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Lampreys worldwide face multiple anthropogenic stressors. Several species are ‘at-risk’ listed, yet abun-
dance data for most remain insufficient to adequately assess conservation status. Lamprey population
declines are largely due to habitat degradation and fragmentation, pollution, and exploitation.
Conservation priorities include: quantification of population trends and distribution; identification of
Evolutionarily Significant Units; improved water quality and habitat; barrier removal or effective mitiga-
tion; ecologically-sensitive river flow management and hydropower planning; and mitigation of climate
change impacts. There is urgent need for ecological and population demographics data for multiple spe-
cies, particularly those in the Southern Hemisphere, Caspian Sea region, and Mexico. Irrigation and dam-
ming are already extensive, or rapidly expanding (e.g. Chile), while water-stressed regions (Mexico,
California, Chile, Australia, Iberia) may be further impacted by climate change-induced flow alteration
and increased temperatures. Barrier removal should benefit lampreys by increasing available habitat.
However, fishways vary in effectiveness and are often inadequate, but present research opportunities
encompassing ecohydraulics, biotelemetry and engineering. Environmental DNA permits rapid assess-
ment of lamprey distribution within catchments, especially if improvements to distinguishing genetically
similar groups are possible. Marine environments may play a critical role in population dynamics yet
remain a ‘‘black box” in anadromous lamprey biology. Studying juvenile lamprey ecology is a substantial
challenge but should be a priority. Some examples are monitoring of parasitic feeding-phase lamprey
through trawl surveys and fisheries bycatch, telemetry of movements, or examining chemical tracers
of marine habitat use. Knowledge transfer between the sea lamprey control programme and native-
lamprey biologists worldwide remains crucial to developing effective lamprey management.

� 2020 The Authors. Published by Elsevier B.V. on behalf of International Association for Great Lakes
Research. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
Introduction

We are in the midst of a conservation crisis for species reliant
upon freshwater habitats (Duncan and Lockwood, 2001; WWF,
2018; IPBES, 2019) and over a quarter of lamprey (Petromyzontif-
ormes) species are ‘at risk’ of disappearing from the wild (Maitland
et al., 2015). Given that information on the distribution and popu-
lation trends of most lamprey species is extremely fragmentary, or
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nearly non-existent (Renaud, 2011; Maitland et al., 2015), the true
proportion of lamprey species at risk may be much higher. Lam-
preys are, to many people, non-charismatic organisms. In recent
decades, the public perception and conservation needs of native
lampreys have been overshadowed by the need to control invasive
sea lamprey (Petromyzon marinus L. 1758) in the Laurentian Great
Lakes (Marsden and Siefkes, 2019; Neave et al., 2021). The result-
ing misconception that lampreys, especially parasitic species, are
harmful to natural systems has been severe and long-lasting
(Lyons et al., 1994; Moser and Close, 2003). There have even been
(unsuccessful) attempts to extirpate several populations of native
parasitic species due to their predation of desirable yet non-
native game fishes (Nuhfer, 1993; Lorion et al., 2000). There have
also been unintended consequences, or ‘collateral damage’, to
native lampreys and fishes through Great Lakes sea lamprey con-
trol (Marsden and Siefkes, 2019). Nevertheless, the conservation
needs of native lampreys are now being increasingly communi-
cated to society in terms of their ancient vertebrate evolutionary
history, intriguing life history and ecology, ecological services
and cultural importance (Close et al., 2002; Docker et al., 2015;
Docker and Hume, 2019). The impacts of invasive predators on
native lampreys are also apparent to conservationists, with recent
evidence of the predatory impact of non-native wels catfish (Silurus
glanis L. 1758) on adult sea lamprey in French rivers, in which up to
80% of migrating lamprey were recorded as predated within a
month of release (Boulêtreau et al., 2020).

Today, native lampreys frequently offer media storylines under
the ‘weird nature’ tag but provide a valuable alternative to ‘cute
and cuddly’ species tags commonly adopted by the media. For
aquatic animals that are often ‘out of sight and out of mind’,
employing native lampreys as ‘umbrella species’ (Roberge and
Angelstam, 2004) is a sensible and viable conservation approach.
Native lampreys perform valuable ecosystem functions. They are
ecosystem engineers of gravel and fine sediment (Hogg et al.,
2014; Shirakawa et al., 2013), are food sources to predators
(Close et al., 2002; Cochran, 2009) and adult migratory lampreys
provide nutrient subsidies to stream and river habitats (Weaver
et al., 2018). Further, populations of native lampreys are impacted
by habitat degradation and fragmentation common to most of the
world’s river systems (Lucas et al., 2009; Maitland et al., 2015;
Aronsuu et al., 2019), and several conservation initiatives and
actions needed to restore lamprey populations (e.g., barrier
removal or mitigation) are likely to benefit ecologically similar spe-
cies and improve overall aquatic ecosystem health.

Despite great advances in our knowledge of the biology of lam-
preys during the 1960s to 1980s, exemplified by the multiple vol-
umes edited by Martin Hardisty and Ian Potter (e.g. Hardisty and
Potter, 1971), sufficient knowledge to develop effective conserva-
tion of lampreys was largely missing at that time. For several lam-
prey species, some of that information has been gained over the
last 30 years, especially in western Europe and North America,
and partly in response to conservation legislation frameworks
(Maitland et al., 2015). Clemens et al. (2021) review the conserva-
tion needs and actions for native anadromous lampreys. The aim of
this paper is to forecast challenges and opportunities in lamprey
conservation, complementing themes addressed by Clemens
et al. (2021), Moser et al. (2021) and Docker and Hume (2019).
As such, we emphasize a select group of global issues that we con-
sider important and, where possible, suggest initiatives or method-
ologies that have the potential to improve lamprey conservation.
The reader is also reminded that research needs and conservation
priorities have been discussed for lampreys generally (Mesa and
Copeland, 2009; Maitland et al., 2015) and in detail for some spe-
cies such as Pacific lamprey (Entosphenus tridentatus Richardson,
1836) (e.g. Clemens et al., 2017).
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Lamprey conservation priorities

Lamprey population declines have been reported as being pri-
marily attributable to pollution, habitat degradation, river barriers,
and overexploitation (Maitland et al., 2015), although those decli-
nes have not always been well quantified because of inconsistent
or semi-quantitative recording. The best-known examples of
changes in lamprey abundance are for anadromous lamprey spe-
cies, particularly where exploited by fisheries. Maitland et al.
(2015) refer to extirpation of European river lamprey [Lampetra flu-
viatilis (L. 1758)] in the River Thames, England where from the
1700s until the late 1800s hundreds of thousands of individuals
were captured each year, mainly for use as bait in the North Sea
fishing industry (see Almeida et al., 2021, for a more detailed dis-
cussion). Nevertheless, the decline in catches of European river
lamprey was primarily attributed to the intense organic pollution
and damming of rivers, not exploitation per se. Although the
Thames is cleaner now than it has been for over a hundred years,
European river lamprey have not yet recolonised that river (M.
Lucas, pers. obs.). Where multiple factors have contributed to the
decline or extirpation of lamprey populations, it can be difficult
to know which are the most important problems to solve. But ulti-
mately all are due to anthropogenic activities. The following sec-
tions highlight lamprey conservation needs.
Basic biology

