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Abstract 

Risk analysis based on historical failure data can form an integral part of the integrity 
management of oil and gas pipelines. The scarcity and lack of consistency in the information 
provided by major incident databases leads to non-specific results of the risk status of pipes 
under consideration. In order to evaluate pipeline failure rates, the rate of occurrence of 
failures is commonly adopted. This study aims to derive inductive inferences from the 179 
reported ruptures of a set of onshore gas transmission pipelines, reported in the PHMSA 
database for the period from 2002-2014. Failure causes are grouped in an integrated manner 
and the impact of each group in the probability of rupture is examined. Towards this, 
nonparametric predictive inference (NPI) is employed for competing risks survival analysis. 
This method provides interval probabilities, also known as imprecise reliability, in that 
probabilities and survival functions are quantified via upper and lower bounds. The focus is 
on a future pipe component (segment) that ruptures due to a specific failure cause among a 
range of competing risks. The results can be used to examine and implement optimal 
maintenance strategies based on relative risk prioritization. 

Keywords: gas pipelines, historical failure data, nonparametric predictive inference, 
competing risks, rupture. 
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1. Introduction 

Pipelines are the safest and most economic means of transporting crude oil and gas, either 

onshore or offshore. However, similarly to other engineering systems, pipe failure is 

considered an integral part of their operating lifetime (Fang et al, 2014; Khemis et al, 2016; 

Zhang et al, 2016; Benammar and Tee, 2019). More than half of the operating energy 

pipelines globally have been in place for more than 45 years (Kiefner and Rosenfeld, 2012). 

A sudden breakdown can lead to loss of productivity or severe accident with large 

environmental, economic and social implications (Frangopol and Soliman, 2016; Khan and 

Tee, 2015). As a result, comprehensive maintenance and rehabilitation plans should be at 

hand, as part of a structured integrity management program (Kishawy and Gabbar, 2010; Tee 

et al, 2018; Zhang and Tee, 2019). According to statistical analysis and incident data from 

literature, external corrosion has been identified as the most predominant gradual 

deterioration process (EGIG, 2015; CONCAWE, 2015; UKOPA, 2014; AER, 2013). 

However, other factors such as third-party activity, material or construction imperfections, 

geotechnical hazards, incorrect operation, inadequate design and many others can lead to 

ultimate failure modes like leaks and ruptures (Caleyo et al. 2008).  

The implementation of probabilistic risk models and subsequent mitigation strategies can be 

considerably assisted by pipeline incident and mileage data available at different databases 

from around the world (Pesinis and Tee, 2018). One of the most distinguished is the Pipeline 

and Hazardous Material Safety Administration (PHMSA) within the United States 

Department of Transportation (DOT), which collects information on incidents that occurred 

on gas and liquid pipelines. Golub et al. (1996) analysed the PHMSA incident data on gas 

transmission pipelines between 1970 and 1993 and later on Kiefner et al. (2001) also 

analysed the incidents on gas transmission and gathering pipelines from 1985 to 1997 as 

reported in the PHMSA database. Similar analyses have been conducted in the past from data 

derived from other relevant databases as the United Kingdom Onshore Pipeline Operators’ 

Association (UKOPA) or the European Gas pipeline Incident data Group (EGIG) (UKOPA, 

2014; EGIG, 2015; CONCAWE, 2015). Lam and Zhou (2016) analysed the PHMSA 

database in an effort to derive inferences about the condition of gas transmission pipelines in 

the US and to develop relevant failure frequencies for assessing the risk of onshore gas 

transmission pipelines.  
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1.1 Statistical analysis on pipelines 

When it comes to statistical analyses of failures, pipelines are examined as repairable systems 

in literature. This means that upon failure, the system is restored to operation by repairing or 

even replacing some parts of the system, instead of replacing the entire system. In addition, 

the failure rate that previous studies estimate refers to a sequence of failure times within a 

time interval as opposed to a single time to failure distribution. In this study, the times to 

failure of gas transmission pipelines that ruptured are grouped and a non-repairable systems 

approach is implemented. It is assumed that ruptured pipes are non-repairable components 

(segments) functioning within a repairable system, which is the entire pipeline network. This 

is thought to be a reasonable assumption since a pipe component upon rupture is discarded 

and replaced by a new one. The lifetime of the component is a random variable described by 

a single time to failure (Athmani et al, 2019; Ebenuwa and Tee, 2019). For a group of 

identical segments, the lifetimes can be assumed to be independent and identically 

distributed. The lifetimes of ruptured segments can be sorted by magnitude and their order of 

occurrence in time can be neglected (Harold et al., 1984; Leemis, 1995). Then, their 

reliability against rupture, for a range of possible and competing failure causes, can be 

investigated.  

Towards this, a statistical approach called nonparametric predictive inference (NPI) which 

can deal with competing risks is proposed (Coolen et al., 2002; Maturi et al., 2010). This 

method can provide insights into the reliability of the pipelines under consideration when few 

information is available and also when several failure causes exist. NPI enables statistical 

inference on future observations based on past observations and assuming that failure causes 

are independent. The method is based on Hill’s assumption (Hill 1988; 1993) which gives a 

direct conditional probability for a future observable random quantity, and conditioned on 

observed values of related random quantities. The method provides interval probabilities, 

which is also referred in literature as imprecise probabilities. In other words, this means that 

uncertainty is quantified via lower and upper probabilities. Thus, survival functions are also 

estimated in bounds along with any potential application of maintenance strategies.  

