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Abstract 

Ageing has been shown to impact multisensory integration, but the underlying 

differences in computational mechanisms are poorly understood. An effective observer should 

integrate those signals that share a common source, weighted by their reliability, and segregate 

those from separate sources. Observers are thought to accumulate evidence about signals’ causal 

structure over time until a threshold of certainty is reached.  

Combining psychophysics and Bayesian modelling, we investigated how ageing affects 

audiovisual integration of spatial signals. Under unspeeded conditions, older and younger adults 

were comparable in their localisation responses and common-source judgements. A Bayesian 

Causal Inference model fitted to response choices revealed that ageing did not affect the ability 

to effectively arbitrate between integration and segregation.  

However, an evidence accumulation model, fitted jointly to response times and choices 

made under speeded conditions, revealed age differences: older observers accumulate noisier 

auditory representations for longer, set higher decisional thresholds, and have impaired motor 

speed. Modelling the within-trial dynamics of multisensory evidence accumulation reveals that 

older observers preserve audiovisual localisation performance by sacrificing response speed.   
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1. Introduction 

Throughout life we are continually exposed to a barrage of sensory signals. Our ability 

to effectively navigate through and respond to the world requires us to merge information from 

multiple sensory modalities into a coherent percept. We may, for example, more easily locate a 

predator in thick foliage by combining the sight of its movement with the sound of footsteps.  

Accumulating evidence suggests that ageing affects how observers integrate sensory 

signals into perceptual decisions. In speeded target detection paradigms older adults show 

greater multisensory response facilitation (i.e. redundant target effect) that violates the race 

model predictions of independent sensory processing (Laurienti et al., 2006; Mahoney et al., 

2011). Further, older participants have been shown to integrate multisensory stimuli differently 

in illusionary settings such as the sound-induced flash illusion (DeLoss et al., 2013; McGovern 

et al., 2014; Setti et al., 2011) and the McGurk-MacDonald effect (Sekiyama et al., 2014; Setti 

et al., 2013). Yet, the computational mechanisms underlying these age differences in 

multisensory integration remain unclear. Ageing is known to reduce the reliability of auditory 

and visual representations (Dobreva et al., 2011; Lindenberger & Baltes, 1994; Otte et al., 2013; 

Salthouse et al., 1996), which may alter the weights that are assigned to the sensory signals 

during the integration process and thereby the emergence of perceptual illusions. Alternatively, 

ageing may impact how observers arbitrate between sensory integration and segregation 

depending on temporal, spatial or higher-order statistical correspondence cues, which again may 

affect whether observers integrate conflicting sensory signals into perceptual illusions. 

In the laboratory, the computational principles of multisensory integration have been 

studied extensively in spatial ventriloquist paradigms where observers need to report their 

perceived sound (or visual) location when presented with synchronous, yet spatially disparate, 

auditory and visual signals. For small spatial disparities observers’ perceived sound location is 

shifted (or biased) towards the location of the visual signal and vice versa depending on the 

relative auditory and visual reliabilities - a phenomenon known as the spatial ventriloquist 

effect. Yet, for large audiovisual spatial disparities where it is unlikely that signals come from a 

common source, audiovisual interactions and crossmodal biases are attenuated. Recent 

psychophysics and neuroimaging studies have shown that younger observers arbitrate between 
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sensory integration and segregation in a way that is consistent with the predictions of 

hierarchical Bayesian Causal Inference (BCI; Aller & Noppeney, 2019; Koerding et al., 2007; 

Rohe, Ehlis, & Noppeney, 2019; Rohe & Noppeney, 2015a, 2015b; Shams & Beierholm, 2010; 

Wozny et al., 2010). Bayesian Causal Inference enables arbitration between sensory integration 

and segregation by explicitly modelling the two causal structures (i.e. common or independent 

events) that could have generated the sensory signals. If signals emanate from a common source 

they are integrated, weighted in proportion to their relative sensory reliabilities; if they come 

from different sources they are treated separately. To account for observers’ uncertainty about 

the world’s causal structure, a final estimate (e.g. an object’s location) is obtained by averaging 

the estimates under the assumptions of common and independent sources weighted by their 

respective posterior probabilities, a decision strategy referred to as model averaging (for other 

decision functions see Wozny et al., 2010). Spatial ventriloquism, together with Bayesian 

Causal Inference, may thus allow us to tease apart whether ageing affects only sensory 

reliabilities (i.e. sensory variance) or also observers’ binding tendencies (as quantified by the 

model’s causal prior), and to test whether older adults still respond in a way that is consistent 

with the predictions of BCI. 

However, current models of Bayesian Causal Inference do not account for temporal 

constraints imposed by our natural world and the dynamics of observers’ perceptual inference; 

BCI enables predictions for an observer’s response choices (e.g. spatial localisation) but not for 

his or her response times. In our natural environment we often need to trade off accuracy for 

speed: a faster, less accurate estimate of the location of a predator may prove far more useful 

than a highly accurate but slow one. Indeed, recent studies have shown that putatively 

suboptimal multisensory behaviour can be considered optimal when the dynamics of perceptual 

decision making, based on both response choices and times, are taken into account 

(Drugowitsch et al., 2014). Considering response choices and times together is particularly 

relevant for understanding the impact of ageing on multisensory integration, as older adults have 

previously been shown to favour accuracy over speed to a greater degree than younger observers 

(Smith & Brewer, 1995; Starns and Ratcliff, 2010).  

Combining psychophysics and computational modelling, the current study was thus 
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designed to investigate how ageing impacts the computational parameters governing 

multisensory decision making in both unspeeded and speeded contexts (Koerding et al., 2007; 

Rohe & Noppeney, 2015a, 2015b; Wozny et al., 2010).  

