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Abstract: Robust forecasting of wind speed values is a key element to effectively accommodate renewable 
generation from wind in smart power systems. However, the stochastic nature of wind and the uncertainties 
associated with it impose high challenge in its forecasting. In this paper, a new method for forecasting wind speed in 
renewable energy generation is introduced. The goal of the method is to provide a forecast in the form of an interval, 
that is determined by a mean value and the variance around the mean. In particular, the forecasting interval is 
produced according to a two-step process: in the first step, a set of individual kernel modelled Gaussian processes 
(GP) are utilized to provide a respective set of interval forecasts, i.e. mean and variance values, over the future 
values of the wind. In the second step, the individual forecasts are evaluated using a fuzzy driven multiplexer, which 
selects one of them. The final output of the methodology is a single interval that has been identified as the best 
among the GP models. The presented methodology is tested on set of real-world data and benchmarked against the 
individual GPs as well as the autoregressive moving average model. 
 
Keywords: Wind speed forecasting, fuzzy logic, multiplexing, Gaussian processes, renewable power systems, 
machine learning. 
 

Nomenclature 

𝑘(𝑥1, 𝑥2) kernel function (a.k.a. kernel) 

𝑥𝑥  input vector 

𝑓(𝑥𝑥)  basis function 

𝑓(𝑥𝑥)𝑇  transpose of a function 

𝑦(𝑥, 𝑤)  output function 

𝑤  regression weights 
𝑃()  probability 

𝑁()  Normal distribution 

𝜎𝑤
2   weight variance 

𝐼  identity matrix 

𝐶𝑦  covariance of function y 

𝐶  covariance matrix 

𝑡(𝑛)  target for input n 

𝜀𝑛  noise error 
𝐾  kernel matrix 
tN  vector of N targets 
xN  vector of N inputs 
xN+1  input for datapoint N+1 
tN+1  target for datapoint N+1 
KN   covariance matrix of the N observations 
k   variance value of the input xN+1 
𝜇𝐴(𝑥)  membership function of fuzzy set A 

{𝑥𝐽 , 𝜇𝐴(𝑥𝐽)} fuzzy singleton 

�̃�  modified input vector 

𝛤(ℎ1)  gamma function 
φ, h  parameters of the kernel 
𝑅𝑡   real value at point t 

𝑃𝑡  predicted value at point t  
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1. Introduction  

Integration of renewable sources into the power generation portfolio with prudent and alacrity, is an essential 
springboard for attaining sustainable energy [1]. It has been identified that one way to efficiently integrate renewables 
in the current power systems is via smart grid technologies. The smart grid, which couples the power infrastructure 
with information technologies, accommodates the intelligent management of renewable energy aiming at maximizing 
its utilization and minimizing its cost [2]. 

One of the preeminent sources of renewable energy is the wind. Wind is the driving force behind power 
generation from wind farms [3]. Wind farms may provide sustainable and clean energy and their integration to the 
power grid consists one of the grand challenges according to the US Department of Energy. The latter has set as its 
goal to have 20% of the total power generated by wind by 2030 [4]. 

One of the factors that will profoundly play a role in attaining the above goal is the utilization of data and 
machine learning technologies [5]. In particular, collection, storage and processing of data accommodates 
optimization of the decision-making process pertained to power grid operation. Furthermore, operational decisions 
are associated with planning and the evaluation of the cost/benefit trade-off derived from the planned actions. 
Regarding wind power, the parameter of interest to make optimal decisions is the wind speed at any time instance 
[6]. Notably, forecasting of wind speed is required to efficiently utilize the generated power. 

Wind speed forecasting is performed in various time horizons that are categorized as short-, medium-, and 
long term [7]. Time horizons, which might differ in absolute time, are determined in order satisfy different goals 
pertained to grid operation. Independently of the horizon length, accuracy is of paramount importance in forecasting. 
However, the speed of wind depends on several unpredictable and yet unknown factors that make forecasting a 
highly complex and challenging problem [8]. 

To overcome the challenges imposed in wind speed forecasting for renewable energy generation the research 
community has proposed several methods. The majority of those are data driven and adopt tools from the areas of 
statistics and machine learning. For instance, in [9] a method that utilizes support vector machines (SVM) is discussed, 
while in [10] a method that combines SVM and variational mode decomposition is introduced. Neural networks have 
been applied and tested for wind speed forecasting as a standalone tool in [11] and [12], and in combination with 
wavelets in [13], and fuzzy logic in [14]. Furthermore, deep neural networks as wind speed forecasters have been 
proposed in [15] and [16], and the deep autoencoder in [17]. The synergism of wavelets with autoregressive 
integrated moving average (ARIMA) has been introduced for short term forecasting in [18], while the synergism of 
wavelets with SVM in [19]. Other methods that have been proposed are based on the use of polynomial 
autoregression [20], and Gaussian processes with particle swarm optimization (PSO) [21]. In addition, a hybrid 
method that uses data mining models, genetic algorithms and particle swarm optimization is described in [22], while 
a sophisticated method that utilizes variational mode decomposition and feedforward neural networks is presented 
in [23]. The aforementioned methods are only a small subset of the wind forecasting methods that exist in the 
literature. Admittedly, there is a plethora of forecasting methods with their own advantages and disadvantages. It 
should be noted that most of the proposed methods focus on providing a point forecast of the speed rather than 
providing an interval of values, hence overlooking the inherent uncertainty of the wind speed measurements. Except 
for forecasting, there are several solutions that directly handle scheduling of power generation using renewables and 
the imposed constraints; such a solution is given in [24], where an optimization problem is set that takes into 
consideration the chance constraints introduced by renewable sources. Though these solutions are adequate for 
providing optimal schedules, they are computationally inefficient since they require the setup of a large number of 
constraints that make them impractical for real time applications. Therefore, the use of forecasting is a computational 
efficient method for controlling and managing the power system, while handling uncertainties in a way that allows the 
real time management of renewable generation. 