 

1.2 Aim and application 

The aim of the study is to apply the competing risks theory by means of the NPI on the 

dataset of rupture incidents, in order to obtain realistic probabilities of rupture broken down 
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by specific causes. This kind of information is considered vital for fully understanding of 

risks and their time-dependent implications. It is illustrated how the NPI method can be 

applied in the above-described PHMSA database in order to derive an evaluation of the 

survival function of onshore gas transmission pipelines against rupture failures. The applied 

method regards only a population of ruptured components and not the entire pipeline 

network. As a result, inferences concern a future segment that will rupture due to a specific 

failure cause and lower and upper probabilities for this event are obtained. The survival 

functions obtained represent the complementary probability of rupture for this future segment 

at a given time instant.  

Competing risks arise when a failure can result from one of several causes and one cause 

precludes the others. As a result, the occurrence of one failure affects the probability of 

failure of another and should be taken into account in reliability studies. This theory has been 

applied before in certain fields like medical science, with applications in reliability, public 

health and demography among others (Lau et al., 2009; Andersen et al., 2012; Hinchliffe and 

Lambert, 2013). According to authors’ knowledge, no such work has been found in the 

literature on survival analysis of pipeline systems using NPI. The overall contribution from 

this work is the application of the theory of competing risks on energy pipelines historical 

failure data. The use of the NPI is calibrated to the specifications of energy pipelines survival 

analysis and ‘real world’ inferences for a complete pipeline lifecycle are derived, based on 

historical failure records.  

The contents of this study are structured as follows. The methodology for the gathering and 

analysis of the rupture incident data from the PHMSA database is presented in Section 2. The 

basics of the NPI for different failure causes are discussed in Section 3. The discussion and 

results of the developed methodology are presented in Section 4. Finally, some concluding 

remarks are presented in Section 5 on the basis of outcomes from this study. 

 

2. PHMSA rupture incidents from 2002-2014 

2.1 Data classification 

The PHMSA database is updated on an annual basis. At the time of this study, the PHMSA 

database for onshore gas transmission pipelines included the incident data from 1970 to 

present and the mileage data from 1970 to 2014. In brief, pipeline incident report (DOT-
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PHMSA) based on a standard form, which has changed significantly in 1984 and 2002.  The 

present study made use of the incident data from 2002 to the end of 2014. The pre-2002 data 

were excluded from the study because the information included in the data is much less 

detailed and in addition to that, the description of many data fields has changed significantly 

compared to the post-2002 ones.  Therefore, it is very difficult to combine the data in these 

two periods together for analysis. Furthermore, the incident data between 2002 and until 2014 

is considered reasonably representative of the current state of onshore gas transmission 

pipelines in the US and the up-to-date inspection and maintenance techniques and 

applications. The history of in-line inspection tools shows that these were not fully developed 

and applied in practice prior to 1980. In addition, high-resolution tools were used after 1990. 

This is important information when analysing failure rates, in that the aim is to obtain 

consistent results, which will allow for improvement of current practices and reduction of 

incidents. 

Lam and Zhou (2016) carried out analyses of the PHMSA database and developed relevant 

failure statistics in an effort to derive baseline failure probabilities for carrying out system-

wide risk assessment of pipelines. The causes of the incident and the failure modes of the 

pipeline failure were considered. It should be noted that the format of the incident data before 

2010 is different from that afterwards; therefore, the data from the two periods needed to be 

aggregated. The present study employed a similar aggregation methodology. The main and 

secondary failure causes, for the periods of 2002-2009 and 2010-2014 are presented in Table 

1. 

It should be noted that incidents in the PHMSA database are classified as either pipe-related 

or non-pipe related. Pipe-related incidents include those occurring on the body of pipe and 

pipe seam, whereas non-pipe related incidents include those occurring on compressors, 

valves, meters, hot tap equipment, filters and so on. Only pipe-related incidents were 

analysed in this study. The failure data used in this report are associated with the onshore (as 

opposed to offshore) gas transmission (as opposed to gathering) pipelines, which account for 

the vast majority of gas pipelines in the US.  

 

2.2 Assumption and previous research 

The PHMSA database covers thousands of miles of onshore gas transmission pipelines and 

thus, differences exist in materials, diameters, installation year and many other attributes. To 
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take into consideration all these differences and derive separate inferences for pipelines with 

the exact same characteristics would be rather impossible, since the information in the 

database is not as detailed as necessary to make inferences on the entire pipeline network. 

The main assumption of the methodology in this study is the exchangeability that is inherent 

in the NPI approach and regards a future unit and the number of units for which failure data 

are available.   