First, in an unspeeded spatial ventriloquist paradigm younger and older observers located 

the source of a sound (which implicitly relies on causal inference; see above) or judged whether 

the auditory and visual signal originated from the same source (which explicitly requires the 

observer to infer the causal structure underlying the audiovisual signals). We assessed how 

ageing affects observers’ auditory and visual reliabilities, spatial prior, and prior binding 

tendency (i.e. causal prior), as key parameters of the Bayesian Causal Inference model.   

Second, in a speeded spatial ventriloquist paradigm observers were presented with 

spatially congruent or incongruent audiovisual signals and rapidly discriminated whether the 

auditory (or visual) stimulus was presented in their left or right hemifield. We used a modified 

version of the Bayesian compatibility bias model (Noppeney, Ostwald, & Werner, 2010; Yu et 

al, 2009) to characterise how observers accumulate evidence concurrently about signal location 

and audiovisual spatial congruency, and to make predictions jointly for response choices and 

times. The age groups were compared in terms of auditory and visual reliabilities, prior binding 

tendency, and final response threshold.  

2. Methods 

2.1. Participants 

Twenty-three younger adults (eleven male, mean age = 19.5, SD = 1.6, range = 18 – 26 

years) and twenty-three older adults (seven male, mean age = 72, SD = 5.2, range = 63 – 80 

years) were included in the study. One older adult was excluded before testing was completed as 

she was unable to perform unisensory auditory localisation (approximately the same response 

was given to all auditory stimuli, regardless of source location). The younger adults were 

undergraduate psychology students at the University of Birmingham, and were compensated in 

cash or course credits for their time. Older adults were recruited to the study from a database of 

local participants maintained by the University of Birmingham’s School of Psychology, and 

were compensated in cash. These community-living older adults had a diverse range of 
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backgrounds; 39% reported education at degree level or above. All participants reported normal 

hearing and normal or corrected-to-normal vision, and were screened for basic auditory and 

visual localisation ability using a forced left/right discrimination task (see Supplementary S1). 

Participants gave informed consent prior to the commencement of testing. The research was 

approved by the University of Birmingham Ethical Review Committee. 

2.2. Experimental Setup 

Participants were seated at a chin rest 130 cm from a sound-transparent projector screen. 

Behind the screen, at the vertical centre, a shelf held an array of nine studio monitors (Fostex 

PM04n) spaced horizontally by 7° of visual angle, including a speaker in the middle of the 

screen. Auditory stimuli were presented via these speakers at approximately 75 dB SPL. The 

locations of the speakers were not known to participants. Images were displayed using a BENQ 

MP782ST multimedia projector at a total resolution of 1280 x 800. All stimuli were presented 

using The Psychophysics Toolbox 3 (Kleiner, Brainard, & Pelli, 2007) in MATLAB R2010b 

running on a Windows 7 PC.  

Responses were made using a two-button response pad or optical mouse, and in all cases 

this was effectively self-speeded; the next trial would not begin until a valid response was made. 

However, for the speeded ventriloquist task it was emphasised to participants that they should 

respond as quickly as possible while maintaining accuracy. See Figure 1A for an outline of the 

setup. 

2.3. Stimuli 

Visual stimuli consisted of a 50 ms flash of 15 white (88 cd/m²) dots, each 0.44° of 

visual angle in diameter, against a dark grey (4 cd/m²) background. Dot locations were sampled 

uniquely for each trial from a bivariate Gaussian distribution, with a constant vertical standard 

deviation of 5.4°. The horizontal standard deviation of this dot cloud was varied to manipulate 

the reliability of spatial information, with a wider cloud (expressed in degrees of visual angle) 

resulting in less reliable stimuli (Rohe & Noppeney, 2015). We define the specific horizontal 

standard deviations used for each paradigm below.  

The auditory stimulus was a burst of white noise (duration: 50 ms) played from one 
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speaker in the array in synchrony with the visual stimulus. Sounds were generated individually 

for each trial and ramped on/off over 5ms. Across all tasks participants fixated a central cross 

(0.22° radius) that was constantly presented throughout the entire experiment. 

2.4. Unspeeded audiovisual spatial ventriloquist paradigm 

2.4.1. Design and procedure 

In a spatial ventriloquist paradigm observers were presented with synchronous auditory 

and visual stimuli at variable audiovisual spatial disparities and performed implicit or explicit 

causal inference tasks in separate blocks. First, in an auditory selective attention task, observers 

reported their perceived sound location. As highlighted in the introduction, spatial localisation 

implicitly relies on solving the causal inference problem. Second, they explicitly inferred and 

reported the causal structure (i.e. common vs. independent sources) that could have generated 

the audiovisual signals in common source judgements. 

Irrespective of task context, on each trial auditory and visual stimuli were independently 

sampled from five locations (-14°, -7°, 0, 7, or 14°), and could therefore be spatially congruent 

or incongruent with varying degrees of disparity (0°, 7°, 14° , 21°, or 28°). Visual stimuli had 

three levels of reliability (horizontal SD of 2°, 6° or 16°) (n.b. a fourth level of visual reliability 

was excluded from the analysis because the dots were erroneously sampled). The paradigm thus 

conformed to a 5 (A locations) x 5 (V locations) x 3 (V reliabilities) factorial design. 

In the sound localisation task participants reported the perceived sound location as 

accurately as possible, after a 500ms post-stimulus delay, by moving a mouse-controlled cursor 

(white, subtending 9° in height and 0.5° wide) whose movement was constrained to the 

horizontal plane. The next trial was started one second after observers had indicated their 

perceived auditory location by clicking the mouse button. Trials were presented randomly in 

200-trial blocks. In total, participants completed 600 trials (8 [repetitions] x 5 [A locations] x 5 

[V locations] x 3 [V reliabilities)]) of this task. 

In the common-source judgment task participants reported whether they perceived the 

auditory and visual signals to have originated from the same location. 500ms after the 

presentation of the flash and beep, the words “same” and “different” appeared respectively 

above and below the fixation cross. Participants indicated with a button press whether the sound 
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and flash were generated by a common event. Participants again completed 600 trials (8 

[repetitions] x 5 [A locations] x 5 [V locations] x 3 [V reliabilities)]) of this task, delivered in 

three blocks of 200 trials. 

