
On the stability and instability of finite dynamical

systems with prescribed interaction graphs

Maximilien Gadouleau
Department of Computer Science
Durham University South Road

Durham DH1 3LE, UK.

m.r.gadouleau@durham.ac.uk

Submitted: Sep 7, 2017; Accepted: Jul 25, 2019; Published: Aug 16, 2019

c©The author. Released under the CC BY-ND license (International 4.0).

Abstract

The dynamical properties of finite dynamical systems (FDSs) have been inves-
tigated in the context of coding theoretic problems, such as network coding, and in
the context of hat games, such as the guessing game and Winkler’s hat game. The
instability of an FDS is the minimum Hamming distance between a state and its
image under the FDS, while the stability is the minimum of the reciprocal of the
Hamming distance; they are both directly related to Winkler’s hat game. In this
paper, we study the value of the (in)stability of FDSs with prescribed interaction
graphs. The first main contribution of this paper is the study of the maximum
stability for interaction graphs with a loop on each vertex. We determine the max-
imum (in)stability for large enough alphabets and also prove some lower bounds
for the Boolean alphabet. We also compare the maximum stability for arbitrary
functions compared to monotone functions only. The second main contribution of
the paper is the study of the average (in)stability of FDSs with a given interaction
graph. We show that the average stability tends to zero with high alphabets, and
we then investigate the average instability. In that study, we give bounds on the
number of FDSs with positive instability (i.e fixed point free functions). We then
conjecture that all non-acyclic graphs will have an average instability which does
not tend to zero when the alphabet is large. We prove this conjecture for some
classes of graphs, including cycles.

Mathematics Subject Classifications: 05C20, 91A43

1 Introduction

Many entities (such as genes, neurons, persons, computers, etc.) organise themselves as
complex networks, where each entity has a finitely valued state and a function which

the electronic journal of combinatorics 26(3) (2019), #P3.32 1

updates the value of the state. Since entities influence each other, this local update
function depends on the states of some of the entities. Such a network is called a Finite
Dynamical System (FDS), with special cases or variants appearing under different
names, such as Boolean Networks [12, 20], Boolean Automata Networks [15], Multi-Valued
Networks [4], etc. The main problem when studying an FDS is to determine its dynamics,
such as the number of its fixed points, or how the trajectory of a state depends on the
initial state.

FDSs have been used to represent a network of interacting entities as follows. A
network of n entities has a state x = (x1, . . . , xn) ∈ [q]n, represented by a variable xv
taking its value in a finite alphabet [q] = {0, 1, . . . , q − 1} on each entity v. The state
then evolves according to a deterministic function f = (f1, . . . , fn) : [q]n → [q]n, where
fv : [q]n → [q] represents the update of the local state xv. Although different update
schedules have been studied, we are focusing on the parallel update schedule, where all
entities update their state at the same time, and x becomes f(x). FDSs have been used
to model different real-life networks of entities, such as gene regulatory networks, neural
networks, social interactions, etc. (see [7] and references therein).

The structure of an FDS f : An → An can be represented via its interaction graph
G(f), which indicates which update functions depend on which variables. More formally,
G(f) has {1, . . . , n} as vertex set and there is an arc from u to v if fv(x) depends on
xu. In different contexts, the interaction graph is known (or at least well approximated),
while the actual update functions are not. One main problem of research on FDSs is then
to predict their dynamics according to their interaction graphs.

Hat games are an increasingly popular topic in combinatorics. Typically, a hat game
involves n players, each wearing a hat that can take a colour from a given set of q colours.
No player can see their own hat, but each player can see some subset of the other hats. All
players are asked to guess the colour of their own hat at the same time. For an extensive
review of different hat games, see [14].

In Winkler’s hat game, the team scores as many points as players guessing correctly.
The aim is then to construct a guessing function f which guarantees a score for any
possible configuration of hats [21]. Winkler’s hat game was studied in [5, 8, 7, 19, 6, 13, 1].
This hat game, and a dual version where the players aim to guess the colour incorrectly,
can be formalised in terms of the stability and the instability of FDSs with prescribed
interaction graphs [7].

In the variation called the “guessing game” [18], the team wins if everyone has
guessed their colour correctly; the aim is to maximise the number of hat assignments
which are correctly guessed by all players. This version of the hat game then aims to
determine the so-called guessing number of a digraph. Both hat games are linked in [7].
The guessing number is itself related to the network coding solvability problem [16, 18, 17].

Previous work on the (in)stability of FDSs were actually concerned with functions
whose interaction graphs are contained in a given digraph. In this paper, we focus on
“strict” (in)stability, where the interaction graph of the FDS is exactly a given digraph
D. This paper has two main contributions.

• Firstly, we study the maximum (in)stability of an FDS with a prescribed interaction

the electronic journal of combinatorics 26(3) (2019), #P3.32 2

graph. We focus on graphs with a loop on each vertex, as this is where the non-
strict case is trivial. The stability is more interesting; we give its limit for large
alphabets and we give a tight lower bound for the Boolean case. We finally focus
on the maximum stability of monotone Boolean FDSs.

• Secondly, we study the average (in)stability of an FDS with a prescribed interaction
graph. This time, the average stability is relatively easy to handle, while the insta-
bility is more interesting. We relate the latter problem to the number of fixed-point
free functions with a prescribed interaction graph. We conjecture that the number
of fixed-point free elements does not tend to zero for large alphabets, unless the
interaction graph is acyclic. We finally prove a stronger version of that conjecture
for cycles.

The rest of the paper is as follows. Section 2 review some background on graphs and
FDSs and introduces the strict (in)stability of digraphs. Section 3 gives our results on the
maximum (in)stability of FDSs with a given loop-full interaction graph. Section 4 then
investigates the average (in)stability of FDSs with a given loop-full interaction graph.

2 Stability and instability: definitions and basic properties

2.1 Finite dynamical systems

Let n be a positive integer and V = {1, . . . , n}. A graph D on V is a pair D = (V,E)
with E ⊆ V 2 (in other words, all our graphs are directed). Paths and cycles are always
directed. The girth of D is the minimum length of a cycle in D. A feedback vertex set is
a set of vertices I such that D− I has no cycles. The minimum size of a feedback vertex
set is denoted τ(D). If J ⊆ V , then D[J] is the subgraph of D induced by J . If this
graph is acyclic, then the vertices of J can be sorted in acyclic ordering: J = {j1, . . . , jk}
where (ja, jb) ∈ E only if a < b. The in-neighbourhood of a vertex v in D is denoted by
N(v;D) and its in-degree is denoted by d(v;D); we may simply write N(v) and d(v) if
the graph is clear from the context. A vertex with empty in-neighbourhood is a source of
D. We denote the maximum in-degree of D as dmax(D).

