

many rounds all nodes are, with high probability, in neigh-
boring hours (otherwise, if there was a time where one node
is in hour i and another node is in hour i + 2, those nodes
could never be simultaneously in hour i + 1). Thus, h = 3
is already enough to allow a node, with high probability, to
distinguish whether its interaction partner is in an earlier, in
the same, or in a later hour.We get the following observation.

Observation 2 Assume h ≥ 3. Define PhaseClockh analo-
gously toPhaseClock∞ (see Eq. (13) butwith all arithmetic
on the phase counter p done modulo h ·m. With high proba-
bility, all nodes can correctly determine the maximum in the
transition function of PhaseClockh (Eq. (13)) during the
first nc rounds, where c is the constant from Lemma 6. In
particular, Lemma 6 holds also for PhaseClockh .

3.2.3 Phase clock interface

To simplify the usage of the phase clock in our Majority
protocols,weprovide an interface toPhaseClockh , together
with the guarantees implied by Lemma 6. The parameter h ∈
N∪{∞} is assumed to be at least 3. We group the guarantees
of the different interface functions in three categories:

(A) The following function calls to PhaseClockh are guar-
anteed to work as described with probability 1:

– PHASECLOCKh(u, v): Update the state of u according to
Equation (13).

– PCmarked(u): Return true iff u’s marker bit b is set (mean-
ing u is a junta node).

– PCfinishedJunta(u): Return true iff u’s finished bit f
is set.

– PCoverflowed(u): Return true iff, in the past, the phase
counter of u decreased at least once in absolute value (due to
the modulo h · m arithmetic).

– PCnewHour(u): Return true iff u reached a new hour the
last time it updated the phase counter.

– PCskippedHour(u): Return true iff there was an interac-
tion during which the hour of node u increased by at least 2
(this happens if the clocks are not properly synchronized).

(B) The following function calls to PhaseClockh are guar-
anteed to work as described for nc many rounds with
probability 1− n−a for any constants a, c > 0 (assum-
ing m was chosen suitably and n is sufficiently large):

– PCdifferentHour(u, v): Return true iff u is
currently in a different hour as v.

– PCsameHour(u, v): Return true iff u is currently
in the same hour as v.

– PCsmallerHour(u, v): Return true iff u is cur-
rently in a smaller hour than v.

– PClargerHour(u, v): Return true iff u is cur-
rently in a larger hour than v.

(C) Moreover, until the first node reaches hour h (i.e., for
the first REnd(h − 1) many interactions), all function
calls work as described with probability 1.

Protocols using the phase clock should be aware that, with
negligible probability, the phase clockmight not run at all (no
nodes were marked) or might run too fast (if n1−o(1) nodes
were marked).

123

Time-space trade-offs in population protocols for the majority problem

We gather the above guarantees in Theorem 2, the main
result of this section. In the following, remember that lmax =
�log log n� − 3 is the maximum junta level.

Theorem 2 Let a, c > 0 be constants and assume n to be
sufficiently large with respect to them. Consider a parameter
h ∈ {3, 4, . . . } ∪ {∞}. PhaseClockh supports the inter-
face specified above with Guarantees (A) to (C) and uses
�(h + log log n) states per node. A node whose phase clock
is running (finished bit from junta creation is set) is in one of
�(h) many states.

Proof of Theorem 2 PHASECLOCKh(·), PCmarked(·), as well as
PCfinishedJunta(·) are simple state updates and lookups.As such,
they are correct by definition. The function calls PCoverflowed(·),
PCnewHour(·), and PCskippedHour(·) can be implemented by
providing a bit for each of them, which is set to either true or false
according to the respective function description (note that the corre-
sponding conditions can be easily checked locally by a node). This
implies Guarantee (A).

The statements from Guarantee (B) (which cover the function calls
PCdifferentHour(·),PCsameHour(·),PCsmallerHour(·), and
PClargerHour(·)) are a consequence of the choice h ≥ 3 and
Lemma 6 and Observation 2. These ensure that, with high probabil-
ity, for poly(n) rounds, the hours of any pair of nodes differ by at most
one.

Before the first node reaches hour h, nodes store their exact phase
counter and, thus, know their exact hour. This implies Guarantee (C).

We now bound the number of states each node requires. By Theorem
1, the on the fly creation of the junta requires 2 · (lmax + 1) states. Note
that, as described in Sect. 3.2.2, the values of a node’s phase clock
state (marker bit, phase counter, bit for PCoverflowed(·), bit for
PCnewHour(·), bit for PCskippedHour(·)) only become relevant
once its finished bit from the junta creation is set. At that moment,
nodes can forget the level from the junta calculation and only need to
store whether they are finished and marked or finished and unmarked.
Thus, for each of the two value of the marker bit when the node is
finished, the maximum number of states that can occur is bounded by
h · m × 23. So in total, the number of states per node is

2 · lmax
|

junta
calculation

+ 2
|

marked?

× h · m
|

phase counter

× 23.
|

PCoverflowed(·)
PCnewHour(·)
PCskippedHour(·)

(14)

Since we have lmax = � (log log n) and m = � (1), this is
� (h + log log n). ��

4 Simple majority

In this section we present and analyze our first majority pro-
tocol, SimpleMajoritys,h , which works correctly with high
probability. It is parameterized by two integer values s and h
(the latter value is used for the phase clocks). Asmanymajor-
ity protocols, it is based on a variant of the cancellation and
doubling approach (see, e.g., [9]). Here, the general idea is
that nodes first perform cancellation (opposite opinions can-
cel each other out) for �(n log n) consecutive interactions
and then, for another �(n log n) consecutive interactions,
each node with an opinion finds a node whose opinion was

canceled and copies its opinion onto that node. Cancellation
boost the ratio between the support of majority and minor-
ity opinions, while duplication eliminates non-opinionated
nodes created during cancellation.

Our protocol uses cancellation as described above. How-
ever, nodes do not simply create a single copy of their opinion
but s ≥ 2 copies (load explosion). These copies are dis-
tributed among the nodes via a load balancing mechanism.
This approach allows us to reduce the number of required
phases. We will prove the following theorem:

Theorem 3 Let s ∈ N \ {1} and h ∈ N \ {1, 2}. Consider
the majority problem for n nodes with initial absolute bias
α ∈ N. With high probability, protocol SimpleMajoritys,h
correctly identifies the majority for all interactions t =
�

(
n log n · logs(n/α)

)
. It uses �(hs + log log n) states per

node.

According to Theorem 3 there is no benefit by choosing
h > 3. However, our stable protocol presented in Sect. 5 does
rely on a larger value of h.

We now describe the protocol’s state space and its transi-
tion function (see also Algorithm 1). Afterward, we give the
proof of Theorem 3.

SimpleMajoritys,h(u, v)

1 PHASECLOCKh(u, v) /* synchronization */

2 if PCnewHour(u) then /* load explosion */
3 loadu ← loadu · s
4 if PCsameHour(u, v) then /* load balancing */

5 (loadu , loadv) ←
(⌈

loadu+loadv

2

⌉
,
⌊
loadu+loadv

2

⌋)

Algorithm 1: Pseudocode for transition function of
SimpleMajoritys,h (initiator u and responder v)

State space The state of a node u consists of the states
required for the PhaseClockh protocol (which subsumes
the states of FormJunta, cf. Section 3.2) and a load value
loadu . The load value loadu represents u’s current opinion
(sign) and its “magnitude” (absolute value). It is initialized
with either +1 or −1, depending on u’s initial opinion. The
output function maps the state of a node to the sign of its
load value. Thus, the majority guess of a node u is equal to
sign(loadu).8

For most of the analysis, we assume unbounded, integral
load values. In the proof of Theorem 3, we will see that, with
high probability, load values will be integers not exceeding
3s unless all nodes have already the same positive or negative
sign. This allows us to cap the absolute load values at 3s (i.e.,
setting a node u’s load via the assignment loadu ← x to a
value x with |x | ≥ 3s instead sets loadu ← sign(x) · 3s)
8 The value sign(loadu) = 0 (i.e., loadu = 0) can be interpreted as
an “undecided” opinion. In the proof of Theorem 3 we show that, with
high probability, all nodes eventually agree on a non-zero sign value.