Most conservation biologists would argue that a focal species
cannot be conserved effectively without a good understanding of
its biology, in particular the ecological requirements of all life
stages, conditions for reproduction and survival, and causes of pop-
ulation decline. All lamprey species use broadly similar physical
habitats for spawning (gravel/cobble bed typically in flowing water
[but see Johnson et al., 2015 for discussion of rare lentic spawning
in lampreys]) and larval (silt-sand habitat, rich in organic material,
in flowing, slow-moving or sometimes lentic water) life stages.
Therefore, knowledge of those species we know most about can,
arguably, be applied to those we know less about. Our biological
knowledge is strongest for species such as sea, European river,
European brook [Lampetra planeri (Bloch, 1784)], Pacific, silver
(Ichthyomyzon unicuspis Hubbs & Trautman, 1937), chestnut (I. cas-
taneus Girard, 1858), northern brook (I. fossor Reighard & Cummins,
1916), Arctic [Lethenteron camtschaticum (Tilesius, 1811)] and
pouched lampreys (Geotria australis Gray, 1851). But even for sev-
eral of these species, the context of our understanding is limited.
For example, pouched lamprey biological knowledge has increased
dramatically in the last 30 years, but mostly in cool, stony, New
Zealand rivers (Jellyman and Glova, 2002; Jellyman et al., 2002;
Kelso and Glova, 1993; Baker et al., 2017), very different habitat
and climate to that of pouched lamprey in, for example, the
1,000,000 km2 Murray-Darling Basin, Australia.

For the remaining Southern Hemisphere species and regional
populations (Potter et al., 2015; Renaud, 2011) detailed biological
knowledge is limited or absent. The same is true for the Tetrapleu-
rodon species pair inhabiting the Mexican highlands (Lyons et al.,
1994; Renaud, 2011). Also, large gaps in our understanding of
the biology of Caspian lamprey [Caspiomyzon wagneri (Kessler,
1870)] are evident in a part of the world where damming and
water diversion have dramatically changed the ecosystem
(Holčík, 1986; Nazari and Abdoli, 2010; Abdoli et al., 2017) though
Nazari et al. (2017) provide a good review of the current conserva-
tion status in the southern Caspian region. The biology of many
brook lampreys across the Entosphenus, Eudontomyzon, Ichthyomy-
zon, Lampetra, and Lethenteron genera are sketchy at best (Renaud,
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2011; Docker, 2019, 2015). Hence, a priority for effective conserva-
tion of most lamprey species is to fill knowledge gaps. Key knowl-
edge can, in some cases, be gained relatively cheaply using grants
from zoological, ichthyological, or geographical society support.

Better quantification of lamprey population trends and distribution

Measuring trends in abundance and distribution is crucial to
conservation and management of populations, whether they are
invasive Great Lakes sea lamprey or native species targeted for
conservation. Much research resource has been put in to improv-
ing abundance estimates of Great Lakes sea lamprey (Christie and
Goddard, 2003; Harper et al., 2018) for control purposes. For con-
servation of native lamprey species and populations, data of
improved quality are needed for quantifying population changes
(Moser et al., 2007). This requires long-term monitoring by stan-
dardised methods that are feasible to employ, in terms of cost
and logistics, but as unbiased as possible. Yet these methods
can be difficult to achieve. Historic data on the distribution and
abundance of lampreys often rely on records of fishery catches,
frequently without details of the fishery effort or location
(Almeida et al., 2021) yet those fisheries may cease for reasons
not linked to lamprey abundance, or fishing methods may change.
One of the more prominent historical data sets underpinning a
large-scale lamprey conservation initiative is derived from counts
of adult Pacific lamprey passing observation windows at several
dams in the Columbia River, U.S.A. (CRITFC, 2011). These data
suggest high variability in population size, and a decline in adult
abundance exceeding 50% over the period from the 1940s to the
2000s (Fig. 1), but these data are incomplete and potentially mis-
leading (Moser and Close, 2003). Problems with these data
include: major gaps in the timeline; recordings do not cover the
entire migration period; counts taken during daylight for a mostly
nocturnal life stage; passage counted at only one of several pas-
sage routes at each dam; and management and infrastructure
changes that may have altered lamprey behaviour at recording
sites.

For poorly researched species such as Chilean [Mordacia lapicida
(Gray, 1851)], Mexican brook (Tetrapleurodon geminis Álvarez,
1964), and Alaskan brook lampreys (Lethenteron alaskense Vla-
dykov & Kott, 1978), almost no population trend data nor contem-
porary status data exist, making it impossible to develop directed
conservation plans. Even though Mexican brook lamprey and Mex-
ican lamprey (T. spadiceus) are listed as Endangered and Critically
Endangered respectively by the International Union for Nature
Conservation (IUCN, 2019), the most recent surveys are over two
decades old (Lyons et al., 1994), and no conservation plan has been
generated (Daniels, 2019; Snoeks et al., 2019). Even for well-
studied species, such as European river lamprey, the quality of
some abundance data is dubious. The International Union for the
Conservation of Nature (IUCN) listed European river lamprey as
Least Concern, purportedly due to substantial recovery following
pollution abatement in Central and Western Europe (Freyhof,
2011). Yet those data sources are not provided and are likely to
be subject to the data quality problems highlighted above. In
recent decades European river lamprey catches and probable pop-
ulation sizes have demonstrably fallen in areas of Sweden and Fin-
land (Sjöberg, 2011; Aronsuu et al., 2019), Latvia (Birzaks and
Abersons, 2011; Almeida et al., 2021) and in Poland (Kujawa
et al., 2018).