Kiefner et al. (2001) and Lam and Zhou (2016) further highlighted the lack of exhaustive 

information in PHMSA database, as they could not evaluate incident rates considering more 

than one pipeline attribute and they suggested the revision of the PHMSA reporting format of 

the pipeline mileage data. Lam and Zhou (2016) also summarised some of the major 

attributes of the operating onshore gas transmission pipeline network for the years 2002-2013 

obtained from the PHMSA mileage data. In brief, steel is the predominant pipe material since 

it accounts for over 99% of the total pipeline length between 2002 and 2013.  About 97-98% 

of the steel pipelines are cathodically protected and coated and 80% of them belong to the so-

called class 1 areas (low-population-density areas). Regarding diameters, 40-50% of the 

network is between 10-28 inches while around 25% is over 28 inches. Finally, it should be 

noted that during the design phase the wall thickness of a steel gas transmission pipeline in 

USA is estimated as a function of the diameter, design pressure, specified minimum yield 

strength (SMYS) and a safety factor depending on the location class. The wall thickness of a 

higher location class pipeline is therefore greater than that of a lower location class pipeline 

to afford more protections for the pipeline as well as its surrounding population (Lam and 

Zhou, 2016). However, due to the exchangeability property of the NPI method considered in 

this study, all failed pipeline segments are assumed to have the same attributes and all of 

them are only examined as ‘onshore gas transmission pipeline segments’. 

Given the reporting criteria associated with PHMSA incident data and severity of a typical 

rupture incident, it can be assumed that most, if not all, of the ruptures were reported to 

PHMSA. On the other hand, the real number of leaks or punctures that did not meet the 

reporting criteria may be significant compared to the number of reported leaks and punctures. 

Therefore, the rupture rate evaluated using the PHMSA database is believed to be 

representative of the actual rupture rate. Second, the consequences associated with ruptures 

are far more severe than those associated with leaks and punctures. This is evident if one 

considers that most leaks (about 97%) and punctures (about 90%) did not result in ignition 

and that the majority of fatalities and injuries (75% and 83%, respectively) were due to 
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ruptures. Therefore, the rupture incidents are much more relevant from the risk perspective 

than the leak and puncture rates (Lam and Zhou, 2016). Only ruptures (as opposed to leaks, 

punctures or others) are considered in the present study.  

 

3. NPI for competing failure causes 

Competing risks theory constitutes a credible way of obtaining ‘real world’ probabilities, 

where a pipe segment is not only at risk of rupturing from a specific failure cause but also 

from any other causes of rupture (Hinchliffe and Lambert, 2013). Competing risks theory 

allows for breaking down probabilities of failure to provide operators a clearer indication of 

the risks that they face with each decision that they make. This decision-making can be about 

which maintenance plan to assign to a pipeline, how to optimally allocate resources and for 

understanding the longer-term outcomes of failure mechanisms. In this section, an overview 

of nonparametric predictive inference (NPI) for competing risks is provided. 

 

3.1 General 

Nonparametric predictive inference (NPI) is a statistical method based on Hill’s assumption 

�(�), which can be interpreted as a post-data assumption related to exchangeability (Coolen 

et al., 2002; Maturi et al., 2010). Inferences based on �(�) are predictive and nonparametric 

and are appropriate if there is no additional information to the data or one does not want to 

use such information, for example, to study effects of additional assumptions underlying 

other statistical methods. Such inferences are exactly calibrated by Lawless and Fredette 

(2005), which strongly justifies their use from frequentist statistical perspective. �(�)	does not 

provide precise probabilities for many events of interest, but bounds for probabilities with 

strong consistency properties in the theory of interval probability (Walley, 1991; 

Weichselberger, 2000).  

According to Hill (1988), �(�) can be considered to constitute the fundamental solution to the 

problem of induction. Let ��, … , ��, ��
� be continuous and exchangeable random 

quantities. The values ��, … , �� 
are assumed to be observed and the corresponding ordered 

values are denoted by -∞ < x1 <…< xn < ∞ (x0 = -∞ and xn+1=∞). It is assumed that no ties 

occur among the observed values and if they do, it is assumed that tied observations differ by 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

trivial amounts (Maturi et al., 2010). For	��
� which represents a future observable random 

quantity conditional on n observations the �(�) is (Hill, 1988) 

�(��
� ∈ (���, �)) = 	 �
�
� , � = 1, … , � + 1                 (1) 

Coolen and Yan (2004) generalised �(�) called ‘right-censoring �(�) ’ or rc-	�(�) to take into 

account the effect of right-censoring for data on event times that it is only known that the 

event has not yet taken place at a specific time. The rc-	�(�) uses the additional assumption 

that the residual lifetime of a right-censored unit is exchangeable with the residual lifetimes 

of all other units that have not yet failed or been censored, at the time of censoring. The 

assumption ‘right-censoring �(�)’ or rc-	�(�) partially specifies the NPI-based probability 

distribution for a nonnegative random quantity Xn+1, based on u event times, 

, and v right censoring times, , is partially specified 

by the following M-functions (i = 0, …, u; k = 1, …,l i ; with x0 = 0 and xu+1 = ∞) 

�����(� , �
�) = �
�
� 		∏ ����
�

������:!�	"#$%		                                                                                  (2) 

�����(&'� , �
�) = �
(�
�)���($

  		∏ ����
�
����)�:!�	"!($ *		                                                                         (3) 

where l i is the number of censored observations in the interval (+,	+
�) and &'�  refers to the 

kth censored observation in interval (�, �
�). The product terms are defined as one, if the 

product is taken over an empty set.  