Unisensory localisation blocks were also included to improve estimation of sensory 

reliabilities. In unisensory auditory blocks, observers were presented with sounds randomly at 

one of the five locations and indicated their perceived sound location with the mouse cursor, as 

above. 80 trials of this task (16 per location) were completed in one block. In unisensory visual 

blocks, stimuli from the three reliability levels indicated above (horizontal SD of 2°, 6° or 16°) 

were presented randomly in one of the five locations and participants instructed to locate the 

centre of the dot cloud with the mouse cursor. 120 trials of this task (8 per location, per 

reliability level) were completed in one block. 

2.4.2. Bayesian Causal Inference model 

We investigated whether participants integrate auditory and visual signals into spatial 

representations that are consistent with Bayesian Causal Inference (BCI). Further, we 

investigated whether the sensory variances estimated from unisensory auditory or visual blocks 

can be used to inform estimation of the Bayesian Causal Inference model. 

The BCI generative model assumes that common (C = 1) or independent (C = 2) sources 

are determined by sampling from a binomial distribution with the causal prior P(C = 1) = 

pcommon. For a common source, the “true” location SAV is drawn from the spatial prior distribution 

N(μ, σP). For two independent causes, the “true” auditory (SA) and visual (SV) locations are 

drawn independently from this spatial prior distribution. For the spatial prior distribution, we 

assumed a central bias (i.e. μP = 0). We introduced sensory noise by drawing xA and xV 

independently from normal distributions centered on the true auditory (respectively visual) 

locations with parameters σA (respectively σV for each visual reliability level).  

Thus, the generative model included the following free parameters: the causal prior 

pcommon, the spatial prior standard deviation σP, the auditory standard deviation σA, and three 

visual standard deviations σV1, σV2, σV3 corresponding to the three visual reliability levels.  

During perceptual inference the observer is assumed to invert this generative model. The 

probability of the underlying causal structure can be inferred by combining the causal prior with 
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the sensory evidence according to Bayes’ rule: 

(1)                                        𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉)

=
𝑝(𝑥𝐴, 𝑥𝑉|𝐶 = 1)𝑝𝑐𝑜𝑚𝑚𝑜𝑛

𝑝(𝑥𝐴, 𝑥𝑉)
 

We assumed that subjects reported ‘common source’ (i.e. explicit causal inference) when 

the posterior probability of a common source is greater than the threshold of 0.5:  

(2)                                        �̂�

= {
1 𝑖𝑓 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉) > 0.5

2 𝑖𝑓 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉) ≤ 0.5
 

In the case of a common source (C = 1; Figure 1B left), the maximum a posteriori 

probability estimate of the auditory location is a reliability-weighted average of the auditory and 

visual estimates and the prior.  

(3)                                       �̂�𝐴,𝐶=1 =

𝑥𝐴

𝜎𝐴
2 +

𝑥𝑉

𝜎𝑉
2 +

𝜇𝑃

𝜎𝑃
2

1
𝜎𝐴

2 +
1

𝜎𝑉
2 +

1
𝜎𝑃

2

 

In the case of a separate-source inference (C = 2; Figure 1B right), the estimate of the 

auditory signal location is independent from the visual spatial signal. 

(4)                                       �̂�𝐴,𝐶=2 =

𝑥𝐴

𝜎𝐴
2 +

𝜇𝑃

𝜎𝑃
2

1
𝜎𝐴

2 +
1

𝜎𝑃
2

 

Given the decisional strategy of model averaging (Wozny et al., 2010) the observer will 

compute a final auditory localisation estimate by averaging the spatial estimates under common 

and independent source assumptions, weighted in proportion to their posterior probabilities (i.e. 

implicit causal inference). 

(5)                                      �̂�𝐴 = 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉)�̂�𝐴𝑉,𝐶=1 +

(1 − 𝑝(𝐶 = 1|𝑥𝐴, 𝑥𝑉))�̂�𝐴,𝐶=2  

The predicted distributions of the auditory spatial estimates, 𝑝(�̂�𝐴|𝑆𝐴, 𝑆𝑉), and the 

common source estimates, 𝑝(�̂�|𝑆𝐴, 𝑆𝑉), were obtained by marginalising over the internal 

variables xA and xV. For the unisensory auditory and visual localisation tasks, we used the 

predicted distributions 𝑝(�̂�𝐴,𝐶=2|𝑆𝐴) for auditory blocks and 𝑝(�̂�𝑉,𝐶=2|𝑆𝑉) respectively. 
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These distributions were generated by simulating xA and xV 10000 times for each of the 

conditions and inferring �̂�𝐴, �̂�𝐴,𝐶=2, �̂�𝑉,𝐶=2, and �̂� from the equations above. Based on these 

predicted distributions (given an additional noise kernel with σmotor = 1), we computed the log-

likelihood of participants’ auditory localisation and common-source judgement responses. 

Assuming independence of conditions and task responses, we summed the log-likelihoods 

across conditions and across auditory localisation and common-source judgement responses to 

obtain a single log-likelihood for each subject. To obtain maximum likelihood estimates for 

each subject’s model parameters (pcommon, σP, σA, σV1 - σV3 for each of the three levels of visual 

reliability) we used a Bayesian adaptive search algorithm (BADS; Acerbi & Ma, 2017) with the 

parameters for initialisation determined by a prior grid search. 