Because of the difficulties in reliably catching or counting adult
or post-metamorphic juvenile lampreys, especially where no fish-
eries or lamprey counting facilities occur, most abundance assess-
ment schemes for lampreys rely on larval sampling (Moser et al.,
2007). But in many cases larvae of closely-related species inhabit
the same streams and cannot be distinguished before metamor-
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phosis, either morphologically or genetically (Renaud, 2011;
Potter et al., 2015; Docker and Hume, 2019). This is especially
the case for so-called paired species (typically comprising a para-
sitic species and a closely related non-parasitic species) such as
Lampetra fluviatilis and L. planeri, and Tetrapleurodon spadiceus
and T. geminis. Genetic methods have facilitated quick identifica-
tion of co-occurring larvae of some different taxa with wide distri-
butional ranges (Docker et al., 2016). In other cases (Bracken et al.,
2015) genome level DNA sequence data or consistently different
single nucleotide polymorphisms must be used (Mateus et al.,
2013b) [see Environmental DNA section below]. Lamprey larvae
are also notoriously patchy in distribution (Torgersen and Close,
2004) making larval sampling (usually by electric-fishing in shal-
low habitats, but see Taverny et al., 2012) a poor choice for esti-
mating population trends unless rigorous, large-scale, stratified
sampling is carried out (Ferreira et al., 2013). However, research
and development of new technologies such as eDNA, pheromone
detection, genetic parentage analysis, and the ability to sample
deep-water habitats all represent a significant opportunity to
improve our knowledge of lamprey population trends and distribu-
tion (Docker and Hume, 2019).

To understand how lamprey population size may be affected by
stochastic events (e.g. floods or droughts), conservation actions
(e.g. habitat improvement, fishery restrictions), or an absence of
rehabilitation measures, we need to develop recruitment models.
These are available for Great Lakes sea lamprey (Jones, 2007) and
could be extended to native species, but the complexities of reli-
able ageing and the plasticity in larval duration (Dawson et al.,
2015), as well as difficulties in obtaining sound demographic input
data are a challenge. Instead, most ecologists working on native
lampreys have relied upon fragmented empirical data using multi-
ple methods to best-guess recruitment patterns. Resources, fund-
ing in particular, are always a constraint for undertaking good-
quality population and distribution assessments. However, greater
effort is needed, nationally and internationally, to establish the
current population and distribution status of over 70% of the lam-
prey species listed in Potter et al. (2015) that we regard as lacking
robust, up-to-date data. Maitland et al. (2015) gave IUCN red-book
listings for 25/41 (61%) of species and reported ‘Data-deficient’ for
three species, Vancouver lamprey (Entosphenus macrostomus),
Alaskan brook lamprey and Chilean lamprey. The IUCN (2019)
red list gives population trend summaries for just 12/41 (29%) of
the species listed in Potter et al. (2015), the most recent review
of lamprey taxonomy and distribution.

Identification of evolutionarily significant units

Conservation is the act of preserving or protecting something of
inherent value. In conservation biology this value is represented by
a species’ genetic legacy (its past) and its evolutionary potential
(its future). From a utilitarian perspective it can be argued that spe-
cies have socio-economic value; thus losing biodiversity can be
harmful economically and ecologically (Edwards and Abivardi,
1998). In conservation biology, the goal is to protect a species;
but in reality we manage only a portion of all populations that
comprise that species. Given that conservation resources are limit-
ing, how should we select those populations? The designation of
Evolutionarily Significant Units (ESUs) or Designatable Units
(DUs) is one promising approach to lamprey conservation because
it can provide a framework for conserving diversity below the spe-
cies level (Cassaci et al., 2014; Docker and Hume, 2019). Typically,
ESUs are designated based on one, or some combination of two or
more, of the following criteria:

� current geographic separation;



Fig. 1. Historical daytime observation window counts of Pacific lamprey at Bonneville Dam (black line) and McNary Dam (dashed line), separated by The Dalles and John Day
dams on the Columbia River, Oregon and Washington. Limitations of interpreting trends of lamprey abundance from such data, including periods during which no data were
collected, are outlined in the text.
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� genetic differentiation at neutral markers caused by historic
gene flow patterns;

� local adaptation of phenotypes.

Identification of an ESU therefore requires knowledge of an
organism’s evolutionary history (molecular genetics) and ecology.
This necessitates input from a range of biological sub-disciplines
and ensures that determinations are made only following acquisi-
tion of multiple lines of evidence. Candidate ESUs or DUs could be
evaluated along two axes of diversity, molecular genetic and adap-
tive (de Guia and Saitoh, 2007). This can be achieved by analysis of
neutral markers (reflecting historic isolation and gene flow), geo-
graphic distribution, life history, and phenotypic and genotypic data
(reflecting current adaptation). Nevertheless, the goal is not to sim-
ply identifymore conservationunits, but to employanobjectivepro-
cess to evaluate across species and identify which units are the
highest priority. In the U.S.A the Endangered Species Act of 1973
requires explicit designations of ‘‘distinct population segments”
(=ESUs) to be protected by the law, but no lampreys are currently
on that list. In Canada the Species At Risk Act currently recognizes
several lamprey DUs; thewestern brook lamprey (Lampetra richard-
soni Vladykov & Follett, 1965) of Morrison Creek, Vancouver lam-
prey throughout its range, and silver and northern brook lampreys
in the Great Lakes-St. Lawrence (COSEWIC, 2010; Maitland et al.,
2015; Docker and Hume, 2019). Similarly, in Europe currently only
one lamprey ESU is recognized, a lake-feeding population of Euro-
pean river lamprey from the Endrick Water, Scotland (JNCC, 2017).
In Portugal, four L. planeri ESUs and one L. fluviatilis ESU were pro-
posed by Mateus et al. (2011), but three of these populations were
subsequently described as separate species (Mateus et al., 2013a).
Therefore, the precedent for application of ESUs already exists and
could be readily extended to lampreys worldwide.

An example of the utility of ESUs in lamprey conservation is
provided by the European river lamprey, a widely dispersed
anadromous parasitic species, currently listed as Least Concern
by the IUCN (Maitland et al., 2015). This species exhibits extensive
genetic, phenotypic, and life history diversity. Based on neutral
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genetic markers, there were 1–2 post-glacial range expansions into
northern Europe 8–12,000 years ago which can generally be con-
sidered to represent the species’ ‘‘typical” form (=L. fluviatilis
‘‘sensu stricto”, Mateus et al., 2016). After the northward range
expansion, refuge populations in the Iberian Peninsula experienced
reduced gene flow and are now genetically distinct from northern
populations (Mateus et al., 2013a, b, 2011; Pereira et al., 2011,
2014, 2010). Similar to salmonids, some European river lamprey
populations express diversity in terms of migration timing with
discrete spring- and fall-runs (e.g., Witkowski and Kuszewski,
1995), and others have evolved novel trophic strategies such as
feeding within large post-glacial lakes (Collett, 1905; Morris,
1989; Inger et al., 2010; Tsimbalov et al., 2015) or truncated peri-
ods of feeding in marine habitats (=L. fluviatilis ‘‘praecox”, Berg,
1948; Abou-Seedo and Potter, 1979; Hume, 2013). Coincident with
their expansion into de-glaciated regions, many L. fluviatilis popu-
lations abandoned parasitic feeding altogether and are currently
recognized by some as L. planeri, the European brook lamprey. Pairs
of European river and brook lampreys appear to be at different
stages of the speciation process, with some populations exhibiting
incomplete reproductive isolation and ongoing gene flow (Docker
and Potter, 2019). Where genetic differences are evolutionarily sig-
nificant, some populations of European river and brook lampreys
could be recognized as ESUs or DUs.