In this work, a new intelligent method that provides a forecast in the form of an interval of values over the future 
wind speed is proposed. A forecasting interval is defined as a range of values within it is most likely that the actual 
value will lie. As opposed to the point estimate, which provides one value, the interval provides more than one value. 
However, it is desirable in estimation problems that the interval is as narrow as possible. The interval is constructed 
by a multiplexer implemented as a fuzzy inference mechanism [25] that combines a set of various kernel-modelled 
Gaussian processes (GP) [26]. It should be noted, that the proposed method is built upon the assumption that “the 
future will be similar to the most recent past”. To that end, the method implements two steps; in the first step it 
identifies the model that fits the observations of the most recent past and in the second step that model is used for 
short term forecasting [26]. The contribution of the paper contains: i) a new method for wind speed interval forecasting, 
ii) introduction of the novel concept of fuzzy multiplexing in wind speed forecasting, and iii) a novel framework for 
forecasting utilizing various individual and diverse models and thus the method contributes in building diverse 
ensemble models. 

The roadmap of the current paper is as follows: the next section provides a background on the main 
components of the proposed method, while section 3 introduces the wind speed forecasting method. Section 4 
provides and discusses the obtained testing results, and lastly, section 5 concludes the paper by emphasizing the 
main points of the paper. 

2. Background  

 
2.1. Gaussian Process Regression 
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One of the preeminent sets of models in machine learning is that of the kernel machines. A model is identified 
as a kernel machine only when it can be expressed as a function of kernel functions. A kernel function, also known 
as kernel, is any valid mathematical function formulated as [26]: 

 
𝑘(𝑥1, 𝑥2) = 𝑓(𝑥1)𝑇𝑓(𝑥2)                           (1) 

 
where 𝑓(𝑥) is a vector of basis functions. Notably, a kernel takes two values as inputs, while its form determines how 
the output changes with respect to the input. Therefore, it is possible to control the output of the kernel by selecting 
an appropriate form of kernel [26]. For instance, by assuming a linear relation of the data, then a simple choice is the 
linear kernel whose form is given by [27]: 

 
𝑘(𝑥1, 𝑥2) = 𝑥1

𝑇𝑥2                              (2) 
 

where the upper index ·T denotes the transpose of the input vector x1 [26]. 
Gaussian process, which is a random process whose any finite subset of random variables follows a Normal 

multivariate distribution, may be cast into the form of a kernel machine. As kernel machines, GP may be applied to 
regression and classification problems. In this manuscript, GP will be utilized for regression, a scheme known as 
Gaussian process regression (GPR); derivation of GPR framework is briefly given below. 

Below a brief introduction to the Gaussian process regression based on the Bayesian Normal linear model is 
given. This is because GPR can be viewed as Bayesian linear regression with a possibly infinite number of basis 
functions. Consider a function 𝑦(𝑥, 𝑤)  expressed as a linear expansion of 𝑛  bases functions  𝑓 (𝑥) =
( 𝑓1(𝑥), … , 𝑓𝑛(𝑥)),𝑇and  unknown weights 𝑤 = ( 𝑤1, … , 𝑤𝑛),𝑇 as: 

 

𝑦(𝑥, 𝑤) = (𝑓(𝑥))𝑇𝑤 = ∑ 𝑤𝑖𝑓𝑖(𝑥)

𝑛

𝑖=1

                  (3) 

 
for 𝑥 ∈ 𝑋 . 

Further, a Normal prior distribution with zero mean and covariance matrix Σ𝑤is assigned on the regression 

weights with zero mean and covariance matrix Σ𝑤, to account for the uncertainty of the values of the unknown weights 

𝑤: 
 

𝑤~𝑁(0, Σ𝑤).                                (4) 
 
Integrating out the weights in Eq. (3) with respect to the prior distribution in Eq. (4) derives the distribution of 

the output 𝑦(𝑥) at any input 𝑥 as a Gaussian process: 
 

𝑦(·)~𝐺𝑃(𝜇(·), 𝑘(·,· |𝜑))                       (5) 
 

with a covariance function 𝑘(𝑥, 𝑥′|𝜑) = 𝑓 
𝑇(𝑥)Σ𝑤𝑓(𝑥′), and the mean function 𝜇(𝑥) = 0, for any 𝑥, 𝑥′. Here, 𝜑 denotes 

the vector of the unknown parameters involved in the covariance function. 
Assume that there are available 𝑁 pairs of known targets and known inputs, denoted as (𝑡𝑗 , 𝑥𝑗) for 𝑗 = 1, … 𝑁.  