A loop is an arc of the form (v, v). We view a loop as a cycle of length one. If D has
no loops, we say it is loopless; if D has a loop on every vertex, we say it is loop-full. If D
is a loopless graph, then D◦ is the loop-full graph obtained by taking D and adding a loop
to very vertex. An edge uv is a pair of arcs {(u, v), (v, u)} for u 6= v; a graph is simple if
its arc set can be partitioned into edges (i.e. the graph is loopless and symmetric).

Let q > 2, we denote [q] = {0, 1, . . . , q − 1}. For all x = (x1, . . . , xn) ∈ [q]n, we use
the following shorthand notation for all J = {j1, . . . , jk} ⊆ V : xJ = (xj1 , . . . , xjk). For all
x, y ∈ [q]n we set ∆(x, y) := {i ∈ [n] : xi 6= yi}. The Hamming distance between x and y
is dH(x, y) = |∆(x, y)|. Finally, for any property P , we denote the function which returns
1 if P is satisfied and 0 otherwise by 1 {P}. For instance, dH(x, y) =

∑n
v=1 1 {xv 6= yv}.

Let f : [q]n → [q]n be a Finite Dynamical System (FDS). We write the FDS as
f = (f1, . . . , fn) where fv : [q]n → [q] is a local function of f . We also use the shorthand

the electronic journal of combinatorics 26(3) (2019), #P3.32 3

notation fJ : [q]n → [q]|J |, fJ = (fj1 , . . . , fjk). We associate with f the (directed) graph
G(f), referred to as the interaction graph of f , defined by: the vertex set is V ; and for
all u, v ∈ V , there exists an arc (u, v) if and only if fv depends essentially on xu, i.e. there
exist x, y ∈ [q]n that only differ by xu 6= yu such that fv(x) 6= fv(y). For a graph D, we
denote by F(D, q) the set of FDSs f : [q]n → [q]n with G(f) ⊆ D and by F[D, q] the set
of FDSs f : [q]n → [q]n with G(f) = D. We also denote the set of all FDSs f : [q]n → [q]n

as F(n, q). When dealing with f ∈ F(n, q) we shall do all operations modulo q unless
specified otherwise.

The stability and instability of an FDS f are respectively given by [7]

s(f) := min
x∈[q]n

{n− dH(x, f(x))} ,

i(f) := min
x∈[q]n

dH(x, f(x)).

Then s(f) = n if and only if f is the identity, while i(f) = 0 if and only if f has a fixed
point. By definition, we have s(f) + i(f) 6 n. It is easy to prove that the minimum
(in)stability in F[D, q] is equal to zero for all D and all q.

2.2 Stability and instability: general properties

The q-stability and q-instability of a graph D are [7]

s(D, q) := max
f∈F(D,q)

s(f),

i(D, q) := max
f∈F(D,q)

i(f).

We give a hat game intuition for these quantities. Consider a game played by a team
of n players, each having a hat that can take q possible colours. Each player can only see
a subset of the hats; let D be the graph on {1, . . . , n} such that (u, v) is an arc if and only
if v can see u’s hat. Before the game starts, the players come up with a common strategy
for guessing their own hat’s colour; no communication is allowed once the colours have
been chosen. Let x ∈ [q]n represent a configuration of hats. The team’s guess is then
denoted f(x), where fv depends on xu only if (u, v) ∈ D, or in other words G(f) ⊆ D.
Therefore, exactly n−dH(x, f(x)) players will guess correctly if the hat configuration is x.
If the aim of the game is to find a guessing strategy that maximises the number of correct
guesses for any possible configuration of hats, then the maximum is given by s(D, q). If on
the other hand, the aim is to maximise the number of incorrect guesses, then the solution
is i(D, q).

Similarly, we denote the strict q-stability and the strict q-instability of D as

s[D, q] := max
f∈F[D,q]

s(f),

i[D, q] := max
f∈F[D,q]

i(f).

the electronic journal of combinatorics 26(3) (2019), #P3.32 4

The hat game intuition here is not so straightforward, as we force each player to be
influenced by every hat that they see at least once. For the stability, this makes a big
difference when there is a loop on a vertex v. This case corresponds to player v being
able to see their own hat, hence obviously the optimal strategy is fv(x) = xv. However,
in the strict case, if (u, v) ∈ D, then at some point xu has to influence fv, which forces v
to guess incorrectly. The game is now about minimising the negative influence of other
players. We shall study this more in detail in the next section.

Some basic properties of the (in)stability are given below.

Lemma 1. For every loopless graph D and any q > 2, the following hold.

s[D, 2] = i[D, 2] 6 i[D, q] 6 i(D, q) 6 i[D, 2q].

Proof. The relations s[D, 2] = i[D, 2] 6 i[D, q] were implicitly proved in [7]. Moreover,
i[D, q] 6 i(D, q) by definition. We now prove the last inequality. We view an element y of
[2q] as (y1, y2) ∈ [q]× [2] and we let f ∈ F(D, q) with maximum instability. We construct
g ∈ F[D, 2q] as follows:

gv
((
x1, x2

))
=

(
fv(x

1),
∧

u∈N(v)

x2
u

)
.

Then it is clear that i(g) > i(f).

In [7], it is proved that for any loopless D and any q > 2, the instability i(D, q) is a
non-decreasing function of q; the proof actually shows that the instability i[D, q] is non-
decreasing. It is also proved in [7] that the stability s(D, q) is a non-increasing function
of q; however, it is unknown whether the strict stability is also non-decreasing.

Corollary 2. For all q sufficiently large, i[D, q] = τ(D).

Proof. According to [7], i(D, q) = τ(D) for all q > 2n. Therefore, for all q > 2n+1, Lemma
1 and the fact that the q-strict instability is non decreasing yield

τ(D) = i(D, bq/2c) 6 i[D, 2bq/2c] 6 i[D, q] 6 τ(D).

Moreover, considering the function f ∈ F[Kn, q] defined as fv(x) = v −
∑

u6=v xu and
combining with [7, Proposition 3], we easily obtain that for every n and q > 2,

s[Kn, q] = s(Kn, q) =

⌊
n

q

⌋
,

i[Kn, q] = i(Kn, q) = n−
⌈
n

q

⌉
.

These are the highest values of the (in)stability for all loopless graphs.

the electronic journal of combinatorics 26(3) (2019), #P3.32 5

3 Strict (in)stability for loop-full graphs

3.1 Exact results

We now consider the strict (in)stability of loop-full graphs. Let D be a loopless graph
and D◦ be obtained by adding a loop on every vertex. It is easily seen that the strict
q-(in)stability of D◦ is a non-decreasing function of q. Then let S be the set of sources of
D and define

σ(D) := max {|U | : U ⊆ V \ S,N(u;D◦) ∩N(v;D◦) = ∅ ∀u, v ∈ U, u 6= v} .

This can be viewed as the independence number of a related simple graph G = (V,E ′),
where u and v are adjacent if and only if either (u, v) ∈ E or (v, u) ∈ E or there exists
w ∈ N(u;D) ∩N(v;D).