123

P. Berenbrink et al.

while still maintaining the high probability guarantee from
Theorem 3.

Transition function Consider an interaction between two
nodes u (initiator) and v (responder). The nodes’ actions
can be divided into three parts: synchronization, load explo-
sion, and load balancing. During the synchronization, the
PhaseClockh protocol is triggered with initiator u and
responder v to update the states of u’s phase clock. Dur-
ing the load explosion, u uses the PCnewHour(·)method to
check whether this is its first interaction in its current hour.
If yes, it multiplies its load by a factor of s. During the load
balancing, the nodes use the phase clock’s PCsameHour(·)
method to check whether they are in the same hour and, if
so, perform a simple load balancing step by balancing their
respective loads as evenly as possible.

The following observation follows from the fact that all
phase clock function calls work correctly with probabil-
ity 1 until the first node reaches hour h (Guarantee (C) in
Sect. 3.2.3). In particular, since nodes u and v balance their
loads only if PCsameHour(u, v) returns true (Line 4 in
Algorithm 1), we get:

Observation 3 Whenever two nodes u and v balance their
loads in SimpleMajoritys,h before some node reached hour
h, both u and v are guaranteed to be in the same hour.

This observation will be of importance for our stable
majority protocol presented in Sect. 5 (which is based on
SimpleMajoritys,h).

Total & scaled total load Let loadu(t) denote the load of
node u after t interactions and explu(t) the number of load
explosions node u experienced after t interactions. Define
the total load Φ(t) and the scaled total load Ψ (t) after t
interactions as

Φ(t) :=
∑

u∈[n]
loadu(t) and Ψ (t) :=

∑

u∈[n]

loadu(t)

sexplu(t)
.

Observe that Ψ (0) = Φ(0) is the total initial load. Thus,
sign(Ψ (0)) = sign(Φ(0)) reflects the initial majority and
|Ψ (0)| = |Φ(0)| equals the initial absolute bias α.

The following lemma will be useful to show that, if
SimpleMajoritys,h works for O (log n) rounds as expected
(the phase clock runs, is properly synchronized, and the loads
balance out), all nodes forever agree on the correct initial
majority.

Lemma 7 Let t ∈ N0 and assume that whenever two nodes u
and v balance their loads in an interaction t ′ ≤ t , explu(t

′) =
explv(t

′). Then Ψ (t) = Ψ (0). If, additionally, for all nodes
u and v we have sign(loadu(t)) = sign(loadv(t)), then all
nodes forever agree on the correct initial majority opinion
after interaction t.

Proof The invariant for Ψ (t) follows via a simple induction
over t . For the secondpart, assume all nodes’ load values have
the same sign after t interactions. Note that no load balancing
action can change this, afterward. Moreover, the total scaled
loadΨ (t) also has the same sign as each single node. So every
node’s sign forever equals sign(Ψ (t)). Since the lemma’s
first part states sign(Ψ (t)) = sign(Ψ (0)) (the initial majority
opinion), this implies that each node’s sign forever equals the
correct initial majority opinion after interaction t . ��

We are now ready to prove this section’s main result.

Proof of Theorem 3 For i ∈ N0 let Ti denote the last inter-
action of round i (with Ti = ∞ if RLength(i) = 0). Define
i∗ :=
logs(2n/α)�. ApplyingLemmas 2 and 6,with d1 from
Lemma 6 equal to the constant c from Lemma 2, and using a
union bound over the first i∗ + 1 = O (log n) rounds yields
that, with high probability, the following properties hold:

(1) For all i ∈ {0, 1, . . . , i∗}, we have RLength(i) =
�(n log n) and RStretch(i) = O (n log n) (Lemma 6).

(2) For all i ∈ {0, 1, . . . , i∗}, the loads have discrepancy at
most 2 after interaction Ti (Lemma 2).

Note that Property (1) implies that no node skips any hour
i ∈ {0, 1, . . . , i∗}: If there were such a node, it had hour < i
and met a node in hour > i when it skipped hour i . But then,
by definition of a round’s length, we have RLength(i) = 0.
This contradicts Property (1).

We now condition on the high probability event that the
above properties hold and consider the first Ti∗ interac-
tions. Because nodes are properly synchronized, the calls
to PCsameHour(·) (Line 4) correctly indicate whether two
nodes are in the same hour or not. Also, since no node
skipped an hour, any node in hour i experienced exactly
i load explosions. This implies that, whenever two nodes
balance their loads during the first Ti∗ interactions, they expe-
rienced the same number of load explosions. Lemma 7 gives
Ψ (Ti∗) = Ψ (0), and the scaled total load definition gives
|Ψ (Ti∗)| = |Φ(Ti∗)|/si∗ ≤ α · |Φ(Ti∗)|/(2n). By using
|Ψ (Ti∗)| = |Ψ (0)| = α this yields |Φ(Ti∗)| ≥ 2n.

Note that if |Φ(Ti∗)| ≥ 2n, the absolute value of the aver-
age load is at least 2. Hence, either all nodes have load exactly
2 (or−2), or there is at least one node with load≥ 3 (≤ −3).
In the later case it follows from Property (2) that all other
nodes have load at least 1 (at most −1). In both cases, all
loads have the same sign after interaction Ti∗ . Thus, using
again Lemma 7, all nodes forever agree on the correct initial
majority opinion after interaction Ti∗ . The runtime bound fol-
lows since, by Property (1), the first i∗ + 1 = O

(
logs(n/α)

)

rounds have stretch O (n log n).
To bound the number of states, observe that - conditioned

on the high probability event that the above properties hold
-no absolute load value exceeds 2s unless all nodes’ loads

123

Time-space trade-offs in population protocols for the majority problem

have the same sign. Indeed, if not all loads have the same
sign at the end of a round, the discrepancy bound (Prop-
erty (2)) implies that all loads have absolute load at most
2. After the load explosion in the following round the load
will be at most 2s. This allows us to cap the absolute load
values at 3s as described at the beginning of this section
and, with high probability, the protocol outcome will not
change.9 These load values are combinedwith the states from
PhaseClockh . By Theorem 2, that protocol requires in total
�(h + log log n) states per node, but only �(h) states per
node once the node has finished the junta election process.
From that time on, each node needs to store the current phase
of the PhaseClockh protocol and the current load value.
Thus,SimpleMajoritys,h requires�(hs + log log n) states
per node. ��

5 Stable majority

In this section, we present and analyze the protocol
StableMajoritys , a hybrid majority protocol which sta-
bilizes efficiently. We prove the following theorem:

Theorem 4 Let s ∈ {2, 3, . . . , n}. Consider the majority
problem for n nodes with initial absolute bias α ∈ N. Pro-
tocol StableMajoritys is exact and stabilizes with high
probability and in expectation inO(n log n ·logs(n/α)) inter-
actions. It uses �

(
s · logs n

)
states per node.