2.4.3. Model selection and group comparison of parameters 

It is unclear whether the visual and auditory reliabilities depend only on the external 

sensory signals and the noise imposed by the peripheral sensory processing, or also on task and 

stimulus (i.e. unisensory vs. bisensory) context. In the former case, estimation of the auditory 

and visual reliabilities based on data from the audiovisual and unisensory experiments together 

would provide more precise parameter estimates. In the latter case, it would lead to biased 

estimation. Likewise, the spatial priors may potentially depend on stimulus blocks and task 

context. To formally address these questions we compared the following three models, which 

differed by whether the sensory variances, spatial and causal priors were allowed to vary across 

task-context. 

Model A assumed that sensory variances and spatial prior parameters differed between 

unisensory and audiovisual contexts. Hence, this model included 11 parameters: pcommon, σP uni, 

σA uni, σV1 uni, σV2 uni, σV3 uni, σP bi, σA bi, σV1 bi, σV2 bi, σV3 bi.  

Model B assumed that sensory variances and priors were equal for unisensory and 

bisensory blocks. This model thus included six parameters: pcommon, σP, σA, σV1, σV2, σV3.  

Model C constrained the spatial prior to be equal for unisensory and audiovisual blocks, 

but allowed the sensory noise parameters to differ between unisensory and audiovisual contexts, 

yielding ten parameters: pcommon, σP, σA uni, σV1 uni, σV2 uni, σV3 uni, σA bi, σV1 bi, σV2 bi, σV3 bi. 

We arbitrated between these three models using the Bayesian information criterion 
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(BIC) as an approximation to the model evidence, and Bayesian model comparison at the group 

(random effects) level, pooled across age groups (Rigoux et al., 2014).  

The parameters (causal prior, spatial prior[s], and sensory variances) obtained from the 

winning model were compared between age groups using separate non-parametric Mann-

Whitney U tests. We also calculated Bayes factors using the Bayesian Mann-Whitney test as 

implemented in JASP (JASP Team, 2018; van Doorn et al., 2018) using the default Cauchy 

prior (scale = 0.707). A similar group comparison was also conducted for a measure of model 

fit, R², to assess whether the ability of the BCI model to predict responses differed between age 

groups. 

2.5. Speeded ventriloquist paradigm 

2.5.1 Design and procedure 

To assess participants’ audiovisual integration of spatial cues under speeded conditions, 

taking into account both final responses and reaction times, we used a simpler 2 (auditory 

location: left vs. right) x 2 (visual location: left vs. right) x 2 (relevant and reported sensory 

modality: auditory vs. visual) ventriloquist paradigm. On each trial, a visual stimulus with 

horizontal SD = 5.4° was displayed simultaneously with a burst of white noise. The centre of the 

visual cloud and the white noise were presented at 14° either left or right of a central fixation 

cross. These audiovisual stimuli were spatially congruent on half of the trials, and incongruent 

on the other half. In an auditory or visual selective attention paradigm, participants indicated 

either the location of the sound (respond-auditory task) or the cloud (respond-visual task) as 

quickly and accurately as possible via a two-choice key press, while ignoring the other modality. 

The task was self-speeded in this way (i.e. no response deadline) as any imposed incentives or 

timing criteria may have affected the groups differently; we rely on the compatibility bias model 

(described below) to separate age differences in motor speed and speed/accuracy trade-off from 

potential differences in sensory reliability/evidence accumulation. The tasks were performed in 

two blocks of 160 trials. The order of these tasks was counterbalanced between participants. In 

total the experiment included 320 trials: 40 (repetitions) x 2 (visual location) x 2 (auditory 

location) x 2 (reported sensory modality). 
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2.5.2 Compatibility bias model 

To assess age differences in responses to multisensory stimuli under temporal 

constraints, we analysed the respond-auditory data by adapting the “compatibility bias” model 

to an audiovisual context (Noppeney, Ostwald, & Werner, 2010; Yu et al., 2009). This models 

the within-trial dynamics of audiovisual evidence accumulation, leading to predictions for both 

response choice and response times.  

The model assumes that the visual and auditory sources can either be spatially congruent 

(both left or both right) or incongruent (e.g. visual source left and auditory source right). During 

the course of each auditory report trial, observers accumulate evidence concomitantly about (i) 

the ‘true’ (i.e. congruent or incongruent) relationship of the auditory and visual signals and (ii) 

the spatial location of the auditory source. The interference of spatially incongruent visual 

information should then be particularly pronounced at trial onset. The accumulation process is 

terminated when the evidence about the auditory spatial location reaches a decisional threshold 

and a left/right spatial response is made.  

See Yu et al. (2009) for full details about the compatibility bias model. Briefly, this 

generative model assumes that congruent (C = 1) or incongruent (C = 2) sources are determined 

by sampling from a binomial distribution with the compatibility or congruency prior P(C = 1) = 

pcongruency. The visual SV and auditory SA sources can either be left (–1) or right (+1). For a 

congruent trial, the auditory and visual locations are identical, i.e. SA = SV (SA and SV are either 

both left or both right). For an incongruent trial, the auditory and visual locations are in opposite 

hemifields, i.e. SA = –SV (two possibilities: SA = –1 and SV = 1, or SA = 1 and SV = –1). Hence we 

obtain a total of four possible stimulus combinations. We then sample noisy sensory inputs 

successively for each time point within a trial by drawing xt = [xA(t)  xV(t)] independently from 

normal distributions centred on SA (or SV) with parameters σA (or σV respectively). This thereby 

models that the brain receives progressively more information about the location of the auditory 

and visual sources and thus, indirectly, about whether or not they are congruent (n.b. though in 

our experiment auditory and visual inputs are brief, we model the accumulation in areas via 

feedback loops as a series of sensory inputs). Based on a stream of audiovisual inputs Xt = [x1, 

x2, x3 … xt] the observer is then assumed to compute the posterior probability over congruency C 
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and auditory (or visual) source location iteratively according to Bayes’ rule (initialised with the 

prior P(C) = β): 

(6)                                      𝑃(𝑆𝐴, 𝐶|𝑿𝑡)

=
𝑝(𝒙𝑡|𝑆𝐴, 𝐶)𝑃(𝑆𝐴, 𝐶|𝑿𝑡−1)

∑ 𝑝(𝒙𝑡|𝑆𝐴
′ , 𝐶′)𝑃(𝑆𝐴

′ , 𝐶′|𝑿𝑡−1)𝐶′𝑆𝐴
′

 

A left/right decision is then made when the evolving trajectory of the marginal 

(7)                                     P(SA = 1|𝐗t)

= P(SA = 1, C = 1|𝐗t) + P(SA = 1, 𝐶 = 2|𝐗t) 

reaches a threshold q.  