We first determine the values of the strict (in)stability for large enough alphabets.

Proposition 3. For any loopless graph D,

• s[D◦, q] = n− σ(D) for all q > n− |S|;

• i[D◦, q] = n for all q > 3;

Proof. All of the neighbourhoods are with respect to D◦. Let σ = σ(D) and U =
{u1, . . . , uσ} ⊆ V \ S, such that N(ui) ∩ N(uj) = ∅ for all 1 6 i, j 6 σ. For any
1 6 i 6 σ, there exists yN(ui) such that

fui(yN(ui)) 6= yui .

Therefore, the state y = (yN(u1), . . . , yN(uσ), yT), where T is the rest of the vertices, satisfies
dH(y, f(y)) > σ.

Conversely, without loss suppose the set of loops in D is S = {n − |S| + 1, . . . , n}.
Then let q > n− |S| and consider the following function f ∈ F[D◦, q]:

fs(x) = xs ∀s ∈ S,
fv(x) = xv + 1

{
xN(v) = (v − 1, . . . , v − 1)

}
∀v /∈ S.

Fix x ∈ [q]n and let J = ∆(x, f(x)). Firstly, J ⊆ V \ S. Now, let u, v ∈ J such
that N(u) ∩ N(v) 6= ∅, say w is in the intersection. Then xw = u − 1 = v − 1, which is
impossible. Therefore, for all u, v ∈ J , N(u)∩N(v) = ∅ and hence dH(x, f(x)) = |J | 6 σ.

For the instability, let q > 3 and f ∈ F[D◦, q] such that

fs(x) = xs + 1 ∀s ∈ S,
fv(x) = xv + 1 + 1

{
xN(v) = (0, . . . , 0)

}
∀v /∈ S.

Then clearly i(f) = n.

the electronic journal of combinatorics 26(3) (2019), #P3.32 6

We remark that the condition q > n − |S| in Proposition 3 is tight for some graphs.
Indeed, let D be an out-star, i.e. D = (V,E) with E = {(1, v) : 2 6 v 6 n}, then |S| = 1,
σ(D) = 1 and s[D, q] 6 n− 2 for all q 6 n− 2.

Proposition 4. For any graph D without sources, the strict stability of D◦ and its max-
imum in-degree are related by

s[D◦, q] 6 n− n

qdmax(D◦)
.

Conversely, for any t > 1, ∆ > 1 and q, there exists an infinite family of graphs with
s[D◦, q] = n− t, n = tq∆ and dmax(D◦) = ∆ + 1.

Proof. For any f ∈ F[D◦, q] and any v, there is at least one value of xN(v) such that
fv(xN(v)) 6= xv. Therefore, there are at least qn−d(v) states x such that fv(x) 6= xv. This
yields

T :=
∑
x∈[q]n

dH(x, f(x))

=
∑
v∈V

∑
x∈[q]n

1 {fv(x) 6= xv}

>
∑
v∈V

qn−d(v)

> nqn−d
max(D◦).

On the other hand, T 6 qn(n− s[D◦, q]). Combining, we obtain

s[D◦, q] 6 n− n

qdmax(D◦)
.

Now let D = (V,E) on n = tq∆ vertices be as follows. Let V = C1 ∪ · · · ∪ Ct, where
Ci = {ci,1, . . . , ci,q∆} for all 1 6 i 6 t and the arc set of D is all possible arcs from
A := {c1,1, . . . , c1,∆}: E = {(a, v) : a ∈ A, v ∈ V \ {a}}.

Then let f ∈ F[D◦, q] be defined as follows. Denote the set of possible values of xA as
z1, . . . , zq∆ , then

fci,j(x) = xci,j + 1 {xA = zj} .
It is clear that for any x and any i, exactly one vertex from Ci guesses wrong, thus
s(f) = n− t.

3.2 Lower bound for the Boolean case

First of all, we make an important remark which characterises the functions with the
highest stability in F[D◦, q]. For any fv(xN(v)), let Ξ(fv) := {xN(v) : fv(xN(v)) 6= xv}.
Then it is clear that if Ξ(fv) ⊆ Ξ(f ′v) for all v, then s(f) > s(f ′). In particular, the
functions in F[D◦, 2] with the highest stability all have |Ξ(fv)| = 0 if v is a source of D
(i.e. fv(x) = xv) and |Ξ(fv)| = 1 otherwise.

the electronic journal of combinatorics 26(3) (2019), #P3.32 7

Theorem 5. For any loopless graph D, s[D◦, 2] > n/2.

The proof goes bottom-up, by proving the result for larger and larger classes of graphs.
Firstly, an out-cycle consists of a cycle (or a single vertex) to which are appended some
outgoing arcs, no more than one per vertex. More formally, a graph D = (V,E) is an out-
cycle if there exist k > 1, 0 6 l 6 k, and three sets A = {a1, . . . , ak}, B = {ab1 , . . . , abl} ⊆
A and C = {c1, . . . , cl} such that the following hold:

• A ∩ C = ∅ and A ∪ C = V ;

• if k > 2, then D[A] is a cycle, say E(D[A]) = {(ai, ai+1) : 1 6 i 6 k} with indices
computed modulo k; if k = 1, then D[A] is trivial;

• E = E(D[A]) ∪ {(abj , cj) : i = 1, . . . , l}.

An example with k = 6 and l = 3 is given in Figure 1.

a1 = ab1 a2 a3 = ab2 a4 = ab3 a5 a6

c1 c2 c3

Figure 1: An out-cycle with k = 6 and l = 3.

Lemma 6. If D is an out-cycle, then s[D◦, 2] > n/2.

Proof. Let D be an out-cycle, with the sets A, B and C as above. Then let f ∈ F[D◦, 2]
be defined as follows:

fabj+1
(x) = xabj + (xabj+1

+ 1)(xabj + 1)

= xabj+1
∨ ¬xabj , ∀abj ∈ B,

fai(x) = xai + (xai + 1)xai−1

= xai ∨ xai−1
, if ai−1 /∈ B,

fcj(x) = xcj + xcjxabj

= xcj ∧ ¬xabj ∀cj ∈ C.

We now construct the simple graph D′ = (V,E ′) as follows. Its edge set is

E ′ = {abjcj, cjabj+1 : 1 6 j 6 l} ∪ {aiai+1 : ai /∈ B},

and hence it is a Hamiltonian cycle. An example of D′ is given in Figure 2. We prove
that for any x ∈ [2]n, J := ∆(x, f(x)) is an independent set of D′.

the electronic journal of combinatorics 26(3) (2019), #P3.32 8

• If abj ∈ J , then xabj = 0 hence cj /∈ J . Thus there is no edge of the form abjcj in J .

• If cj ∈ J , then xabj = 1 hence abj+1
/∈ J . Thus there is no edge of the form cjabj+1

in J .

