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Abstract

Risk analysis based on historical failure data @@m an integral part of the integrity
management of oil and gas pipelines. The scaradlylack of consistency in the information
provided by major incident databases leads to peaiiic results of the risk status of pipes
under consideration. In order to evaluate pipefamiure rates, the rate of occurrence of
failures is commonly adopted. This study aims taveeinductive inferences from the 179
reported ruptures of a set of onshore gas trangmigspelines, reported in the PHMSA
database for the period from 2002-2014. Failuresesuare grouped in an integrated manner
and the impact of each group in the probabilityropture is examined. Towards this,
nonparametric predictive inference (NPI) is emptbyer competing risks survival analysis.
This method provides interval probabilities, alsoown as imprecise reliability, in that
probabilities and survival functions are quantified upper and lower bounds. The focus is
on a future pipe component (segment) that ruptduesto a specific failure cause among a
range of competing risks. The results can be usedximine and implement optimal
maintenance strategies based on relative riskipzetion.

Keywords. gas pipelines, historical failure data, nonparaimepredictive inference,
competing risks, rupture.
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1. Introduction

Pipelines are the safest and most economic meatrareporting crude oil and gas, either
onshore or offshore. However, similarly to othergieeering systems, pipe failure is
considered an integral part of their operatingiliie (Fang et al, 2014; Khemis et al, 2016;
Zhang et al, 2016; Benammar and Tee, 2019). Moaa thalf of the operating energy
pipelines globally have been in place for more tharnyears (Kiefner and Rosenfeld, 2012).
A sudden breakdown can lead to loss of productidty severe accident with large
environmental, economic and social implicationsatigopol and Soliman, 2016; Khan and
Tee, 2015). As a result, comprehensive maintenancerehabilitation plans should be at
hand, as part of a structured integrity managermergram (Kishawy and Gabbar, 2010; Tee
et al, 2018; Zhang and Tee, 2019). According ttissizal analysis and incident data from
literature, external corrosion has been identifiad the most predominant gradual
deterioration process (EGIG, 2015; CONCAWE, 201XQPA, 2014; AER, 2013).
However, other factors such as third-party actjvitaterial or construction imperfections,
geotechnical hazards, incorrect operation, inadegdasign and many others can lead to

ultimate failure modes like leaks and ruptures ¢@alet al. 2008).

The implementation of probabilistic risk models aubsequent mitigation strategies can be
considerably assisted by pipeline incident and aggedata available at different databases
from around the world (Pesinis and Tee, 2018). Gfrtee most distinguished is the Pipeline
and Hazardous Material Safety Administration (PHMSWithin the United States
Department of Transportation (DOT), which collert®ormation on incidents that occurred
on gas and liquid pipelines. Golub et al. (1996lgsed the PHMSA incident data on gas
transmission pipelines between 1970 and 1993 ated n Kiefner et al. (2001) also
analysed the incidents on gas transmission andcegaghpipelines from 1985 to 1997 as
reported in the PHMSA database. Similar analysge baen conducted in the past from data
derived from other relevant databases as the Uiiteddom Onshore Pipeline Operators’
Association (UKOPA) or the European Gas pipelingdent data Group (EGIG) (UKOPA,
2014; EGIG, 2015; CONCAWE, 2015). Lam and Zhou @Oanalysed the PHMSA
database in an effort to derive inferences abauttndition of gas transmission pipelines in
the US and to develop relevant failure frequendétgsassessing the risk of onshore gas

transmission pipelines.



1.1 Statistical analysis on pipelines

When it comes to statistical analyses of failupgselines are examined as repairable systems
in literature. This means that upon failure, thstem is restored to operation by repairing or
even replacing some parts of the system, insteadpddicing the entire system. In addition,
the failure rate that previous studies estimatersefo a sequence of failure times within a
time interval as opposed to a single time to faildistribution. In this study, the times to
failure of gas transmission pipelines that ruptusesl grouped and a non-repairable systems
approach is implemented. It is assumed that rugtpipes are non-repairable components
(segments) functioning within a repairable systesmich is the entire pipeline network. This
is thought to be a reasonable assumption sincpeaqumponent upon rupture is discarded
and replaced by a new one. The lifetime of the comept is a random variable described by
a single time to failure (Athmani et al, 2019; Ebesra and Tee, 2019). For a group of
identical segments, the lifetimes can be assumedeédoindependent and identically
distributed. The lifetimes of ruptured segments barsorted by magnitude and their order of
occurrence in time can be neglected (Harold et ¥384; Leemis, 1995). Then, their
reliability against rupture, for a range of possil@nd competing failure causes, can be

investigated.