This implicitly assumes non-informative censoring, as a post-data assumption related to 

exchangeability, at any time t, of all items known to be at risk at t. If there are no censorings 

then rc-	�(�) is identical to	�(�) (Coolen et al., 2002; Coolen and Yan 2004; Maturi et al., 

2010).  The terms ��!� and ��!($  describe the number of units in the risk set prior to time &�	and 

&'�  respectively. The definition ��, = � + 1 is used throughout this paper. Summing up all M-

function values assigned to intervals of this form, which have positive M-function values, and 

this sum up to one over all these intervals having the same xi+1 as right endpoint, gives the 

probability as follows 

�(��
� ∈ (� , �
�)) = 
�

�
�  		∏ ����
�
������:!�	"#$��%		                                                                     (4) 

where � , �
� are two sequential failure times. 
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3.2 NPI probabilities for competing risks 

This study examines the situation where a number of k distinct failure causes (competing 

risks) can make a unit or segment to fail. The unit is assumed to be failing due to the first 

occurrence of a failure cause and then withdrawn from further use and observation. It is 

assumed that such failure observations are obtained for n units and that the failure cause 

leading to a failure is known with certainty. For each unit, k random quantities are considered 

and Tj is then defined for j = 1, …, k, where Tj represents the unit’s time to failure under the 

condition that failure occurs due to failure cause j. These Tj  are considered to be independent 

continuous random quantities, which in other words means that the failure causes are 

assumed to occur independently, and the failure time of the unit is the minimum of the k. As 

mentioned before, Tj is assumed to be unique and known with certainty for each unit and for 

the Tj corresponding to the other failure causes, which did not cause the failure of the unit, the 

unit’s observed failure time is a right-censoring time. The competing risk data per failure 

cause consists of a number of observed failure times for the specific failure cause considered 

and right-censoring times for failures caused by other failure causes. Consequently, rc-	�(�) 
can be applied per failure cause j, for inference on a future unit Xj, n+1 (where Xn+1 corresponds 

to an observation T for unit n+1 and Xj, n+1 to Tj, as defined above).  

The NPI lower and upper probabilities, for the event that a single future unit n+1 fails due to 

a specific failure cause l, for each l= 1, …, k and assuming that the future unit undergoes the 

same process as the n units, is as follows. 

  �(-) = � (�-,�
� = min�121' �2,�
�	) = � 3�-,�
� < min�565(678 �2,�
�	9                                           

(5) 

  �(-) = � (�-,�
� = min�121' �2,�
�) = � 3�-,�
� < min�565(678 �2,�
�9                                             

(6)    

Derivations and definitions of the above equations are given in the appendix. 

 

3.3 Survival functions for competing risks 
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The survival function, which is also known as the reliability function, represents the 

probability for a unit of surviving past a certain moment of time. As mentioned before, this 

method does not produce precise probabilities and thus precise values for the survival 

function, but the aim is to derive maximum and minimum upper bounds, which are consistent 

with the probability assessment according to	�(�). The formulae for these NPI lower and 

upper survival functions :����(;) and :����(;) are considered useful and applicable in many 

ways in reliability and survival analysis (Coolen et al., 2002). These NPI lower and upper 

survival functions were first introduced by Coolen et al. (2002), but Maturi et al. (2010) 

introduced the simple closed-form formulae for these survival functions :����(;) and 

:����(;) as presented in Eqs. 7 and 8.  Assuming that ;<$
�� =	;,�
� = �
� for � = 0,1, … , > −
1. The NPI lower survival function can be expressed as follows, for ; ∈ [;@� , ;@
�� ) with 

� = 0,1, … , > and A = 0,1, … , B� 

:����(;)	= 
�

(�
�) ��CD$  		∏ ����
�
����)�:!�	"CD$ *		                                                                                    (7)  

and the corresponding NPI upper survival function for ; ∈ [�, �
�) with � = 0,1, … , >     

:����(;)	= 
�

(�
�) ��#$ 		∏ ����
�
������:!�	"#$%		                                                                                    (8)  

For further discussion of the above formulae reader is referred to Maturi et al. (2010). 

 

4. Numerical example 

4.1 General 

The purpose of this example is to apply the NPI for competing risks in the aforementioned 

PHMSA dataset and then derive lower and upper probabilities as well as survival functions 

for different failure causes (competing risks) for a future onshore gas transmission pipe 

segment that fails due to rupture. Only ruptured pipes are of interest in this study. Given that 

only a tiny fraction of the overall number of pipes fail in the entire US gas transmission 

pipeline system, applying the competing risks theory on the entire network would be 

unfruitful, since the impact of incidents is trivial and the same results are produced, either 

realistic competing risks probabilities or net probabilities. A net survival probability is for 

instance one that describes the probability of surviving from external corrosion in the 

hypothetical world where a pipeline cannot rupture from any other causes. Relative survival 
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and cause-specific survival attempt to estimate this, under specific assumptions. The reader is 

referred to Pesinis and Tee (2017) for such an analysis that takes into account the entire US 

gas transmission pipeline network. The focus thus is on analysing the rupture incidents, so 

that realistic marginal expectations of the correlations among failure causes are derived and 

the cumulative rupture function of pipe segment ruptures is described in an accurate and 

complete way. 