• If ai+1 ∈ J , where ai /∈ B, then xai = 1 hence xai /∈ J . Thus there is no edge of the
form aiai+1 in J .

Thus, dH(x, f(x)) 6 n/2.

a1 = ab1 a2 a3 = ab2 a4 = ab3 a5 a6

c1 c2 c3

Figure 2: The simple graph D′ corresponding to D in Figure 1

Secondly, let D = (V,E) be a loopless graph and let a ∈ V . We then introduce two
ways to append two vertices u and v to a. First, forking corresponds to the case where u
and v are both connected to a: DF

a = (V ∪{u, v}, E∪{(a, u), (a, v)}). Second, branching
corresponds to the case where a, u, v form a path: DB

a = (V ∪ {u, v}, E ∪ {(a, u), (u, v)}).
Lemma 7. If D is obtained from H by branching or forking, then s[D◦, 2] > s[H◦, 2] + 1.

Proof. Let f ∈ F[H◦, 2] with s(f) > n/2. Firstly, if D = HF
a , then define g ∈ F[D◦, 2] as

gi(x) = fi(x) ∀i ∈ V (H)

gu(x) = xu + (xa + 1)xu

= xu ∧ xa
gv(x) = xv + xa(xv + 1)

= xv ∨ xa.

Then, depending on the value of xa, either gu(x) = xu or gv(x) = xv and we obtain
s(g) = s(f) + 1.

Secondly, if D = HF
a , then define g ∈ F[D◦, 2] as

gi(x) = fi(x) ∀i ∈ V (H)

gu(x) = xu + (xa + 1)xu

= xu ∧ xa
gv(x) = xv + (xu + 1)xv

= xv ∧ xu.

Then, depending on the value of xu, either gu(x) = xu or gv(x) = xv and we obtain
s(g) = s(f) + 1.

the electronic journal of combinatorics 26(3) (2019), #P3.32 9

A graph H is co-functional if dmax(H) 6 1.

Lemma 8. Any connected co-functional graph can be obtained from an out-cycle by re-
peatedly forking and branching.

Proof. We prove it by induction on the number of vertices. It is clearly true for up to
three vertices; suppose it is true for n− 2. For any connected co-functional graph D, let
A denote the set of vertices in the only cycle of D and let S denote the set of vertices
whose out-neighbourhood consists of only leaves.

• Case 1: there exists s ∈ S with out-degree at least two. Referring to two out-
neighbours of s as u and v, we see that D = (D \ {u, v})Fs , and by induction
hypothesis, D can be obtained by successive forking and branching.

• Case 2: all vertices in S have out-degree one and there exists an element s ∈ S \A.
Denoting its out-neighbour as v and its in-neighbour as a, then D = (D \ {s, v})Ba ,
and by induction hypothesis, D can be obtained by successive forking and branching.

• Case 3: all vertices in S have out-degree one and S ⊆ A. Then D is an out-cycle.

We can now prove the theorem for co-functional graphs.

Lemma 9. For any co-functional graph D, s[D◦, 2] > n/2.

Proof. If D is connected, then by Lemmas 6, 7 and 8, s[D◦, 2] > n/2. Let D be a
co-functional graph with connected components C1, . . . , Cs, with n1, . . . , ns vertices re-
spectively. Then Ci is co-functional for all 1 6 i 6 s, and hence

s[D◦, 2] =
s∑
i=1

s[C◦i , 2] >
s∑
i=1

ni
2

>
n

2
.

For any loopless H and D, we write H 6 D if H is a spanning subgraph of D and for
all v ∈ V , v is a source in H only if v is a source in D.

Lemma 10. If H 6 D, then s[H◦, 2] 6 s[D◦, 2].

Proof. Let f ∈ F[H◦, 2]. Firstly, if v is a source (of H or of D, which is equivalent),
then fv(x) = xv + εv for some εv ∈ [2]. Secondly, if u is not a source, then fu(x) =
xu + gu(xN(u;H◦)) for some function gu. We then introduce the function f ′ ∈ F[D◦, 2],
defined as

f ′v(x) = xv if v is a source,

f ′u(x) = xu + gu(xN(u;H◦)) ∧
∧

a∈N(u;D◦)\N(u;H◦)

xa if u is not a source.

Therefore, for any x ∈ [2]n, we have f ′v(x) = xv for all sources v and f ′u(x) 6= xu only if
fu(x) 6= xu otherwise. Thus ∆(x, f ′(x)) ⊆ ∆(x, f(x)) and s(f ′) > s(f).

the electronic journal of combinatorics 26(3) (2019), #P3.32 10

Lemma 11. For any loopless graph D, there exists a co-functional graph H such that
H 6 D.

Proof. Let C1, . . . , Cs be the initial strong components of D, and let v1, . . . , vs such that
vi ∈ Ci for all i. We construct H as follows. For i from 1 to s, do the following

1. Use depth-first-search from vi to construct an out-tree Hi.

2. If vi is not a source in D, then add the arc (ui, vi), where ui is a randomly chosen
vertex of N(vi;D).

3. Remove the vertex set of Hi.

Then H = H1 ∪ · · · ∪Hs.

The theorem then follows from the last three lemmas.

3.3 Strict monotone stability

There is a natural partial order on [2]n, whereby x 6 y if and only if xv 6 yv for all v. A
function f ∈ F(n, 2) is monotone if it preserves that order: x 6 y implies f(x) 6 f(y).
Monotone FDSs have very interesting properties, for instance the celebrated Knaster-
Tarski theorem states that the set of fixed points of a monotone FDS forms a non-empty
lattice. As such, these FDSs have been studied in different works [11, 3].

We denote the set of monotone functions in F[D◦, 2] as F+[D◦, 2] and we denote

s+[D◦, 2] := max
f∈F+[D◦,2]

s(f).

First of all, we make some important remarks about functions in F+[D◦, 2] with highest
stability. Again, such a function satisfies fv(x) = xv if v is a source of D. For a given
v and non-empty N(v), the only monotone coordinate functions φ and ψ which achieve
|Ξ(φ)| = |Ξ(ψ)| = 1 are the following:

φ(x) = xv + 1
{

(xv = 0) ∧
(
xN(v) = (1, . . . , 1)

)}
= xv ∨

∧
u∈N(v)

xu,

ψ(x) = xv + 1
{

(xv = 1) ∧
(
xN(v) = 0

)}
= xv ∧

∨
u∈N(v)

xu.