Towards this, a statistical approach called nonpatac predictive inference (NPI) which
can deal with competing risks is proposed (Cooleal.e 2002; Maturi et al., 2010). This
method can provide insights into the reliabilitytbé pipelines under consideration when few
information is available and also when severalufailcauses exist. NPI enables statistical
inference on future observations based on pasidigens and assuming that failure causes
are independent. The method is based on Hill'srapion (Hill 1988; 1993) which gives a
direct conditional probability for a future obsel@ random quantity, and conditioned on
observed values of related random quantities. Thé&hod provides interval probabilities,
which is also referred in literature as imprecisebabilities. In other words, this means that
uncertainty is quantified via lower and upper ptauliges. Thus, survival functions are also

estimated in bounds along with any potential apgilbie of maintenance strategies.

1.2 Aim and application

The aim of the study is to apply the competing sisheory by means of the NPI on the

dataset of rupture incidents, in order to obtamliséic probabilities of rupture broken down



by specific causes. This kind of information is siolered vital for fully understanding of

risks and their time-dependent implications. ltiligsstrated how the NPI method can be
applied in the above-described PHMSA database deroto derive an evaluation of the
survival function of onshore gas transmission g against rupture failures. The applied
method regards only a population of ruptured comeptsr and not the entire pipeline
network. As a result, inferences concern a futeigrent that will rupture due to a specific
failure cause and lower and upper probabilities tfos event are obtained. The survival
functions obtained represent the complementaryaiidity of rupture for this future segment

at a given time instant.

Competing risks arise when a failure can resulinfrane of several causes and one cause
precludes the others. As a result, the occurrericene failure affects the probability of
failure of another and should be taken into accauntliability studies. This theory has been
applied before in certain fields like medical scenwith applications in reliability, public
health and demography among others (Lau et al9;280dersen et al., 2012; Hinchliffe and
Lambert, 2013). According to authors’ knowledge, such work has been found in the
literature on survival analysis of pipeline systemstng NPI. The overall contribution from
this work is the application of the theory of coripg risks on energy pipelines historical
failure data. The use of the NPI is calibratedh® $pecifications of energy pipelines survival
analysis and ‘real world’ inferences for a complpigeline lifecycle are derived, based on

historical failure records.

The contents of this study are structured as fdlolihhe methodology for the gathering and
analysis of the rupture incident data from the PHMfatabase is presented in Section 2. The
basics of the NPI for different failure causes discussed in Section 3. The discussion and
results of the developed methodology are present&kction 4. Finally, some concluding

remarks are presented in Section 5 on the basistobmes from this study.

2. PHM SA ruptureincidents from 2002-2014
2.1 Data classification

The PHMSA database is updated on an annual bastheAime of this study, the PHMSA
database for onshore gas transmission pipelindadied the incident data from 1970 to

present and the mileage data from 1970 to 2014rikf, pipeline incident report (DOT-



PHMSA) based on a standard form, which has chaemggificantly in 1984 and 2002. The
present study made use of the incident data frod2 20 the end of 2014. The pre-2002 data
were excluded from the study because the informaiicluded in the data is much less
detailed and in addition to that, the descriptibmany data fields has changed significantly
compared to the post-2002 ones. Therefore, iery difficult to combine the data in these
two periods together for analysis. Furthermore,itlcelent data between 2002 and until 2014
is considered reasonably representative of theewgturstate of onshore gas transmission
pipelines in the US and the up-to-date inspectiod anaintenance techniques and
applications. The history of in-line inspection l®ehows that these were not fully developed
and applied in practice prior to 1980. In additibigh-resolution tools were used after 1990.
This is important information when analysing fadurates, in that the aim is to obtain
consistent results, which will allow for improveniesf current practices and reduction of

incidents.

Lam and Zhou (2016) carried out analyses of the BAMatabase and developed relevant
failure statistics in an effort to derive baselfadure probabilities for carrying out system-
wide risk assessment of pipelines. The causeseofnitident and the failure modes of the
pipeline failure were considered. It should be ddteat the format of the incident data before
2010 is different from that afterwards; therefdiee data from the two periods needed to be
aggregated. The present study employed a similgreggtion methodology. The main and
secondary failure causes, for the periods of 20 2and 2010-2014 are presented in Table
1.

It should be noted that incidents in the PHMSA dase are classified as either pipe-related
or non-pipe related. Pipe-related incidents incltitese occurring on the body of pipe and
pipe seam, whereas non-pipe related incidents declinose occurring on compressors,
valves, meters, hot tap equipment, filters and 8o ©nly pipe-related incidents were
analysed in this study. The failure data used im &port are associated with the onshore (as
opposed to offshore) gas transmission (as oppasgdthering) pipelines, which account for

the vast majority of gas pipelines in the US.

2.2 Assumption and previous research

The PHMSA database covers thousands of miles dfavasgas transmission pipelines and

thus, differences exist in materials, diameterstaittation year and many other attributes. To



take into consideration all these differences agrivd separate inferences for pipelines with
the exact same characteristics would be rather ssipe, since the information in the
database is not as detailed as necessary to mienoes on the entire pipeline network.
The main assumption of the methodology in this wigdhe exchangeability that is inherent
in the NP1 approach and regards a future unit aechumber of units for which failure data

are available.

