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Abstract. In this article, we study eigenvalue functions of varying
transition probability matrices on finite, vertex transitive graphs. We
prove that the eigenvalue function of an eigenvalue of fixed higher mul-
tiplicity has a critical point if and only if the corresponding spectral
representation is equilateral. We also show how the geometric realisa-
tion of a finite Coxeter group as a reflection group can be used to obtain
an explicit orthogonal system of eigenfunctions. Combining both re-
sults, we describe the behaviour of the spectral representations of the
second highest eigenvalue function under the change of the transition
probabilities in the case of Archimedean solids.

1. Introduction and statement of results

The main objects of interest in this paper are spectral representations as-
sociated to random walks on finite graphs (see Sections 1.1 and 1.2 for the
definitions). We consider the particular case of vertex transitivity, which
comprises the large class of Cayley graphs. In our main result (Theorem 1.3
below), we prove a correspondence between the critical points of an eigen-
value function (under the change of the invariant transition probabilities)
and the points where the associated spectral representation is equilateral.
In Sections 1.4 and 1.5, we specialise our considerations to finite Coxeter
groups and one-skeleta of Archimedean solids.

1.1. Basic graph theoretical notation. Let G = (V,E) be a finite, sim-
ple (i.e., no loops and multiple edges) graph with vertex set V = {1, . . . , n}
and set of undirected edges E. An edge is represented by a set {i, j} ⊂ V
with i 6= j. A (time reversible) random walk on G is given by a symmetric
stochastic matrix P = (pij) ∈ R

n×n, where pij is the transition probability
from vertex i to vertex j. For i 6= j, we require pij = 0 if {i, j} 6∈ E. Even
though there are no loops in G, we allow the diagonal elements pii to be
positive. (pii represents the probability for the random walk to stay at the
vertex i.) The set of all matrices P of the above type are a convex subset
of R

n×n, which we denote by ΠG. We think of a matrix P ∈ ΠG as a linear
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operator on the vector space l2(G) of (real-valued) functions on the vertices,
i.e.,

Pf(i) = piif(i) +
∑

j∼i

pijf(j),

where j ∼ i means that {i, j} ∈ E. The inner product on l2(G) is given by
〈f, g〉 =

∑n
i=1 f(i)g(i). Let σ(P ) denote the spectrum of P with eigenvalues

1 = λ0(P ) ≥ λ1(P ) ≥ · · ·λn−1(P ) ≥ −1,

counted with multiplicity. Let f0(i) = 1√
n
. The Rayleigh quotient represen-

tation of the second highest eigenvalue function

(1) λ1(P ) = sup
f⊥f0|f 6=0

〈Pf, f〉
‖f‖2

implies that λ1 : ΠG → [−1, 1] is convex (see the proof of Proposition 1.2 in
Section 2). The functions λi : ΠG → [−1, 1] are continuous (see, e.g., [17,
Theorem (1,4)]), but these functions fail to be analytic at those points where
eigenvalues of higher multiplicity bifurcate. We refer the reader to, e.g., [14,
Chapter 2], for more information about these subtle regularity issues. The
special operator P = (pij) with vanishing main diagonal (pii = 0 for all
i ∈ V ), and for which all other transition probabilities pij are equal to
1/deg(i), is called the canonical Laplacian.

1.2. Spectral representations. The idea of a spectral representation is to
use a higher multiplicity eigenvalue of the matrix P to obtain a ”geomet-
ric realisation” of the combinatorial graph G in Euclidean space. Assume
that λ ∈ σ(P ) is an eigenvalue of P of multiplicity k, and φ1, . . . , φk is
an orthonormal base of eigenfunctions of the eigenspace Eλ(P ). The corre-
sponding spectral representation is the map

Φ = ΦP,λ : V → R
k, Φ(i) = (φ1(i), . . . , φk(i)),

i.e., the simultaneous evaluation of all eigenfunctions at a given vertex. The
spectral representation depends on the choice of the orthonormal base only
up to an orthonormal transformation in R

k.
There are often striking geometric and spectral analogies between the

discrete setting of graphs and the smooth setting of Riemannian manifolds.
In the context of Riemannian manifolds, the simultaneous evaluation of
eigenfunctions of the Laplacian were considered, for example, in the so-
called nice (minimal isometric) embeddings of strongly harmonic manifolds
into Euclidean spheres (see [5, Chapter 6G]).

Definition 1.1. A spectral representation Φ : V → R
k is faithful if Φ is

injective. It is equilateral if all images of edges have the same Euclidean
length, i.e.,

‖Φ(i1) − Φ(j1)‖ = ‖Φ(i2) − Φ(j2)‖,
for all pairs of edges {i1, j1}, {i2, j2} ∈ E, where ‖ · ‖ denotes the Euclidean
norm.
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A particularly strong faithfulness result for 3-connected, planar graphs
in the case that the second highest eigenvalue has multiplicity three was
obtained in [15].

1.3. Vertex transitive graphs. In this paper, we focus on finite vertex
transitive graphs, i.e., we assume that the automorphism group Aut(G) acts
transitively on the vertex set V . Particular examples of vertex transitive
graphs are Cayley graphs of groups. Below, we introduce equivalence classes
of edges and, to have enough flexibility, we consider subgroups Γ ⊂ Aut(G)
which still act transitively on the vertices. We define a Γ-action on the space
ΠG of matrices as follows:

(γP )ij = pγi,γj for all P = (pij) ∈ ΠG.

A random walk and its corresponding matrix P ∈ ΠG is called Γ-invariant,
if γP = P for all γ ∈ Γ. Note that the main diagonal (p11, . . . , pnn) of
every Γ-invariant matrix P is constant. The large automorphism group
of a vertex transitive graph makes the occurence of eigenvalues of higher
multiplicities for Γ-invariant matrices more likely, and it is natural to make
use of connections between these eigenvalues and the representation theory
of Γ.

The group Γ induces an equivalence relation on the set of edges: {i, j} ∈ E
is equivalent to all edges {γi, γj} with γ ∈ Γ. The multiplicity of an equiva-
lence class [e] ⊂ E is the number of edges in [e] meeting at the same vertex.
Let [e1], . . . , [eN ] be the Γ equivalence classes of edges and m1, . . . ,mN be its
multiplicities. The set of Γ-invariant matrices in ΠG with vanishing main
diagonal is a convex subset, which we identify with the simplex

(2) ∆Γ = {(x1, . . . , xN ) ∈ [0, 1]N |
∑

j

mjxj = 1}.

The point X = (x1, . . . , xN ) ∈ ∆Γ corresponds to the matrix PX = (pij),
given by

pij =

{
0, if i = j or {i, j} 6∈ E,

xk, if {i, j} ∈ [ek].