We now describe the protocol’s state space and its transi-
tion function (see also Algorithm 2). Afterward, we give the
proof of Theorem 4.

StableMajoritys(u, v)

1 BackupMajority/(u, v)

2 if finishedv then finishedu ← true
3 if errorv then erroru ← true

4 if ¬erroru ∧ ¬finishedu then
5 SimpleMajoritys,h(u, v)

6 if PCoverflowed(u) ∨ |loadu | ≥ 3s then
7 finishedu ← true

8 if
(
finishedu ∧ finishedv ∧ sign(loadu) �= sign(loadv)

)

∨ PCskippedHour(u) then
9 erroru ← true

Algorithm 2: Pseudocode for transition function of
StableMajoritys (initiator u and responder v). It calls
SimpleMajoritys,h with h :=
logs(4n)� + 2

9 For SimpleMajoritys,h , we could also cap at 2s. The cap at 3s is
used in our stable majority protocol in Sect. 4. Note that, if the load
balancing works as expected (discrepancy ≤ 2), any node with load 3s
can be sure that all loads have the same, non-zero sign.

Each node u executes a slow but exact protocol Backup-
Majority 10 (Line 1) as well as up to h rounds of our fast
but possibly incorrect SimpleMajoritys,h (Lines 4 to 5),
with h :=
logs(4n)� + 2. As output, we use the output
of the backup protocol if the phase clock is not yet run-
ning (u’s phase counter is zero and PCoverflowed(u) =
false) or if u thinks that protocol SimpleMajoritys,h
failed (an error bit is set). Otherwise, we use the output of
SimpleMajoritys,h .

Node u stops SimpleMajoritys,h via a finished bit
finishedu and checks whether SimpleMajoritys,h failed via
an error bit erroru . Both bits are initially false and are spread
via a one-way epidemic (Lines 2 to 3). SimpleMajoritys,h
is executed only while both bits are false (Lines 4 to 5).

The (first) finished bit is set for one of two reasons (Lines
6 to 7): (i) u reached hour h (i.e., its phase counter over-
flowed). This marks the end of the first h rounds. Stopping at
this point ensures that any load balancing operation happens
between two nodes in the same hour (Observation 3). (ii) u
has absolute load at least 3s after its first11 interaction in an
hour i . Then it had absolute load at least 3 at the end of round
i − 1. If SimpleMajoritys,h managed to balance the loads
during round i − 1, the load of any other node differs by at
most 2. Thus, all nodes have the same sign, which we will
show to be correct if no node sets its error bit.

The (first) error bit is also set for one of two rea-
sons (Lines 8 to 9): (i) Two finished nodes whose loads
have different signs interact with each other, in which case
SimpleMajoritys,h obviously failed. (ii) A node skipped
an hour. Then it is no longer true that a node in hour i
experienced exactly i load explosions. This might cause
SimpleMajoritys,h to fail, since two nodes that experienced
a different number of load explosions might balance their
loads.

Since the backup protocol is exact, our protocol is exact
if the error bit is set. A major part of the analysis is to show
that it is also exact if none of the error bits is set. Moreover,
we have to show that, with high probability, no error bit is
set and the protocol stabilizes fast.

Proof of Theorem 4 Let us first bound the number of states
per node. By Theorem 3, SimpleMajoritys,h requires
�(hs + log log n) = �

(
s · logs n

)
states. This is increased

by a constant factor from the 4 states for BackupMajor-
ity and the 4 combinations of the bits finishedu and erroru ,
yielding the desired bound.

10 We use the 4-state protocol from [20] for this, which stabilizes in
O

(
n2 log n

)
interactions in expectation, implying a finite stabilization

time and, thus, exactness.
11 Note that the absolute load of a node u can only increase to ≥ 3s
because of a load explosion. So when the condition |loadu | ≥ 3s holds
for the first time, that node just went through a load explosion and, thus,
just entered a new hour.

123

P. Berenbrink et al.

Next, we prove that StableMajoritys is exact. That is, if
TSTdenotes the stabilization time of protocol
StableMajoritys , we show that TST < ∞with probability
1. We distinguish three cases:

(i) The phase clock does not start: That is, in FormJunta
all nodes set their activity bit to 0 before reaching level
lmax. No node is marked, such that the phase coun-
ters cannot increase and PCoverflowed(u) always
returns false. Then all nodes forever use the output of
the backup protocol, which has finite stabilization time.
Thus, TST < ∞ in this case.

(ii) The phase clock starts and some node sets its error bit:
The error bit is spread via a one-way epidemic (Line
3). Thus, with probability 1 eventually all nodes set
their error bit. From then on, they use the output of the
backup protocol, yielding again TST < ∞.

(iii) The phase clock starts and no node ever sets its error
bit: If the phase clock runs, FormJuntamarks at least
one node and, eventually, all nodes u set their fin-
ished bit finishedu : Indeed, nodeswith an unset finished
bit execute the phase clock (via SimpleMajoritys,h),
such that they have a non-zero probability to increase
their phase counter (since there is a marked node, see
Sect. 3.2.1). Thus, eventually the phase counter over-
flows and the finished bit is set (Lines 6 to 7).
Let T < ∞ denote the interaction after which all fin-
ished bits are set. Since no error bit is ever set, no node
ever skips an hour (Lines 8 to 9). Thus, any two nodes
that balance their loads are not only in the same hour
i < h (as checked by SimpleMajoritys,h) but also
experienced both exactly i load explosions. Moreover,
after interaction T the loads no longer change and all
nodes have the same load signs (otherwise, eventually
two finished nodes of different sign meet and an error
bit is set, contradicting the case assumption). Thus, by
Lemma 7, all nodes forever agree on the correct initial
majority after interaction T , such that TST ≤ T < ∞.

It remains to prove the theorem’s runtime bounds.We first
show that TST = O

(
n log n · logs(n/α)

)
with high probabil-

ity.
To this end, let H∗ ∈ N denote the maximal hour ever

reached by any node and for i ∈ {0, 1, . . . , H∗ − 1} let
Ti be the last interaction of round i . Define T ∗ as the first
interaction during which some node sets its finished or error
bit. By Lines 6 to 9, the first finish or error bit is set because
of three possible reasons:

(i) a node had load at least 3s after its first interaction in
an hour (finished bit),

(ii) a node’s phase counter overflowed (finished bit), or
(iii) a node skipped an hour (error bit).

In a similar way to the proof of Theorem 3, we first show
that, with high probability, Reason (i) applies and that all
nodes agree on the correct initial majority after T ∗ interac-
tions without setting the error bit. At that moment, we might
not yet have stabilized, since there’s still a non-zero proba-
bility for a node to set the error bit because of Reason (iii).
But with high probability that won’t happen before all nodes
set their finished bit by the one-way epidemic (Line 2), after
which the error bit cannot be set anymore. We formalize this
idea below.

Note that the finished bit is set when a node reaches hour h
(its phase counter overflows), so H∗ ≤ h. As in Theorem 3’s
proof, we apply Lemmas 6 and 2 via a union bound to the first
H∗ ≤ h = O (log n) rounds to get, with high probability, the
following properties:

(1) T ∗ < ∞ (the phase clock runs and some node sets its
error bit or, eventually, its phase counter overflows).

(2) For all i ∈ {0, 1, . . . , H∗ − 1}, we have RLength(i) =
�(n log n) and RStretch(i) = O (n log n) (Lemma 6).