Kiefner et al. (2001) and Lam and Zhou (2016) ferthighlighted the lack of exhaustive
information in PHMSA database, as they could natieate incident rates considering more
than one pipeline attribute and they suggestedeaWision of the PHMSA reporting format of
the pipeline mileage data. Lam and Zhou (2016) asmmarised some of the major
attributes of the operating onshore gas transnmgsijeeline network for the years 2002-2013
obtained from the PHMSA mileage data. In briefebie the predominant pipe material since
it accounts for over 99% of the total pipeline lgngetween 2002 and 2013. About 97-98%
of the steel pipelines are cathodically protected eoated and 80% of them belong to the so-
called class 1 areas (low-population-density areBegarding diameters, 40-50% of the
network is between 10-28 inches while around 25%viex 28 inches. Finally, it should be
noted that during the design phase the wall thiskr#d a steel gas transmission pipeline in
USA is estimated as a function of the diameterjgmepressure, specified minimum yield
strength (SMYS) and a safety factor depending endhbation class. The wall thickness of a
higher location class pipeline is therefore gre#ttan that of a lower location class pipeline
to afford more protections for the pipeline as wadlits surrounding population (Lam and
Zhou, 2016). However, due to the exchangeabilippprty of the NPl method considered in
this study, all failed pipeline segments are asslinehave the same attributes and all of

them are only examined as ‘onshore gas transmipgi@iine segments’.

Given the reporting criteria associated with PHMiB&ident data and severity of a typical
rupture incident, it can be assumed that mostptfall, of the ruptures were reported to
PHMSA. On the other hand, the real number of leakpunctures that did not meet the
reporting criteria may be significant comparedhe humber of reported leaks and punctures.
Therefore, the rupture rate evaluated using the BAMlatabase is believed to be
representative of the actual rupture rate. Secthredconsequences associated with ruptures
are far more severe than those associated witls laal punctures. This is evident if one
considers that most leaks (about 97%) and puncatesut 90%) did not result in ignition

and that the majority of fatalities and injuriess% and 83%, respectively) were due to



ruptures. Therefore, the rupture incidents are nmohe relevant from the risk perspective
than the leak and puncture rates (Lam and Zhoug)2@nly ruptures (as opposed to leaks,

punctures or others) are considered in the presedy.

3. NPI for competing failure causes

Competing risks theory constitutes a credible waylataining ‘real world’ probabilities,
where a pipe segment is not only at risk of rupiiirom a specific failure cause but also
from any other causes of rupture (Hinchliffe andnbert, 2013). Competing risks theory
allows for breaking down probabilities of failure provide operators a clearer indication of
the risks that they face with each decision thay tlnake. This decision-making can be about
which maintenance plan to assign to a pipeline, towptimally allocate resources and for
understanding the longer-term outcomes of failuesmanisms. In this section, an overview

of nonparametric predictive inference (NPI) for quating risks is provided.

3.1 General

Nonparametric predictive inference (NPI) is a statal method based on Hill's assumption
Ay, Which can be interpreted as a post-data assumptlated to exchangeability (Coolen
et al., 2002; Maturi et al., 2010). Inferences base A, are predictive and nonparametric
and are appropriate if there is no additional infation to the data or one does not want to
use such information, for example, to study effemttsadditional assumptions underlying
other statistical methods. Such inferences aretlgxaalibrated by Lawless and Fredette
(2005), which strongly justifies their use fromdteentist statistical perspectiv, does not
provide precise probabilities for many events déiiest, but bounds for probabilities with
strong consistency properties in the theory of rite probability (Walley, 1991;
Weichselberger, 2000).

According to Hill (1988) A, can be considered to constitute the fundamentaliso to the
problem of induction. LetX,...,X, X,+1 be continuous and exchangeable random
guantities. The valuek,, ..., X,, are assumed to be observed and the correspondiegedr
values are denoted by < x; <...< X, < 0 (Xg = <0 andXx,+1=). It is assumed that no ties

occur among the observed values and if they ds,assumed that tied observations differ by



trivial amounts (Maturi et al., 2010). F&_,, which represents a future observable random

quantity conditional om observations th&,, is (Hill, 1988)

1,
P(Xps1 € (Xj—1,x)) = —,i=1,..,n+1 (1)

n+1

Coolen and Yan (2004) generaliségd, called ‘right-censoringl ) ' or rc- A, to take into

account the effect of right-censoring for data @en¢ times that it is only known that the
event has not yet taken place at a specific tinhe. fE-A,, uses the additional assumption
that the residual lifetime of a right-censored usiexchangeable with the residual lifetimes
of all other units that have not yet failed or bexmmsored, at the time of censoring. The
assumption ‘right-censoring,,y’ or rc- Ay, partially specifies the NPI-based probability
distribution for a nonnegative random quantit..;, based onu event times,

x; < x, < -+ < x_u, andv right censoring times;; < ¢, < - < c_v, is partially specified

by the following M-functionsi(=0, ...,u; k=1, ... l;; with X = 0 andxy+1 = o)
1 fle,+1
MXn.,_l(xi' xi+1) = ntl H{r:cr <xi} i (2)
- 1 fiep+1
Moo CloXiv1) = sa™ Mg <cly =5 (3)
Cr r

wherel; is the number of censored observations in thevat€l;, x;, ;) andc,ic refers to the
kth censored observation in interv@al, x;,,). The product terms are defined as one, if the

product is taken over an empty set.