For P = (pij) ∈ ΠG, let GP = (V,EP ) denote the subgraph of G with edges
EP = {{i, j} ∈ E | pij > 0}. Then, for every interior point X ∈ int(∆Γ), we
have GPX

= G (since the entries pij associated to all edges {i, j} are strictly
positive), and the spectrum σ(PX) is symmetric with respect to the origin
if and only if GPX

is bipartite.
Let us now discuss the special case of Cayley graphs. A finite symmetric

set S ⊂ Γ of generators of a group Γ is called minimal if for every s ∈ S,
S − {s, s−1} is no longer a set of generators. The Cayley graph of Γ with
respect to S is denoted by Cay(Γ, S), its vertices are the group elements,
i.e., V = Γ, and two vertices γ, γ′ are connected by an edge if and only if
γ′ = γs for some s ∈ S. If S = {s1, . . . , sr} is a minimal symmetric set of
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generators, we distinguish the generators of order 2 (since they appear only
once in S) from the ones with higher order, by rewriting them as

(3) S = {s1, . . . , sν , τ
±1
1 , . . . , τ±1

µ },

with ν + 2µ = r. Note that the edges {e, τj} and {e, τ−1
j } are equivalent,

and the corresponding simplex ∆Γ is given by

(4) ∆Γ = {(x1, . . . , xν+µ) ∈ [0, 1]N |
ν∑

j=1

xj + 2

µ∑

j=1

xν+j = 1}.

The following facts follow from the convexity of λ1 : ΠG → [−1, 1] (see
Section 2 for the proof).

Proposition 1.2. Let G = (V,E) be a finite, connected, simple graph and
Γ ⊂ Aut(G) be vertex transitive. Then a global minimum of λ1 : ΠG →
[−1, 1] is assumed at a matrix in ∆Γ.

If G = Cay(Γ, S) is the Cayley graph of a finite group Γ with respect to a
minimal symmetric set S of generators, then we have

(5) lim
n→∞

λ1(PXn) = 1

for every sequence Xn → ∂∆Γ, and a global minimum of λ1 is assumed at
an interior point of ∆Γ.

Note that the above result does not rule out that λ1 may also have other
global minima at matrices P ∈ ΠG − ∆Γ.

Our main general result is the following relation between critical points
of eigenvalue functions and equilateral spectral representations:

Theorem 1.3. Let G = (V,E) be a finite, connected, simple graph and Γ ⊂
Aut(G) be vertex transitive. Let U ⊂ ∆Γ be an open set and λ : U → [−1, 1]
be a smooth function such that λ(X) := λ(PX) is an eigenvalue of PX with
fixed multiplicity k ≥ 2 for all X ∈ U . X0 ∈ U is a critical point of the
function λ if and only if the spectral representation Φ = ΦPX0

,λ(X0) : V →
Sk−1 is equilateral.

It is shown in Lemma 2.1 (see Section 2) that, for vertex transitive graphs,
the image of every Γ-invariant spectral representation Φ = ΦPX ,λ (with

λ ∈ σ(PX) of multiplicity k) lies on an Euclidean sphere Sk−1 ⊂ R
k, and

that equivalent edges are mapped to segments with the same Euclidean
length, i.e., ‖Φ(γi) − Φ(γj)‖ = ‖Φ(i) − Φ(j)‖. The above theorem states
that at critical points of the eigenvalue function all Euclidean images of
edges have the same length (not only the equivalent ones).

Remarks 1.4. (a) Special examples of critical points are minima of a
smooth function. As another example for similarities between graphs and
Riemannian manifolds, we like to mention the following result in Riemann-
ian geometry: The first non-zero Laplace-eigenvalue λ1(M) > 0 of a closed
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Riemannian manifold (M,g) of dimension n with lower positive Ricci cur-
vature is minimal if and only if M is isometric to the n-dimensional round
sphere (Obata’s theorem, see [18] or [4]). Here we also have the phenomenon
that a critical point of the eigenvalue function is assumed in the case of a
very symmetric geometry.

(b) For extremal eigenvalues of the Laplace matrix of general graphs, re-
lated embedding interpretations arose, e.g., in [12, 11] in studying the semi-
definite duals of associated eigenvalue optimization problems. The relation
of these results to the vertex symmetric graphs studied here becomes more
apparent when symmetry is exploited in the corresponding optimization prob-
lems by the techniques described, e.g., in [10, 3]. The precise nature of this
relation, however, still needs to be explored further.

Standard arguments in representation theory yield the following useful
result:

Proposition 1.5. Let Γ be a finite group with a minimal symmetric set of
generators S given by (3) and G = Cay(Γ, S) be the associated Cayley graph
with the corresponding simplex ∆Γ as in (4).

Let ρ : Γ → O(k) be an irreducible representation, πr : R
k → R be the

projection to the r-th coordinate and Sk−1 ⊂ R
k be the unit sphere. Let

p ∈ Sk−1, λ ∈ R, and X = (x1, . . . , xν+µ) ∈ ∆Γ such that

(6) λp =
ν∑

j=1

xjρ(sj)p +

µ∑

j=1

xν+j(ρ(τj)p + ρ(τ−1
j )p).

Then the functions

φr : Γ → R, φr(γ) := πr(ρ(γ)p), 1 ≤ r ≤ k

are pairwise orthogonal eigenfunctions of PX for the eigenvalue λ satisfying

‖φr‖2 = |Γ|
k .

Remarks 1.6. (a) This result implies that if the eigenspace Eλ(PX) is an
irreducible representation of Γ (i.e., φ1, . . . , φk span the whole eigenspace
Eλ(PX)), then the associated spectral representation Φ : Γ → Sk−1 coin-

cides with the orbit map Φ(γ) = ρ(γ)p0 of the rescaled point p0 =
√

k
|Γ| p ∈

R
k. Thus a natural question is whether eigenspace representations are ir-

reducible, or whether different representations appear with the same eigen-
value.

(b) It can be shown, in the weaker case of a non-orthogonal irreducible
representation ρ : Γ → GL(k,R), that the functions φr are still a family of
linear independent eigenfunctions of PX .

1.4. Finite irreducible Coxeter groups. Let us now consider the special
case of a finite irreducible Coxeter group Γ = 〈S = {s1, . . . , sk} | (sisj)

mij =
e〉 of rank rk(Γ) = k with mij = mji ≥ 2 and mii = 2, i.e., s2i = e. It was
suggested in [16, Problem 10.8.7] to study the eigenvalues (or at least λ1)
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of the canonical Laplacian for Coxeter groups. Bacher [2] identified λ1 of
the canonical Laplacian for symmetric groups. For the canonical Laplacian
on arbitrary finite Coxeter groups, Akhiezer [1] found an explicit set of
eigenvalues and a lower bound on their multiplicity in case of irreducibility.
The spectral gap of the canonical Laplacian and the Kazdhan constant of
all finite Coxeter groups was explicitly derived by Kassabov in [13, Section
6.1]. For infinite Coxeter groups, it was proved in [6] that they do not have
Kazdhan property (T ). In this section we are concerned with Laplacians on
finite, irreducible Coxeter groups with variable weights.

Let Γ →֒ O(k) be the geometric realisation of Γ as finite reflection group.
The associated Cayley graph G = Cay(Γ, S) is bipartite, since all relations
of a Coxeter group have even length. Let σj ∈ O(k) be the reflections
corresponding to the generators sj and n1, . . . , nk be the associated simple
roots. Let

(7) pj = (−1)j−1n1 × · · · × n̂j × · · · × nk,

where v1 × · · · × vk−1 denotes the (k − 1)-ary analogue of the cross product
in R

k, and the hat over nj in (7) means that this term is dropped. Then
the open cone

F := {α1p1 + · · · + αkpk | α1, . . . , αk > 0} ⊂ R
k,

is a fundamental domain of the Γ-action on R
k. Γ preserves the unit sphere

Sk−1, and a spherical fundamental domain is given by F0 = F ∩ Sk−1. Let
V = det(n1, . . . , nk). Without loss of generality, we can assume that V > 0,
for otherwise we simply permute the set of generators. The following result
is a consequence of Proposition 1.5.