(3) For all i ∈ {0, 1, . . . , H∗−1}, the loads have discrepancy
at most 2 after interaction Ti (Lemma 2).

As in the proof of Theorem 3, Property (2) implies that no
node ever skips an hour.

In the remainder we condition on the high probability
event that the above properties hold. Since no node ever skips
an hour, whenever two nodes in hour i ∈ {0, 1, . . . , H∗ − 1}
balance their loads, both of them experienced exactly i load
explosions. Thus, Lemma 7 gives Ψ (Ti) = Ψ (0) for all
i ∈ {0, 1, . . . , H∗−1}.With this, we can show that H∗−1 ≤

logs(4n/α)� =: i∗: Indeed, otherwise all nodes go through
round i∗ and a similar calculation as in Theorem 3’s proof
yields |Φ(Ti∗)| = |Ψ (Ti∗)|·si∗ = |Ψ (0)|·si∗ = α ·si∗ ≥ 4n.
By an average argument as in Theorem 3’s proof, all nodes
have absolute load≥ 3 after interaction Ti∗ . This implies that
any node reaching hour i∗ + 1 < H∗ has absolute load ≥ 3s
after the load explosion and sets its finished bit, contradicting
H∗’s choice (i∗ + 1 would be the maximal hour).

Thus, we have H∗ − 1 ≤ i∗ ≤ h − 2. Let u∗ denote
the initiator of interaction T ∗ and remember the three pos-
sible reasons why u∗ could have set its finished or error bit
(Reasons (i) to (iii)). Reason (iii) does not apply since no
node skipped any hour. Reason (ii) does not apply since the
maximal hour is H∗ ≤ i∗ + 1 ≤ h − 1, so no node’s phase
counter overflows. Thus, u∗ set its finished bit because of
Reason (i): it had absolute load at least 3s after its first inter-
action in hour H∗. Then u∗ had absolute load at least 3 after
TH∗−1 interactions (the end of round H∗ −1). Together with
Property (3)„ either all nodes had load at least 1 or all nodes
had load at most −1 after TH∗−1 interactions. In particular,
all nodes have the same sign, which cannot change subse-
quently. Since we already saw that load balancing happens

123

Time-space trade-offs in population protocols for the majority problem

only between nodes that experienced the same number of
load explosions, Lemma 7 implies that the nodes’ sign is
also the initial majority.

In summary, with high probability, after TH∗−1 interac-
tions, no error bit is set and all nodes forever have the correct
load sign. This is still the case after interaction T ∗. Note that
this does not imply TST ≤ T ∗, since so far only one node fin-
ished and there is still a non-zero probability that some node
skips an hour and, thus, sets the error bit after interaction T ∗.
However, with high probability, the finished bit spreads to all
nodes within TINF = O (n log n) interactions (the infection
time, see Lemma 1). Thus, by using Lemma 6 with a large
enough constant d1, we can ensure that, with high probabil-
ity, RLength(H∗) ≥ TINF, such that no node skips an hour
before all finished bits are set. Once all nodes are finished,
the error bit cannot be set anymore, since all nodes have the
same sign.

Combining everything above via a union bound, this
yields that, with high probability, TST ≤ T ∗ + TINF =
H∗ · O (n log n) + TINF = O

(
n log n · logs(n/α)

)
, yielding

the desired high-probability bound on the stabilization time.
Finally, we show that the stabilization time TST of

StableMajoritys is O
(
n log n · logs(n/α)

)
in expectation.

To this end, observe that we know that, with high probabil-
ity, the stabilization time TST is O(n log n · logs(n/α)). That
is, for any constant a > 0, there is a constant C > 0 and
appropriate values of the constant protocol parameters such
that

Pr[TST ≤ C · n log n · logs(n/α)] ≥ 1 − n−a . (15)

To show that TST is O
(
n log n · logs(n/α)

)
in expec-

tation, we show the following statement: For some fixed
η (independent of the constant parameters of protocol
StableMajoritys), for each sufficiently large n, and for
each configuration C reachable from the initial configura-
tion, the protocol stabilizes from C within nη interactions in
expectation. Once this is shown, we can calculate

E[TST] ≤ E[TST|TST ≤ C · n log n · logs(n/α)]
+ n−a · E[TST|TST > C · n log n · logs(n/α)]

≤ C · n log n · logs(n/α)

+ n−a · (
C · n log n · logs(n/α) + nη

)

≤ 2C · n log n · logs(n/α).

The first inequality above follows from Equation (15). The
second inequality follows from the bound nη on the expected
stabilization time from the configuration C reached after the
first C · n log n · logs(n/α) interactions. Finally, the last
inequality holds by taking a = η.

We use the following facts about the expected running
time of some basic protocols:

1. Protocol BackupMajority stabilizes within O(n2 ·
log n) ≤ n3 (for sufficiently large n) interactions in expec-
tation [20].

2. The one-way epidemic completeswithinO (n log n) inter-
actions in expectation.

3. For each K ≥ 1, the number of interactions required so
that each node is the initiator of at least K interactions is
O (Kn log n) in expectation (a simple consequence from
the expected completion time O (n log n) of the coupon
collector problem).

Let C be any non-stable configuration of the protocol
StableMajoritys that is reachable from the initial con-
figuration. We distinguish several configuration types with
respect to C:

1. The phase clocks of all nodes have reached their limit of
h ·m, viewing the clocks (for the purpose of this analysis
but without actually altering anything in the protocol) as
if there were kept running until reaching the limit: Con-
figuration C is not stable, so either there is a node with
the error flag raised, or all nodes have their finished flag
raised but not all nodes have the same signs of their load.
Otherwise the configuration is stable.
In the former case (when there is a node with an error),
one instance of one-way epidemic raises the error flag in
all nodes in expected O (n log n) interactions, and then
protocol StableMajoritys stabilizes within additional
expected n3 interactions by completing BackupMajor-
ity.
Similarly, in the latter case, two consecutive one-way epi-
demics (the first one to make two nodes with different
load signs meet and the second one to spread out the
information about the error) and then the completion of
the BackupMajority protocol are sufficient to stabilize
StableMajoritys .
In both cases, the protocol StableMajoritys stabilizes
within additional O

(
n3

)
interactions in expectation.

2. There is at least one marked node (by protocol For-
mJunta), but there is still at least one node whose clock
has not yet reached the limit of h · m (as above, we view
the clocks as if running until the limit): The marked node
with the largest clock value increases its clock within
one instance of one-way epidemics. Thus within at most
h · m consecutive instances of one-way epidemics, one
marked node reaches the clock limit. One additional one-
way epidemic makes all clocks reach the limit. This takes
(h ·m+1) ·O(n log n) = O(n log n · logs(n)) interactions
in expectation and takes us to a configuration of Type 1.

3. No node is marked (by protocol FormJunta): We con-
sider two sub-cases:

123

P. Berenbrink et al.

(a) All nodes in FormJunta are inactive: No node is
ever marked and the phase clock never starts. Thus,
StableMajoritys stabilizes in n3 additional inter-
actions in expectation (via BackupMajority).

(b) There is at least one active node in FormJunta: If
an active node is the initiator of an interaction, then
it either increases its junta level or becomes inactive.
Thus,when this node initiated lmax interactions, either
it reached level lmax and got marked, or it has become
inactive. So within lmax · O(n log n) = O(n log n ·
log log n) interactions in expectation (after each node
initiated at least lmax interactions) we either reach a
configuration with the first marked node (Type 2) or a
configuration with no marked node but only inactive
nodes (Type 3a).