In practice values 𝑡𝑗 = 𝑡(𝑥𝑗) at inputs 𝑥𝑗 are measurements, or observations which are contaminated by noise when 

collected. A computationally convenient assumption is to model them by considering additive Normal noise as: 
 

𝑡𝑗 = 𝑦𝑗 + 𝜀𝑗 ,     𝑗 = 1, … 𝑁                      (6) 

 
where 𝑦𝑗 = 𝑦(𝑥𝑗), and 𝜀𝑗  being the additive Normal noise with zero mean and variance equal to 𝜎 𝑛

2 . Taking into 

consideration Eq. (5) and (6), the joint distribution of vector of targets  𝑡 = (𝑡1, … , , 𝑡𝑁) is a Normal distribution: 
 

𝑡~𝑁(0, 𝐶(𝜑, 𝜎𝑛
2))                                  (7) 

 
where 𝐶(𝜑, 𝜎 

2) is the 𝑁 × 𝑁 covariance matrix of the target values with elements: 
 

[𝐶(𝜑, 𝜎 
2)]𝑗,𝑗′ = 𝑘(𝑥𝑗 , 𝑥𝑗′|𝜑) + 𝜎𝑛

2     , 𝑗, 𝑗′ = 1, … , 𝑁.   (8) 

 
Unknown parameters of the covariance matrix 𝐶(𝜑, 𝜎 

2) can be learned via maximum likelihood (ML) estimation 

(MLE). ML estimates (�̂�, �̂� 
2) of (𝜑, 𝜎 

2) are produced by maximizing the log likelihood. 
 

(�̂�, �̂� 
2) = 𝑎𝑟𝑔𝑚𝑎𝑥(𝜑,𝜎 

2) (−
1

2
log(𝐶(𝜑, 𝜎 

2))                  −
1

2
𝑡𝑇  𝐶(𝜑, 𝜎 

2)𝑡 )                                   (9) 
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Maximization of Eq. (9), can be performed via Newton-Raphson algorithm [28]. Here after, to easy the notation 
the notation 𝐶 = 𝐶(𝜑, 𝜎 

2) is adopted by suspending the dependence on the parameters. 

Often interest lies in predicting the value of 𝑡𝑁+1 = 𝑡(𝑥𝑁+1) at a input  𝑥𝑁+1,   by taking into consideration past 
observations. It has been shown in [26] that the predictive process is a Gaussian process: 

 
𝑦(·)~𝐺𝑃(𝜇∗

 
(·), 𝑘∗(·,·))                      (10) 

 
with mean function: 
 

𝜇∗
 
(𝑥) = 𝒓𝑻(𝑥) 𝑪 

−1𝒕                        (11) 

 
and covariance function:  
 

𝑘∗(𝑥, 𝑥′) = 𝑘(𝑥, 𝑥′) − 𝑟𝑻(𝑥) 𝑪 
−1𝒓(𝒙′)              (12) 

 

where 𝒓𝑻(𝑥) = (𝑘(𝑥 , 𝑥1), … , 𝑘(𝑥 , 𝑥𝑁)), for some future input values 𝑥, 𝑥′. This implies that the predictive distribution 

of target 𝑡𝑁+1 = 𝑡(𝑥𝑁+1) at a input  𝑥𝑁+1  is a Normal distribution with mean𝜇∗
 
(𝑥𝑁+1)  and variance 𝜎  ∗,2(𝑥𝑁+1) =

𝑘∗(𝑥𝑁+1, 𝑥𝑁+1): 
 

𝑡𝑁+1|𝑡1, … , 𝑡𝑁~𝑁 (𝜇∗
 
(𝑥𝑁+1), 𝜎∗,   2(𝑥𝑁+1)).     (13) 

 
It is clear that both the mean and covariance functions of the predictive process/distribution Eq (11) and (12) 

depend on the type of the kernel function 𝑘∗(·,·) chosen. This allows the modeler to control the output of the GPR by 
selecting an appropriate form of the kernel function. 

An advantage of the GPR is that it allows the forming of a new kernel function able to represent complicated 
dependencies by combining simpler/basic kernel functions. Their combination is made by using any of the analytical 
operations, namely, addition, multiplication and exponential. For instance, a simple example of synthesizing a kernel 
by adding two simpler ones is given below: 

 
𝑘(𝑥1, 𝑥2) = 𝑘1(𝑥1, 𝑥2) + 𝑘2(𝑥1, 𝑥2)               (14) 

 
with 𝑘1 and 𝑘2 being two valid kernel functions [29].  

 
2.2 Elements of Fuzzy Logic 

In many practical problems, the use of classical set theory may not be enough for accurate descriptions and 
representation of the problem parameters. Classical set theory treats objects using a binary logic: an object either 
belongs or not to a set. 

In contrast to the classical set theory, fuzzy logic theory assumes that the sets do not have distinct boundaries, 
hence, allowing a single object to partially belong to a set. In other words, an object may belong to a set up to a 
degree, where this degree value is evaluated by the membership function. Every fuzzy set A is determined by its 
membership function that takes the following general form [30]: 

 
𝜇𝐴(𝑥) = [0 1]                                    (15) 

 
where 𝜇𝐴(𝑥) = 0 denotes the absence of the object x from the set 𝐴, while  𝜇𝐴(𝑥) = 1  denotes that the object fully 

belongs to the set. Any other value of μA(x) between 0 and 1 denotes the partially participation of the object 𝑥 to the 

set 𝐴 [30]. 
The notion of an object being member of a set with some degree finds application to both discrete and 

continuous variables. In the case of discrete variables, the membership function comes in the form of pairs (called 
singletons in the fuzzy logic parlance [30]): 

 

𝜇𝐴(𝑥) = {𝑥1, 𝜇𝐴(𝑥1)} … . {𝑥𝐽 , 𝜇𝐴(𝑥𝐽)}         (16) 
 

while in the case of continuous variables the membership function takes the form of a valid analytical continuous 
function evaluated in the domain [0 1]. There are several shapes of functions that have been proposed for 
representing fuzzy sets, for instance, triangular, bell shaped, and trapezoidal. For visualization purposes, Fig. 1 
shows representation of the variable 𝑥 with three fuzzy sets; in that Fig. implicitly it is shown that the strength of fuzzy 
sets is their property of overlapping: some objects belong to more than one sets with different degrees of membership. 