Thus, incongruent visual information should be most influential on perceived auditory 

location at the onset of the trial, when the initial compatibility prior dominates, but this 

influence decreases as information about the location of each stimulus is accumulated. The 

process is terminated when sufficient evidence is accumulated about the location of the auditory 

stimulus for a decisional threshold to be reached, after which a left/right spatial response is 

made. To accommodate that older adults have slower motor speed than younger adults (as 

confirmed by a separate finger tapping task reported in Supplementary S2), we included an 

additional non-decision-time parameter tnd to account for motor delays.  

The model therefore has five free parameters in total: the compatibility prior (i.e. prior 

probability of audiovisual signals coming from a common cause) β; the standard deviation of the 

auditory and visual signals, σA and σV respectively; the response threshold q; and a non-decision-

time parameter tnd that allows for a variable motor delay between the threshold being reached 

and a response being given.  

As in the Bayesian Causal Inference model we obtained the predicted distributions of the 

auditory spatial estimates, 𝑃(�̂�𝐴|𝑆𝐴, 𝑆𝑉), and response times, 𝑃(𝑅�̂�𝐴|𝑆𝐴, 𝑆𝑉), by marginalising 

over the internal variables xA and xV. These distributions were generated by simulating xA and xV 

for 300 time steps (of 10 ms length) 10000 times for each of the conditions. For each simulated 

trial with a series of 300 xA and xV, we then computed the response time and choice when 

𝑃(𝑆𝐴 = −1|𝑿𝑡) first crossed the decisional threshold q using Equations 5 and 6 above. Based 

on these predicted response choice and response time distributions, we computed the log-



14 

   

 

likelihood of participants’ auditory (or visual) localisation responses and the response times 

(after adding the non-decision time tnd). Assuming independence of conditions as well as 

independence of the log-likelihoods for response times and choices, we summed the log-

likelihoods across conditions and across response times and choices for a particular subject. To 

obtain maximum likelihood estimates for the model parameters for each subject (β, σA, σV, q, 

tnd), we used a Bayesian Adaptive Search optimisation algorithm (BADS; Acerbi & Ma, 2017) 

with parameters initialised based on a grid search.  

To investigate whether any of the parameters of these two Bayesian models were 

significantly different between older and younger adults the fitted parameters were entered into 

separate non-parametric Mann-Whitney U tests. We also calculated Bayes factors using the 

Bayesian Mann-Whitney test as implemented in JASP (JASP Team, 2018; van Doorn et al., 

2018) using the default Cauchy prior (scale = 0.707). 
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Figure 1. Experimental setup and generative models. (A) Participants were presented with 

visual stimuli on a sound-transparent projector screen. Sounds were produced by individual 

speakers concealed behind this screen, which were separated by 7° of visual angle. Responses 

were given via a mouse or a two-button response pad. (B) Bayesian Causal Inference (BCI) 

model, based on Koerding et al. (2007). Auditory (xA) and visual (xV) signals may be generated 

by one common (C = 1) audiovisual source (SAV), or by separate (C = 2) auditory (SA) and visual 

(SV) sources. (C) Compatibility bias model, adapted from Yu et al. (2009). Left: Auditory (SA) 

and visual (SV) sources can either be congruent (C = 1, i.e. in same hemifield) or incongruent (C 

= 2, i.e. in opposite hemifields). Right: Across time, the auditory source generates a series of 

auditory inputs, and the visual source (not shown) a series of visual inputs, in an independent 

and identical fashion.  
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3. Results 

3.1 Unisensory screening tests and the Montreal Cognitive Assessment 

All observers were screened for basic auditory and visual localisation ability with a 

left/right forced-choice spatial task. Individuals were characterised in terms of the slope and 

threshold of psychometric functions fitted to these responses. Older and younger adults were 

closely matched: no significant age differences were apparent for either auditory or visual 

stimuli, suggesting that sensory spatial reliability was approximately similar between age 

groups. No participants were excluded as a result of poor performance on this task. See 

Supplementary S1 for full details. 

Older participants were also screened using the Montreal Cognitive Assessment with a 

cut-off score of 23 (Coen et al., 2011; Roalf et al., 2013; Luis et al., 2009); none scored below 

25.  

3.2 Unspeeded ventriloquist paradigm 

An unspeeded spatial ventriloquist paradigm was used to compare younger and older 

adults’ responses to audiovisual spatial stimuli in the absence of temporal constraints. Figure 2 

shows participants’ auditory localisation (presented in terms of the magnitude of ventriloquist 

effect, VE = [Aresp – Aloc] / [Vloc – Aloc]) and common-source judgement responses (characterised 

as the probability of responding “same-source”) as a function of visual reliability level and 

audiovisual disparity. As predicted by Bayesian Causal Inference, the ventriloquist effect was 

strongest when visual reliability was high and the audiovisual disparity small. The age groups 

performed remarkably similarly on both measures, with standard GLM analyses revealing no 

significant effects of age on final response choices. However, common-source judgement 

reaction times (Figure 2D) did reveal age differences, including significant interactions between 

age, visual reliability, and audiovisual disparity. See Supplementary S3 for full GLM analyses 

of these results.  