European river lamprey is not unique in this regard (Docker and
Potter, 2019). Worldwide, many lamprey populations will have a
unique genetic legacy and evolutionary potential, and present as
non-interchangeable ESUs. The vast majority of these unique pop-
ulations are, in practice, unrecognized and unprotected by conser-
vation legislation. Going forward, continuing to recognize lamprey
diversity below the species level and expanding the approach will
greatly benefit lamprey conservation. Docker and Hume (2019)
recently called for a new, integrated taxonomic framework for
lampreys, one that combines morphology and behavioral ecology
as well as population genetic and molecular phylogenetic
approaches. By collecting data such as these we may better recog-
nize and systematically identify lamprey ESUs.
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Water quality and habitat restoration

Lampreys are often thought to be moderately resilient to water
quality insults although severe organic pollution caused, in part,
the demise of lampreys, especially migratory stocks, in many
industrialized European rivers (Maitland et al., 2015). Moreover,
the egg and pro-larval development stage may be more sensitive
than larval, juvenile (post-metamorphic but sexually immature)
and adult (sexually mature) stages, as evidenced by reduced hatch-
ing success in environments with lower oxygen supply (Silva et al.,
2015) and instances of recruitment failure at polluted sites
(Dawson et al., 2015; Silva et al., b, 2016a). In the lowermost sec-
tions of many rivers entering the Finnish side of the Bothnian
Bay, low larval densities are associated with poor water quality,
especially low pH and high metal concentrations due to leaching
from ditched acid sulphate soils. It has been shown that low pH
and high metal concentrations increase mortality of eggs and
newly hatched larvae (Myllynen et al., 1997) and impair the qual-
ity of eggs during the wintering period of adults (Mäenpää et al.,
2001). Nevertheless, the effect of poor water quality on population
levels is understudied and needs more attention.

Although slight organic enrichment may favour larval lamprey
populations (Dawson et al., 2015; Maitland et al., 2015), when this
enrichment is moderate to high, lamprey abundance decreases
(Maitland et al., 2015; Silva et al., 2016a). Lamprey population
recovery from chemical pollution can be difficult even after the
pollution stops, probably due to the persistence of pollutants in
the sediment (Silva et al., 2016b). A chemical spill in the River
Umia, Spain, in 2006 caused extirpation of the larval lamprey pop-
ulation in the affected section (Silva et al., 2016b). Larvae were
available to recolonize the polluted section from upstream and
downstream, but low larval densities persisted in the polluted zone
for 4 years (Silva, 2014).

River regulation measures like dredging, channelization and
embankment, degrade lamprey habitats (Streif, 2019; Maitland
et al., 2015) and may also intensify the negative effects of other
human activities such as hydropeaking. Therefore, habitat restora-
tion is required to re-establish lamprey populations, especially in
the regulated rivers. Several river restoration methods in northern
latitudes inhabited by lampreys aim to restore habitats for salmo-
nids (Silva et al., 2015; Moser et al., 2021). These restoration efforts
increase heterogeneity of habitats within rivers, but important
habitats for lamprey and other lotic biota are often ignored. For
example, spawning gravels added into rivers in northern Europe
and North America are often intended for salmonids and may be
suboptimal for several lamprey species (e.g. European river lam-
prey, silver lamprey), as the gravel size may be too big and/or
the finest fractions of gravel and sand have been removed by siev-
ing before adding the gravel into the river (Smith and Marsden,
2009; Aronsuu and Tertsunen, 2015). In a Finnish river, lamprey-
tailored methods of restoring fast-flowing areas increased larval
densities in nearby reaches (Aronsuu et al., 2019). This was
assumed to be mostly due to an increase in wintering and spawn-
ing habitats of mature lampreys. However, the effects of restora-
tion of fast-flowing areas on lamprey populations are still
speculative and more research is needed. In channelized rivers, lar-
val habitats in slow-flowing areas are often deteriorated in condi-
tion, but restoration measures are mainly directed to fast-flowing
areas. There have been attempts to restore depositional areas suit-
able for larval habitats in Finland, but results have not been very
promising (Aronsuu et al., 2019).

Removal or effective mitigation of migration barriers

Barrier removal in rivers has accelerated rapidly in North Amer-
ica, and now Europe, over recent years, with the realisation that
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removal of redundant dams can re-institute natural hydrological,
geomorphological, and ecological processes that are critical to
the functioning of rivers (Poff and Hart, 2002; Birnie-Gauvin
et al., 2017). This issue is contentious in the Great Lakes where bar-
riers are a key method for restricting the distribution of non-native
sea lamprey (Docker and Hume, 2019), but selective fish passage
has become a research priority for the Great Lakes Fishery Com-
mission in recent years and a dedicated research facility to test this
approach is being constructed on the Boardman River, Michigan, U.
S.A. (Marsden and Siefkes, 2019). Outside the Great Lakes region,
barrier removal is a high priority conservation action to stimulate
recovery of lamprey populations, especially migratory ones
(Docker and Hume, 2019). Where dams have been removed, rapid
upstream colonisation and increased abundance have been
observed for native sea lamprey (Hogg et al., 2013; Lasne et al.,
2014; Kynard and Horgan, 2019) and for Pacific lamprey (Moser
and Paradis, 2017).

Worldwide, mitigation of barriers to fish movement, through
incorporation or retrofitting of fishways, has increased markedly
since the mid-20th Century (Silva et al., 2018). Concurrently, in
many regions, there has been a shift from fishways that are
designed predominantly for a few taxa such as salmonids (Clay,
1995) to those that cater for broader fish communities (Silva
et al., 2018). Specific consideration of lamprey passage, however,
is still in its infancy. Technical fishway designs may be inefficient
at facilitating lamprey passage (Foulds and Lucas, 2013), and speci-
fic solutions for lamprey have been explored (Moser et al., 2011).
Assessment of fishway effectiveness and the development of
lamprey-specific fishway solutions have focused predominantly
on Northern Hemisphere lamprey species, particularly Pacific, sea
and European river lamprey (Goodman and Reid, 2017; Castro-
Santos et al., 2017; Tummers et al., 2018). In contrast, research into
the mitigation of migration barriers for other lamprey species,
including pouched and short-headed lampreys [Mordacia mordax
(Richardson, 1846)] in the Southern Hemisphere, has been lacking.