In summary, we see that StableMajoritys stabilizes
fromany configurationC reachable from the initial configura-
tion within O

(
n3

) ≤ n4 (for sufficiently large n) interactions
in expectation. ��

6 Convergent majority

In this section, we present and analyze the protocol
ConvergentMajoritys , a hybrid majority protocol which
converges efficiently. The main idea of the protocol is that
all nodes execute SimpleMajoritys,3, which converges
quickly. However, there is a positive probability that it returns
the wrong answer without detecting the error. Therefore,
every node switches its output to the backup protocol after
a (polynomially) long time. To determine that this time has
passed,we use a simple approach based on counting the num-
ber of consecutive interactions with junta nodes. Formally,
we prove the following theorem:

Theorem 5 Let s ∈ {2, 3, . . . , n}. Consider the majority
problem for n nodes with initial absolute bias α ∈ N. Pro-
tocol ConvergentMajoritys is exact and converges with
high probability and in expectation inO(n log n · logs(n/α))

interactions. The protocol uses �(s + log log n) states per
node.

We now describe the protocol’s state space and its transi-
tion function (see also Algorithm 3). Afterward, we give the
proof of Theorem 5.

Nodes first execute a backup protocol BackupMa-
jority .12 Additionally, each node u executes protocol
SimpleMajoritys,3 as long as it did not encounter 600
marked nodes in a row. The number of such encounters is

12 As before, in Sect. 5, we use the 4-state protocol from [20] for this,
which stabilizes in O

(
n2 log n

)
interactions in expectation, implying a

finite stabilization time and, thus, exactness.

ConvergentMajoritys(u, v)

1 BackupMajority/(u, v)

2 if countu < 600 then
3 if PCmarked(v) then
4 countu ← countu + 1
5 else
6 countu ← 0

7 SimpleMajoritys,3(u, v)

Algorithm 3: Pseudocode for transition function of
ConvergentMajoritys (initiator u and responder v)

stored in a counter value countu ∈ {0, 1, . . . , 600}. The value
600 is chosen merely for convenience and has no special
meaning. It simply ensures that it takes a long time before
a node permanently changes its output to that of the backup
protocol (see next paragraph).

The output function maps the state of a node u to a
majority guess as follows: Use the output of the backup
protocol if the phase counter of the phase clock is zero or
if the counter countu has reached 600. Otherwise, use the
output of protocol SimpleMajoritys,3. Switching eventu-
ally to the backup protocol’s solution ensures that - even if
SimpleMajoritys,3 fails - the protocol is exact. Using the
output of SimpleMajoritys,3 in between (and switching to
the backup protocol’s solution only after a long time, when
it is correct with high probability) implies that, with high
probability, convergence (but not stability) is achieved fast.

Proof of Theorem 5 We first show that our protocol
ConvergentMajoritys is exact. This follows easily by
considering the following two cases:

1. The phase clock never starts (no node is selected into
the underlying junta). Since in this case all coun-
ters remain zero forever, the output of the protocol
ConvergentMajoritys equals the output of Backup-
Majority, which is exact.

2. The phase clock starts (meaning the junta is not empty).
The probability for a node u to increase its countu in the
next interaction is at least 1/n2 (u initiates the interac-
tion with a marked node as responder). This happens 600
times in a row with probability at least 1/n1200 > 0 (a
crude but sufficient bound). Thus, eventually all nodes
u reach countu = 600. From that point on the output of
ConvergentMajoritys equals that of BackupMajor-
ity, which is exact.

This shows that protocol ConvergentMajoritys is exact.
The bound on the number of states per nodes follows also
easily: SinceBackupMajority requires only four states and
the counters are bounded by the constant 600, the number of
states per node is a constant factor times the number of states
required by SimpleMajoritys,3, which is�(s + log log n).

123

Time-space trade-offs in population protocols for the majority problem

It remains to prove the convergence time bound for the
ConvergentMajoritys protocol. Assuming a non-empty
junta (which, by Theorem 1, holds with high probability after
O (n log n) interactions), we can derive the desired bound
from the following observations.
(i) Once the junta is established, the output of proto-

col ConvergentMajoritys during the next poly1(n)

interactions equals, with high probability, that of
SimpleMajoritys,3. That protocol converges with
high probability in at most O

(
n log n · logs(n/α)

)

interactions.
(ii) After poly1(n) interactions, the nodes’ outputs start

switching gradually to the output of BackupMa-
jority, which stabilizes in O

(
n2 log n

)
interactions.

After poly2(n) > poly1(n) interactions, with high
probability all nodes have switched their output to
BackupMajority.

By choosing parameters such that poly1(n) = n3, the
switch to the backup protocol happens only when it has,
with high probability, stabilized. Thus, with high probability,
the subprotocol SimpleMajoritys,3 converges to the cor-
rect outcomewithin O

(
n log n · logs(n/α)

)
interactions and,

when the nodes start switching their output to BackupMa-
jority, that subprotocol also has the correct output. Together,
this implies the desired bound on the convergence time.

To see Observation (i), note that, once there is a non-
empty junta of size at most n0.98 (which happens with high
probability in O (n log n) interactions by Theorem 1), the
probability that a node samples a junta node 600 times in a
row is at most (n0.98/n)

600 = n−12. Using a union bound,
with high probability no node reaches counter value 600 (and
switches to the backup protocol) before �

(
n3

)
interactions.

Observation (ii) follows by a simple Markov bound applied
to the expected number of interactions a node requires to
switch its output back to the backup protocol (which is upper
bounded by O

(
n600

)
) together with a union bound over all

nodes.
It remains to prove the bound on the expected convergence

time TC ofConvergentMajoritys . For this, using the same
argument as in the proof of Theorem 4, it is sufficient to
show the following statement: For some fixed η, for each
sufficiently large n, and for each configuration C reachable
from the initial configuration, the protocol stabilizes from
C within nη interactions in expectation. Once this is shown,
the same calculation as for Theorem 4 yields E[TC] ≤ 2C ·
n log n · logs(n/α). To this end, we proceed as in the proof of
Theorem4 and distinguish the following configuration types:

1. All nodes have switched to the backup protocol: Then
ConvergentMajoritys stabilizes in n3 additional inter-
actions in expectation (via BackupMajority).

2. Some node has not yet switched to the backup protocol:
The time until all nodes switch to the backup protocol
is dominated by the sum of n geometrically distributed
random variables with parameter ≥ 1/n1200 (see the
exactness proof above). Thus, there is a constant η such
that all nodes switch their output to BackupMajority
after at most nη−1 many interactions in expectation. This
takes us to a configurations of Type 1.

In summary, wee see that ConvergentMajoritys con-
verges from any configuration C reachable from the initial
configuration within nη−1 + n3 ≤ nη (for sufficiently large
n) interactions in expectation. ��

7 A note on uniformity

Uniformity in population protocols means that a single algo-
rithm is designed to work for populations of any size. In
particular, nodes have no information on the population size
n. Protocols where nodes are restricted to a constant number
of states are always uniform. But most of the newer proto-
cols allow for a super-constant number of states and use some
upper bounds on n, so they are not uniform. In particular, pro-
tocols that stop their computation once a counter reaches a
value of polylog(n) fall into this category of non-uniform
protocols. This section presents a uniform population proto-
col for majority.

Uniform population model For studying uniform pop-
ulation protocols whose state requirements increase with
the population size n, the original model—which considers
nodes as finite-state machines (FSM), see Sect. 2 - turns out
to be inadequate. Indeed, if each node is an FSM with a state
space of size f (n) for a non-trivial function f , then the nodes
and, thus, the protocol inherently depend on n and cannot be
simply “deployed” in a population of different size.