This implicitly assumes non-informative censorirgp a post-data assumption related to
exchangeability, at any tinte of all items known to be at risk &tlf there are no censorings
then rc-A., is identical ta4,,, (Coolen et al., 2002; Coolen and Yan 2004; Magtral.,

2010). The termfi, andﬁclic describe the number of units in the risk set pieaimec, and

c,‘; respectively. The definitiofi, = n + 1 is used throughout this paper. Summing upall
function values assigned to intervals of this fowhjch have positivé/-function values, and
this sum up to one over all these intervals hatireggsamex.; as right endpoint, gives the

probability as follows

1

P(Xn41 € (x5, Xi41)) = 1

fie, +1

H{r:cr <Xit1} (4)

i,

wherex;, x;,, are two sequential failure times.



3.2 NPI probabilities for competing risks

This study examines the situation where a numbek distinct failure causes (competing
risks) can make a unit or segment to fail. The im#ssumed to be failing due to the first
occurrence of a failure cause and then withdrawmffurther use and observation. It is
assumed that such failure observations are obtdmed units and that the failure cause
leading to a failure is known with certainty. Fa@ch unit,k random quantities are considered
andT;is then defined foy = 1, ..., k whereT, represents the unit’'s time to failure under the
condition that failure occurs due to failure causgenheserl; are considered to be independent
continuous random quantities, which in other wordeans that the failure causes are
assumed to occur independently, and the failure tifthe unit is the minimum of the As
mentioned beforelj is assumed to be unique and known with certaintyeézh unit and for
theT; corresponding to the other failure causes, whidmdt cause the failure of the unit, the
unit's observed failure time is a right-censoringe. The competing risk data per failure
cause consists of a number of observed failurestifoethe specific failure cause considered
and right-censoring times for failures caused theofailure causes. Consequently, Ags,
can be applied per failure cayséor inference on a future unf, n+1 (WhereX,+1 corresponds

to an observatiofi for unitn+1 andX; .1 to Tj, as defined above).

The NPI lower and upper probabilities, for the evéiat a single future unit+1 fails due to
a specific failure caude for eachl=1, ...,k and assuming that the future unit undergoes the

same process as theunits, is as follows.

B(l) =P (Xl,n+1 = minqcj<k Xjnt1 )=P (Xl,n+1 < minl%islk Xjn+1 )
j

(5)

=0 = . = .
PY =P (s = Minigjae Kinn) = P (Xiner < minizsoe X
J

(6)

Derivations and definitions of the above equatiaresgiven in the appendix.

3.3 Survival functions for competing risks



The survival function, which is also known as thaiability function, represents the

probability for a unit of surviving past a certaimtoment of time. As mentioned before, this
method does not produce precise probabilities dus fprecise values for the survival
function, but the aim is to derive maximum and mmam upper bounds, which are consistent

with the probability assessment accordingi{g. The formulae for these NPI lower and

upper survival function§y . (t) and§Xn+1(t) are considered useful and applicable in many
ways in reliability and survival analysis (Coolenat., 2002). These NPI lower and upper
survival functions were first introduced by Coolenal. (2002), but Maturi et al. (2010)
introduced the simple closed-form formulae for thesurvival functionsSy . () and
Sx,,,(t) as presented in Eqs. 7 and 8. Assumingtthaf=t&*! = x;,, fori =0,1,..,u —

1. The NPI lower survival function can be expresssdfollows, fort € [tl, téﬂ) with

i=01,..,uanda =0,1,...,s;

1
§X”+1 (t) (n+ 1) H{r Cr <ta} i (7)

Cr

and the corresponding NP1 upper survival functiartfe [x;, x;.,) withi = 0,1, ...,u

ncr+1

§Xn+1 (t) = H{r cr <xi} (8)

1 ~
—f
(n+1) %i

For further discussion of the above formulae realezferred to Maturi et al. (2010).

4. Numerical example
4.1 General

The purpose of this example is to apply the NPldmmpeting risks in the aforementioned
PHMSA dataset and then derive lower and upper jmibties as well as survival functions
for different failure causes (competing risks) forfuture onshore gas transmission pipe
segment that fails due to rupture. Only rupturgepiare of interest in this study. Given that
only a tiny fraction of the overall number of piptsl in the entire US gas transmission
pipeline system, applying the competing risks thieon the entire network would be
unfruitful, since the impact of incidents is triviand the same results are produced, either
realistic competing risks probabilities or net pablities. A net survival probability is for
instance one that describes the probability of iging from external corrosion in the

hypothetical world where a pipeline cannot ruptiioen any other causes. Relative survival



and cause-specific survival attempt to estimatg tmder specific assumptions. The reader is
referred to Pesinis and Tee (2017) for such anyaisathat takes into account the entire US
gas transmission pipeline network. The focus tisusn analysing the rupture incidents, so
that realistic marginal expectations of the cotretes among failure causes are derived and
the cumulative rupture function of pipe segmenttugs is described in an accurate and

complete way.