The representation strengths of fuzzy sets, which entail several values under the umbrella of a few functions, 
may also accommodate inference making. To make it clearer, representation of variables with fuzzy sets allows their 
correlation using a set of IF..THEN rules. For instance, assuming a variable x that is represented with fuzzy sets A, 
and B, and a variable y represented with sets Z, and V, then two possible rules that may be defined are the following: 
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Fig. 1.  Illustrative example of fuzzy sets for the variable 

 
 

IF x is A, THEN y is V 
 

IF x is B, THEN y is Z 
 

where the above two rules may fully describe the relation between the two variables no matter the volume of values 
that each set stands for. 

With the above example, it has been clearly demonstrated the representation capabilities of fuzzy logic. 
Adoption of fuzzy sets and the correlation of fuzzy variables via IF..THEN rules offers several computational benefits. 

 
2.3 Multiplexing 

A multiplexer is a term that is coined in the electronics community and has been widely used in the electric 
circuit domain. It is a device that has several inputs and only one input [31]. The goal of the device is to select among 
several inputs and forward one of them in the output. The process of selecting a single input among many is called 
multiplexing; a 4-to-1 multiplexing diagram is depicted in Fig. 2. 

 

 
Fig. 2.  Block diagram of 4-to-1 multiplexer 
 

3. Wind Speed Forecasting  

 
3.1 Problem Statement 

Renewable power generation strongly relies on the inherent stochasticity of wind, and more specifically on the 
random factor that affect the speed of the wind. Therefore, accurate forecasting of the wind speed is a tool that will 
contribute in efficient management of wind sources. Furthermore, the proposed algorithm is scalable given that is it 
independent of the data size and the data time resolution; in other words, it may be used for any forecasting horizon. 

Wind speed is the result of several natural factors that may not be fully modelled or are not fully known. 
Therefore, wind speed is treated as a random variable that may be forecasted by its previous values. In this 
manuscript, our interest lies in the very short-term forecasting and more specifically in an hour ahead of time. 
Performance of the forecasting method is assessed in terms of accuracy and in precision. Accuracy is measured as 
the distance of the predicted value to the true value, while precision is expressed in terms of forecasted variance, 
i.e., the width of the forecast interval. 

 
3.2 Method 

In this section, a new method for wind speed forecasting is described. A simple version of the method had 
been presented in [32]. The goal of the methodology is to perform very-short term forecasting that provides forecasts 
of wind speed in the form of intervals of bundled values. 

The cornerstone of the proposed method is the multiplexing of a set of various Gaussian processes to select 
the GP that will provide us with the most accurate forecast. To that end, our strategy focuses on assessing each of 
the GP model in its most recent forecast activity and select the one that exhibited the best performance. As “best” a 
performance is assessed based on two factors: the accuracy of forecast, and on forecasted variance. Selection of 
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the GP model is performed by a fuzzy inference mechanism. The block diagram of the wind speed forecasting method 
is presented in Fig. 3 where all its steps are clearly shown. 

 

 
 

Fig. 3.  Flow chart of the proposed wind speed forecasting method for hourly ahead forecasting horizon 
 

Initially, a set of five Gaussian processes is adopted, where each of them is equipped with a different kernel 
function as depicted in Fig. 3. The analytical form of the five kernel functions utilized in the forecasting methods are 
given below [26]: 

 
1. Gaussian kernel 

𝑘(𝑥1, 𝑥2) = 𝑒𝑥𝑝 (−
‖𝑥1 − 𝑥2‖2

2𝜎2
)                  (17) 

 
where 𝜎2 is a parameter evaluated using the most recent measurements. 

 
2. Neural Net kernel 

𝑘(𝑥1, 𝑥2) = ℎ0𝑠𝑖𝑛−1 (
2�̃�1

𝑇𝛴�̃�2

√(1 + 2�̃�1
𝑇𝛴�̃�1)(1 + 2�̃�2

𝑇𝛴�̃�2)
) (18) 

 
where �̃� = (1, 𝑥1, … , 𝑥𝐷) 𝑖s a modified input vector, ℎ0 is a scale parameter and 𝜮 is the covariance matrix of the input 
[26]. 

 
3. Matérn kernel 

𝑘(𝑥1, 𝑥2) = (
21−ℎ1

𝛤(ℎ1)
) [

√2ℎ1|𝑥1 − 𝑥2|

ℎ2
]

ℎ1

                          

                                                       × 𝐾ℎ1
(

√2ℎ1|𝑥1 − 𝑥2|

ℎ2
)     (19) 

 
modelled as a function of two positive hyperparameters denoted as h1, h2, and the modified Bessel function 𝐾ℎ1

. 