Doty and Eftekhari [14] introduce a generalized popula-
tion model that is better suited for this scenario and which
we adopt in the remainder of this section . In their model,
each node is represented by a 2-tape deterministic Turing
machine (TM). We assume that both tapes are infinite to the
left and right and that the origin is marked by a special origin
symbol. Tape 1 (read-only) is called the input tape and tape 2
(read-write) the working tape. One two-way infinite work-
ing tape is sufficient for us since it allows maintaining two
unbounded variables, as required in our protocol. For pro-
tocols with more unbounded variables, similarly to [15] one
can use aTMwith asmany (one-sided infinite) input/working
tapes as there are unbounded variables (whose number must
not depend on n).

At the beginning of any interaction, a node’s working tape
is identical to its working tape at the end of the previous
interaction. Whenever two nodes interact, they copy each

123

P. Berenbrink et al.

other’s working tape onto their own input tape and restart
their TM by entering a start TM-state (which then computes
a new state, updates the node’s working tape, and halts). We
define the number of states used during a protocol execution
as |�|s , where � is the (binary) tape alphabet and s is the
maximum number of tape cells written by any node during
the execution.

Having the above formal model in mind, our description
sticks with the standard population protocol terminology. In
particular, we assume a suitable encoding of the nodes’ states
using the alphabet � and simply identify the content of a
node’s working tape with its state. An important implica-
tion of the model is that nodes might now use an unbounded
number of states (write an unbounded number of cells on
the working tape). However, in our uniform majority pro-
tocol, the number of used states is finite with probability 1
and O(log n · log log n) in the population size n with high
probability.

Uniform majority One of the rare examples of a uniform
protocolwhose state requirements increasewith n is the junta
protocol from [18]; we refer to it as FormJuntaUniform.
Observe that our protocol FormJunta is not uniform, as
nodes need to know lmax = �log log n� − 3 in order to mark
themselves (see Sect. 3.1). See below for a brief description
of FormJuntaUniform.

Since our majority protocols from the previous sections
use the non-uniform junta FormJunta, none of them is
uniform. In fact, to the best of our knowledge, until now
there was no exact, uniform majority protocol that would
stabilize with high probability in n2−�(1) interactions. The
following theorem shows that we get such a uniform major-
ity protocol by applying slight modifications to protocol
StableMajoritys .

Theorem 6 Let s ∈ N \ {1} be a constant. Consider the
majority problem for n nodes with initial absolute bias
α ∈ N. Protocol UniformMajoritys is an exact and uni-
form variant of StableMajoritys . With high probability
and in expectation, it stabilizes inO(n log n·logs(n/α)) inter-
actions. While the number of used states can be arbitrarily
high with non-zero probability, with high probability it uses
only s · O(logs(n/α) · log log n) states per node.

Note that, in order for UniformMajoritys to be uniform,
the parameter s must be constant (i.e., s may not depend on
n).

Protocol UniformMajoritys is identical to protocol
StableMajoritys with the following changes:

1. It uses subprotocol SimpleMajoritys,∞ instead of
SimpleMajoritys,
logs (4n)�+2. In particular, the phase
clock PhaseClock∞ is used, which cannot overflow.
Thus, nodes always know their exact hour.

2. The phase clock uses FormJuntaUniform instead of
FormJunta.

Using the original junta instead of ours has the drawback that
nodes must remember their level from the junta calculation
indefinitely. However, since protocol FormJunta is inher-
ently non-uniform, this seems unavoidable when aiming for
a uniform protocol.

For the sake of completeness, we give a brief description
of FormJuntaUniform, using slightly different wording
and notation than in [18], in order to fit it into our frame-
work.13 We also describe how the phase clock is adapted to
the changed junta protocol. Afterward, we give the proof of
Theorem 6.

Description of UniformMajoritys . As our junta pro-
tocol FormJunta, protocol FormJuntaUniform is based
on the level calculation described in Sect. 3.1.1. Recall that
the level calculation uses a level l, an activity bit a, and the
transition function described by Equation (1). In addition to
the level l and activity bit a, each node stores a marker bit
b ∈ {0, 1} (indicating whether the node assumes to be in the
junta or not) and a defeated bit d ∈ {0, 1}. Initially, all nodes
have b = 0 and d = 0. A node that just became inactive at
a level l ≥ 1 sets b to 1. If an inactive node at level l ≥ 1
encounters a node on a higher level, it becomes defeated:
it sets d to 1, b to 0, and will from now on simply adopt
the larger level during any interaction (not changing any of
its other state values related to the junta). If encountered
by another node in the level calculation, a defeated node is
treated as if it were in state (0, 0), independent of its actual
level counter l.

Phase Clocks on different Levels & Reset. Compared to
FormJunta, any (inactive) node starts with the belief of
being in the junta until it becomes defeated by a node from a
higher level. This ensures that the junta is never empty. How-
ever, when used in the phase clock protocol, there will be a
large number of nodes in the junta for the first few interac-
tions (until lower-level nodes become defeated), causing the
phase clock to run too fast.

To avoid problems in the protocol relying on the synchro-
nization of the phase clock, nodes now also use the level
(from the junta protocol) in the phase clock protocol. This
basically results in multiple phase clocks running on differ-
ent levels. When a node running a phase clock on level l
encounters a node running a phase clock on a higher level l ′,
it resets its phase counter to zero (and - by the junta protocol
- updates its level to l ′). This reset also triggers a reset of the

13 Technically, the described protocol differs slightly from the one in
[18]: The first interaction of a node is slightly changed - as described
in Sect. 3.1.2 - in order to enable us to prove a lower bound on the
maximum level reached by any node. This property is not required for
the uniform protocol, so one could use the original junta protocol from
[18].

123

Time-space trade-offs in population protocols for the majority problem

protocol using the phase clock. In our case this is themajority
protocol StableMajoritys . For a node u this entails a reset
of the bits finishedu and erroru to 0, and a reset of the load
value from SimpleMajoritys,∞ to ±1, depending on the
original opinion of u. This idea of phase clocks running on
different levels and a corresponding reset was first proposed
and used in [18] for the case of leader election.

Proof of Theorem 6 First note that the protocol requires no
knowledge of n, meaning that it is uniform. The remain-
ing proof is similar to that of Theorem 4. In fact, having
unbounded phase counters (which avoid overflows in the
phase clock) and the guarantee from FormJuntaUniform
that the junta is never empty simplify the argumentation con-
siderably. Also note that the exact phase counters guarantee
that any load balancing action is always guaranteed to be
done only between nodes in the same hour.

Let TST denote the stabilization time of protocol
UniformMajoritys . To proof exactness, remember the
three cases from the exactness proof of Theorem 4. The first
two cases are trivial: Case (i) (phase clock does not start)
cannot occur, since we use FormJuntaUniform. Case (ii)
(phase clock starts and some error bit is set) is identical, since
with probability 1 eventually all nodes set their error bit and
use the output of the backup protocol. For Case (iii) (phase
clock starts and no error bits are ever set) we again first show
that all nodes finish with probability 1. However, in Theo-
rem 4 this was proven via the overflowing phase counters,
which cannot happen for h = ∞. Thus, we use a different
argument: For the sake of a contradiction assume no node fin-
ishes (if one node finishes, all nodes finish eventually). Since
the phase clock runs and no error ever occurs, all nodes reach
any hour i ∈ N. Consider an interaction t when all nodes are
in hour at least ι :=
logs(s ·3n/α)�. Since load balancing is
only performed between nodes in the same hour and no node
ever skips an hour (or an error would occur), Lemma 7 gives
Ψ (t) = Ψ (0). But then, similar to previous arguments, our
choice of ι ensures that |Φ(t)| ≥ s · 3n. So there would be a
node u with absolute load at least 3s. This yields the desired
contradiction, since u would have set its finished bit at the
beginning of its current hour. Once we know that all node
finish with probability 1 in this case, the exactness follows
again as in Case (iii) in the exactness proof of Theorem 4.