(Obviously, the in-neighbourhoods are with respect to D.) Hence for any function f ∈
F+[D◦, 2] with maximum stability, its local functions are either φ or ψ as above (if v is
not a source of D). In that case, we shall write fv ≡ φ or fv ≡ ψ, respectively. Moreover,
let f̃ be the dual of f , defined by f̃(x) = ¬f(¬x). Then dH(x, f(x)) = dH(¬x, f̃(¬x)),
hence s(f̃) = s(f). Thus, we can always assume that, for a given v, f with maximum
stability has fv ≡ φ.

the electronic journal of combinatorics 26(3) (2019), #P3.32 11

Theorem 12. For any loopless graph D, s+[D◦, 2] > bn/2c.
Proof. The structure of the proof is the same as that of Theorem 5. We first give the
analogue of Lemma 6.

Claim 13. If D is an out-cycle, then s+[D◦, 2] > bn/2c.

Proof. We use the same notation as for Lemma 6. First of all, if D is a cycle, then the
function where fv ≡ φ for all vertices v has stability dn/2e (it was already used in Lemma
6). Henceforth, we assume that D is not a cycle. Without loss, let b1 = 1, and then define
f ∈ F+[D◦, 2] recursively as follows. We denote u ≡ v if fu ≡ φ ≡ fv or fu ≡ ψ ≡ fv.

fa1 ≡ φ (fa1(x) = xa1 ∨ xak)
cj ≡ abj 1 6 j 6 l

abj+1 6≡ cj 1 6 j 6 l

ai+1 ≡ ai i 6 k − 1, ai /∈ B.

Define the simple graph D∗ = (V,E∗) as follows. Its edge set is

E∗ = {abjcj, cjabj+1 : 1 6 j 6 l, bj 6 k − 1} ∪ {aiai+1 : i 6 k − 1, ai /∈ B},

and hence it is a Hamiltonian path. An example of D∗ is given in Figure 2. Again, we can
prove that for any x ∈ [2]n, ∆(x, f(x)) is an independent set of D∗, thus s(f) > bn/2c.

a1 = ab1 a2 a3 = ab2 a4 = ab3 a5 a6

c1 c2 c3

Figure 3: The simple graph D∗ corresponding to D in Figure 1

The analogue of Lemma 7 is proved in the exact same fashion. Lemmas 8 and 9 only
involve graph theory and as such we can prove the theorem for co-functional graphs. We
now give the analogue of Lemma 10.

Claim 14. If H 6 D, then s+[H◦, 2] 6 s+[D◦, 2].

Proof. Let f ∈ F+[H◦, 2]. Firstly, if v is a source (of H or of D, which is equivalent), then
fv(x) = xv + εv for some εv ∈ [2]. Secondly, if u is not a source, then fu ≡ φ or fu ≡ ψ
for some function gu. We then introduce the function f ′ ∈ F+[D◦, 2], defined as

f ′v(x) = xv if v is a source,

f ′u ≡

{
φ if fu ≡ φ

ψ if fu ≡ ψ
if u is not a source.

(We use the in-neighbourhoods of D◦ for f ′.) Therefore, ∆(x, f ′(x)) ⊆ ∆(x, f(x)) for any
x ∈ [2]n and s(f ′) > s(f).

the electronic journal of combinatorics 26(3) (2019), #P3.32 12

Finally, combining with Lemma 11, we prove the theorem for all graphs.

We now construct an infinite family of loop-full graphs where the strict monotone
stability is below n/2. Let m be a positive integer, and let Bm be the graph on n = 2m+1
vertices with arc set

E(Bm) = {(i, i+ 1) : 1 6 i 6 2m− 1} ∪ {(2m, 1)} ∪ {(1, n)}.

The graph Bm is represented in Figure 4.

· · ·1 2 2m−1 2m

n

Figure 4: The graph Bm.

Proposition 15. For any m > 1, B◦m has strict monotone stability equal to m.

Proof. The case m = 1 is easily verified, thus we assume m > 2 henceforth. Let f ∈
F+[B◦m, 2] have maximum stability, then every local function fv is of the form

fv(x) = xv + 1 {(xv, xu) = (εv, εv + 1)} .

Therefore, f is entirely described by ε = (ε1, . . . , εn). Our aim is to exhibit a state y ∈ [2]n

such that dH(y, f(y)) > m + 1. Without loss of generality, let fn = φn, i.e. εn = 0. We
now proceed to a case analysis.

Case 1: ε2 = 0.
Let y such that (y2k, y2k−1) = (ε2k, ε2k + 1) for all 1 6 k 6 m and yn = 0. Then
∆(y, f(y)) = {2, 4, . . . , 2m,n}.

Case 2: ε1 = 1.
Let y such that (y2k+1, y2k) = (ε2k+1, ε2k+1 + 1) for all 1 6 k 6 m − 1 and
(yn, y1, y2m) = (0, 1, 0). Then ∆(y, f(y)) = {1, 3, 5, . . . , 2m− 1, n}.

Case 3: ε1 = 0 and ε2 = 1.

Case 3.1: For all i from 3 to 2m, εi = 1.
Let y = (0, 1, 0, 1, . . . , 0, 1, 0). Then ∆(y, f(y)) = {1, 2, 4, 6, . . . , 2m}.

Case 3.2.: There exists 3 6 i 6 2m with εi = 0.
Let j := min{3 6 i 6 2m : εj = 0}.

the electronic journal of combinatorics 26(3) (2019), #P3.32 13

Case 3.2.1: j is even.
Let y such that (y2k+1, y2k) = (ε2k+1, ε2k+1 + 1) for all 1 6 k 6 j/2 − 1,
(y2l, y2l−1) = (ε2l, ε2l + 1) for all j/2 6 l 6 m, and (yn, y1) = (0, 1). Then
∆(y, f(y)) = {3, 5, . . . , j − 1, j, j + 2, . . . , 2m,n}.

Case 3.2.2: j is odd.
Let y such that (y2k, y2k−1) = (1, 0) for all 1 6 k 6 (j − 1)/2, (y2l+1, y2l) =
(ε2l+1, ε2l+1 + 1) for all (j− 1)/2 6 l 6 m− 1, and (y2m, yn) = (1, 0). Then
∆(y, f(y)) = {1, 2, 4, . . . , j − 1, j, j + 2, . . . , 2m− 1}.

We are now interested in how the monotone stability compares with the stability.
Clearly, the following are equivalent: D is the empty graph, s[D◦, 2] = n and s+[D◦, 2] = n.
Once we exclude the empty graph, the two types of stabilities can be as far apart as
Theorem 12 allows. The balanced complete bipartite graphKm,m has vertex set V = L∪R,
where L = {l1, . . . , lm} and R = {r1, . . . , rm}, and all possible edges between L and R:
E = {lirj : li ∈ L, rj ∈ R}.

Proposition 16. We have s[K◦m,m, 2] = 2m− 1 while s+[K◦m,m, 2] = m.

Proof. Firstly, let f ∈ F[K◦n,n, 2] be defined as

fli(x) = xli + 1
{

(xli = 1) ∧ (xri = 1) ∧
(
xR\ri = (0, . . . , 0)

)}
frj(x) = xrj + 1

{(
xrj = 1

)
∧
(
xlj = 0

)
∧
(
xL\lj = (1, . . . , 1)

)}
.