The main assumption of the methodology is that the future pipe segment undergoes the same 

process and conditions as the pipeline components that have reportedly failed thus far. Taking 

into consideration that only a very specific category of pipelines, i.e. onshore gas 

transmission, is examined it is quite reasonable to assume that similar behaviour is expected 

from this type of pipelines. Besides, as described in Section 2, there are certain attributes that 

are common for the majority of onshore gas transmission pipelines that operated from 2002-

2014 (class location 1, carbon steel material of construction and cathodic and coating 

protection). The future pipe segment that is examined against rupture is assumed to be a 

typical 12m long newly-built pipeline segment. For the sake of exchangeability, which is 

inherent in the NPI approach, each one of the 179 reported ruptures is assumed to originate 

from one or a number of defects confined to the 12m pipe segment, irrespective of the 

propagation length once the pipe segment has ruptured. The rupture lengths reported by 

pipeline operators in the database were found to be on average around 10m, which 

corroborates this assumption.  

Next, from the different types of failure that stem from different (thus competing) failure 

causes, only rupture is examined. In the period 2002-2014, 189 pipe-related rupture incidents 

were found in the database. The time to failure is of interest in the methodology of this study 

and as a result the installation dates of the pipelines that failed due to rupture were listed. 

However, 10 rupture incidents concerned pipelines of which the installation dates were 

unknown (were not reported when submitted to PHMSA). These 10 rupture incidents were 

not taken into consideration, without significantly disturbing the approach to reality. In 

Tables 2 and 3, the breakdowns of the numbers and percentages of the different failure causes 

for the 189 and the 179 rupture cases are presented. It can be observed that ignoring the 

incidents with unknown installation dates (and thus time to failure) does not significantly 

impact the representation of the rupture frequencies due to different failure causes. The time 

to failure is estimated by subtracting the year of installation from the year of failure for each 

rupture incident. 
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4.2 Results and Discussion 

The NPI for competing risks method assumes that there are no ties among the data to avoid 

notational difficulties (Maturi et al., 2010). However, among the 179 rupture incidents there 

are many tied observations. The time to failure for each one of them was initially expressed 

in years. To deal with ties though, the years were converted in weeks (1 year was assumed to 

equal 52 weeks) and then a trivial difference of one week was assumed among tied 

observations. This difference is considered to be sufficiently low, in that it does not affect the 

ordering of observations of units in other (failure cause) groups. Ties among different groups 

were also found a lot in the current example and they were treated differently for upper and 

lower bounds. They were dealt with in such a way that the upper and lower probabilities 

became maximal and minimal respectively, over the possible ways of breaking such ties 

without affecting the ordering of the rest of the observations (Maturi, 2010). 

A failure time observation caused by one failure cause is at the same time a right-censored 

observation for all other failure causes. When an observation is considered right-censored for 

two or more failure causes, then this is also dealt with by assuming that the right censoring 

observations occurred fractionally later for one of the failure causes compared to the other. 

Again, different possible orderings of the un-tied right-censoring times are considered that 

aim to maximise and minimise the upper and lower bounds respectively (Maturi, 2010). Next, 

Eqs. 5 and 6 are used to obtain the NPI upper and lower probabilities and compare different 

failure causes with respect to rupture of the future pipeline component.  

The NPI upper and lower probabilities for the event that unit 180 (a future pipeline 

component) will rupture due to external corrosion (EC) or due to other failure modes (OFC) 

are [0.38, 0.34] and [0.66, 0.62], respectively. In the above, OFC refers to all the failure 

causes except EC. These are all grouped together in one group named OFC and are jointly 

considered as a single failure cause and then compared with EC. OFC grouping is done in a 

similar way in the following, for different cases examined.  

The NPI upper and lower probabilities for the event that unit 180 (a future pipeline 

component) will rupture due to material failure (MF) or due to other failure causes (OFC) are 

[0.21, 0.18] and [0.82, 0.79], respectively. 
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The NPI upper and lower probabilities for the event that unit 180 (a future pipeline 

component) will rupture due to external damage (ED) or due to other failure causes (OFC) 

are [0.18, 0.15] and [0.85, 0.82], respectively. 

It is observed that for every one of the above three pairs of failure causes (EC and OFC, MF 

and OFC and ED and OFC) examined, the lower and upper probabilities satisfy the 

conjugacy property (Coolen, 1996). This is due to the fact that, implicit in this method is the 

assumption that the future segment eventually ruptures, and this is assumed to happen with 

certainty. When comparing one failure cause group with another group (or more than one 

groups as shown next) the resulting NPI upper and lower probabilities can provide either a 

weak or a strong indication about the future unit’s failure (Maturi et al. 2010). For example, 

the NPI lower and upper probabilities presented above contain a strong indication that the 

future segment will rupture due to ‘other failure causes’ with all the other failure causes 

grouped together, instead of the EC, MF and ED failure causes individually. This can be 

claimed as the upper probability for the event that unit 180 will rupture due to external 

corrosion (EC) is less than the lower probability for that event due to other failure cause, that 

is 0.34< 0.66. Similar argument can be applied to MF and ED. 