Since the 1920s, the River Murray in south-eastern Australia,
has been regulated by tidal barrages adjacent to the river mouth,
a series of 14 main channel weirs and two large headwater dams.
Since 2000, a variety of fishways (e.g. vertical slot, Denil, fish-locks)
have been incorporated into all mainstem migration barriers in the
system, potentially facilitating fish passage along 2000 km of the
river (Barrett and Mallen-Cooper, 2006). Pouched and short-
headed lampreys are native to the River Murray; and whilst quan-
titative historical data on the abundance of these species is scant,
lamprey were considered common in the system prior to river reg-
ulation (Potter and Strahan, 1968). However, after construction of
barrages and weirs, the species have been seldom encountered.

Post construction of fishways at the River Murray tidal barrages,
pouched and short-headed lamprey have become more prevalent
(Bice et al., 2018). Using passive integrated transponder (PIT) tags
and readers located in all mainstem fishways, it has recently been
established that pouched lamprey are effectively utilising sequen-
tial vertical slot fishways and migrating large distances (>800 km)
upstream in the River Murray, with migration rates of up to
40 km day�1 (Fig. 2; Bice et al., 2019). Small numbers (tens) of
short-headed lamprey are now also passing through the tidal bar-
rage fishways and have been detected as far as 400 km upstream
(B. Zampatti, unpubl. data).

Restoration of migratory lampreys in catchments with depleted or
extirpated populations

Although provision of longitudinal connectivity within river
catchments is fundamental to achieving recovery of migratory
lamprey populations (Docker and Hume, 2019; Moser et al.,
2021), if migratory lampreys have been lost from a catchment,



Fig. 2. Migration of pouched lamprey in the Murray-Darling Basin, Australia showing the location of tagging at the tidal barrages (a), the distribution of weirs and locks in the
lower river (a) at which PIT-tagged lamprey were detected in fishways, and the rate of upstream progress by several tagged lamprey (b).
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restoration relies upon natural or supported recolonization. In a
review of the recolonization capacity by anadromous fishes, Pess
et al. (2014) predicted that sea lamprey are quick to extend their
range into suitable habitat upstream of dam(s) removed within a
river they already occupy, but slow to colonise unoccupied neigh-
bouring rivers. Their conceptual model for lamprey is based on the
knowledge that, unlike salmon, sea lamprey do not home to natal
streams (Bergstedt and Seelye, 1995; Waldman et al., 2008).
Instead, adult sea lamprey enter rivers with larval odour
(Sorensen et al., 2005; Moser et al., 2015a), and penetrate
upstream into unoccupied reaches, making colonisation of unin-
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habited catchments a slow process. The effect of larval odour from
non-migratory brook lampreys on recolonization by parasitic,
migratory lampreys (e.g. sea lamprey) has not been adequately
addressed in Pess et al.’s model, but has potential relevance to lam-
prey population restoration (Gaudron and Lucas, 2006; Hansen
et al., 2016), as well as to pest sea lamprey control. Although the
idea of releasing synthetic larval and/or sex pheromone has been
suggested for lamprey conservation purposes (Hansen et al.,
2016), it has not yet been attempted. Costs of doing so would be
considerable and, to date, synthetic sea lamprey larval pheromone
appears to be incomplete in composition, because upstream move-
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ment for Great Lakes sea lamprey in river habitats has not been
demonstrated (Siefkes, 2017). Translocation of Pacific lamprey to
subcatchments with depleted lamprey numbers has the potential
to generate positive feedback to support natural repopulation
through pheromone-based attraction, and seems promising but
needs to be tested more thoroughly (Ward et al., 2012; CRITFC,
2018). However, lamprey migrating into or translocated to sub-
catchments with degraded habitat may be metapopulation sinks
(Lucas et al., 2009; M. Moser, pers. comm.). The same is true of
lamprey rearing and stocking if survival is poor and genotypes
are not fitted to the local environment (Aronsuu et al., 2019).

Anadromous sea lamprey have an extraordinary capacity to
recolonise river reaches that were historically used by the species,
but which were unavailable for decades due to damming. Re-
establishing river continuity either by barrier removal, or mitiga-
tion by the provision of an effective fishway has proven to be a
good solution, at least in river basins where a residual population
remained downstream from the first unpassable barrier (Pereira
et al., 2019; Moser et al., 2021). This ‘‘pioneer” behaviour must
have been very useful when lamprey encountered a natural barrier
(e.g. small waterfalls) that were insurmountable in dry years, but
occasionally became submerged during large floods, allowing lam-
prey to colonize productive upstream reaches. This is known in the
southern Iberian Peninsula, where rivers have variable discharge
regimes, as for the River Guadiana, where the Pulo do Lobo falls
prevented upstream migration of anadromous fish in many years
yet sea lamprey historically occurred upstream of the falls, hun-
dreds of kilometres from the river mouth (Mateus et al., 2012).
Intermittently flowing rivers are not high-quality environments
for lampreys, and this is probably why such rivers on the south-
west Iberian coast (i.e., Alentejo) and in the Algarve (except for
the Guadiana, which is permanently flowing), both in Portugal,
do not have lampreys (Mateus et al., 2012). Because all lamprey
species are semelparous, for anadromous populations choice of
river basin for spawning has extreme fitness consequences,
because once maturing anadromous lamprey adopt freshwater
osmoregulation, it appears this cannot be reversed (Ferreira-
Martins et al., 2016). So there is no turning back to sea, to seek
an alternative river basin. Attraction to larval odour plumes whilst
still in coastal waters (Moser et al., 2015a) could explain why there
are some gaps in sea lamprey distribution in Portugal (between
rivers Tagus and Guadiana) and support Pess et al.’s (2014) hypoth-
esis (see above) and the findings of Massiot-Granier et al. (2018),
regarding lamprey colonization patterns.

Ecologically sensitive river flow management and hydropower
planning

Damming, including for hydropower dams, has had dramatic
impacts on migratory lamprey abundance (Maitland et al., 2015;
Clemens et al., 2017). The magnitude of emerging hydropower
developments in regions like Chile also threatens the sustainability
of the riverine landscapes and the conservation of diadromous spe-
cies (Habit et al., 2019). Fragmentation of river networks by one or
multiple barriers, and the imposition of new hydrological regimes
will impact lampreys. In Chile the exploitable hydropower poten-
tial is estimated at 11 GW, spread across about 1500 sites, mainly
located in central Chile (ChileanMinistry of Energy, 2016). The pro-
jected 6.8-fold increase in barriers to fish movement will increase
the already highly fragmented nature of rivers in central Chile
(Díaz et al., 2019, Fig. 3).