We now prove that its stability is 2m− 1. If fli(x) 6= xli , then

• xli = 1, hence fri(x) = xri ,

• xri = 1 hence flk(x) = xlk for all k 6= i,

• xR\ri = (0, . . . , 0) hence frk(x) = xrk for all k 6= i.

Similarly, if frj(x) 6= xrj , then

• xrj = 1 hence flk(x) = xlk for all k 6= j,

• xlj = 0 hence flj(x) = xlj and frk(x) = xrk for all k 6= j.

Now let f ∈ F+[K◦m,m, 2] with maximum stability and

A := |{i : fli ≡ φ}|+ |{j : frj ≡ ψ}|
B := |{i : fli ≡ ψ}|+ |{j : frj ≡ φ}|.

We then have A+B = 2m, hence one of the two, say A, satisfies A > m (the proof is similar
if B > m instead). Then let y ∈ [2]2m such that yL = (0, . . . , 0) and yR = (1, . . . , 1), then
it is clear that dH(y, f(y)) = A > m and hence s(f) 6 m.

the electronic journal of combinatorics 26(3) (2019), #P3.32 14

On the other hand, the monotone strict stability can also reach n− 1, for instance for
D = Kn; we characterise such graphs below. A biclique is the complement of a bipartite
graph. Let us call a loopless graph D a near-biclique if its vertex set can be partitioned
into V = A ∪B ∪ S, where S is the set of sources of D, and

1. for all a1, a2 ∈ A, either (a1, a2) ∈ E or (a2, a1) ∈ E,

2. similarly for all b1, b2 ∈ B, either (b1, b2) ∈ E or (b2, b1) ∈ E,

3. for any u, v ∈ V \ S, there exists w ∈ (N(u) ∪ u) ∩ (N(v) ∪ v),

4. for any a ∈ A and b ∈ B, there exists w ∈ N(a) ∩N(b).

Theorem 17. We have s+[D◦, 2] = n− 1 if and only if D is a non-empty near-biclique.

Proof. All in-neighbourhoods are with respect to D. If D is a near-biclique with A and
B as above, let f ∈ F[D◦, 2] such that fs(x) = xs for all s ∈ S, fa ≡ φ for all a ∈ A
and fb ≡ ψ for all b ∈ B. We now prove that s(f) = n − 1. Suppose that fa(x) 6= xa
for some a ∈ A (the proof is similar if fb(x) 6= xb for some b ∈ B), then xa = 0 and
xN(a) = (1, . . . , 1). For any other a′ ∈ A, we have either (a, a′) ∈ E in which case
xN(a′) 6= (1, . . . , 1), or (a′, a) ∈ E in which case xa′ = 1 6= 0; in any case, we have
fa′(x) = xa′ . Now let b ∈ B and w ∈ N(a) ∩N(b), then xw = 1, hence xN(b) 6= (0, . . . , 0)
and fb(x) = xb.

Conversely, let f ∈ F+[D◦, 2] with stability n − 1; we will prove that D must be a
near-biclique. Firstly, suppose that u and v are two non-source vertices which form an
independent set of size two, then it is easy to check that fu ≡ φ and fv ≡ ψ (or vice versa).
Therefore, if G is the simple graph on V \ S where u and v are adjacent if and only if
they form an independent set in D, we see that G must be bipartite. This is equivalent
to Properties 1 and 2, with A and B forming the bipartition of G. Say fa ≡ φ for all
a ∈ A and fb ≡ ψ for all b ∈ B. Secondly, we must have σ(D) = 1, which ensures that D
satisfies Property 3. Finally, suppose there exist a ∈ A and b ∈ B with N(a)∩N(b) = ∅,
then let x ∈ [2]n such that xa = 0, xN(a) = (1, . . . , 1), xb = 1, xN(b) = (0, . . . , 0); we see
that fa(x) 6= xa and fb(x) 6= xb. Therefore, D must satisfy Property 4.

4 Average strict stability and instability

4.1 Average strict stability

We are first interested in the average value of the stability. The proportion of FDS in
F(n, q) with positive stability decreases rapidly with q. For any set S ⊆ [q]n, the number
of functions f in F(n, q) such that x and f(x) are at Hamming distance n for all x ∈ S is
(q − 1)n|S| · qn(qn−|S|). We obtain

|{f ∈ F(n, q) : s(f) > 0}| = qnq
n

[
1−

(
1− 1

q

)n]qn
.

the electronic journal of combinatorics 26(3) (2019), #P3.32 15

Unsurprisingly, the average stability for a given interaction graph tends to zero when
q tends to infinity.

Proposition 18. For any D and any q,

1

|F[D, q]|
∑

f∈F[D,q]

s(f) 6
n

q
.

Proof. Let y ∈ [q]n. Since s(f) 6 n− dH(y, f(y)), we have

∑
f∈F[D,q]

s(f) 6
n∑
d=0

(n− d) |{f ∈ F[D, q] : dH(y, f(y)) = d}|

=
n∑
d=0

(n− d)

(
n

d

)
(q − 1)dq−n|F[D, q]|,

= nqn−1q−n|F[D, q]|.

We remark that the average stability might, in fact, tend to zero very rapidly as q
tends to infinity.

4.2 Average strict instability

The average instability in F[D, q] seems to behave in a more complicated fashion, but at
least we have a result for the average instability in F(n, q).

Proposition 19. For any n > 1,

lim
q→∞

1

|F(n, q)|
∑

f∈F(n,q)

i(f) = e−1.

Proof. Let q be large enough, and suppose f ∈ F(n, q) is chosen uniformly at random.
Then

P{i(f) = 0} = P{|Fix(f)| > 1} = 1− e−1 + o(1).

Now for any x ∈ [q]n,

P{dH(x, f(x)) > 2} = 1− P{dH(x, f(x)) 6 1} 6 1− nq−n(q − 1) 6 1− q1−n.

Thus,

P{i(f) > 2} =
∏
x∈[q]n

P{dH(x, f(x)) > 2}

6 (1− q1−n)q
n

6 e−q.

Therefore, P{i(f) = 1} = e−1 + o(1), and the expected instability tends to e−1.

the electronic journal of combinatorics 26(3) (2019), #P3.32 16

In order to evaluate the average instability, we study the number of functions with
positive instability, or in other words fixed point free functions. For any graph D, we
partition F[D, q] into

F0[D, q] = {f ∈ F[D, q] : |Fix(f)| = 0},
F1[D, q] = {f ∈ F[D, q] : |Fix(f)| = 1},
F2[D, q] = {f ∈ F[D, q] : |Fix(f)| > 2}.

For the sake of conciseness, we use the notation

p0[D, q] =
|F0[D, q]|
|F[D, q]|

, p1[D, q] =
|F1[D, q]|
|F[D, q]|

, p2[D, q] =
|F2[D, q]|
|F[D, q]|

.