The main assumption of the methodology is thaffilre pipe segment undergoes the same
process and conditions as the pipeline componkat$ive reportedly failed thus far. Taking
into consideration that only a very specific catygef pipelines, i.e. onshore gas
transmission, is examined it is quite reasonablassume that similar behaviour is expected
from this type of pipelines. Besides, as describeSection 2, there are certain attributes that
are common for the majority of onshore gas transimispipelines that operated from 2002-
2014 (class location 1, carbon steel material afistoiction and cathodic and coating
protection). The future pipe segment that is exachiagainst rupture is assumed to be a
typical 12m long newly-built pipeline segment. Rbe sake of exchangeability, which is
inherent in the NPI approach, each one of the &p@rted ruptures is assumed to originate
from one or a number of defects confined to the J#pe segment, irrespective of the
propagation length once the pipe segment has eghturhe rupture lengths reported by
pipeline operators in the database were found tooieaverage around 10m, which

corroborates this assumption.

Next, from the different types of failure that stdram different (thus competing) failure
causes, only rupture is examined. In the perio®28ML4, 189 pipe-related rupture incidents
were found in the database. The time to failuref imterest in the methodology of this study
and as a result the installation dates of the mipelthat failed due to rupture were listed.
However, 10 rupture incidents concerned pipelinesvbich the installation dates were
unknown (were not reported when submitted to PHMSAese 10 rupture incidents were
not taken into consideration, without significantlysturbing the approach to reality. In
Tables 2 and 3, the breakdowns of the numbers arwptages of the different failure causes
for the 189 and the 179 rupture cases are preselitedn be observed that ignoring the
incidents with unknown installation dates (and thinse to failure) does not significantly
impact the representation of the rupture frequendiee to different failure causes. The time
to failure is estimated by subtracting the yeamnstallation from the year of failure for each

rupture incident.



4.2 Results and Discussion

The NPI for competing risks method assumes thaethee no ties among the data to avoid
notational difficulties (Maturi et al., 2010). Howar, among the 179 rupture incidents there
are many tied observations. The time to failuredach one of them was initially expressed
in years. To deal with ties though, the years veereverted in weeks (1 year was assumed to
equal 52 weeks) and then a trivial difference ot omeek was assumed among tied
observations. This difference is considered touftcgently low, in that it does not affect the
ordering of observations of units in other (failwause) groups. Ties among different groups
were also found a lot in the current example amy there treated differently for upper and
lower bounds. They were dealt with in such a wagt the upper and lower probabilities
became maximal and minimal respectively, over thesiple ways of breaking such ties

without affecting the ordering of the rest of tHeservations (Maturi, 2010).

A failure time observation caused by one failuraseais at the same time a right-censored
observation for all other failure causes. When lageovation is considered right-censored for
two or more failure causes, then this is also dedt by assuming that the right censoring
observations occurred fractionally later for onetleé failure causes compared to the other.
Again, different possible orderings of the un-tigght-censoring times are considered that
aim to maximise and minimise the upper and lowemiis respectively (Maturi, 2010). Next,

Egs. 5 and @re used to obtain the NPI upper and lower proibigsiland compare different

failure causes with respect to rupture of the ®ifipeline component.

The NPI upper and lower probabilities for the evélmat unit 180 (a future pipeline

component) will rupture due to external corrosi&C) or due to other failure modes (OFC)
are [0.38, 0.34] and [0.66, 0.62], respectively.the above, OFC refers to all the failure
causes except EC. These are all grouped togethmrergroup named OFC and are jointly
considered as a single failure cause and then aachpeath EC. OFC grouping is done in a

similar way in the following, for different casesagnined.

The NPI upper and lower probabilities for the evélmat unit 180 (a future pipeline
component) will rupture due to material failure M3 due to other failure causes (OFC) are
[0.21, 0.18] and [0.82, 0.79], respectively.



The NPI upper and lower probabilities for the evélmat unit 180 (a future pipeline
component) will rupture due to external damage (BDYylue to other failure causes (OFC)
are [0.18, 0.15] and [0.85, 0.82], respectively.

It is observed that for every one of the abovedlpairs of failure causes (EC and OFC, MF
and OFC and ED and OFC) examined, the lower anceruppobabilities satisfy the
conjugacy property (Coolen, 1996). This is duehi flact that, implicit in this method is the
assumption that the future segment eventually reptuand this is assumed to happen with
certainty. When comparing one failure cause groith another group (or more than one
groups as shown next) the resulting NPI upper amail probabilities can provide either a
weak or a strong indication about the future urfdidure (Maturi et al. 2010). For example,
the NPI lower and upper probabilities presentedvabmntain a strong indication that the
future segment will rupture due to ‘other failurauses’ with all the other failure causes
grouped together, instead of the EC, MF and EDuffailcauses individually. This can be
claimed as the upper probability for the event thiait 180 will rupture due to external
corrosion (EC) is less than the lower probabildy that event due to other failure cause, that
is 0.34< 0.66. Similar argument can be applied fodvid ED.