Even though Chilean dam projects undergo an environmental
impact assessment, none have been built yet with fishways. As a
result, migratory species like pouched lamprey and diadromous
populations of the native galaxiid [Galaxias maculatus (Jenyns,
1842)] have significantly reduced their distribution ranges in Chile
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(Habit et al., 2010). Both species are either absent or in very low
abundance in highly fragmented river networks from central Chile
(Díaz, 2019), where they were previously present and abundant
(Neira, 1984; Dyer, 2000; Habit et al., 2006). It is estimated that
the distribution range of pouched lamprey has been reduced by
at least 380 km from North to South in Chile (Reyes et al., 2017).
In rivers like the Biobío, the river with the highest species richness
of aquatic vertebrates in Chile, pouched lamprey remains present
only in lower tributaries of the Coastal mountain range. It was
extirpated from the upper Biobío (‘‘Alto Biobío”) following con-
struction of three large dams in the main river (Pangue in 1996;
Ralco in 2002 and Angostura in 2014). These dams have blocked
the migratory routes of pouched lamprey to several tributaries of
the upper catchment where it was historically abundant (Campos
et al., 1993). Although some local Chilean people might support
fishways to benefit salmonids, given that non-native salmonid
fisheries support tourism there, to do so would also encourage
the spread of non-native fishes; the cost-benefit is, as yet, unclear.

Much less information is available for Chilean lamprey, endemic
to Chile. Currently there are few reports of this lamprey, and its
biology is still largely unknown. It was frequently reported for
the Andalién River, a small basin of the coastal mountain range
located in Central Chile (Ruiz, 1993; Habit and Victoriano, 2005),
which has been increasingly channelized since 2007 (Ortiz-
Sandoval et al., 2009). There are no new records of Chilean lamprey
in that river since 2007.

In dryland rivers, including in the Iberian Peninsula, Australia
and California, river regulation can severely alter the magnitude
and temporal patterns of natural flow regimes (Kingsford, 2006).
Better implementation of ecological flows is needed but can be dif-
ficult to achieve in these water-scare regions. For example, in Aus-
tralia’s Murray-Darling Basin (MDB), flow storage and abstraction
have reduced total end-of-system discharge by �65%, and in con-
junction with rainfall drought, the Basin may now cease flowing
to the sea for years at a time (Walker, 2006; Zampatti et al.,
2010). In its natural state, the River Murray was perennial, with
persistent end-of-system discharge (Mallen-Cooper and Zampatti,
2018). Post-regulation, it has been common for the tidal barrages
to be closed, and for freshwater flow to the estuary/sea to cease
through autumn and winter, the latter being a key period for the
upstream migration of pouched lamprey. It is likely that this prac-
tice, along with the physical impediments of regulating structures,
has contributed to the decline of lamprey in the MDB.

In recognition of these impacts, the movement and recruitment
of diadromous fishes now form specific objectives under environ-
mental watering strategies in the MDB (Murray-Darling Basin
Authority, 2014). As such, since 2015, specific allocations of envi-
ronmental water have been provided to facilitate the year-round
discharge of fresh water through the tidal barrages, including fish-
ways, to facilitate the spawning and juvenile migrations of
catadromous and anadromous species (Bice et al., 2018). This
improved hydrological and physical connectivity aims to rehabili-
tate the spatial distribution and abundance of lamprey in the MDB
(Murray-Darling Basin Authority, 2014).

Climate change

Understanding how climate change can impact lamprey species
is imperative to their conservation. Temperatures on earth have
increased over the last three decades, precipitation patterns are
changingandsnowand ice aremelting, affectinghydrologic systems
worldwide (IPCC, 2014). How lamprey species react and potentially
adapt to a changing climate is dependent on their life history strate-
gies, native range and vulnerability to rising temperatures and
changinghydrologic regimes. Thermal toleranceof lampreys is quite
well known for some species and life stages (Dawson et al., 2015;



Fig. 3. Current (2018) and future (2050) fragmentation scenarios in river basins of central Chile in relation to planned water infrastructure development. Fragmentation will
reduce river connectivity for migratory fish species including lampreys, especially in the Aconcagua, Maipel and Rapel, and alter hydrological conditions, impacting fluvial
habitats for native species.
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Lennox et al., 2020). Due to the importance of soft-sediment habitat
and gravel for larval and adult spawner life stages respectively,
changes in the availability and distribution of appropriate sediment
size fractions resulting from altered catchment hydrology and
hydrogeomorphology could be important in determining lamprey
population responses (Lennox et al., 2020). Hughes (2000) proposed
that climate change could have major impacts on species and the
communities to which they belong. The IPCC (2014) reported that
many freshwater and marine species have already shifted their
ranges andmigration patterns, seasonal activities and species inter-
actions in response to ongoing climate change.

Increasing temperatures are impacting physiological processes
in lampreys, for example, the survival rate of Pacific lamprey
embryos (Meeuwig et al., 2005) and growth rates of Arctic lamprey
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larvae (Arakawa, 2018) decrease when temperatures rise. Pheno-
logical changes resulting from increasing temperatures, changes
in precipitation patterns and shifts in the hydrograph are impact-
ing lamprey species worldwide (McCann et al., 2018). Record set-
ting high temperatures induced early spawning in American
brook lamprey [Lethenteron appendix (DeKay, 1842)] (Cochran
et al., 2012). Spawning was delayed and potentially precluded alto-
gether in chestnut lamprey due to unseasonably high flows
(Cochran, 2014) indicating that shifts in the hydrograph due to cli-
mate change could have an impact on lampreys. The distribution of
native sea lamprey is shifting northward due to a decrease in habi-
tat suitability at the southern extent of its range, including Italian
basins and the Iberian Peninsula, and an opening of favourable
basins in Iceland and Sweden (Lassalle et al., 2008; Lassalle and
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Rochard, 2009), although to date, sea lamprey in Iceland have not
been recorded spawning (Pereira et al., 2012). Two species of
anadromous lampreys, pouched lamprey and short-headed lam-
prey, are among the freshwater fish species in southeastern Aus-
tralia whose occurrences are projected to decline substantially
due to climate change (Bond et al., 2011). Dramatic decreases in
precipitation in Iran have led to severe drought, compounded by
the long-term effects of dams and weirs. The Caspian lamprey
has consequently lost one of its major spawning grounds in the
southern Caspian Sea basin (Nazari et al., 2017). Loss of Arctic lam-
prey in southern parts of Japan, due to shifts in distribution, has
forced changes to the fishing culture there (Wang et al., 2021).

What research and conservation actions should be prioritized to
mitigate potential climate change impacts to lampreys? Conduct-
ing species-specific vulnerability assessments to learn how lam-
preys and their habitats will respond to climate change is critical.
Lampreys are inherently resilient which has allowed them to inha-
bit the earth for hundreds of millions of years. Some lampreys,
such as Laurentian Great Lakes sea lamprey, may benefit from a
warming climate (Lennox et al., 2020), but many others will suffer
from loss of habitat and range contraction. Surveys and modelling
for detecting shifts in distribution should be increased. Distribu-
tion and abundance surveys of host populations should be con-
ducted. It is critical to implement restoration actions such as
barrier removal and habitat rehabilitation to restore stream com-
plexity, as this will likely increase population resilience and effec-
tive population size. Finally, recognizing lampreys and the
potential impacts from climate change in conservation and
restoration plans worldwide will help protect vulnerable popula-
tions of lampreys and their habitats.