Next, a different grouping of the same time to failure data is illustrated. In specific, groups 

with three failure causes are considered each time and inferences in the form of weak and 

strong indications are derived in a similar sense as when two groups are considered. Below, 3 

main cases are considered, and the methodology presented in Section 3.2 is used to calculate 

the corresponding upper and lower probabilities. 

Case A: considering EC, MF and OFC 

The NPI upper and lower probabilities for the event that unit 180 will rupture due to EC, due 

to MF or due to OFC are [0.38, 0.33], [0.21, 0.17], and [0.48, 0.44] respectively. The fact that 

the upper probability for the event that unit 180 will rupture due to MF is less than the lower 

probability for the event that unit 180 will rupture due to EC, that is 0.21<0.33, provides a 

strong indication that EC is more likely to cause a rupture to the future segment than MF, 

with all other failure causes grouped into OFC. 

 

Case B: considering EC, ED and OFC 
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The NPI upper and lower probabilities for the event that unit 180 will rupture due to EC, due 

to excavation damage (ED) or due to OFC are [0.38, 0.33], [0.18, 0.14] and [0.51, 0.47], 

respectively. 

 

Case C: considering MF, ED and OFC 

The NPI upper and lower probabilities for the event that unit 180 will rupture due to MF, due 

to ED or due to OFC are [0.21, 0.17], [0.18, 0.14] and [0.68, 0.63], respectively. 

 

In the same sense, these NPI lower and upper probabilities can also provide weak indications 

for the event that the future segment ruptures due to a specific failure cause. For example, the 

event that future segment will rupture due to ED is a bit less likely compared to failing due to 

MF, with all the other failure causes grouped together (OFC). This is because the upper 

(lower) probability for the event that unit 180 will rupture due to ED is less than the upper 

(lower) probability for the event that unit 180 will rupture due to MF, that is 0.18<0.21 

(0.14<0.17). However, the upper probability for the event that unit 180 will rupture due to 

ED is greater than the lower probability for the event that unit 180 will rupture due to MF, 

that is 0.18> 0.17, meaning that there is not a strong indication for this event. 

It should be noted that, for all the cases illustrated above there is a strong indication that the 

future segment will rupture due to ‘another failure cause’, instead of the EC, MF and ED 

failure causes, similarly to the result obtained when only two groups of failure causes were 

considered. All the above results are considered to be in line with the basic underlying theory 

of statistics using imprecise probabilities. Thus, when three separate groups of failure causes 

are considered instead of two, which means that data is represented in more detail, the upper 

and lower probabilities entail more imprecision. For instance, the upper and lower 

probabilities of rupture due to EC is [0.34, 0.38] for two groups and [0.33, 038] for three 

groups. According to Maturi et al. (2010), this can be thought to be in line with a fundamental 

principle of NPI in the context of multinomial data. 

Another inference that can be derived from the above upper and lower probabilities is that 

relatively early failures compared to later ones, do not impact the final result. While for 

example, ED and MF have more early failures than EC, that does not affect the final result 

which is something expected since the data are competing risks data on the same segments 
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and not completely independent failure times per group. However, this method is considered 

to enable inferences with regard to actual failure time, as opposed to other basic statistical 

methods that measure only the frequency of failures. Finally, it can be observed that the 

upper probability for the event that the future segment will rupture due to EC or MF or ED is 

the same no matter if two or three groups are considered. The reason for this is discussed in 

more detail in Coolen et al. (2002) and Maturi et al. (2010). In this example, when it comes to 

EC for instance, the upper probability is realised with the extreme assignments of probability 

masses in the intervals created by the data in accordance to the lower survival function for EC 

and the upper survival function for the other failure causes. Since, all failure causes are 

assumed independent, the upper survival function for the other failure causes is the same 

regardless of the number of separate groups considered.  

There is no reference time period being considered for the estimated upper and lower 

probabilities presented so far. For insight into when the failure may occur, one just uses the 

upper and lower survival functions presented next, where one can look at these for a specific 

failure cause and for all combined causes. The survival function directly relates to the 

probability of failure of a future pipe segment, without including any knowledge about 

underlying distributions and by using only the observed data (Coolen-Schrijner and Coolen, 

2004; Barone and Frangopol, 2014). The survival functions illustrated in Fig. 1 result from 

totally neglecting the information on different failure causes and also from the situations with 

two and three groups of failure causes respectively. The lower survival function :�E,FGH 

corresponds to the situation with two groups of failure causes illustrated above and is 

assessed by multiplying the conditional, on the different failure causes, lower survival 

functions. The lower survival function :�E,IGH is derived in the respective way for three groups 

of failure causes. As indicated in Maturi et al. (2010), these lower and upper survival 

functions present the expected nested structure, according to the level of detail of the data 

representation, on the same basis discussed above for lower and upper probabilities.  