Next, a different grouping of the same time toueal data is illustrated. In specific, groups
with three failure causes are considered each éintkinferences in the form of weak and
strong indications are derived in a similar sersse/laen two groups are considered. Below, 3
main cases are considered, and the methodologgmiessin Section 3.2 is used to calculate

the corresponding upper and lower probabilities.
Case A: considering EC, MF and OFC

The NPI upper and lower probabilities for the evidatt unit 180 will rupture due to EC, due
to MF or due to OFC are [0.38, 0.33], [0.21, 0.5rid [0.48, 0.44] respectively. The fact that
the upper probability for the event that unit 180 wpture due to MF is less than the lower
probability for the event that unit 180 will ruptudue to EC, that is 0.21<0.33, provides a
strong indication that EC is more likely to causeupture to the future segment than MF,

with all other failure causes grouped into OFC.

Case B: considering EC, ED and OFC



The NPI upper and lower probabilities for the evidatt unit 180 will rupture due to EC, due
to excavation damage (ED) or due to OFC are [00383], [0.18, 0.14] and [0.51, 0.47],

respectively.

Case C: considering MF, ED and OFC

The NPI upper and lower probabilities for the evidiatt unit 180 will rupture due to MF, due
to ED or due to OFC are [0.21, 0.17], [0.18, 0.44dl [0.68, 0.63], respectively.

In the same sense, these NPI lower and upper phoiealcan also provide weak indications
for the event that the future segment rupturestdwespecific failure cause. For example, the
event that future segment will rupture due to ER kst less likely compared to failing due to
MF, with all the other failure causes grouped tbhget(OFC). This is because the upper
(lower) probability for the event that unit 180 wilipture due to ED is less than the upper
(lower) probability for the event that unit 180 Wlipture due to MF, that is 0.18<0.21
(0.14<0.17). However, the upper probability for #neent that unit 180 will rupture due to
ED is greater than the lower probability for thesetvthat unit 180 will rupture due to MF,
that is 0.18> 0.17, meaning that there is not@ngtindication for this event.

It should be noted that, for all the cases illustlaabove there is a strong indication that the
future segment will rupture due to ‘another failwa@use’, instead of the EC, MF and ED
failure causes, similarly to the result obtainecewlonly two groups of failure causes were
considered. All the above results are considerdzetm line with the basic underlying theory
of statistics using imprecise probabilities. Thwben three separate groups of failure causes
are considered instead of two, which means that datepresented in more detail, the upper
and lower probabilities entail more imprecision.r FHoastance, the upper and lower
probabilities of rupture due to EC is [0.34, 0.38] two groups and [0.33, 038] for three
groups. According to Maturi et al. (2010), this denthought to be in line with a fundamental
principle of NP1 in the context of multinomial data

Another inference that can be derived from the abapper and lower probabilities is that
relatively early failures compared to later ones, ribt impact the final result. While for
example, ED and MF have more early failures than tB& does not affect the final result
which is something expected since the data are ebngprisks data on the same segments



and not completely independent failure times peugr However, this method is considered
to enable inferences with regard to actual failimee, as opposed to other basic statistical
methods that measure only the frequency of failur@sally, it can be observed that the
upper probability for the event that the futureraegt will rupture due to EC or MF or ED is
the same no matter if two or three groups are densd. The reason for this is discussed in
more detail in Coolen et al. (2002) and Maturile2010). In this example, when it comes to
EC for instance, the upper probability is realigeth the extreme assignments of probability
masses in the intervals created by the data inrdanoe to the lower survival function for EC
and the upper survival function for the other faglicauses. Since, all failure causes are
assumed independent, the upper survival functiorntife other failure causes is the same

regardless of the number of separate groups caoeside

There is no reference time period being considdoedthe estimated upper and lower
probabilities presented so far. For insight intoewlhe failure may occur, one just uses the
upper and lower survival functions presented ne@kigre one can look at these for a specific
failure cause and for all combined causes. Theiglnfunction directly relates to the
probability of failure of a future pipe segment,thaut including any knowledge about
underlying distributions and by using only the oled data (Coolen-Schrijner and Coolen,
2004; Barone and Frangopol, 2014). The survivattions illustrated in Fig. 1 result from
totally neglecting the information on differentltaie causes and also from the situations with
two and three groups of failure causes respectivEhe lower survival functionSZ5®
corresponds to the situation with two groups ofufai causes illustrated above and is
assessed by multiplying the conditional, on thded#nt failure causes, lower survival
functions. The lower survival functiaSt$E is derived in the respective way for three groups
of failure causes. As indicated in Maturi et al01Q), these lower and upper survival
functions present the expected nested structumar@diag to the level of detail of the data
representation, on the same basis discussed atwolever and upper probabilities.