Corollary 1.7. Let Γ be a finite, irreducible Coxeter group and F0 ⊂ Sk−1

and ∆ = ∆Γ be as above. Then there exists smooth maps Ψ∆ : F0 → int(∆)
and Ψλ : F0 → (0, 1), with Ψ∆ bijective, such that, for every p =

∑
αjpj ∈

F0, the functions φi(γ) := πi(γp) are pairwise orthogonal eigenfunctions of
PX on Cay(Γ, S) for the eigenvalue λ = Ψλ(p), where X = Ψ∆(p). More-

over, ‖φi‖2 = |Γ|
k and the composition Ψλ ◦Ψ−1

∆ : int(∆) → (0, 1) is analytic.
The simultaneous evaluation

Φ(γ) : Γ → Sk−1, Φ(γ) = (φ1(γ), . . . , φk(γ)) = γp

is faithful, and the Euclidean lengths of the images of equivalence classes of
edges under Φ are given by

‖p − σj(p)‖ = 2αjV.

Remark 1.8. The explicit description of the maps Ψ∆, Ψλ and the compo-
sition Ψλ◦Ψ−1

∆ is given by the equations (16), (17), (18) and (20) in Section
3.

The next result follows from a slight modification of a calculation given
in Kassabov [13].
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Proposition 1.9. Let Γ,Ψ∆ and Ψλ be as in Corollary 1.7. Then the map
Ψλ ◦ Ψ−1

∆ : int(∆) → (0, 1) coincides with the second highest eigenvalue
function λ1 : int(∆) → (0, 1). Consequently, the second highest eigenvalue
λ1(X) of PX has always multiplicity ≥ rk(Γ).

The proof of the next result on the exact multiplicity of the second highest
eigenvalue for particular Coxeter groups is based on elegant arguments of
van der Holst [20]. He used these arguments to give a direct combinatorial
proof of Colin de Verdierè’s planarity characterisation ”µ(G) ≤ 3”.

Proposition 1.10. Let Γ be one of the Coxeter groups A3, B3 or H3. Then
the second highest eigenvalue λ1(X) of PX has multiplicity equals three for
all X ∈ int(∆).

Remark 1.11. (a) The heart of the proof of Proposition 1.10, namely van
der Holst’s argument, is geometric and depends on the planarity of the as-
sociated Cayley graphs. It is likely that for every finite, irreducible Coxeter
group Γ (not only A3, B3,H3) the multiplicity of the second highest eigen-
value function is constant and equal to the rank of Γ. The techniques in
Kassabov’s paper [13] might be useful to prove this general statement.

(b) The value of λ1(X) has a well known dynamical interpretation: Our
Cayley graphs are bipartite, i.e., we have a partition V = V0 ∪ V1. λ1(X)
measures the convergence rate of the corresponding random walk to the
equidistribution (mixing rate) on each set of vertices Vi under even time
steps (even time steps are needed because of the bipartiteness). The validity
of the multiplicity assumption in (a) together with our main result (Theorem
1.3) would allow us to explicitly determine, for all finite, irreducible Coxeter
groups, the transition probabilities of a random walk with the fastest mixing
rate on the corresponding Cayley graphs. In fact, this is precisely how we
will prove Theorem 1.12 below.

1.5. Archimedean solids. The Cayley graph of the Coxeter groups A3, B3

and H3 (with respect to their set of standard generators {s1, s2, s3}) conin-
cide, combinatorially, with the one-skeleta of the Archimedean solids with
the vertex configurations (4, 6, 6), (4, 6, 8), and (4, 6, 10), respectively.

Archimedean solids are polyhedra in R
3 such that all faces are regular

polygons, and which have a symmetry group acting transitively on the ver-
tices. (Note, however, that the prisms, antiprisms and Platonic solids, which
also have these properties, are excluded). The 13 Archimedean solids are
classified via their vertex configurations: The vertex configuration (m,n, k)
stands for the solid where an m-gon, an n-gon and a k-gon (in this order)
meet at every vertex. We will use this notation also for Platonic solids (e.g.,
the icosahedron is denoted by (3, 3, 3, 3, 3)). The spectra of the canonical
Laplacians (on the one-skeleta) of all Archimedean solids were explicitly cal-
culated in [19]. For all these graphs, the second highest eigenvalue of the
canonical Laplacian has multiplicity three. The corresponding spectral rep-
resentation is faithful and represents a polyhedron in R

3 (this follows, e.g.,
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from the general result in [15]), but this polyhedron is generally not equilat-
eral. It is natural to study the deformation of this polyhedron under changes
of the Γ-invariant transition probabilities (assuming that the multiplicity of
λ1 does not change), and to find points at which the spectral representation
is equilateral.

We will carry this out in the case of the largest Archimedean solid, namely
the truncated icosidodecahedron (4, 6, 10). We will also explain, how the
corresponding results read in the case of the Archimedean solids (4, 6, 8)
and (4, 6, 6). The proofs for these cases are completely analogous.

Let G = (V,E) be the one-skeleton of the Archimedean solid (4, 6, 10).
The automorphism group of G is the full icosahedral group and acts simply
transitively on the vertex set V , and is isomorphic to H3. Considering G
as a planar graph, its faces are 4-, 6- and 10-gons. G is 3-connected, has
120 vertices and every vertex has degree three (see Figure 1 below). Let

ϕ = 1+
√

5
2 = 2cos π

5 be the golden ratio. Our previous results imply the
following facts for λ1.

Theorem 1.12. Let G be the 1-skeleton of the Archimedean solid (4, 6, 10)
and Γ = Aut(G). The simplex of Γ-invariant transition probabilities is

∆ = ∆Γ = {(x, y, z) | x, y, z ≥ 0, x+ y + z = 1},
where x, y, z are the transition probabilities for the edge-equivalence classes
separating 4- and 6-gons, 4- and 10-gons, and 6- and 10-gons, respectively.
Then the restriction of λ1 : ΠG → [−1, 1] to int(∆) ⊂ ΠG is analytic and
strictly convex, and λ1(X) has multiplicity three for all X ∈ int(∆). More-
over, X0 = 1

14+5ϕ (5, 3 + 3ϕ, 6 + 2ϕ) is the unique point in ∆ at which λ1

assumes its global minimum with

λ1(X0) =
10 + 7ϕ

14 + 5ϕ
.

The corresponding spectral representation ΦX0
: V → S2 is faithful and

equilateral.

Let us stress, again, that forX∗ = (1/3, 1/3, 1/3) ∈ ∆, the above Theorem
implies that the spectral representation of PX∗

for λ1(X∗) does not reproduce
the Archimedean solid, one has to choose the point X0 ∈ ∆ instead (see
Figure 1).