3.2.1 Bayesian modelling 

Three models, based on Bayesian Causal Inference, were fitted to localisation and 

common-source response data for each participant. The model that fitted sensory variance and 
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spatial prior parameters separately for unisensory and bisensory contexts (described earlier as 

Model A) outperformed the others at the group level, with a protected exceedance probability of 

0.58 (compared with values of 0.18 for Model B, and 0.24 for Model C). This suggests that the 

task and stimulus context influenced the estimates of sensory variances and spatial priors to 

some degree. We therefore report, and compare between groups, the parameters obtained from 

Model A. 

Table 1 summarises the parameters of these fits and their R² (goodness of fit) values, 

including nonparametric significance tests of group differences and corresponding Bayes 

factors. Small but significant group differences in sensory variances were apparent for 

parameters estimated based on unisensory localisation tasks alone, suggesting that older adults 

were slightly less able to accurately localise both auditory and unreliable visual stimuli. 

Bayesian Causal Inference: These group differences were not apparent in the sensory 

variance parameters estimated based on bimodal responses, possibly because this approach is 

less sensitive to such small differences (in the bimodal case, auditory stimuli are always 

presented in the presence of a visual distractor, while visual variance estimates are based only 

on auditory localisation and common-source responses). Crucially, however, no significant 

group differences were apparent for the Pcommon or σP parameters, or for R² values. This suggests 

that the two age groups had similar causal priors and central spatial priors, and that older and 

younger adults’ multisensory integration behaviour (in an unspeeded context) was consistent 

with Bayesian Causal Inference to a similar degree. 

To verify that these results were not confounded by possible age differences in response 

reliability (i.e. noisier mouse responses), we also fitted a version of the winning model that 

allowed the parameter σmotor to vary freely (this was fixed at 1° for all participants in the main 

analysis). The pattern of results remained similar and there were no significant group differences 

in the σmotor parameter (p > .05, BF01 = 3.15). See Supplementary S5 for details. 

In summary, age did not influence observer’s implicit (auditory localisation) or explicit 

(common-source judgement) causal inference in terms of response choices. Taken together with 

the results of the BCI model fitting, this suggests that despite some small differences in sensory 

reliability, older adults integrate audiovisual spatial information in a way that is very similar to 
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younger adults and consistent with Bayesian Causal Inference. Ageing was, however, associated 

with complex changes in reaction times to multisensory stimuli. The profile of these age 

differences suggests that older adults took more time to respond when the causal structure of the 

stimuli was more ambiguous and the task therefore more challenging, such as when the visual 

stimulus was less reliable and/or the audiovisual disparity small. Interpreting this finding is 

difficult for the present task, however, as participants were not under speed instructions. The 

following section describes the results of the speeded ventriloquist task, for which differences in 

reaction times can be more readily characterised and understood. 
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  Younger  Older  Mann-Whitney U  Bayes factors 

  Mean SD  Mean SD  W p η²  BF10 BF01 

Unisensory             

 σP 37.20 35.69  24.79 28.63  299 .305 .02  0.46 2.16 

 σA 5.27 1.96  6.79 2.76  155 .026 .11  2.19 0.46 

 σV1 1.76 1.22  2.10 1.06  174 .075 .07  1.10 0.91 

 σV2 2.32 0.76  2.89 1.52  198 .218 .04  0.54 1.84 

 σV3 4.22 1.00  5.38 1.67  132 .005 .17  4.95 0.20 

Bisensory             

 Pcommon 0.42 0.13  0.43 0.13  245 .866 < .01  0.30 3.28 

 σP 38.71 25.88  32.20 27.37  303 .264 .03  0.40 2.49 

 σA 8.59 4.40  9.37 5.78  234 .677 < .01  0.35 2.84 

 σV1 3.19 4.08  3.08 3.13  241 .796 < .01  0.30 3.31 

 σV2 5.12 4.32  6.07 5.47  204 .274 .03  0.44 2.25 

 σV3 12.79 9.72  20.61 26.13  209 .327 .02  0.48 2.09 

 R² 0.78 0.10  0.78 0.10  255 .973 < .01  0.31 3.25 

Table 1. Bayesian Causal Inference parameters (across-participants mean, SD) for younger (n = 

23) and older (n = 22) participants. Mann-Whitney U tests with Bayes factors comparing the 

BCI parameters between older and younger adults. To unisensory responses we fitted the 

standard deviation of the spatial prior σP, the standard deviation of the auditory noise σA, and 

standard deviations of the visual noise for each of the three visual reliability levels σV1, σV2, and 

σV3. Separately, to multisensory responses (auditory localisation and common-source 

judgement) we fitted the causal prior pcommon as well as σP, σA, and σV1-V3. R², a measure of 

model fit, is calculated according to Nagelkerke (1991) compared to a null model consisting of 

random responses. BF10 quantifies degree of support for the alternative hypothesis that the 

groups differ, relative to the null hypothesis; BF01 shows degree of support for the null 

hypothesis that there is no difference between groups, relative to the alternative hypothesis. 

 

 

  



20 

   

 

 

Figure 2. Behavioural responses, reaction times and BCI model predictions for younger and 

older adults. (A) Relative ventriloquist effect (VE = [Aresp – Aloc] / [Vloc – Aloc]) for auditory 

localisation, shown as a function of audiovisual disparity (x-axis, pooled over direction) and 

visual reliability (colour coded). Behavioural data (mean across subjects, solid lines) and the 

predictions of the Bayesian Causal Inference model (dashed lines) are shown. (B) Reaction 

times in auditory localisation task. (C) Proportion reported “same source” in common-source 

judgement task, as a function of audiovisual disparity and visual reliability. The panels show the 

Gaussians fitted to the behavioural response (mean across subjects, solid lines) and the 

predictions of the Bayesian Causal Inference model (dashed lines). (D) Reaction times (pooled 

over response; mean across subjects) in common-source judgement task. Error bars show ±1 

SEM. 
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3.2. Speeded ventriloquist paradigm 

A simplified, speeded ventriloquist paradigm was used to assess younger and older 

adults’ responses to audiovisual spatial stimuli under speed instructions. Figure 3 summarises 

response accuracy (panel B) and speed (panel C) for younger and older adults; trials are pooled 

over left and right and instead characterised in terms of spatial (in)congruence. Standard GLM 

analysis of these results shows that older adults were significantly more accurate that younger 

adults in the respond-visual task. Older adults were also significantly slower overall and, 

importantly, age interacted with congruence in the respond-auditory tasks: mirroring the profile 

of the common-source judgement responses, older adults took disproportionately longer to 

respond under the most challenging conditions (locating the auditory signal in the presence of an 

incongruent visual distractor). See Supplementary S4 for full GLM analysis. 