 
4. Linear kernel 

𝑘(𝑥1, 𝑥2) = ℎ 𝑥1
𝑇𝑥2                                (20) 
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comprised of a scale hyperparameter denoted as ℎ. 

 
5. Quadratic kernel 

𝑘(𝑥1, 𝑥2) = (𝑥1
𝑇𝑥2)2                           (21) 

 
which does not include any parameters. 

 
As shown in Fig. 3, in the next step, the five GP models are exposed to the most recent 5 wind speed 

measurements. Selection of the most 5 measurements is essentially based on previous work as presented in [21], 
[32] and [33]. Those measurements are utilized for evaluating the parameters of the kernel, if needed, a process 
known as training. Furthermore, the trained GP are utilized to reproduce the learned measurements. The reproduced 
measurements are provided in the form of a mean and a variance for each of the five measurements. 

According to Fig. 3, the obtained mean and variance values are forwarded to the fuzzy multiplexing module. 
The multiplexer collects those values and assesses the degree of reproduction: the highest the degree is, the more 
accurate is the learning. Therefore, the multiplexer selects the GP model that provides the highest degree of 
reproduction. In other words, the selection of GP made by the multiplexer is based on the degree of reproduction. 

As shown in the lower part of Fig. 3, the multiplexing selection module is implemented as a fuzzy inference 
engine. The first part of the fuzzy inference encompasses fuzzy modelling of two variables via adoption of appropriate 
fuzzy sets. The variables utilized for selection making are, namely, the accuracy and the precision variables. 

Regarding accuracy, the mean average percentage error (MAPE) measure is adopted (see also Fig. 3) to 
quantify the distance between the five most recent measurements and their reproduced means as taken by the GP 
model. In particular, the MAPE takes the following form: 

 

𝑀𝐴𝑃𝐸 =
100

𝛭
∑ |

𝑅𝑡−𝑃𝑡

𝑅𝑡
|

𝑀

𝑡=1

                       (22) 

 
with M being equal to 5 that is equal to the population of the most recent measurements. The range of values of 
MAPE lies in the interval [0 100] (which is a percentage range), which is spanned by three fuzzy sets as shown in 
Fig. 4. 

Furthermore, a group of three fuzzy sets is also selected for representing precision. In this work, precision is 
computed as the mean variance of the reproduced variance values for the most recent measurements as obtained 
by the GP models: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝛭
∑ 𝑉𝑡

𝐺

𝑀

𝑡=1

                            (23) 

 

where 𝑉𝑡
𝐺 denotes the computed variance of the model G for the measurement 𝑡. 

 

 
Fig. 4.  Fuzzy set representation of the variable MAPE that represents accuracy 
 

The fuzzy representation of the variable precision is depicted in Fig. 5. Notably, the range of values of the 
variable precision is [0, ∞] since precision is a positive measure. 

In addition to the above variables, it is also defined the fuzzy variable reproduction. This variable is essential 
in implementing the fuzzy inference engine given that it plays the role of the output variable of the system as shown 
in Fig. 3. Its range of values coincides with the interval [0 1], and denotes the degree of successful reproduction of 
the measurements by the GP model. In our approach, the higher the value is, the more successful the reproduction 
is. Similarly to the other two variables, the variable reproduction is also fuzzified using three fuzzy sets (LOW, 
MEDIUM, HIHG); its fuzzification is depicted in Fig. 6. 
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Fig. 5.  Fuzzy set representation of the variable precision 
 

 
Fig. 6.  Fuzzy set representation of the output variable reproduction 
 

Having defined the three variables, i.e. two inputs and one output, then we proceed by developing the body of 
the fuzzy inference, i.e. the fuzzy rules (as shown in the lower part of Fig. 3). The goal of the fuzzy inference is to 
correlate the fuzzy sets of the inputs with the sets of the output variable [29]. The fuzzy rules that comprise the 
inference engine in the current work are given below: 

 
1) IF MAPE is LOW, and Precision is HIGH, 

THEN Reproduction is HIGH 
 

2) IF MAPE is LOW, and Precision is MEDIUM, 
THEN Reproduction is MEDIUM 

 
3) IF MAPE is LOW, and Precision is LOW, 

THEN Reproduction is MEDIUM 
 

4) IF MAPE is MEDIUM, and Precision is HIGH, 
THEN Reproduction is LOW 

 
5) IF MAPE is MEDIUM, and Precision is MEDIUM, 

THEN Reproduction is MEDIUM 
 

6) IF MAPE is MEDIUM, and Precision is LOW, 
THEN Reproduction is MEDIUM 

 
7) IF MAPE is HIGH, and Precision is HIGH, 

THEN Reproduction is MEDIUM 
 

8) IF MAPE is HIGH, and Precision is MEDIUM, 
THEN Reproduction is LOW 

 
9) IF MAPE is HIGH, and Precision is LOW, 

THEN Reproduction is LOW 
 

where the population of the rules is equal to 9. Notably, the fuzzy rules have two conditions in the left-hand side, i.e. 
one for each input variable, while there is only one statement in the right-hand side (because there is a single output). 
It should be noted that the rules are developed based upon the linguistic terms of the fuzzy sets, hence, expressing 
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the semantic correlations among the variables. The semantic correlation and subsequently the development of rules 
is conducted empirically based on intuition and the modeler’s strategy – for instance a conservative strategy would 
require the correlation of a few fuzzy sets for every variable while correlate “medium” sets with the “low” ones-. 
Though the rules are written in linguistic terms, they are numerically evaluated. In the current work, the rules are 
evaluated using the Mamdani Min implication operator [30] whose analytical form is given by: 