To prove that, with high probability, we have TST =
O(n log n · logs(n/α)), we use the same argumentation as
for the corresponding part in the proof of Theorem 4, just
slightly simplified since nodes now store their exact phase
counters. Basically, we again take a union bound over the
first i∗ :=
logs(4n/α)� rounds and get the same three prop-
erties as in the proof of Theorem 4: (1) T ∗ < ∞ (as we
have shown above for the exactness) for the interaction T ∗
when the first finish or error bit is set. (2) The first i∗ rounds
have length �(n log n) and stretch O (n log n). (3) The load

discrepancy is at most 2 at the end of each of the first i∗
rounds.

With these properties, the remaining argumentation from
Theorem 4’s proof goes through.

The proof for the bound on the expected stabilization time
is also identical, by noting that all nodes complete protocol
FormJuntaUniform in expected O

(
n log n

)
interactions

[18].
For the bound on the number of states, note that replacing

the phase clock’s junta algorithm FormJunta by FormJun-
taUniform increases the required number of states by a
factor of �(log log n) (instead of an additive term), since
we now need to store the level indefinitely. Now, above we
saw that, with high probability, all nodes finish after at most
O(logs(n/α)) rounds. Thus, with high probability, no phase
counter is larger thanO(logs(n/α)) in absolute value. Finally,
there is a factor of (3s + 1) · �(1) = s · �(1) for the load
values and the bits finishedu and erroru , yielding the desired
bound. ��

8 Conclusions & future work

We analyzed three similar variants of a population protocol
for the majority problem: SimpleMajoritys,3,
ConvergentMajoritys , and UniformMajoritys . All of
them based on the so-called doubling and cancellation
approach. They feature a parameter s that allows for a trade-
off between runtime and memory per node.

A natural open question is to improve the bounds we
provide. In particular, for s = log log n our protocol
StableMajoritys has stabilization time o(n · (log n)2)

while using O (polylog n) states. There is (to the best of our
knowledge) one other result that also achieves this guaran-
tee [11]. While it does not feature a trade-off capability, it
comes with a better stabilization time. It seems non-trivial
but also not impossible to combine our trade-off result with
the improved stabilization time. Also, it would be interesting
whether it is possible to derive parameterized lower bounds
in which one can similarly see the effect on the running time
of increasing or decreasing the number of states per node.

Another open research question for population protocols
deals with the phase clock introduced in [18]. It is unclear
whether one can derive a similar phase clock that requires
only a constant number of states and still synchronizes the
population for a polynomial number of interactionswith high
probability. If it exists, such a phase clock could be used to
devise constant-state (majority) protocols that converge in
polylogarithmic time with high probability.

Our results formally show that lower bounds for the
stabilization time can be bypassed by considering the con-
vergence time. Unfortunately, there are currently no strong
lower bounds regarding the convergence time. As conver-

123

P. Berenbrink et al.

gence time might be considered the more practical runtime
notion, finding such lower bounds and tightening the cor-
responding upper bounds should be deemed a worthy but
challenging task.

Acknowledgements OpenAccess funding provided by Projekt DEAL.
Robert Elsässer and Dominik Kaaser were partially supported by the
Austrian Science Fund (FWF) under grant no. P 27613 (“Distributed
Voting in Large Networks”). Tomasz Radzik’s work was supported by
EPSRC grant EP/M005038/1 (“Randomized Algorithms for Computer
Networks”).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Probabilistic tools

Lemma 8 (Chernoff Bounds). Let n ∈ N and consider a
sequence (Xi)i∈[n] of mutually independent binary random
variables. Define X := ∑

i∈[n] Xi and let μU , μL ≥ 0 be
such thatμL ≤ E[X] ≤ μU . The following inequalities hold
for any δ ≥ 0 and φ ≥ 6μU :

Pr[X ≤ (1 − δ) · μL] ≤ e− δ2 ·μL
2 , (16)

Pr[X ≥ (1 + δ) · μU] ≤ e− δ2 ·μU
2+δ , and (17)

Pr[X ≥ φ] ≤ 2−φ. (18)

Let μ := E[X]. We often use the following simplified
Chernoff bounds:

Pr[X ≤ (1 − δ) · μ] ≤ n−a (19)

Pr[X ≥ max{13a · log n, (1 + δ) · μ}] ≤ n−a and, (20)

wherea ≥ 0 is an arbitrary constant and δ := √
3a · log(n)/μ.

For convenience, we sometimes combine both bounds into

Pr[|X − μ| ≥ max{13a · log n, δ · μ}] ≤ 2n−a . (21)

B Auxiliary protocols: phase clock

This section shows howLemma 6 follows from the following
technical lemma from[18].Weparaphrase the lemmaslightly

in order to make the dependencies on the involved constants
more explicit.

Lemma 9 ([18, Lemma 3.7]) Let a, d > 0 be constants and
assume n to be sufficiently large with respect to them. There
is a constant K > 0 such that the following holds: Let pmax

denote the maximum and pmin the minimum phase counter
after an interaction t ∈ N. Assume pmax − pmin ≤ 2K. With
probability at least 1 − n−a, there is a t ′ > t + d · n log n
such that:

1. t ′ is the first interaction after which the maximum phase
counter is pmax + K.

2. After interaction t ′, all nodes have a phase counter value
of at least pmax.

With this, we are ready to restate and prove Lemma 6.

Lemma 6 Let a, c, d1 > 0 be constants and assume n to be
sufficiently large with respect to them. There is a constant
parameter m ∈ N (from the definition of PhaseClock∞)
and a constant d2 > 0 such that, with probability at least
1 − n−a, for all i ∈ {0, 1, . . . , nc}

1. RLength(i) ≥ d1 · n log n.

2. RStretch(i) ≤ d2 · n log n.

Proof The lower bound on RLength(i) follows via an induc-
tion over i by applying Lemma 9 with d = d1 and by setting
the phase clock parameter m to 3K . For the upper bound
on the stretch, note that the one-way epidemic (cf. Lemma
1) implies that, with high probability, the maximum phase
counter increases within O (n log n) rounds (when a marked
node finally sees the maximum phase counter). Thus, with
high probability, it takes at mostm ·O (n log n) = O (n log n)

interactions for a node to leave a given round. ��

References

1. Alistarh, D., Gelashvili, R., Vojnovic, M.: Fast and exact major-
ity in population protocols. In: Georgiou, C., Spirakis, P.G. (eds.)
Proceedings of the 2015 ACM Symposium on Principles of Dis-
tributed Computing, PODC 2015, Donostia-San Sebastián, Spain,
July 21 –23, 2015, pp. 47–56. ACM (2015). https://doi.org/10.
1145/2767386.2767429

2. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.:
Time-space trade-offs in population protocols. In: Klein, P.N. (ed.)
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sympo-
siumonDiscreteAlgorithms, SODA2017,Barcelona, Spain,Hotel
Porta Fira, January 16-19, pp. 2560–2579. SIAM (2017). https://
doi.org/10.1137/1.9781611974782.169