Then, in Fig. 2 the NPI lower and upper survival functions corresponding to two separate 

failure causes (EC and MF) are presented. For example, the lower survival function :�E,JG  is 

obtained by considering the 64 ruptures caused by EC as actual failure time observations and 

the other 115 observations in the data set as right-censored data. The same procedure was 

employed for MF in this figure (Fig. 2) and for the rest of the failure causes considered in this 

study in Fig. 3 and Fig. 4. The inferences that can be derived from these figures, can be 

relevant to the nature and magnitude of ruptures caused by each failure cause. For instance, 
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the fact that EC does not cause a lot of early failures compared to MF, IC, ED, OTHER, EM 

is illustrated in the figures. Also, it can be noticed that the fewer the total failures due to any 

failure cause, the higher the imprecision (difference between corresponding upper and lower 

survival functions) at larger service lifetimes. Finally, the fact that in all figures, the lower 

survival function is always equal to zero beyond the largest observation, while the upper 

survival function remains positive is something inherent in the NPI approach as discussed in 

Coolen and Yan (2004) and Maturi et al. (2010). The survival functions can be used to 

examine and implement optimal maintenance strategies. Maintenance strategies can be 

presented in the form of upper and lower bounds or from a robust inference point of view one 

could use only the lower survival function. 

 

5. Conclusion 

This study employs the established NPI approach in order to derive inductive inferences from 

the 179 reported ruptures of a set of onshore gas transmission pipelines reported in the 

PHMSA database, for the period 2002-2014. The NPI enables statistical inference on future 

observations based on past observations, when few information is available and also when 

failure, which is rupture in the context of this study, is caused by several competing risks. 

This approach is applied in a dataset from the PHMSA database, regarding rupture incidents 

of onshore gas transmission pipelines for the period 2002-2014. The NPI method attempts to 

analyse the rupture incidents reported in PHMSA, from a non-repairable systems perspective, 

based on the time to failure of the ruptured pipe segments. The analysis shows that NPI is a 

useful technique to derive inferences for a future pipe segment that will rupture due to a 

specific failure cause, by providing imprecise probabilities and survival functions for this 

event based on historical failure data. The results, among others, indicate external corrosion 

as the predominant rupture cause for the aforementioned period under consideration in the 

USA, with ruptures taking place mainly after 30 years. The predicted imprecise probabilities 

and survival functions, can be used to examine and implement optimal maintenance strategies 

based on relative risk prioritization. 
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Appendix: NPI probabilities for competing risks 

It is assumed that the number of failures caused by failure cause L is >2 , 2,� < 2,F < ⋯ <
2,N6, and O2 = (� − >2) is the number of the right-censored observations with &2,� < &2,F <
⋯ < &2,P6, corresponding to failure cause L. It is further assumed that there are B2,�6 right-

censored observations in the interval (2,�6, 2,�6+1) denoted by &2,��6 <&2,F�6 <…<&2,<6,$6
�6 , so that 

∑ B2,�6
N6�6R, = O2. The random quantity representing the failure time of the next unit, with all S 

failure causes considered, is ��
� = 	 T���121' �2,�
�. It should be noted it is assumed that 

2,, = 0 and 2,N6�� = ∞ for notational convenience (Maturi et al., 2010). 

The NPI M-functions for �2,�
� (L = 1, … , S), are 

�2 (;2,�6∗
�6 , 2,�6
�) = ��6,�6�� (;2,�6∗

�6 , 2,�6
�)=	 �
(�
�) (	��C6,$6∗

$6 )			W$6∗
$6�� ∏ ���6,�
�

���6,�X�:!6,�	"C6,$6∗
$6 Y		           (A1)                                                                         

where �2 = 0,1, … , >2 , �2∗ = 0,1, … , B2,�6   and 

Z�6∗
�6 = X1	�[	�2∗ = 0																0	�[	�2∗ = 1, … , B2,�6

              

i.e ;2,,�6 = 2,�6 and ;2,�6∗
�6 = &2,�6∗

�6  for failure time or time 0 and for censoring time respectively. 

The numbers of units in the risk set just prior to times &� and ;2,�6∗
�6 	are ��!� and 

��C6,$6∗
$6 respectively. The corresponding NPI probabilities are 

  �2 (2,�6 , 2,�6
�) = � (�2,�6
� ∈ (	2,�6 , 2,�6
�)) = �
(�
�) ∏ ���6,�
�

���6,�\�:!6,�	"#6,$6��]		                 (A2)                                                                              

where 2,�6 and  2,�6�� are two consecutive observed failure times triggered by failure cause	L. 
The notation for the NPI lower and upper probabilities, for the event that a single future unit 

n+1 fails due to a specific failure cause l, for each l= 1, …, k and assuming that the future unit 

undergoes the same process as the n units, is as follows. 

  �(-) = � (�-,�
� = min�121' �2,�
�	) = � 3�-,�
� < min�565(678 �2,�
�	9                                         

(A3) 
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  �(-) = � (�-,�
� = min�121' �2,�
�) = � 3�-,�
� < min�565(678 �2,�
�9                                          

(A4)    

These NPI lower and upper probabilities for the event that the next unit will fail due to failure 

cause l are 

�(-)=∑ ^∑ 1(-,�8
� <N8�8R, min�565(678
_;2,�6∗

�6 `)�-(-,�8 , -,�8
�)aG8(2,�6,�6∗) × ∏ �2'2R�2c- (;2,�6∗
�6 , 2,�6
�)     (A5)     

�(-)
=∑ ^∑ ∑ 1(;-,�8∗

�8 <<8,$8�8∗R,N8�8R, min�565(678
\2,�6
�])�-(;-,�8∗

�8 , -,�8
�)aG8(2,�6) × ∏ �2'2R�2c- (2,�6 , 2,�6
�) 
(A6) 

where ∑G8(2,�6,�6∗) denotes the sums over all *
ji  from 0 to  B2,�6 and over all �2 from 0 to >2 for 

j=1,…,k but not including j=l. Similarly, ∑G8(2,�6) denotes the sums over all �2 from 0 to >2 for 

j=1,…,k but not including j=l. For detailed derivations and definitions of the above equations 

the reader is referred to Maturi et al. (2010). 
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Table 1. Mapping of the failure causes for the period 2002-2014. 