Remark 1.13. There are analogous versions of Theorem 1.12 in the cases
(4, 6, 8) and (4, 6, 6). The full symmetry group of both solids (4, 6, 8) and
(4, 6, 6) is the full octahedral group, but it is better to view (4, 6, 6) as a
polyhedron with the full tetrahedral group (which is a subgroup of the full
octahedral group) as its symmetry group, by distinguishing its hexagonal
faces with the help of two colours (say, yellow and blue), such that adjacent
6-gons have different colours. In this case the solid (4, 6, 6) is also called
the omnitruncated tetrahedron and has three equivalence classes of edges
(separating 4-gons and yellow 6-gons, 4-gons and blue 6-gons, yellow and
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Figure 1. The 1-skeleton of the Archimedean solid (4, 6, 10)
and the (non-equilateral) spectral representation of the
canonical Laplacian for the second highest eigenvalue.

blue 6-gons), just as the solid (4, 6, 8) and (4, 6, 10). The corresponding
explicit values for X0 and λ1(X0) are

X0 =
1

13 + 6
√

2
(4 +

√
2, 3 + 3

√
2, 6 + 2

√
2) and λ1(X0) =

11 + 6
√

2

13 + 6
√

2

in the case (4, 6, 8) and

X0 = (
3

10
,

3

10
,
2

5
) and λ1(X0) =

4

5

in the case (4, 6, 6).

Finally, we describe the behaviour of spectral representations ΦX : V →
S2, as X ∈ ∆ moves towards the boundary ∂∆.

Theorem 1.14. Let G,∆,X0 be as in Theorem 1.12. Then there are three
explicitly given curves C1, C2, C3 ⊂ ∆, which meet in X0 and have the fol-
lowing property: For every X ∈ Ci, the lengths of two of the three equiva-
lence classes of Euclidean edges in the spectral representation of PX for the
eigenvalue λ1(X) coincide.

As Xn converges to the corresponding vertex of the simplex ∆ along the
curve Ci, the spectral representations converge to equilateral realisations of
the Archimedean solids (3, 10, 10), (5, 6, 6) and (3, 4, 5, 4), respectively.

For any sequence Xn ∈ int(∆) converging to an interior point of the
boundary edge of the simplex ∆, the spectral representations converge to
the equilateral realisations of one of the solids (3, 3, 3, 3, 3), (5, 5, 5) and
(3, 5, 3, 5).

These convergence properties are illustrated in Figure 2.
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C1

C2

C3

(4, 6, 10)

(3, 3, 3, 3, 3) (3, 5, 3, 5)

(3, 4, 5, 4) (3, 10, 10)

(5, 6, 6)

(5, 5, 5)

Simplex ∆Γ

Figure 2. Convergence behaviour of ΦX as X → ∂∆.

Figure 3 shows the spectral representations of PX for three pointsX along
the curve C2, illustrating the transition from the dodecahedron (5, 5, 5) to
the buckeyball (5, 6, 6).

Figure 3. Spectral representations of PX (for points X
along C2) for the second highest eigenvalue.

Remark 1.15. The analogous versions of Theorem 1.14 for the Archimedean
solids (4, 6, 8) and (4, 6, 6) are illustrated in Figure 4 below. The common
symmetry group of all solids in the diagram containing (4, 6, 8) is the full
octahedral group. In the diagram containing (4, 6, 6), we need to colour the
hexagons in the solid (4, 6, 6) with two different colours (as described in
Remark 1.13) and, similarly, we have to colour the triangles of the solid
(3, 4, 3, 4) with two colours such that triangles meeting in a vertex have dif-
ferent colours (and refer to (3, 4, 3, 4) then as the cantellated tetrahedron),
so that the common symmetry group of all solids in this diagram is the full
tetrahedral group.

1.6. Structure of the article. Section 2 provides the proofs of Proposi-
tions 1.2 and 1.5 and of our Main Theorem 1.3. In Sections 3 and 4, we prove
Corollary 1.7 and Propositions 1.9 and 1.10. Finally, Section 5 presents the
proofs of Theorems 1.12 and 1.14.
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C1C1

C2C2

C3C3

(4, 6, 8)

(3, 3, 3, 3)

(3, 4, 4, 4) (3, 8, 8)(4, 4, 4)

(3, 3, 3) (3, 3, 3)

(3, 3, 3)(3, 4, 3, 4)

(3, 4, 3, 4)

(3, 6, 6)

(3, 6, 6)

(4, 6, 6)

(4, 6, 6)

Figure 4. Boundary convergence behaviour in the cases
(4, 6, 8) and (4, 6, 6).
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2. Proofs of the general results

Let us start with a convexity proof of λ1 : ΠG → [−1, 1], which is used to
show that λ1 assumes a global minimum in ∆Γ.

Proof of Proposition 1.2: First note that, for P,P ′ ∈ ΠG and α ∈ [0, 1],

〈(αP + (1 − α)P ′)f, f〉
‖f‖2

= α
〈Pf, f〉
‖f‖2

+ (1 − α)
〈P ′f, f〉
‖f‖2

,

which implies the convexity of λ1 : ΠG → [−1, 1] by taking supremums on
both sides and using the characterisation (1).

Note also that ΠG is compact, and the continuous function λ1 : ΠG →
[−1, 1] must have a global minimum at some point P ∈ ΠG. If P 6∈ ∆Γ,
then consider the Γ-invariant matrix P ′ = 1

|Γ|
∑

γ∈Γ γP ∈ ΠG, and we con-

clude λ1(P
′) ≤ λ1(P ) by the convexity of λ1. P

′ may have a non-vanishing
(constant) main diagonal. Nevertheless, we can write P ′ = βId + (1− β)P ′′

with appropriate P ′′ ∈ ∆Γ and β ≥ 0. This implies that

λ1(P
′) − λ1(P

′′) = β(1 − λ1(P
′′)) ≥ 0,

which shows that λ1 assumes also a global minimum at P ′′ ∈ ∆Γ.
Now, assume that G = Cay(Γ, S) and that S is a minimal set of genera-

tors. The minimality of S implies that, for every X ∈ ∂∆Γ, the graph GPX

consists of more than one connected component and, therefore, λ0(PX) =
λ1(PX) = 1. Then (5) follows from the continuity of the function λ1. For
every interior point X ∈ ∆Γ we have λ1(PX) < 1, since GPX

is connected.
✷
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Our next goal is the proof that Γ-invariant spectral representations map
all vertices onto a sphere and that equivalent edges are mapped to Euclidean
segments of the same length.

Lemma 2.1. Let G = (V,E) be a simple finite graph and Γ ⊂ Aut(G)
be vertex transitive with N equivalence classes of edges, and ∆Γ be as in
(2). Let X ∈ ∆Γ and λ ∈ [−, 1, 1] be an eigenvalue of multiplicity k ≥ 2
of the operator PX . Let Φ = ΦX,λ : V → R

k be the associated spectral
representation. Then there exist constants c > 0, c1, . . . , cN ≥ 0 such that

(a) for all vertices i ∈ V : ‖Φ(i)‖ = c,
(b) for all edges {i, j} ∈ E in the l-th equivalence class

‖Φ(i) − Φ(j)‖ = cl.