3. Alistarh, D., Aspnes, J., Gelashvili, R.: Space-optimal major-
ity in population protocols. In: Czumaj, A. (ed.) Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7–10,

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169

Time-space trade-offs in population protocols for the majority problem

2018, pp. 2221–2239. SIAM (2018). https://doi.org/10.1137/1.
9781611975031.144

4. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
In: Chaudhuri, S., Kutten, S. (eds.) Proceedings of the Twenty-
Third Annual ACM Symposium on Principles of Distributed
Computing, PODC 2004, St. John’s, Newfoundland, Canada, July
25–28, 2004, pp. 290–299. ACM (2004). https://doi.org/10.1145/
1011767.1011810

5. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.:
Computation in networks of passively mobile finite-state sensors.
Distrib. Comput. 18(4), 235–253 (2006). https://doi.org/10.1007/
s00446-005-0138-3

6. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable pred-
icates are semilinear. In: Proc. PODC, pp. 292–299, New York
(2006)

7. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The compu-
tational power of population protocols. Distrib. Comput. 20(4),
279–304 (2007)

8. Angluin,D.,Aspnes, J., Eisenstat,D.:A simple population protocol
for fast robust approximate majority. Distrib. Comput. 21(2), 87–
102 (2008). https://doi.org/10.1007/s00446-008-0059-z

9. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by pop-
ulation protocols with a leader. Distrib. Comput. 21(3), 183–199
(2008). https://doi.org/10.1007/s00446-008-0067-z

10. Aspnes, J., Ruppert, E.: An introduction to population protocols.
Bull. Euro. Assoc. Theor. Comput. Sci. 93, 98–117 (2007)

11. Berenbrink, P., Elsässer, R., Friedetzky, T., Kaaser, D., Kling, P.,
Radzik, T.: A population protocol for exact majority with o(log5/3
n) stabilization time and theta(log n) states. In: Schmid, U.,Widder,
J. (eds.) 32nd International Symposium onDistributed Computing,
DISC 2018, NewOrleans, LA, USA, October 15-19, 2018, volume
121 ofLIPIcs, pp. 10:1–10:18. SchlossDagstuhl -Leibniz-Zentrum
für Informatik (2018). https://doi.org/10.4230/LIPIcs.DISC.2018.
10

12. Berenbrink, P., Friedetzky, T., Kaaser, D., Kling,P.: Tight & simple
load balancing (2019). accepted at IPDPS 2019. An earlier version
can be found under the arXiv ID arXiv:1808.05389 [cs.DC]

13. Bilke, A., Cooper, C., Elsässer, R., Radzik, T.: Brief announce-
ment: Population protocols for leader election and exact majority
with O(log(2) n) states and O(log(2) n) convergence time. In:
Schiller, E.M., Schwarzmann, A.A. (eds.) Proceedings of the ACM
Symposium on Principles of Distributed Computing, PODC 2017,
Washington, DC, USA, July 25-27, 2017, pp. 451–453. ACM
(2017). https://doi.org/10.1145/3087801.3087858

14. Doty, D., Eftekhari, M.: Efficient size estimation and impossibility
of termination in uniformdense populationprotocols. In:Robinson,
P., Ellen, F. (eds.) In: Proceedings of the 2019ACMSymposium on
Principles of Distributed Computing, PODC 2019, Toronto, ON,
Canada, July 29 - August 2, 2019, pp. 34–42. ACM (2019). https://
doi.org/10.1145/3293611.3331627

15. Doty, D., Eftekhari, M., Michail, O., Spirakis, P.G., Theofilatos,
M.: Exact size counting in uniform population protocols in nearly
logarithmic time. CoRR, abs/1805.04832 (2018). URLhttp://arxiv.
org/abs/1805.04832

16. Draief, M., Vojnovic, M.: Convergence speed of binary interval
consensus. SIAM J. Control Optim. 50(3), 1087–1109 (2012).
https://doi.org/10.1137/110823018

17. Elsässer, R., Radzik, T.: Recent results in population protocols for
exact majority and leader election. Bull. EATCS 126 (2018). URL
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546

18. Gasieniec, L., Stachowiak, G.: Fast space optimal leader elec-
tion in population protocols. In: Czumaj, A. (ed.) Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2018, New Orleans, LA, USA, January 7–
10, 2018, pp. 2653–2667. SIAM (2018). https://doi.org/10.1137/
1.9781611975031.169

19. Kosowski, A., Uznanski, P.: Brief announcement: Population pro-
tocols are fast. In: Newport, C., Keidar, I. (eds.) Proceedings of
the 2018 ACM Symposium on Principles of Distributed Com-
puting, PODC 2018, Egham, United Kingdom, July 23-27, 2018,
pp. 475–477. ACM (2018). URL https://dl.acm.org/citation.cfm?
id=3212788

20. Mertzios, G.B., Nikoletseas, S.E., Raptopoulos, C.L., Spirakis,
P.G.: Determining majority in networks with local interactions and
very small local memory. In: Esparza, J., Fraigniaud, P., Husfeldt,
T., Koutsoupias, E. (eds.) Automata, Languages, and Programming
—41st International Colloquium, ICALP 2014, Copenhagen, Den-
mark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture
Notes in Computer Science, pp. 871–882. Springer (2014). https://
doi.org/10.1007/978-3-662-43948-7_72

21. Mocquard, Y., Anceaume, E., Aspnes, J., Busnel, Y., Sericola, B.:
Counting with population protocols. In: Avresky, D.R., Busnel, Y.
(eds.) 14th IEEE International Symposium onNetwork Computing
and Applications, NCA 2015, Cambridge, MA, USA, September
28–30, 2015, pp. 35–42. IEEE Computer Society (2015). https://
doi.org/10.1109/NCA.2015.35

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1137/1.9781611975031.144
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-008-0059-z
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.4230/LIPIcs.DISC.2018.10
http://arxiv.org/abs/1808.05389
https://doi.org/10.1145/3087801.3087858
https://doi.org/10.1145/3293611.3331627
https://doi.org/10.1145/3293611.3331627
http://arxiv.org/abs/1805.04832
http://arxiv.org/abs/1805.04832
https://doi.org/10.1137/110823018
http://bulletin.eatcs.org/index.php/beatcs/article/view/549/546
https://doi.org/10.1137/1.9781611975031.169
https://doi.org/10.1137/1.9781611975031.169
https://dl.acm.org/citation.cfm?id=3212788
https://dl.acm.org/citation.cfm?id=3212788
https://doi.org/10.1007/978-3-662-43948-7_72
https://doi.org/10.1007/978-3-662-43948-7_72
https://doi.org/10.1109/NCA.2015.35
https://doi.org/10.1109/NCA.2015.35

	Time-space trade-offs in population protocols for the majority problem
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related literature

	2 Model & notation
	3 Auxiliary population protocols
	3.1 Junta
	3.1.1 Level calculation
	3.1.2 Junta calculation
	3.1.3 Auxiliary claims about the level calculation
	3.1.4 Analysis of the junta calculation

	3.2 Phase clock
	3.2.1 Phase clock protocol & synchronization
	3.2.2 Fixing the odds and ends
	3.2.3 Phase clock interface

	4 Simple majority
	5 Stable majority
	6 Convergent majority
	7 A note on uniformity
	8 Conclusions & future work
	Acknowledgements
	A Probabilistic tools
	B Auxiliary protocols: phase clock
	References