3.2.1 Compatibility bias model 

A compatibility bias model was fitted to participants’ auditory spatial responses and 

reaction times. This allowed us to characterise how younger and older observers accumulate 

audiovisual evidence about spatial location and audiovisual congruency until a decisional 

threshold is reached and a response given. Fitted parameters were compared using separate 

Mann-Whitney U tests and a Bayesian equivalent. See Table 2 for a summary of results. 

Corroborating the findings of the BCI model, the age groups did not differ in their prior 

tendency to integrate multisensory stimuli, characterised in this case by the parameter β. The 

groups did not differ either in the reliability of visual input σvisual. However, the remaining three 

parameters were significantly different between the groups. First the non-decision time tnd, 

which captures the time between a decision is made and the response given, was significantly 

higher for the older age group. This is unsurprising; our older adults’ impaired motor speed is 

confirmed by a separate finger-tapping task reported in Supplementary S2. Second, older adults 

also set their decision threshold q significantly higher, requiring more evidence before deciding 

on a response. Third, and crucially, the auditory signal (σauditory) was significantly noisier in 

older than younger adults, leading to a slower accumulation of evidence and thus (in 

combination with the motor slowing and higher decision threshold) slower response times. This 

indicates that it takes older participants longer than their younger counterparts to reach any 
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given level of evidence about the location of an auditory stimulus. See Figure 3A for an 

illustration of the model.  

 
 Younger  Older  Mann-Whitney U  Bayes factors 

 Mean SD  Mean SD  W p η²  BF10 BF01 

σA 1.53 0.54  2.93 4.01  164 .044 .09  3.11 0.32 

σV 1.85 3.50  0.87 0.97  283 .507 .01  0.44 2.27 

β 0.75 0.12  0.78 0.13  192 .169 .04  0.56 1.79 

q 0.93 0.05  0.95 0.07  141 .010 .14  2.68 0.37 

tnd 0.22 0.05  0.33 0.07  54 < .001 .45  5101.52 < 0.01 

Table 2. Compatibility bias parameters (across-participants mean, SD) for younger (n = 23) and 

older (n = 22) participants. Mann-Whitney U tests with Bayes factors comparing the 

compatibility bias parameters between older and younger adults: standard deviation of the 

auditory signal σA, standard deviation of the visual signal σV, compatibility prior β, response 

threshold q, and non-decision-time tnd. BF10 quantifies degree of support for the alternative 

hypothesis that the groups differ, relative to the null hypothesis; BF01 shows degree of support 

for the null hypothesis that there is no difference between groups, relative to the alternative 

hypothesis. 
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Figure 3. Speeded left/right ventriloquist paradigm and compatibility bias model. (A) 

Accumulation of evidence traces for the compatibility bias model: for ‘respond auditory’ trials 

the observer is thought to accumulate audiovisual evidence about whether the auditory source is 

left = -1 or right = 1 within a trial until a decisional threshold is reached and a response elicited. 

Solid lines show the posterior probability 𝑃(𝑆𝐴 = 1|𝑿𝑡) as a function of within-trial time with 

auditory and visual inputs arriving every 10 ms. Each trace represents the mean across ten 

(incongruent, auditory right) simulated trials for a representative participant in each group, using 

each participant’s maximum likelihood parameters. Dashed lines indicate these participants’ 

fitted decisional thresholds. Older observers accumulate noisier evidence until a higher 

decisional threshold is reached. (B and C) Response accuracy and reaction times (across-

participants mean ± 1 SEM) for respond-auditory and respond-visual tasks, separated by spatial 

congruence (i.e. pooled over left and right). 
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4. Discussion 

This study applied audiovisual spatial tasks to investigate the effects of ageing on 

multisensory integration under both speeded and unspeeded conditions. Based on screening tests 

involving straightforward left/right judgements, younger and older adults appeared similar in 

their ability to locate unisensory auditory and visual stimuli. The sensory variance parameters of 

a Bayesian Causal Inference model fitted to multisensory localisation and common-source 

judgement responses also did not differ between age groups. However, the same parameters 

fitted using unisensory free-localisation responses did reveal small but significant age 

differences in sensory variances: older adults were less reliable in their localisation of both 

auditory and (low-reliability) visual stimuli. 

A possible reason for this disagreement between task contexts is that they vary in their 

sensitivity to detect small differences in sensory variances. In the multisensory context, auditory 

variances are estimated based on sounds that are always presented alongside a visual distractor, 

while visual variances are estimated based only on the interaction between the auditory and 

visual signals. The full multisensory BCI model is complex, and any small group differences 

may be lost in the estimation of multiple related parameters, while in the unisensory context the 

sensory variance parameters are measured more directly. It is also possible that sensory 

parameters estimated in a multisensory context reflect not only signal and peripheral sensory 

noise, but also central sensory noise, making the comparison between groups more complex. 

This is supported by the results of our formal model comparison, which showed that estimates 

of sensory variances cannot be transferred between unisensory and bisensory contexts.  