Proof: Let φ1, . . . , φk be the orthonormal basis of eigenfunctions defining
Φ = (φ1, . . . , φk)

⊤ (we consider Φ(i) as a column vector). Let γ ∈ Γ be
fixed and ψr = φr ◦ γ : V → R. One easily checks that ψ1, . . . , ψk are
also an orthonormal basis satisfying PXψr = λψr. Consequently, there

exists a matrix C = (crs) ∈ O(k) such that ψr =
∑k

s=1 crsφs. This implies
Φ(γi) = CΦ(i) and

(8) 〈Φ(γi),Φ(γj)〉 = 〈CΦ(i), CΦ(j)〉 = 〈Φ(i),Φ(j)〉.
(8) implies (a) by choosing i = j and using the vertex transitivity of Γ. (b)
follows from (a), (8) and

‖Φ(i) − Φ(j)‖2 = ‖Φ(i)‖2 − 2〈Φ(i),Φ(j)〉 + ‖Φ(j)‖2.

✷

Before entering into the proof of our main result, let us remark that the
above identity (8) can be rewritten as

(9)

k∑

r=1

φr(i)φr(j) =

k∑

r=1

φr(γi)φr(γj) for all i, j ∈ V and γ ∈ Γ.

Moreover, observe that the following identity is an immediate consequence
of the vertex transitivity of Γ, the left coset decomposition Γ = γ1Γ1 ∪
γ2Γ1 ∪ · · · ∪ γnΓ1, where Γ1 ⊂ Γ is the stabilizer of 1 ∈ V , and the relation
|Γ| = n|Γ1|:

(10)
n∑

i=1

f(i) =
n

|Γ|
∑

γ∈Γ

f(γ1).

Proof of Theorem 1.3: For simplicity, we discuss the key arguments
for the special choice of the first and second equivalence class of edges. The
proof for two arbitrary equivalence classes is completely analogous.

Let {1, i1}, . . . , {1, ip} be all edges adjacent to 1 ∈ V in the first equiv-
alence class of edges (note that p = m1). Let {1, j1}, . . . , {1, iq} be all
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edges adjacent to 1 ∈ V in the second equivalence class of edges (note that
q = m2). We conclude from (9) that

(11)

k∑

r=1

φr(1)φr(i1) =

k∑

r=1

φr(1)φr(i2) = · · · =

k∑

r=1

φr(1)φr(ip),

and the same identity holds for the edges in the second equivalence class.
Let X0 ∈ U an arbitary point (not necessarily a critical point of λ1),

ξ = (1
p ,−1

q , 0, . . . , 0) ∈ R
N and Xt := X0 + tξ ∈ U for t ∈ (−ǫ, ǫ) and

ǫ > 0 suitably small. For simplicity of notation, we introduce P (t) := PXt ,
λ(t) = λ(Xt). Let φ1, . . . , φk be an orthonormal basis of the eigenspace
Eλ(0)(P (0)). Let Prt denote the orthogonal projection of l2(G) onto the
eigenspace Eλ(t)(P (t)) = ker(P (t) − λ(t)). Since P (t) and λ(t) depend
smoothly on t, Prt is also smooth in t. By making ǫ > 0 smaller, if needed, we
can assume that Prtφ1, . . . ,Prtφk is a basis of Eλ(t)(P (t)), for all t ∈ (−ǫ, ǫ).
Applying Gram-Schmidt to these vectors, we obtain an orthonormal basis
φ1,t, . . . , φk,t of the eigenspace Eλ(t)(P (t)), depending smoothly on t and

satisfying φr = φr,0. Note that P ′(0) = (cij) with

cγ1,γi =






1
p , if i ∈ {i1, . . . , ip},
−1

q , if i ∈ {j1, . . . , jq},
0, otherwise,

for all γ ∈ Γ and i ∈ V .
Let r ∈ {1, . . . , k}. By the orthonormality of the functions φr, we have

〈φr,
∂
∂t

∣∣
t=0

φr,t〉 = 0. Using this and the symmetry of P (t), we obtain, by
differentiating λ(t) = 〈P (t)φr,t, φr,t〉 at t = 0:

λ′(0) = 〈P ′(0)φr, φr〉 =

n∑

i=1

φr(i)




n∑

j=1

cijφr(j)





=
n

|Γ|
∑

γ∈Γ

φr(γ1)




n∑

j=1

cγ1,γjφr(γj)



 using (10)

=
n

|Γ|
∑

γ∈Γ

φr(γ1)

(
1

p

p∑

s=1

φr(γis) −
1

q

q∑

s=1

φr(γjs)

)
.

On the other hand, we have

〈Φ(1),Φ(i1)〉 =
1

p

p∑

s=1

k∑

r=1

φr(1)φr(is) using (11)

=
k∑

r=1

1

|Γ|
∑

γ∈Γ

φr(γ1)
1

p

p∑

s=1

φr(γis) using (9).
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Combining both results, we obtain

〈Φ(1),Φ(i1)〉 − 〈Φ(1),Φ(j1)〉 =
k

n
λ′(0).

This implies that we have ‖Φ(1) − Φ(i1)‖ = ‖Φ(1) − Φ(j1)‖ if and only if
λ′(0) = 0.

Since the above arguments hold for any choice of equivalence classes of
edges, we have c1 = · · · = cN in Lemma 2.1 above (i.e., an equilateral
spectral representation) if and only if the derivative of λ at X0 vanishes in
all directions of the simplex, i.e., if X0 ∈ U is a critical point of λ. ✷

The proof of Proposition 1.5 is based on the following lemma:

Lemma 2.2. Let Γ be a finite group, ρ : Γ → O(k) be an irreducible repre-
sentation and, as before, 〈·, ·〉 be the standard inner product in R

k. For any
non-zero vector p ∈ R

k there is a constant Cp > 0 such that
∑

γ∈Γ

〈ρ(γ)p, v〉 〈ρ(γ)p,w〉 = Cp〈v,w〉

for all v,w ∈ R
k.

Proof: The expression

〈v,w〉p :=
∑

γ∈Γ

〈ρ(γ)p, v〉 〈ρ(γ)p,w〉

is obviously a symmetric bilinear form. The form is positive definite, since
〈v, v〉p = 0 implies that v is perpendicular (w.r.t. the standard inner prod-
uct) to span{ρ(γ)p | γ ∈ Γ}. Irreducibility of ρ implies that span{ρ(γ)p |
γ ∈ Γ} = R

k, so v = 0. Therefore, there exists a positive definite symmetric
matrix A such that

〈v,w〉p = 〈Av,w〉.
Let γ0 ∈ Γ. Then

〈ρ(γ0)v, ρ(γ0)w〉p =
∑

γ∈Γ

〈ρ(γ−1
0 γ)p, v〉〈ρ(γ−1

0 γ)p,w〉 = 〈v,w〉p,

i.e., 〈·, ·〉p is ρ(Γ)-invariant, and we have Aρ(γ) = ρ(γ)A for all γ ∈ Γ. Since
ρ is irreducible, we conclude from Schur’s lemma that A is of the form Cp ·Id
with a constant Cp > 0. This finishes the proof of the lemma. ✷

Proof of Proposition 1.5: Note that the vertices of G = Cay(Γ, S) are
the group elements, and that

PXf(γ) =

ν∑

j=1

xjf(γsj) +

µ∑

j=1

xν+j(f(γσj) + f(γσ−1
j )).
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This implies that

PXφr(γ) =

ν∑

j=1

xjπr(ρ(γsj)p) +

µ∑

j=1

xν+j(πr(ρ(γσj)p) + πr(ρ(γσ
−1
j )p))

= πr



ρ(γ)




ν∑

j=1

xjρ(sj)p+

µ∑

j=1

xν+j(ρ(σj)p + ρ(σ−1
j )p)









= λπr(ρ(γ)p) = λφr(γ),

by using (6). This shows that φr is an eigenfunction of PX for the eigenvalue
λ. The orthogonality of the functions φr is a straightforward application of
Lemma 2.2:

〈φr, φs〉 =
∑

γ∈Γ

πr(ρ(γ)p)πs(ρ(γ)p) =
∑

γ∈Γ

〈ρ(γ)p, er〉 〈ρ(γ)p, es〉 = CP 〈er, es〉,

where e1, . . . , ek denotes the standard basis in R
k. Now let Γ = {γ1, . . . , γn}.