Then, in Fig. 2 the NPI lower and upper survivakditions corresponding to two separate
failure causes (EC and MF) are presented. For ebeartiye lower survival functioS5s, is
obtained by considering the 64 ruptures caused®wpgactual failure time observations and
the other 115 observations in the data set as-cgiored data. The same procedure was
employed for MF in this figure (Fig. 2) and for trest of the failure causes considered in this
study in Fig. 3 and Fig. 4. The inferences that banderived from these figures, can be

relevant to the nature and magnitude of rupturesex by each failure cause. For instance,



the fact that EC does not cause a lot of earlyfed compared to MF, IC, ED, OTHER, EM
is illustrated in the figures. Also, it can be et that the fewer the total failures due to any
failure cause, the higher the imprecision (diffeeibetween corresponding upper and lower
survival functions) at larger service lifetimesn&lly, the fact that in all figures, the lower
survival function is always equal to zero beyond targest observation, while the upper
survival function remains positive is somethingardnt in the NPl approach as discussed in
Coolen and Yan (2004) and Maturi et al. (2010). Boevival functions can be used to
examine and implement optimal maintenance stradedidaintenance strategies can be
presented in the form of upper and lower boundsoon a robust inference point of view one

could use only the lower survival function.

5. Conclusion

This study employs the established NPI approaarder to derive inductive inferences from
the 179 reported ruptures of a set of onshore gassmission pipelines reported in the
PHMSA database, for the period 2002-2014. The NRbkes statistical inference on future
observations based on past observations, whenrflasmation is available and also when
failure, which is rupture in the context of thisidy, is caused by several competing risks.
This approach is applied in a dataset from the PAMStabase, regarding rupture incidents
of onshore gas transmission pipelines for the pe2@02-2014. The NPl method attempts to
analyse the rupture incidents reported in PHMSé&mfia non-repairable systems perspective,
based on the time to failure of the ruptured pipgnsents. The analysis shows that NPI is a
useful technique to derive inferences for a futpige segment that will rupture due to a
specific failure cause, by providing imprecise @bitities and survival functions for this
event based on historical failure data. The resaltsong others, indicate external corrosion
as the predominant rupture cause for the aforeweedi period under consideration in the
USA, with ruptures taking place mainly after 30 nged he predicted imprecise probabilities
and survival functions, can be used to examinei@ptement optimal maintenance strategies

based on relative risk prioritization.
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Appendix: NPI probabilities for competing risks

It is assumed that the number of failures causethityre causg is u;, x;; < xj, < - <
Xju; andv; = (n —w;) is the number of the right-censored observatioits ¢/, < ¢;, <

< Gy corresponding to failure caugelt is further assumed that there are, right-

: . . i i i
censored observations in the inter¢a};,, x;; +1) denoted bycj’1<cj’2<...<c].§__ , SO that
y ’ 4 ],lj

Z?.j—osj,ij = v;. The random quantity representing the failure tohéhe next unit, with alk
i=
min X,

failure causes considered, X%,,; = 1<jsk Xjm+1- It should be noted it is assumed that

Xjo=0 andxj,uj+1 = oo for notational convenience (Maturi et al., 2010).

The NPIM-functions forX; ,,, (G = 1,...,k), are

i ~ ’ 1, §1-1 fig; 41
M (tj’i;;xj,i]-+1) =My, (tj,i;,x]',i,-+1)—m(nti.j' ) - (AY

wherej; = 0,1, ...,u;,i; = 0,1,..,s;;, and

.

Y

y {1ifi]7‘=0

= . e
0if i = 1, s Sji

T i i . . . L .
i.e 1:].’0 = Xjj; and tj’l.* = Cj]i* for failure time or time 0 and for censoring timespectively.
’ ;]‘ ) ]

The numbers of units in the risk set just prior times ¢, and tjl’;*, are i, and
)

ﬁti'j'* respectively. The corresponding NPI probabilities a
]'lj

Jr A
H{r:c]-,r<leij+1} fic ( 2

P] (x],l], x]',ij+1) = P (Xj,nj+1 E (x],l]) x],l]-l'l)) = (TL+1)

Jr

Wherexj,ij and Xji;,, are two consecutive observed failure times trigddyy failure causg

The notation for the NPI lower and upper probabdit for the event that a single future unit
n+1 fails due to a specific failure causéor eachH=1, ...,k and assuming that the future unit

undergoes the same process asithmits, is as follows.