 

𝜑𝑐(𝜇𝐴(𝑥), 𝜇𝐵(𝑦)) = 𝑚𝑖𝑛(𝜇𝐴(𝑥), 𝜇𝐵(𝑦))      (24) 
 

where A and B are fuzzy sets, and x, y are the input and output values respectively. In this work, the fuzzy rules have 
two conditions in the left-hand right side connected with the operator AND. With respect to fuzzy logic, the operator 
AND is numerically evaluated as the maximum of the two membership values: 
 

𝐴(𝑥) 𝐴𝑁𝐷 𝐵(𝑥) = 𝑚𝑎𝑥(𝜇𝐴(𝑥), 𝜇𝐵(𝑥))          (25) 
 

where A(x) and B(x) are two fuzzy sets (or fuzzy statements, see [29]). 
In a fuzzy inference engine, it is common that more than one rule is fired, i.e. multiple rules are valid at the 

same time, and as a result the output of the engine is a fuzzy set. However, in practical problems, a single value is 
required instead of a fuzzy output. Hence, a defuzzification step is adopted to transform the fuzzy output into a single 
value, known as crisp value [30]. In this work, the Center of Area defuzzification method is adopted whose analytical 
form is given by [30]: 

 

𝑦 =
∑ 𝑦𝑖𝜇𝑜𝑢𝑡(𝑦𝑖)𝑁

𝑖=1

∑ 𝜇𝑜𝑢𝑡 (𝑦𝑖)𝑁
𝑖=1

                             (26) 

 
with 𝑦𝑖  being the elements of the fuzzy set and 𝑁 denotes the element population. The value y computed by Eq. (26) 
is the final output of the fuzzy inference mechanism. The fuzzy inference is iterated five times - equal to population 
of GP models – providing a set of five values.  

The set of five values, which represent the degree of reproduction achieved by the individual GP models, are 
ordered in an ascending order. The model with the highest degree is selected as the final GP model that will be 
utilized for hour ahead wind speed forecasting. It should be noted, that in case of two or more models provide the 
same degree of reproduction, then the model with lowest MAPE is selected. 

In sum, the fuzzy multiplexer selects one out of five models, to subsequently use it to obtain the next hour 
forecast. The presented method is applied every one hour aiming at selecting the most suitable forecasting model at 
each time. Overall, the proposed method aspires to capture the most recent wind speed dynamics by assessing the 
most recent observed data [32]. 

4. Application to Wind Data 

 
4.1. Testing Setup 

The presented wind speed forecasting method is tested on a set of real-world datasets taken from the National 
Renewable Energy Laboratory (NREL) located in Colorado, USA [34]. In the current work, the hourly wind speed 
data measured by NREL for day times 4am-8pm in the annual period of January 1, 2016 - December 31, 2016 is 
used. The following process was followed for obtaining the results: the training data was comprised of the most five 
hourly wind speed observed values, before the targeted hour as mentioned in the previous section. 

The performance of the method is assessed on two dimensions: i) the accuracy of prediction quantified as the 
error between the interval mean and the actual value, and ii) the precision expressed as the average interval width 
achieved by the method. The proposed method is benchmarked against the individual GP models as well as a 
statistical model and more particularly the autoregressive moving average (ARMA) model. 

The results are presented on the average per month accuracy and interval width. The accuracy is computed 
as the Mean Square Error (MSE) given by: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
1

#𝐷
∑(𝑃𝑑 − 𝑅𝑑)2

#𝐷

𝑑=1

                 (27) 

 
with 𝑃𝑑 and 𝑅𝑑 being the forecasted and real value respectively, while #D denotes the number of days per month. 
Likewise, the precision is taken as the interval width is taken as the average per month interval width. Lastly, it should 
be noted that the ARMA forecasted was taken as ARMA(4,1) with the coefficients being evaluated with the Akaike 
Information Criterion (AIC). 

 
4.2 Results 
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In this section, the presented method is applied on the wind speed data and the obtained results are obtained. 
Initially, the average per month MSE obtained for the testing period January 2016 – December 2016 are presented 
in Fig. 7-18. 

Obtained MSE results demonstrate that there is no dominant forecaster, i.e. there is not a single forecaster 
that consistently provides the lowest error. In the first semester, the ARMA forecaster marginally provides the lower 
error for four months, However, for the second semester, ARMA performance significantly deteriorates by providing 
high error forecasts for all six months. 

With regard to the individual GP forecasters, a general observation shows that all of them provide low MSE 
values, while their error values are very close (i.e. within 2 units). In particular, the GP-Quadratic is the best performer 
for month August, and GP-linear for months July and December.  

For the rest six months – February, June, August, September, October, November- the lowest error is obtained 
by the proposed GP-Fuzzy method. It should be noted, that even in the cases that our method is not the best 
performer, it still provides low error values that are close to that respective best performer.    

By focusing only on the GP forecasters (leaving out ARMA) – the individual ones as well the GP-Fuzzy method 
– it is observed that none of them prevails over the others with respect to MSE. Furthermore, the forecasters seem 
to have variations in their performance; for example, the GP-NN provides low errors for 5 months and very high for 
the rest of them. Similar variation is observed for the rest of them with the most characteristic example to the be the 
GP-linear.  