We similarly define F0(D, q), p0(D, q), etc.
If D is not acyclic, then [2] gives a construction of a fixed point free element of F[D, q]

for any q. We now give an upper bound on the number of fixed point free functions in
F[D, q].

Proposition 20. For any D and q,

p0[D, q] 6 1− q−τ(D).

Proof. We can uniquely express f ∈ F[D, q] as f(x) = φ(x)+f(0, . . . , 0), where φ ∈ F[D, q]
satisfies φ(0, . . . , 0) = (0, . . . , 0). The guessing code of φ is Cφ := {φ(x)−x : x ∈ [q]n} [7].
We then have

|Cφ| = |{y ∈ [q]n : ∃x s.t. φ(x)− x = y}
= |{y ∈ [q]n : ∃x ∈ Fix(φ− y)}
= |{f : f(x)− f(0, . . . , 0) = φ(x), |Fix(f)| > 1}|.

Therefore, using the fact that |Cφ| > qn−τ(D) [7] we obtain

|F0[D, q]| >
(
qn − qn−τ(D)

)
q−n|F[D, q]|.

We remark that the bound above is tight for some cases. Firstly, it is clearly tight if
D is acyclic. Secondly, let q = 2 and D be the disjoint union of ν = τ(D) cycles (with no
other arcs). Then |F[D, 2]| = 2n for each local function is of the form fv(xu) = xu + εv,
where εv ∈ {0, 1} and (u, v) ∈ D. A cycle is positive if there is an even number of vertices
v such that εv = 1, and negative otherwise. It is easy to check that either all the cycles
of f are positive, in which case f has 2ν fixed points, or that one of its cycles is negative
and hence f has no fixed points. Thus

|F0[D, 2]| =
(
1− 2−τ(D)

)
|F[D, 2]|.

In view of [2] and [9, Lemma 1], the following properties are equivalent.

the electronic journal of combinatorics 26(3) (2019), #P3.32 17

1. D is acyclic.

2. For any q > 2, |F0[D, q]| = 0; in other words, every function with interaction graph
D has at least one fixed point.

3. For any q > 2, |F2[D, q]| = 0; in other words, every function with interaction graph
D has at most one fixed point.

We are interested in the opposite property, where |F0[D, q]| or |F2[D, q]| grow as a pos-
itive proportion of |F[D, q]|. We remark that since |F[D, q]| ∼ |F(D, q)| for large q, the
properties below for F[D, q] are equivalent to their counterparts for F(D, q).

Proposition 21. For any graph D, consider the following properties.

(a) There exists a constant 0 < a < 1 such that for any q large enough, p2[D, q]| > a.

(b) There exists a constant 0 < b < 1 such that for any q large enough, p0[D, q] > b.

(c) There exists a constant 0 < c < 1 such that for any q large enough, p1[D, q] 6 c.

(d) There exists a constant d > 0 such that for any q large enough,

1

|F[D, q]|
∑

f∈F[D,q]

i(f) > d.

Then we have the following implications: (a) ⇒ (b) ⇔ (c) ⇔ (d).

The proof is based on the following lemma: the average number of fixed points in
F[D, q] is equal to one.

Lemma 22. For any D and q, ∑
f∈F[D,q]

|Fix(f)| = |F[D, q]|.

Proof. Let Φ = {φ ∈ F[D, q] : φ(0, . . . , 0) = (0, . . . , 0)}. We can uniquely express any
function f ∈ F[D, q] as f(x) = φ(x) + f(0, . . . , 0), where φ ∈ Φ. Then∑

f∈F[D,q]

|Fix(f)| =
∑

f∈F[D,q]

∑
x∈[q]n

1 {f(x) = x}

=
∑
φ∈Φ

∑
y∈[q]n

∑
x∈[q]n

1 {φ(x) + y = x}

=
∑
φ∈Φ

∑
x∈[q]n

∑
y∈[q]n

1 {y = x− φ(x)}

=
∑
φ∈Φ

∑
x∈[q]n

1

= |F[D, q]|.

the electronic journal of combinatorics 26(3) (2019), #P3.32 18

Proof of Proposition 21. (a) ⇒ (b). Suppose that D satisfies Property (a) but not (b),
then for any a > ε > 0 there exists q large enough such that d2 > a and d0 < ε,
and hence d1 + d2 > 1 − ε. The average number of fixed points in F[D, q] is at least
2d2 + d1 > a+ 1− ε > 1, which contradicts Lemma 22.

The proof of (c)⇒ (b) is analogous, and hence omitted. Moreover, Property (b) clearly
implies (c) for c = 1 − a. Finally, the instability of a fixed-point free FDS is between 1
and n, which immediately implies that Properties (b) and (d) are equivalent.

Since the probability that a random mapping in F(n, q) has k fixed points tends to
e−1/k! for fixed k, we see that the graph K◦n satisfies Property (a). Moreover, the graph
with only n loops satisfies Property (a), and more precisely

lim
q→∞

p0[D, q] = 1− (1− e−1)n,

lim
q→∞

p1[D, q] = e−n,

lim
q→∞

p2[D, q] = (1− e−1)n − e−n,

lim
q→∞

1

|F[D, q]|
∑

f∈F[D,q]

i(f) = ne−1.

We therefore conjecture that if D is non-acyclic, then the average instability is bounded
away from zero for large alphabets (Property (d)). We give two versions of this conjecture,
the first one being stronger than the second according to Proposition 21.

Conjecture 23. (a) Any non-acyclic graph D satisfies Property (a).

(b) Any non-acyclic graph D satisfies Property (b).

We now prove the conjecture for cycles. The cycle ~Cn has vertex set {1, . . . , n} and
arcs (1, 2), (2, 3), . . . , (n− 1, n), (n, 1).

Theorem 24. For any n > 2, ~Cn satisfies Property (a). More precisely,

lim
q→∞

p0[~Cn, q] = e−1,

lim
q→∞

p1[~Cn, q] = e−1,

lim
q→∞

p2[~Cn, q] = 1− 2e−1,

lim
q→∞

1

|F[~Cn, q]|

∑
f∈F[~Cn,q]

i(f) = e−1.

Proof. We have that S ⊆ [q]n is a set of fixed points of some function f ∈ F(~Cn, q) if and
only if S is a code of minimum distance n [10]; in other words, for any distinct x, y ∈ S

the electronic journal of combinatorics 26(3) (2019), #P3.32 19

and any v ∈ V , xv 6= yv. The number of codes of minimum distance n and cardinality
t > 1 in [q]n is then

cn :=
1

t!
[q(q − 1) . . . (q − t+ 1)]n .