Emerging research opportunities and challenges

Lamprey passage solutions

Barrier removal is undoubtedly the preferred solution for
improving habitat connectivity and quality for lampreys (Birnie-
Gauvin et al., 2017). Nevertheless, it is often not feasible, and pro-
vision of fishways suitable for lampreys, or specific to lampreys, is
a more common mitigation. Designing effective lamprey passes is
still an evolving field and needs improved understanding of the
behavioural, kinematic and physiological attributes of lamprey
movement towards, and passage past, obstacles/fishways (Silva
et al., 2018; Moser et al., 2021) through experimental studies.
Whilst consideration of lamprey passage at migration barriers
has increased substantially in the Northern Hemisphere (Moser
et al., 2011; Tummers et al., 2018; Ackerman et al., 2019; Pereira
et al., 2019), studies concerning Southern Hemisphere lamprey
are scarce, with just one published study investigating the utility
of a rock-ramp fishway for pouched lamprey passage in south-
western Australia (Beatty et al., 2007). The effectiveness of alterna-
tive fishway designs or approaches to barrier mitigation, remain
relatively unexplored for Southern Hemisphere lampreys, although
laboratory tests of lamprey-specific ramps are underway in New
Zealand (C. Baker, pers. comm.).

Following construction of a series of low-gradient (1:23 and
1:32 slope) vertical-slot fishways at sequential weirs along the
River Murray, Australia, biological assessment demonstrated that
the fishways facilitated the passage of a wide range of fish species
and sizes (Baumgartner et al., 2014). Lamprey, however, were
absent at the time of assessment. More recently, fish sampling at
the River Murray tidal barrages has enabled the tagging of pouched
lamprey with PIT tags and subsequent assessment of lamprey pas-
sage through the vertical slot fishways further upstream (Bice
et al., 2019). Passage efficiency was 71–100% and 78–100% for
the 1:23 and 1:32 slope vertical slot fishways, respectively, and
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ascent rates varied with fishway slope and length, with longer
and steeper fishways characterised by longer ascent times. The
physiological implications of longer ascents in steeper (more tur-
bulent) vertical-slot fishways remain to be explored. Nevertheless,
both fishway designs effectively facilitate the passage of pouched
lamprey and may also be suitable for other lamprey species.

A glaring knowledge gap remains the migratory behaviour and
mitigation of barriers to the downstream movement of post-
metamorphic juveniles of almost all migratory lamprey species.
Potential impacts include behavioural responses to altered flow
regimes (e.g. timing or seasonality of flow), and the physical and
hydraulic impacts of dams and weirs, and their attendant reser-
voirs (Moursund et al., 2003; Moser et al., 2015b). Although screen-
ing may be applied at hydropower facilities and other water
offtakes, many are designed for salmonid juveniles and the water
approach velocities, and bar spacings often result in high levels
of impingement (Moser et al., 2015b). Finely-pored travelling
screens have been found to be much more successful than louvers
for downstream-migrating juvenile lamprey but more research is
needed (Goodman et al., 2017). Consideration of bidirectional
connectivity and the effects of barriers on upstream and down-
stream migrating life stages, is essential to the conservation of
diadromous fishes (Calles and Greenberg, 2009), and these data
are urgently required for many lamprey species.

Environmental DNA

Sampling lampreys is a time and labour-intensive process
(Moser et al., 2007), yet meaningful conservation actions will
require more effective monitoring of the distribution and abun-
dance of lampreys. Conventional larval sampling is limited by dif-
ficulties in identification to species level, especially in the field.
Therefore, the recent development of environmental DNA (eDNA)
assays for several lamprey species has strong potential for use in
routine sampling of lamprey distribution on a wider scale than is
possible by physical collection (Docker and Hume, 2019). In some
cases, it may also have the potential to infer abundance and quan-
titative DNA sampling is likely to improve dramatically in the next
decade. Species-specific eDNA rather than eDNA metabarcoding is
likely to be most valuable for lamprey conservation criteria due to
the greater sensitivity of the former (Gustavson et al., 2015;
Gingera et al., 2016; Schloesser et al., 2018).

Currently several species-specific eDNA assays are available
including for sea lamprey (Gustavson et al., 2015; Gingera et al.,
2016; Schloesser et al., 2018), as well as other assays that work
for genera, such as Entosphenus, but do not distinguish between
species (Ostberg et al., 2018). Calibration of qPCR with field obser-
vation or manipulation is beginning to demonstrate that spatial
and temporal peaks in eDNA can reveal biologically meaningful
patterns of lamprey biomass within rivers, as shown for sea lam-
prey in Irish catchments (Bracken et al., 2019). Given the problems
of conventional sampling and lack of morphological distinction
between larvae of closely related species, such as European river
and brook lampreys, a major opportunity and challenge for eDNA
is to improve upon that limitation. Currently this is not possible
but could be solved by using an assay based upon species-
specific or, more likely, population-specific, single nucleotide poly-
morphisms (SNPs). Several research groups (e.g. Zancolli et al.,
2018) are developing these methods and routine monitoring may
be achievable within the next decade or so.

Parasitic feeding-phase lampreys in marine and large lake
environments

For native lampreys, the ecology and behaviour of juveniles at
sea or in large lakes remains a ‘black box’ for which scarce informa-
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tion is currently available (Silva et al., 2014; Hansen et al., 2016;
Clemens et al., 2019). As a result, we do not currently know how
important this life stage is for lamprey species conservation, irre-
spective of the difficulty of making conservation interventions for
lampreys at sea. Anadromous lampreys can attain up to 99% of
total growth in weight during this stage so it is crucial to their
reproductive potential (Silva et al., 2016a). Missing information
includes: how lampreys disperse at sea, their distribution at sea,
and the degree of exchange of individuals between river basins
(due to a lack of natal homing) including from a source-sink per-
spective (but see Mateus et al., 2021, for hypotheses). How para-
sitic lampreys select and move between prey items is poorly
known, as are feeding rates (Renaud and Cochran, 2019). Although
Kitchell and Breck (1980) developed a bioenergetics model for
Great Lakes sea lamprey, issues such as its applicability to anadro-
mous sea lamprey, other parasitic lamprey species, and the effects
of different environments remain to be tested. Survival rates of
lampreys at sea are also largely absent (Hume et al., 2021 - a),
impacts of overfishing on prey populations and exploitation rates
are sparse, and return movement to inshore waters and transition
back to rivers is currently only investigated in the Great Lakes
(Meckley et al., 2014, 2017).