As opposed to the single GP forecasters, the proposed GP-Fuzzy presents a more stable performance. In 
particular, it is observed that the GP-Fuzzy consistently provides low error and its performance is within the lowest 
half at all tested cases. Notably, when all the individual GP forecasters provide performance that is close to each 
other, the GP-fuzzy method provides the best accuracy (i.e., the lowest error). This observation emerges the implicit 
dependency of the GP-fuzzy method with the five individual GP models. Therefore, our method provides a more 
stable forecasting performance over a long period of time (12 months - overall 6300 hourly forecasts), a property that 
is desirable in any type of application. Notably, the proposed GP-Fuzzy is a robust method that provides low error, 
and as a result, it eliminates the requirement to blindly select (or perform extensive and intensive trial and error 
testing for selecting) a specific kernel form for our kernel machine forecaster; selection is difficult given that their 
forecasting performance is not known a priori. Furthermore, the presented GP-fuzzy method handles the forecasting 
diversity: every forecaster may be suitable for a specific dataset or for a specific set of data properties. Hence, the 
advantage of the proposed method is that it provides a method for encompassing the ability of forecaster selection 
based on some recent evidence (i.e., recent measurements) in a fast, transparent and automated way. 

With regard to forecasted interval, the results are presented in Table 1 and Table 2. In particular, the average 
per month width of forecasted interval is presented as it is computed by the GP models. It should be noted that the 
ARMA model is not included in Tables 1-2 given that it provides a point estimation and not an interval of forecasts. 
This may be a considered as shortcoming of ARMA because interval forecasting allows the system operator to 
account for last minute unexpected changes in the operation of the system. Observation of Tables 1-2 shows that, 
with the exception of GP equipped with a Neural Net kernel, the rest forecasters provide intervals with widths of 
similar values. Though the differences in their width are small, it should be noted that there is not a single dominant 
GP forecaster that consistently provides the narrowest interval. Notably, our method provides widths in the narrow 
end of the forecasters list. Similar to MSE criterion, the GP-fuzzy method also exhibits a stable performance with 
respect to interval widths. At this point, the strength of the proposed method once more is emphasized: given that it 
is not known a priori which of the models will provide the best performance, hence, the best  

 
Fig. 7.  Monthly average MSE for January 2016 
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Fig. 8.  Monthly average MSE for February 2016  
  
 

 
Fig. 9.  Monthly average MSE for March 2016 

 
 

 
Fig. 10.  Monthly average MSE for April 2016 

 
Fig. 11.  Monthly average MSE for May 2016 
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Fig. 12.  Monthly average MSE for June 2016 
 
 

 
Fig. 13.  Monthly average MSE for July 2016 

 
 

 
Fig. 14.  Monthly average MSE for August 2016 
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Fig. 15.  Monthly average MSE for September 2016 
 
 

 
Fig. 16.  Monthly average MSE for October 2016 

 
 

Fig. 17.  Monthly average MSE for November 2016 
 

Table 1 Average per month interval width (m/h) for 
the GP forecasters (January-June 2016) 
 Jan Feb Mar Apr May Jun 

GP-
Gaussian 

2.84 
 

2.43 2.97 3.25 3.29 2.82 

GP-NNet 6.79 5.63 7.29 7.98 7.86 5.87 

GP-Matérn 3.06 2.58 3.21 3.49 3.55 3.01 

GP-Linear 3.59 2.99 3.71 4.17 4.17 3.54 

GP-

Quadratic 

2.81 2.41 2.94 3.22 3.25 2.77 

GP-Fuzzy 3.26 2.61 3.40 4.01 3.76 3.10 
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Fig. 18.  Monthly average MSE for December 2016 

 
model cannot be ahead of time selected. However, adoption of the proposed GP-fuzzy method secures a robust 
forecasting output with respect to error and the width of the forecasted interval, while avoiding the risk of selecting 
the forecaster. 

 
To further evaluate the forecasters, it is also computed the percentage of actual points that fall within the 

forecasted intervals. The results in the form of percentages are presented in Table 3 and Table 4 (marked as 
encompass percentage) for the whole 12-month long test period. It is clear that the presented methodology 
outperforms the other forecasters; in particular it encompasses 14% more values than the best of the rest forecasters 
in the first semester and 1% for the second semester of 2016; hence for the whole year the difference in the 
encompass ratio is about 7.5%. 

To better assess the ability of forecasters to encompass the actual values with respect to the forecasted width 
and emphasize the capabilities of the proposed method, we also compute the following ratio for each of the GP 
forecasters: 

 

𝐸𝑛𝑐𝑜𝑚𝑝𝑎𝑠𝑠 𝑅𝑎𝑡𝑒 =
#𝐸

𝑊𝐹
𝐴                         (28) 

 
where #𝐸 is the population of actual wind speed values that lie within the forecasted intervals, and 𝑊𝐹

𝐴 is the average 
width of the interval for forecaster F. The higher the value of the above ratio, the better the performance of the method. 
The goal of the encompass rate is to show that the more efficient interval forecaster includes the highest number of 
actual values with the narrowest width. This can be understood by considering that among two forecasters whose 
intervals contain the same number of actual values (i.e., #E in Eq. (28)), the most efficient is the one that provides 
narrower intervals (i.e., the denominator in Eq. (28)). Thus, for forecasters with the same E, the encompass ratio is 
higher when the denominator is smaller: In fact, this shows that the same amount of actual values were correctly 
forecasted by smaller intervals (less uncertainty) which is our desired goal. The values obtained for each forecaster 
by Eq. (28) are also provided in Tables 3-4, where it is clearly demonstrated that the GP-fuzzy method provides the 
higher Encompass Ratio among all the tested methods. The above result, clearly highlights the ability of our method 
to provide high accuracy with narrow intervals. 
 