Existing literature is similarly ambiguous about age-related declines in (especially) 

auditory localisation. Dobreva et al. (2011) report limited but significant age differences in 

observers’ ability to freely localise transient broadband stimuli along the azimuth, while Otte et 

al. (2013) found no such effects. It therefore seems that the effects of normal, healthy ageing on 

auditory localisation ability may be subtle and difficult to detect. In terms of visual localisation, 

we note that our older adults are likely to have had impaired accommodation responses 

compared to the younger age group (Glasser & Campbell, 1997). Depending on the corrective 

lenses worn (participants were instructed to wear their normal spectacles for testing), this may 
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have led to the older group expending more effort to keep the visual stimuli in focus and/or the 

stimuli appearing less focused. The small but significant age differences we observed in 

unisensory visual localisation may be, in part, a reflection of this reduced accommodation 

ability. 

Crucially, however, the fitted spatial and coupling prior parameters of the normative BCI 

model did not differ between age groups. Older and younger adults also gave comparable 

localisation and common-source judgement responses, and the BCI model was found (based on 

R² values, a measure of model fit) to account equally well for the groups’ behaviour. This 

suggests that, in an unspeeded context, our younger and older adults processed complex 

audiovisual spatial stimuli in a remarkably similar way; the fundamental computations 

underlying multisensory integration appear unchanged with age.  

These results may initially seem surprising in light of accumulating research showing 

that ageing alters multisensory integration. For example, older adults have been shown to be 

more susceptible to the sound-induced flash illusion (DeLoss et al., 2013; McGovern et al., 

2014; Setti et al., 2011) and to respond differently to McGurk-MacDonald stimuli (Sekiyama et 

al., 2014; Setti et al., 2013). Potentially, susceptibility to the sound-induced flash illusion is 

changed with age because it relies on precise representations of stimulus timing that have been 

shown to be impaired by ageing (Chan et al., 2014; Mazelová et al., 2003). Ng and Recanzone 

(2017) provide a possible mechanism for this decline: a study of neural responses to simple 

stimuli in macaque primary auditory cortex found that aged monkeys showed firing patterns that 

were noisier (i.e. less temporally precise) and less selective than those seen in younger animals. 

Age-related differences in perception of McGurk-MacDonald stimuli may also be due in part to 

impaired temporal perception, as the fine temporal structure of speech signals is an important 

cue for comprehension (especially in the context of competing noise; Moore, 2008). In this case 

the effect is likely to be further compounded by reductions in speech comprehension, resulting 

from presbycusis that particularly affects higher sound frequencies (Pichora-Fuller & Souza, 

2003). 

In contrast, the estimation and integration of spatial information does not rely to the 

same degree on fine temporal features of the stimuli, so impaired perception of these features 
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may not have a strong impact on an observer’s ability to determine the location of a signal. 

Indeed, our results (and those of others; Dobreva et al., 2011; Otte et al., 2013) demonstrate only 

limited age differences in localisation of transient broadband sounds and visual flashes along the 

azimuth. 

Our discussion of age differences in multisensory integration has thus far addressed only 

final response choices, ignoring reaction times, but our natural environment does not afford us 

infinite time to react to multisensory stimuli. When we define and evaluate multisensory 

integration performance, it is therefore also important to consider the time taken to respond. In 

fact, GLM-based analyses of common-source judgement reaction times suggested that older 

adults took disproportionately longer to respond to more challenging or ambiguous stimuli. 

Such findings imply the presence of differences in the groups’ evidence accumulation and 

decision-making process, and/or in their speed/accuracy criteria, even in an unspeeded context.  

We thus applied a simplified, speeded ventriloquist paradigm to directly address the 

question of age differences in response times to multisensory spatial stimuli. GLM analyses 

again showed that older adults were disproportionately slower in the most challenging condition 

(in this case locating a sound in the presence of an incongruent visual distractor). To 

characterise the computational processes underlying these differences, it is necessary to move 

beyond the static BCI model to a dynamical approach that can make predictions jointly about 

observers’ spatial choices and response times. We thus applied the compatibility bias model 

(Noppeney, Ostwald, & Werner, 2010; Yu et al, 2009) to participants’ auditory judgement 

responses in this paradigm.   

This model assumes that the observer accumulates auditory and visual evidence about 

the location of the reported stimulus, and about the causal structure of the signals, until a 

decisional threshold is reached and a response given. It thereby provides an important 

perspective on the dynamics of decision making within a trial. In contrast to the BCI model 

results, the compatibility bias analyses revealed that multisensory decision making is affected by 

ageing and slower in older relative to younger adults for three reasons. First, older adults have 

impaired motor speed, as indexed by the non-decision time variable (and confirmed by a 

supplementary finger-tapping task; see Supplementary S2). Second, they use a higher response 
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threshold, requiring a greater degree of certainty before a response is given. This is consistent 

with previous studies of age differences in speed/accuracy trade-off (Smith & Brewer, 1995; 

Starns and Ratcliff, 2010). Third, the compatibility bias model analysis suggests that the 

auditory representations are less reliable (i.e. greater auditory variance) in older participants, 

such that evidence accumulates more slowly (see Figure 3). In other words, the initial auditory 

representation may be noisier and less reliable for older adults, but they can achieve equal 

performance levels (in terms of final response) to younger participants by accumulating this 

noisy evidence for longer via internal feedback loops. 

It is important to note that the Bayesian causal inference model, and other approaches 

that consider only the observer’s final response, are insensitive to these age-related changes in 

internal sensory noise (though the unisensory localisation data do provide some evidence of 

small reliability differences). This illustrates how dynamical models that accommodate both 

reaction times and final response choices can provide critical new insights into evidence 

accumulation and perceptual decision making. 

In conclusion, our results demonstrate that multisensory spatial localisation and causal 

inference is preserved in older adults. However, older observers only maintain this performance 

by accumulating noisier auditory information over a longer period of time. When combined with 

well-established changes in motor speed and speed/accuracy trade-off, this leads to significant 

and nonlinear age differences in reaction times to complex multisensory stimuli during spatial 

localisation. 
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