2002-2009 2010-2014 
Failure causes 
adopted in this 

study 

C
or

ro
si

on
 

Internal corrosion 

C
or

ro
si

on
 

Internal corrosion 
Internal 

corrosion 
(IC) 

External corrosion External corrosion 
External 
corrosion 

(EC) 

M
at

er
ia

l a
nd

 w
el

ds
 

Body of pipe   

Material failure 
(MF) 

Component  
Joint  
Butt  
Fillet  

Pipe seam  
 Construction-, installation-, or 

fabrication-related 
 Original manufacturing-related(not 

girth weld or other welds formed in 
the field) 

 Environmental cracking-related 

E
xc

av
at

io
n Third party excavation damage 

E
xc

av
at

io
n 

Excavation damage by third party 
Excavation 

Damage 
(ED) 

Operator excavation damage 
(includes contractors) 

Excavation damage by operator (first 
party) 

Excavation damage by operator’s 
contractor (second party) 

O
th

er
 o

ut
si

de
 f

or
ce

s 

Rupture of previously  
damaged pipe 

Previous damage due to excavation 
activity Previously 

damaged pipe 
(PDP) 

O
th

er
 o

ut
si

de
 f

or
ce

s 

Previous mechanical damage not 
related to excavation 

Car, truck or other 
vehicle not related to 
excavation activity 

Damage by car, truck, or other 
motorized vehicle/equipment not 

engaged in excavation 

Other (O) 

Fire/explosion as 
primary cause of 

failure 

Nearby industrial, man-made, or other 
fire/explosion as primary cause of 

incident 
Vandalism Intentional damage 

 

Damage by boats, barges, drilling rigs, 
or other maritime equipment or 
vessels set adrift or which have 

otherwise lost their mooring 

 
Routine or normal fishing or other 
maritime activity not engaged in 

excavation 

 
Electrical arcing from other 

equipment or facility 
 Other outside force damage 

 Malfunction of 
control/relief equipment 

 Malfunction of control/relief 
equipment 

Threads stripped, 
broken pipe coupling 

Threaded connection/coupling failure 
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Ruptured or leaking 
seal/pump packing 

 
E

qu
ip

m
en

t 
an

d 
op

er
at

io
ns

 

 

E
qu

ip
m

en
t 

fa
ilu

re
 Compressor or compressor-related 

equipment 
 

 

 Non-threaded connection failure 
 Defective or loose tubing or fitting 
 Failure of equipment body (except 

compressor), vessel plate, or other 
material 

 Other equipment failure 

Incorrect operation 

In
co

rr
ec

t 
op

er
at

io
n 

Damage by operator or operator’s 
contractor not related to excavation 

and not due to motorized 
vehicle/equipment damage 

Underground gas storage, pressure 
vessel, or cavern allowed or caused to 

overpressure 
Valve left or placed in wrong position, 

but not resulting in an overpressure 
Pipeline or equipment over pressured 

Equipment not installed properly 
Wrong equipment specified or 

installed 
Other incorrect operation 

O
th

er
 Miscellaneous  Miscellaneous 

Unknown 
 

Unknown 

N
at

ur
al

 fo
rc

es
 Heavy rains/floods  Heavy rains/floods 

Temperature  Temperature 
High winds  High winds 
Lightning  Lightning 

  Other natural force damage 

Earth movement 
 

Earth movement 
Earth movement 

(EM) 
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Table 2. 179 Rupture failure data with known installation dates 

Failure 
cause 

Number Percentage 
% 

IC 19 11 
EC 64 36 
ED 27 15 
PDP 9 5 
MF 33 18 
EM 10 5 
O 17 10 
 

 

Table 3. 189 Rupture failure data with both known and unknown installation dates 

Failure 
cause 

Number Percentage 
% 

IC 19 10 
EC 64 34 
ED 31 16 
PDP 10 5 
MF 35 19 
EM 10 5 
O 20 11 
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Fig 1. NPI lower and upper survival functions for a future pipeline segment with t in weeks. 

 

Fig 2. NPI conditional (EC, MF) lower and upper survival functions for a future pipeline 
segment with t in weeks. 
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Fig 3. NPI conditional (IC, ED, OTHER) lower and upper survival functions for a future 
pipeline segment with t in weeks. 

 

Fig 4. NPI conditional (PDP, EM) lower and upper survival functions for a future pipeline 
segment with t in weeks. 
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Highlights 
 
 

• NPI method attempts to analyse the rupture incidents reported in PHMSA  
 

• NPI enables statistical inference when few information is available  
 

• NPI derives inference when failure is caused by several competing risks 
 

• The survival functions are used to examine optimal maintenance strategies  
 
 
 