Table 2 Average per month interval width (m/h) for 
the GP forecasters (July-December 2016) 
 Jul Aug Sep Oct Nov Dec 

GP-

Gaussian 6.43 5.29 6.11 4.75 6.78 5.63 

GP-NNet 6.37 4.22 6.10 4.74 6.78 5.63 

GP-Matérn 6.43 5.29 6.11 4.75 6.78 5.63 

GP-Linear 4.14 3.59 3.72 3.08 3.54 3.35 

GP-
Quadratic 5.31 4.36 5.08 3.87 5.26 4.56 

GP-Fuzzy 2.39 3.74 2.74 2.73 3.24 3.11 
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For visualization purposes, the forecasted intervals of the first week of February (Feb 1-7) are depicted in Fig. 

19. In addition, the real wind speed values in the same Fig. are plotted, where the vast majority of actual values lie 
within the forecasted wind speed intervals. Furthermore, the forecasted intervals of the last week of April are depicted 
in Fig. 20 and the first week of June in Fig. 21 respectively. Notably, it is also observed that the GP-fuzzy intervals 
encompass the majority of the actual values. Fig. 19-21 demonstrate the forecasting ability, and more specifically 
highlight the ability of the with the GP-fuzzy method to provide narrow width intervals. The main conclusion by 
inspecting Figs. 19-21 is that our method is able to capture the trend of the actual data. In particular, Figs. 19-21 
confirm the ability of the GP-fuzzy forecaster to provide narrow intervals, while being able to capture the dynamics 
of the wind speed (i.e., following the data trend). It should be noted that the data not encompassed in the forecasted 
intervals seem to be outliers as compared to the rest nearby in time values; the latter is apparent in Fig. 21 where 
the actual value at time around 100 is far beyond the bulk volume of values around that time -  and thus the GP-fuzzy 
fails to encompass it-. Finally, we observe that the presented method is able to capture the abrupt transitions in the 
trend of wind speed values as it is apparent in Fig. 20. 

 

 

 
Table 3 Performance metrics of forecasters with 
respect to actual values encompassed in the forecasted 
intervals for period January 2016 – June 2016 

Forecaster Encompass 
Percentage 

Encompass  
Ratio 

   
GP-Gaussian 48.2% 16.40 
GP-NNet 40%   5.79 
GP-Matérn 51.38% 16.28 
GP-Linear 47.88% 12.93 
GP-Quadratic 47.98% 16.51 
GP-Fuzzy 64.9% 19.32 

 
 

 
Table 4 Performance metrics of forecasters with 
respect to actual values encompassed in the forecasted 
intervals for period July 2016 – December 2016 

Forecaster Encompass 
Percentage 

Encompass  
Ratio 

   
GP-Gaussian 42.90%   7.36 
GP-NNet 42.70%   7.58 
GP-Matérn 42.81%   7.44 
GP-Linear 45.61% 12.80 
GP-Quadratic 37.20%   7.84 
GP-Fuzzy 46.06% 15.40 
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Fig. 19.  Plot of forecasted interval vs. real wind speed values of testing period February 1-7, 2016 
 

 
 

 
Fig. 20.  Plot of forecasted interval vs. real wind speed values of testing period April 24-30, 2016 
 

 

 
Fig. 21.  Plot of forecasted interval vs. real wind speed values of testing period June 1-7, 2016 

 
In sum, the presented GP-Fuzzy wind speed methodology provides a forecast in the form of an interval of 

values. The method is able to provide a robust forecasting as shown from the obtained results. Our method not only 
provides accurate forecasting, but it also provides narrow intervals – in other words, a forecast with low uncertainty 
– of hourly ahead of time wind speed values. 

5. Conclusion  

In this paper, a new robust method for wind speed forecasting has been proposed. The cornerstone of the 
proposed forecaster is the adoption of a set of Gaussian processes equipped with various kernel functions, and their 
subsequent multiplexing using a fuzzy inference system. The fuzzy multiplexing system is comprised of a set of 9 
fuzzy rules and its goal is to use the most recent observed wind speed values and provide a value – known as degree 
of reproducibility- for each of the individual GP. These values are used to select the GP model that will be likely the 
most accurate forecaster of the next hour wind speed value. 

The proposed method has been tested on a set of real-world wind speed measurements. The testing period 
consisted of the hourly values for a period of six months providing a set of over 6300 forecasted values. The GP-
fuzzy method was compared to the five single GP models as well as to ARMA model. Performance was tested with 
respect to accuracy and width of forecasted interval. Our forecaster, though it did not provide the best performance 
for all tested cases, exhibited a robust behaviour by consistently providing low error and narrow intervals. 
Furthermore, it clearly outperformed all the rest forecasters by being the model that encompasses the highest number 
of actual values in the interval, while keeping the interval width narrow. The latter performance was demonstrated by 
the Encompass Ratio that was the highest among the tested forecasters. 
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