B(l) =P (Xin+1 = Minygjp Xjny1 ) = P (Xl,n+1 < minl%islk Xjn+1 )
j

(A3)



=0 = . = .
PY =P (iner = Minigjer Kinn) = P (Xiner < minizsse X
J

(A4)

These NPI lower and upper probabilities for thengtlat the next unit will fail due to failure

causd are

s
X H‘Il?zl M] (t],]l;' xj,ij+1) (A5)

= u S L Y
PO=Yc,j,507) [Zilzo 1041 <min {tj,i;})P (X1 Xrig+1)
jl

Jj=l

k j
min X [Tz P (%1 Xj,1;+1)
jl Jj#l

—() Sii i . i
P =ch(j,ij) |:le=0 Zi{=l0 l(tll,ll‘{ < min {x]',l'j+1})Ml(tll'li{r xl,il+1)
(A6)

where).. ;. i~ denotes the sums over all from 0 to s;;. and over ali; from O tou; for
Cl(]'l]'l]) ] Jilj ] ]

J=1,...,kbut not including=l. Similarly,ZCl(j,ij) denotes the sums over glifrom 0 tow; for

j=1,...,kbut not including=I. For detailed derivations and definitions of thewe equations

the reader is referred to Maturi et al. (2010).



Table 1. Mapping of thefailure causesfor the period 2002-2014.

Failure causes

Routine or normal fishing or other
maritime activity not engaged in
excavation

Electrical arcing from other
equipment or facility

Other outside force damage

Malfunction of
control/relief equipment

Malfunction of control/relief
equipment

Threads stripped,

broken pipe coupling

Threaded connection/coupling failure

2002-2009 2010-2014 adopted in this
study
Internal
'5 Internal corrosion _5 Internal corrosion corrosion
()
B B External
O | External corrosion &) External corrosion corrosion
(EC)
Body of pipe
Component
8 Joint
[} Butt
2 Fillet
G Pipe seam Material failure
T Construction-, installation-, or (MF)
o fabrication-related
‘25 Original manufacturing-related(not
girth weld or other welds formed in
the field)
Environmental cracking-related
S Third party excavation damage Excavation damage by third party
= S | Excavation damage by operator (first Excavation
= Operator excavation damage party) Damage
> (includes contractors) = Excavation damage by operator’s (ED)
. 2 contractor (second party)
L Previous damage due to excavation .
, o Previously
Rupture of previously activity d .
; . . amaged pipe
damaged pipe Previous mechanical damage not
i (PDP)
related to excavation
Car, truck or other Damage by car, truck, or other
vehicle not related to motorized vehicle/equipment not
0 excavation activity engaged in excavation
g Fire/explosion as ¢ | Nearby industrial, man-made, or other
5 primary cause of g fire/explosion as primary cause of
o failure = incident
2 Vandalism ) Intentional damage
© % Damage by boats, barges, drilling rigs,
2 © or other maritime equipment or
5 2 vessels set adrift or which have
e otherwise lost their mooring Other (O)




Ruptured or leaking
seal/pump packing

Equipment and operations

Compressor or compressor-relate
equipment

Non-threaded connection failure

Defective or loose tubing or fitting

Equipment failure

Failure of equipment body (except
compressor), vessel plate, or othe
material

=

Other equipment failure

Incorrect operation

Incorrect operation

Damage by operator or operator’s
contractor not related to excavatiof
and not due to motorized
vehicle/equipment damage

Underground gas storage, pressuf
vessel, or cavern allowed or caused
overpressure

Valve left or placed in wrong positiof
but not resulting in an overpressursg

Pipeline or equipment over pressuré

Equipment not installed properly

Wrong equipment specified or
installed

Other incorrect operation

Other

Miscellaneous

Miscellaneous

Unknown

Unknown

Natural forces

Heavy rains/floods

Heavy rains/floods

Temperature

Temperature

High winds

High winds

Lightning

Lightning

Other natural force damage

Earth movement

Earth movement

Earth movemen

(EM)

[




Table 2. 179 Rupturefailure data with known installation dates

Failure Number Percentage

cause %
IC 19 11
EC 64 36
ED 27 15
PDP 9 5
MF 33 18
EM 10 5
O 17 10

Table 3. 189 Rupturefailure data with both known and unknown installation dates

Failure Number Percentage

cause %
IC 19 10
EC 64 34
ED 31 16
PDP 10 5
MF 35 19
EM 10 5

O] 20 11




Fig 1. NPI lower and upper survival functionsfor afuture pipeline segment with t in weeks.
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Fig 2. NPI conditional (EC, MF) lower and upper survival functions for a future pipeline
segment with t in weeks.
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Fig 3. NPI conditional (IC, ED, OTHER) lower and upper survival functions for a future
pipeline segment with t in weeks.

< _
o _|
_Iq_"i_l—‘l
S g P I
3 LT
S L
= -
s 2
= = ~
8 = ! '
ol s — sy
= ED <ED
- - = §180 8180
- ——- S == ST
=
[ | [ | [ |
0 1000 2000 3000 4000 5000

Fig 4. NPI conditional (PDP, EM) lower and upper survival functions for a future pipeline
segment with t in weeks.
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Highlights

NPI method attempts to analyse the rupture incidents reported in PHM SA
NPI enables statistical inference when few information is available
NPI derivesinference when failure is caused by several competing risks

The surviva functions are used to examine optimal maintenance strategies