For any such S, let AS denote the number of functions f ∈ F(~Cn, q) such that S ⊆ Fix(f).
Then f ∈ AS if and only if for any v ∈ V and any s ∈ S, fv(sv−1) = sv. Since the values
outside of S are arbitrary, there are qq−t choices for fv, and hence

|AS| =
∏
v∈V

qq−t = q−nt|F(~Cn, q)|.

Thus, by the inclusion-exclusion principle, the number of fixed point free functions in
F(~Cn, q) is given by

|F0(~Cn, q)| = |F(~Cn, q)|

{
1−

q∑
t=1

(−1)t−1cnq
−nt

}
,

p0(~Cn, q) =

q∑
t=0

(−1)t

t!

[(
1− 1

q

)
. . .

(
1− t− 1

q

)]n
.

We denote the right hand side of the last equation as Vq.

Claim 25. limq→∞ Vq = e−1.

Proof. Let ε > 0 and q large enough so that∣∣∣∣∣
L∑
t=0

(−1)t

t!
− e−1

∣∣∣∣∣ < α, n
L

q
< β,

q

L!
< γ,

where L = dlog qe and α + eβ + γ < ε. We will prove that |Vq − e−1| < ε. Firstly, for all
t 6 L, [(

1− 1

q

)
. . .

(
1− t− 1

q

)]n
>

(
1− L

q

)n
> 1− nL

q
> 1− β.

Secondly,
q∑

t=L+1

(−1)t

t!

[(
1− 1

q

)
. . .

(
1− t− 1

q

)]n
<

q

L!
< γ.

Combining, we obtain

Vq <
∑
t even
t6L

1

t!
− (1− β)

∑
t odd
t6L

1

t!
+ γ

=
L∑
t=0

(−1)t

t!
+ β

∑
t odd
t6L

1

t!
+ γ

< e−1 + α + eβ + γ

< e−1 + ε.

the electronic journal of combinatorics 26(3) (2019), #P3.32 20

On the other hand,

Vq > (1− β)
∑
t even
t6L

1

t!
−
∑
t odd
t6L

1

t!

=
L∑
t=0

(−1)t

t!
− β

∑
t even
t6L

1

t!

> e−1 − α− eβ
> e−1 − ε.

This proves the limit of p0[~Cn, q]. Moreover, since any function in F[~Cn, q] has insta-
bility at most one, we get the limit of the average instability.

In a similar way, for any x ∈ [q]n the number of functions in F1(~Cn, q) fixing only x is
given by

|F(~Cn, q)|q−n
{

1−
q∑
t=2

(−1)t

(t− 1)!

[(
1− 1

q

)
. . .

(
1− t− 1

q

)]n}
,

and hence

p1(~Cn, q) =

q∑
s=0

(−1)s

s!

[(
1− 1

q

)
. . .

(
1− s

q

)]n
.

As q tends to infinity, that quantity tends to Vq, and hence p1[~Cn, q] tends to e−1.

Finally, we easily obtain the limit of p2[~Cn, q]:

lim
q→∞

p2[~Cn, q] = 1− lim
q→∞

p0[~Cn, q]− lim
q→∞

p1[~Cn, q] = 1− 2e−1.

References

[1] N. Alon, O. Ben-Eliezer, C. Shangguan, and I. Tamo, The Hat Guessing Number
of Graphs, Proc. IEEE International Symp. Information Theory (Paris, July 7-12,
2019), MO3.R8.4.

[2] J. Aracena and L. Salinas, Private communication.

[3] J. Aracena, A. Richard and L. Salinas, Number of fixed points and disjoint cycles
in monotone Boolean networks, SIAM Journal on Discrete Mathematics, 31 2017,
1702–1725.

[4] R. Banks, L.J. Steggles, An abstraction theory for qualitative models of biological
systems, Theoretical Computer Science, 431 (2012), 207–218.

[5] S. Butler, M. T. Hajiaghayi, R. D. Kleinberg, and T. Leighton, Hat guessing games,
SIAM Journal on Discrete Mathematics 22 (2008), 592–605.

[6] M. Farnik, A hat guessing game, Ph.D. thesis, University of Kraków, 2015.

the electronic journal of combinatorics 26(3) (2019), #P3.32 21

[7] M. Gadouleau, Finite dynamical systems, hat games, and coding theory, SIAM Jour-
nal on Discrete Mathematics, 32 (2019), 1922–1945.

[8] M. Gadouleau and N. Georgiou, New constructions and bounds for Winkler’s hat
game, SIAM Journal of Discrete Mathematics 29 (2015), 823–834.

[9] M. Gadouleau, A. Richard, and E. Fanchon, Reduction and fixed points of boolean
networks and linear network coding solvability, IEEE Transactions on Information
Theory 62 (2016), 2504–2519.

[10] M. Gadouleau and S. Riis, Graph-theoretical constructions for graph entropy and
network coding based communications, IEEE Transactions on Information Theory
57 (2011), 6703–6717.

[11] E. Goles, Dynamics of positive automata networks, Theoretical Computer Science 41
(1985), 19–32.

[12] S. A. Kauffman, Metabolic stability and epigenesis in randomly connected nets, Jour-
nal of Theoretical Biology 22 (1969), 437–467.

[13] K. Kokhas and A. Latyshev, For Which Graphs the Sages Can Guess Correctly the
Color of at Least One Hat, Journal of Mathematical Sciences, 236 (2019), 503–520.

[14] M. Krzywkowski, Hat problem on a graph, Ph.D. thesis, University of Exeter, 2012.

[15] M. Noual, D. Regnault and S. Sené, About non-monotony in Boolean automata net-
works, Theoretical Computer Science, 504 (2013), 12–25.

[16] S. Riis, Utilising public information in network coding, General Theory of Information
Transfer and Combinatorics, Lecture Notes in Computer Science, vol. 4123/2006,
Springer, 2006, pp. 866–897.

[17] , Graph entropy, network coding and guessing games, available at
arXiv:0711.4175, November 2007.

[18] , Information flows, graphs and their guessing numbers, The Electronic Jour-
nal of Combinatorics 14 (2007), #R44, 1–17.

[19] W. W. Szczechla, The three colour hat guessing game on the cycle graphs, The Elec-
tronic Journal of Combinatorics 24 (2017), #P1.37, 1–19.

[20] R. Thomas, Boolean formalization of genetic control circuits, Journal of Theoretical
Biology 42 (1973), 563–585.

[21] P. Winkler, Games People Don’t Play, in Puzzlers’ tribute: A feast for the mind (ed.
D. Wolfe and T. Rodgers), A. K. Peters, 2002, pp301–314.

the electronic journal of combinatorics 26(3) (2019), #P3.32 22

http://arxiv.org/abs/0711.4175

	Introduction
	Stability and instability: definitions and basic properties
	Finite dynamical systems
	Stability and instability: general properties

	Strict (in)stability for loop-full graphs
	Exact results
	Lower bound for the Boolean case
	Strict monotone stability

	Average strict stability and instability
	Average strict stability
	Average strict instability