Let A be the (k × n) matrix whose columns are the vectors ρ(γj)p ∈ Sk−1.
Then the rows of A represent the functions φr, and we have

k∑

r=1

‖φr‖2 =
n∑

j=1

‖ρ(γj)p‖2 = n = |Γ|.

This shows that ‖φr‖2 = |Γ|
k . ✷

Remark 2.3. Assume that ρ in Proposition 1.5 is irreducible but not orthog-
onal, i.e., ρ : Γ → GL(k,R). The above proof still shows that the functions
φr are eigenfunctions. Let A be the (k × n) matrix as in the proof. Then
the irreducibility of ρ implies that the columns span all of R

k, i.e., the rank
of A is k. But this means that the functions φr (the k rows of A) must be
linearly independent.

3. Proof of Corollary 1.7 and Proposition 1.9

Our first aim is to establish the geometric procedure for obtaining eigen-
functions of PX on the Cayleygraph of a Coxeter group, as well as explicit
derivations of the maps Ψλ and Ψ∆.

Proof of Corollary 1.7: We start with a finite, irreducible Coxeter
group. This implies that the geometric realisation Γ →֒ O(k) is an irre-
ducible, faithful representation. Note that we have 〈ni, nj〉 = − cos π

mij
,

where mij is the order of the element sisj. Since Γ is a finite Coxeter group,
M = (〈ni, nj〉) is a positive definite, symmetric matrix. Writing M = Id−C
with a symmetric matrix C < Id (as quadratic forms) whose entries are all
non-negative, we obtain M−1 =

∑∞
s=0C

s. Irreducibility implies that for
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every position 1 ≤ i, j ≤ k, there is an s ≥ 0 such that (Cs)ij > 0. This
implies that all entries of M−1 are strictly positive. Recall that

V := det(n1, . . . , nk) = (detM)1/2 > 0.

We define, as in (7),

pj = (−1)j−1n1 × · · · × n̂j × · · · × · · · nk.

The vectors pj may all have different Euclidean lengths. We have, by
construction 〈ni, pj〉 = V δij . Let

∆ = ∆Γ = {(x1, . . . , xk) | xj ≥ 0,
∑

j

xj = 1}

be the simplex associated to the Cayley graph Cay(Γ, S).
Our aim is to construct the maps Ψ∆ : F0 → int(∆) and Ψλ : F0 → (0, 1):

Any point p ∈ F0 can be expressed uniquely as

p = α1p1 + · · · + αkpk,

with α1, . . . , αk > 0. We will show that there is a unique choice of X =
(x1, . . . , xk) ∈ int(∆) and λ ∈ (0, 1) such that

(12) λp =
∑

j

xjσj(p).

We then define Ψ∆(p) = X and Ψλ(p) = λ. The construction will show that
X and λ depend smoothly on the coordinates αj . Applying Proposition 1.5
yields the results stated in the Corollary. It then only remains to prove that
Ψ∆ is bijective and that the composition Ψλ ◦ Ψ−1

∆ is analytic.
Since σj(p) = p − 2〈p, nj〉nj = p − 2αjV nj, we immediately see that

‖p− σj(p)‖ = 2αjV . Moreover, (12) translates into

(13) λp = (x1 + · · · + xk)p− 2V
∑

j

αjxjnj .

This means that we need to find a unique (x1, . . . , xn) ∈ ∆ and µ ∈ R such
that

(14)
∑

j

αjxjnj = µ
∑

j

αjpj,

and then set λ = x1 + · · ·+xk−2V µ. Taking inner products with the simple
roots n1, . . . , nk, and bringing everything in a matrix equation, we end up
with the equivalent equation

(15) M



α1x1

...
αkxk


 = µV



α1
...
αk


 .

Obviously, this equation is homogeneous, i.e., if (x1, . . . , xk, µ) is a solution
then so is (cx1, . . . , cxk, cµ) for any constant c. We first seek for the unique
solution (x′1, . . . , x

′
k) of (15) for the choice µ = 1. (x′1, . . . , x

′
k) will not be a
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point in ∆, and we obtain the correct solution by way of rescaling. Using
the fact that M−1 = Id+D, where all diagonal entries of D are non-negative
and all off-diagonal are strictly positive, we end up with the inequality

(16)



x′1
...
x′k


 = V



α1

. . .

αk




−1

M−1



α1

. . .

αk







1
...
1


 > V




1
...
1


 .

This shows that any choice α1, . . . , αk > 0 leads to a strictly positive vector
(x′1, . . . , x

′
k), and that

(17) λ′ := x′1 + + · · · + x′k − 2V > 0.

For p =
∑

j αjpj ∈ F0, we first calculate x′1, . . . , x
′
k, λ

′ > 0 via the equations

(16) and (17), and then apply the rescaling to obtain

(18) Ψ∆(p) =
1∑
j x

′
j

(x′1, . . . , x
′
k) ∈ int(∆), Ψλ(p) =

λ′∑
j x

′
j

∈ (0, 1).

Next we show that Ψ∆ : F0 → int(∆) is bijective. ChooseX = (x1, . . . , xk) ∈
int∆. An equivalent reformulation of (15) is

(19)



α1
...
αk


 = µV x−1M−1



α1
...
αk


 ,

where x = diag(x1, . . . , xk) denotes the diagonal matrix with the entries
xj. Note that V x−1M−1 is a matrix with all its entries strictly positive.
Therefore, we can apply Perron-Frobenius theory and conclude that there
is a unique Perron-Frobenius eigenvector (α1, . . . , αk), scaled in such a way
that p =

∑
j αjpj ∈ Sk−1. Since αj > 0, we conclude that p ∈ F0. This

shows that every X ∈ int(∆) has a unique preimage under Ψ∆.
Moreover, note that µ−1 is the Perron-Frobenius eigenvalue of the matrix

V x−1M−1 and that λ =
(∑

j xj

)
− 2V µ = 1 − 2V µ in (13). This implies

that the composition Ψλ ◦ Ψ−1
∆ : int(∆) → (0, 1) is given by

(20) Ψλ ◦ Ψ−1
∆ (X) = 1 − 2ΛX ,

where ΛX is the Perron-Frobenius eigenvalue of the positive matrix x−1M−1.
Since this eigenvalue has always multiplicity one, it depends analytically
on the weights x1, . . . , xk, by the analytic version of the Implicit Function
Theorem. This finishes the proof of Corollary 1.7. ✷

Next we modify arguments in Kassabov [13, p. 20] to prove Proposition
1.9.