To help solve these knowledge gaps, better use needs to bemade
of systematic and opportunistic sampling at sea and in lakes (Hume
et al., 2021 - b). For some species, such as European river lamprey,
water intakes from coastal power stations have provided valuable
year-round sampling mechanisms (Maitland et al., 1984), but these
only provide point-sample locations, close to shore. Data from
oceanographic expeditions and fisheries can provide relevant infor-
mation on the biology and ecology of lamprey species at sea
(Beamish, 1980; Halliday, 1991; Orlov et al., 2009, 2014, 2008;
Murauskas et al., 2013; Silva et al., 2016a, 2014). Combination of
oceanic capture, tagging with PIT tags and automated telemetry in
the Columbia River demonstrated transoceanic migration in a Paci-
fic lamprey from the Bering Sea to the Columbia River (Murauskas
et al., 2019). In general, however, lamprey captures are rare at sea.
For example, despite intensive, standardised research vessel fish
surveys in the North Sea, Celtic Sea and Baltic Sea (1977–2013),
sea lamprey and European river lamprey records are scarce, usually
with just a few records per year (Heesen et al., 2015).

In almost all marine fisheries surveys, lamprey samples are
obtained as non-target bycatch, recording may be incomplete, and
raw capture data are not readily accessible to many lamprey biolo-
gists. Normally lamprey detach from their host during the capture
and landing process and may be susceptible to escaping through
most larger-meshed net gears. Further research is needed to explore
patterns of lamprey records at sea. For example, in theNorth Sea, the
two most important producers of European river lamprey are likely
the Humber (England) river basin on the west coast and the Elbe
(Germany) river basin on the south east coast, and although Euro-
pean river lamprey records are spread in coastal waters around
the Elbe outflow, they are rare around the Humber (Heesen et al.,
2015). Whether this reflects different dispersal patterns from these
estuaries or spatial bias in capture probability by differing gears
remains to be determined. Besides lamprey captures, analysis of
woundsmadeby lampreys to their prey is also auseful sourceof data
concerning distribution and the timing of occurrence of parasitic
feeding phase lampreys in particular localities (Lantry et al., 2015;
Silva et al., 2014; Weitkamp et al., 2015). Therefore, in addition to
information from scientific surveys, better communication with,
and education of, commercial fisheries is needed to enable them to
supply more and better records of incidental lamprey captures, or
prey with fresh sucker wounds, during their fishing.

Molecular tools are also expected to play an important role in
lamprey studies at sea. Thus, population genetics has been used to
advance this field, and future studies will better identify stocks
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and exchange of lampreys between river basins (Mateus et al.,
2021). Otolith microchemistry has proved to be a useful tool for
diadromous teleost species to determine natal origin and move-
ments between habitats (Walther and Limburg, 2012; Martin
et al., 2015; Nachón et al., 2020). In lampreys, attempts to use sta-
tolith microchemistry to reconstruct movements between habitats
have not been so successful, because the elements in statoliths
appear more labile (Howe et al., 2013; Lochet et al., 2014, 2013).
DNA metabarcoding has also been suggested as a promising tool to
characterize the diet of juvenile lampreys (Shink et al., 2019), aswell
as stable isotope analyses (Adams et al., 2008; Harvey et al., 2008;
Inger et al., 2010; Miles et al., 2014). Analyses of fatty acid profiles
have also been used to advance knowledge of the parasitic phase
of sea lamprey (Happel et al., 2017; Lança et al., 2014). Therefore,
molecular techniqueswill likelyunderpin future advances inknowl-
edge regarding the trophic phase of anadromous lampreys.

Telemetry will be a key methodology in improving our under-
standing of lamprey distribution during the growth phase at sea
or in large lakes and, in particular, the outmigration phase of juve-
nile lampreys. The small size of emigrating juvenile lampreys has
made it a challenge to tag them. PIT tags as small as 8 mm in length
(and hence, PIT tagged lamprey) can be detected at sea post-
capture, or with specialised trawls fitted with antennas (Cooke
et al., 2012), or upon re-entry to a stream or fishway fitted with
a PIT station, but such methods give a low probability of detection
(hence requiring large sample size) and crude spatial information.
Detection of PIT tags in coastal seabird colonies, as at the mouth of
the Columbia River (Evans et al., 2012), could be a useful method of
recording predation mortality during the estuarine and coastal
outmigration of lampreys. Until recently, battery-powered tags
have been too large to tag juvenile lampreys, but new micro-
acoustic tags (12 � 2 mm, 0.08 g, 30-day life) for juvenile eels
and lampreys (Mueller et al., 2019), using the 416 KHz JSATS sys-
tem, make tracking of outmigrating lampreys in the marine envi-
ronment a future possibility. Estuaries and the coastal marine
zone are noisy environments (Cooke et al., 2012), and it is likely
that omnidirectional receivers would have to be positioned 50–
200 m from one another to maximise detection probability. Conse-
quently, estuarine and coastal tracking of outmigrating juvenile
lamprey would require a substantial array of receivers. Currently,
tracking is concentrating on understanding the behaviour of juve-
nile lamprey at large dam forebays for Pacific lamprey (M. Moser,
pers. comm.) and in the outlet regions of Great Lakes streams for
invasive sea lamprey (M. Wagner, pers. comm.), both much quieter
environments than in estuaries or at sea. Nevertheless, building on
experiences from those studies and with a substantial budget it
will be possible, within the next decade, to track juvenile anadro-
mous lampreys at sea.
Conclusions

It is an exciting, but worrying, time to be conserving and
researching lampreys. On the one hand, we have an outstanding
model taxon that presents a host of intriguing questions across
fields of evolution, physiology, behaviour, ecology and develop-
ment to name a few. Native lampreys are less misunderstood
and more appreciated by stakeholders now than they were for dec-
ades; and we have new methods becoming available that can pro-
vide key information needed to inform conservation of these
lampreys. There is a surge of interest in river restoration with bar-
rier removals, habitat reinstatement, ecological flow provision and
better pollution control, often using protected species legislation
for lampreys as leverage in support of these. On the other hand,
there is a strong risk that some lamprey species and habitats
may be lost before we can characterise and understand them. Con-
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sequently, there is an urgency in lamprey conservation to prioritize
information exchange and the establishment of best practises. An
international lamprey meeting on a regular 2–4 year cycle might
be one way of facilitating this. It has been said that control and
conservation are two sides of the same coin in lamprey biology
applications (Docker and Hume, 2019), and there is no doubt that
knowledge transfer with the invasive sea lamprey control pro-
gramme remains a key element to developing effective lamprey
conservation initiatives.
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