Proof of Proposition 1.9: Let us first recall some of his notation of this
source. Let H = l2(G) and π : Γ → U(H) be the right-regular representation
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(π(σ)f)(γ) = f(γσ). Let

∆X = Id − PX =
k∑

i=1

xi(Id − π(si)).

Let Vi = {f ∈ H | f = π(si)f}. Note that Id − π(si) is equal to 2PrV ⊥

i
,

i.e., twice the orthogonal projection to the orthogonal complement of the
subspace Vi. This implies that

(21) 〈∆Xf, f〉 = 2
∑

i

xidVi
(f)2,

where dV (f) = infg∈V ‖f − g‖ = ‖PrV ⊥f‖. Moreover, we have

k⋂

i=1

Vi = {constant functions in l2(G)}.

For f ∈ H, let df denote the column vector with entries the distances dVi
(f).

We conclude from [13, Thm. 5.1] that, for any function f orthogonal to the
constant functions,
(22)

‖f‖2 ≤ d⊤
f M

−1df = (x1/2df )⊤x−1/2M−1x−1/2(x1/2df ) ≤ ΛX‖x1/2df‖2,

where ΛX is the the Perron-Frobenius eigenvalue of x−1/2M−1x−1/2 (note
that this agrees with the Perron-Frobenius eigenvalue of x−1M−1). Com-
bining (21) and (22), we conclude that

〈∆Xf, f〉 ≥ 2ΛX‖f‖2,

i.e., the second highest eigenvalue λ1(X) of PX is ≤ 1− 2ΛX . On the other
hand, (20) in the previous proof shows that Ψλ ◦ Ψ−1

∆ (X) = 1 − 2ΛX is a
non-trivial eigenvalue of PX (of multiplicity ≥ k), and therefore we must
have λ1 = Ψλ ◦ Ψ−1

∆ . This finishes the proof of Proposition 1.9. ✷

4. Proof of Proposition 1.10

Our main goal is to prove Corollary 4.2 below. We follow closely the
arguments given by van der Holst [20]. We use the notation used there, but
recall them for the reader’s convenience. Let G = (V,E) be an arbitrary
connected graph with vertex set V = {1, . . . , n}. For a given subset V0 ⊂ V
of vertices, we define 〈V0〉 ⊂ G to be the subgraph induced by V0. For a
function f ∈ l2(G), let supp(f) := {i ∈ V | f(i) 6= 0} and supp±(f) = {i ∈
supp(f) | ±f(i) > 0}. We say that a non-zero function f in a subspace
E ⊂ l2(G) has minimal support, if for every non-zero function g ∈ E with
supp(g) ⊂ supp(f) we have supp(g) = supp(f).

Let M(G) be the set of all symmetric (not necessarily stochastic) matrices
M = (mij) with all non-diagonal entriesmij > 0 if i ∼ j andmij = 0 if i 6∼ j.
Note that we do not impose any sign conditions on the diagonal entries mii.
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It is a direct consequence of the connectedness of G and Perron-Frobenius
that the highest eigenvalue λ0(M) is simple. Colin de Verdiére calls the
matrices in M(G) Schrödinger operators on the graph G (see [9]), and they
play an important role for his graph invariant µ(G) (see [8]). The following
result can be considered as a graph theoretical analogue of the Courant
nodal domain for Riemannian manifolds (see [7]):

Proposition 4.1 ([20]). Let G = (V,E) be a finite connected graph and M ∈
M(G). Let E = Eλ1(M) be the eigenspace of the second highest eigenvalue
of M . Let f ∈ E be a function of minimal support. Then 〈supp+(f)〉 and
〈supp−(f)〉 are both connected graphs.

This fact allows us to prove the following special result:

Corollary 4.2. Let Γ ∈ {A3, B3,H3} and G be the associated Cayley graph
with respect to the canonical set S = {s1, s2, s3} of generators. Let X be
an interior point of ∆Γ. Then we have λ1 = λ1(X) ∈ [0, 1), and the corre-
sponding eigenspace has dimension ≤ 3.

Proof (following mainly [20]): Let E be the eigenspace of λ1. Since
X ∈ int(∆), we have PX ∈ M(G). Note that the spectrum of PX is sym-
metric (since G is bipartite), and therefore we must have λ1 ∈ [0, 1), since
both eigenvalues −1, 1 are simple, because GPX

= G is connected.
Recall that V = Γ and that G = (V,E) is the one-skeleton of one of the

solids (4, 6, 6), (4, 6, 8) or (4, 6, 10). In particular, G is a 3-connected finite
planar graph of constant vertex degree three. We think of the elements of G
as being enumerated and identify group elements with their corresponding
integers. Thus, it makes sense to write pγ,γ′ for the matrix entries of PX .

Let γ0 ∈ V be arbitrary and Θγ0
: E → R

3 be the map

(23) Θγ0
(f) = (f(γ0s1), f(γ0s2), f(γ0s3)).

We prove that this map is injective, which shows that dim E ≤ 3. Assume
that there is a non-zero f ∈ E with Θ(f) = 0, i.e., supp(f) ∩ γ0S = ∅.
Choose a function g ∈ E with minimal support supp(g) ⊂ supp(f).

We first show that g(γ0) = 0. Assume that g(γ0) 6= 0. Without loss of
generality, we can assume that γ0 ∈ supp+(g) (otherwise replace g by −g).
Since

λ1g(γ0) =

3∑

j=1

pγ0,γ0sj
g(γ0sj) = 0,

we must have λ1 = 0. Since supp+(g) is connected by Proposition 4.1 and
g vanishes on all neighbours of γ0, we conclude that supp+(g) = {γ0}. Let
Sn(γ) ⊂ V denote the sphere of combinatorial radius n around γ. Since
for our graphs, all vertices in S1(γ0) have two neighbours in S2(γ0) and
g is an eigenfunction to the eigenvalue zero, we must have f(γ′) ≤ 0 for
all γ′ ∈ S2(γ0), and there exists a γ1 ∈ S2(γ0) with f(γ1) < 0. Now, γ1

cannot be a neighbour of all three vertices in S1(γ0), and therefore must
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have a neighbour γ2 with distance at least 2 to γ0. Again, since g is an
eigenfunction to the eigenvalue zero, γ2 must have a neighbour γ3 with
g(γ3) > 0. Therefore, γ3 ∈ supp+(g)\{γ0}, which is a contradiction.

So we proved g(γ0) = 0. Let γ′ ∈ supp(g). Since G is 3-connected, there
are three pairwise disjoint paths P1, P2, P3, connecting γ0 with γ′. Without
loss of generality, we can assume that the path Pi contains the vertex γ0si.
Starting in γ0si and following the path Pi in direction γ′, let γi ∈ Pi be
the first vertex with g(γi) = 0 and γi adjacent to supp(g). Since g is an
eigenfunction, γi must be adjacent to both supp+(g) and supp−(g). Now,
contract supp+(g) and supp−(g) to single vertices, denoted by v+ and v−
(which is possible since both sets are connected, by Proposition 4.1) and
contract also the parts of the paths P1, P2, P3 from γ0 to γi, and remove
all other vertices on which g vanishes. The resulting graph is planar and
contains K3,3 as a subgraph (where one set of vertices are γ1, γ2, γ3 and the
other set are γ0, v+, v−), which is a contradiction. ✷

Proposition 1.10 follows now immediately from Proposition 1.9 and Corol-
lary 4.2.

Remark 4.3. Let X ∈ int(∆), and E be the eigenspace of PX to the eigen-
value λ1(X). The above arguments show that, for all γ ∈ Γ, the maps
Θγ : E → R

3 (given by (23)) are bijective. This fact is equivalent to a
particular transversality property of PX , the so-called Strong Arnold Hy-
pothesis (for the precise definition see, e.g., [8] or [15]). The Strong Arnold
Hypothesis played a crucial role in the proof that Colin de Verdiére’s graph
invariant is monotone with respect to taking minors.

5. Proofs of the results about the Archimedean solids

Before we present the proofs of Theorems 1.12 and 1.14, let us mention
that the full spectra of the canonical Laplacians of the Archimedean solids
were calculated in [19].

Proof of Theorem 1.12: Let Γ ∈ {A3, B3,H3} and G = (V,E) be
the Cayley graph associated to Γ with respect to the canonical set S =
{s1, s2, s3} of generators. Recall thatG is the one-skeleton of the Archimedean
solids (4, 6, 6), (4, 6, 8) and (4, 6, 10), respectively.

Then we have

(24) M =




1 0 −1

2
0 1 −η

2
−1

2 −η
2 1



 , M−1 =
1

ρ




1 + ρ η 2
η 3 2η
2 2η 4





and V 2 = ρ
4 , where ρ and η are given as in the following table:

Γ A3 B3 H3

η 1
√

2 ϕ = 1+
√

5
2

ρ = 3 − η2 2 1 2 − ϕ
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Let p = αp1 + βp2 + γp3 be a general point in the spherical fundamental
domain F0 ⊂ S2. Choosing µ = 1 and using (16) and (24), we obtain

(25)




x′

y′

z′



 =
1

2
√
ρ




1 + ρ+ ηβ+2γ
α

3 + α+2γ
β η

4 + 2α+2ηβ
γ




and λ′ = x′+y′+z′−√
ρ. Ψ∆(p) and Ψλ(p) are then given by the expressions

in (18).
Since the lengths of the Euclidean edges are given by ‖p−σ1(p)‖ = 2αV ,

‖p− σ2(p)‖ = 2βV and ‖p− σ3(p)‖ = 2γV (see Corollary 1.7), there is only
one point p0 ∈ F0 for which all edges are of equal length, namely the choice
α = β = γ. Using (25) in this case and calculating (x, y, z) = Ψ∆(p0) and
λ = Ψλ(p0) with the help of (18) yields

(26) (x, y, z) =
1

12 + ρ+ 6η
(3+ρ+η, 3+3η, 6+2η) and λ =

12 + 6η − ρ

12 + 6η + ρ
.

By Theorem 1.3 and Proposition 1.10, this is the only critical point of λ1 :
int(∆) → (0, 1). By Proposition 1.2, λ1 has a global minimum in int(∆),
which must therefore agree with (26).

From Corollary 1.7 and Proposition 1.10 we conclude that λ1 : int(∆) →
(0, 1) is analytic, and we know from the proof of Proposition 1.2 that λ1 is
convex. Assume that λ1 would not be strictly convex. Then there would
exist three different collinear points X1,X2,X3 ∈ int(∆) with λ1(X1) =
λ1(X2) = λ1(X3). Convexity of λ1 would force λ1 to be constant on the line
segment bounded by the two extremal points of X1,X2,X3. Analyticity of
λ1 would imply that λ1 is constant along the whole line in ∆ containing
these three points. But this would lead to λ1(X1) = λ1(X2) = λ1(X3) = 1,
a contradiction to λ1 < 1 on the interior of ∆.

In the case Γ = H3, i.e., (η, ρ) = (ϕ, 2 − ϕ), we obtain

X0 = (x, y, z) =
1

14 + 5ϕ
(5, 3 + 3ϕ, 6 + 2ϕ) and λ =

10 + 7ϕ

14 + 5ϕ
.

The corresponding spectral representation ΦX0
agrees, up to the factor |Γ|

3 ,
with the orbit map Φ(γ) = γp0, by Corollary 1.7, and is therefore faithful.

Analogously, one easily checks that the choices (η, ρ) = (1, 2) and (η, ρ) =

(
√

2, 1) lead to the explicit values for (x, y, z) and λ, given in Remark 1.13.
✷

Proof of Theorem 1.14: We only discuss the Archimedean solid (4, 6, 10)
(i.e., Γ = H3), the other solids are treated analogously.

Note, by the construction of p1, p2, p3 in (7), that the orbit Γp1 gives the
vertices of an icosahedron. Up to a scalar factor, p2 points to the centre of a
face of this icosahedron and p3 to the midpoint of an edge of the icosahedron,
and the orbits Γp2 and Γp3 are the vertices of an dodecahedron (5, 5, 5) and
of an icosidodecahedron (3, 5, 3, 5), respectively. Moreover, it is easy to see
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that there are positive constants 0 < c0 < C0 such that αp1+βp2+γp3 ∈ F0,
α, β, γ ≥ 0, implies c0 ≤ α+ β + γ ≤ C0.

Let Xn = (xn, yn, zn) ∈ int(∆) be a sequence converging to (x, 0, z) ∈ ∆
with x, z > 0. Then there are constants c1, c2 > 0 with c1xn < zn < c2xn.
Let Ψ−1

∆ (Xn) = qn = αnp1 +βnp2 +γnp3 ∈ F0. Our aim is to show αn, γn →
0. From (25) and (18), we deduce that

xn =
1

F (αn, βn, γn)

(
3 − ϕ+

ϕβn + 2γn

αn

)
,

yn =
1

βnF (αn, βn, γn)
(3βn + (αn + 2γn)ϕ),

zn =
1

F (αn, βn, γn)

(
4 +

2αn + 2ϕβn

γn

)
,

with

F (α, β, γ) = 10 − ϕ+
ϕβ + 2γ

α
+
α+ 2γ

β
ϕ+

2α + 2ϕβ

γ
.

Since yn → 0 and c0 ≤ 3βn + (αn + 2γn)ϕ ≤ 4C0, we must have
βnF (αn, βn, γn) → ∞. This necessarily implies αnγn → 0. Assume αn

converges to zero on a subsequence, on which γn does not converge to zero.
Then F (αn, βn, γn) → ∞ implies that zn converges to zero on a finer sub-
sequence and, since c1xn < zn, xn must also converge to zero on this finer
subsequence, contradicting to xn + yn + zn = 1. This shows that both
αn, γn → 0, i.e., qn converges to a multiple of p2. By Corollary 1.7, the
corresponding spectral representations converge, up to a scalar factor, to
the orbit map Φ(γ) = γp2, and Γp2 are the vertices of a dodecahedron. This
proves the convergence behaviour as Xn converges to an interior point of
the bottom edge of the simplex ∆ in Figure 2. The converge behaviour to
interior points of the other two edges of ∆ is proved analogously.

The curve C2 is characterised by the property α = γ. Using this fact and
the relation (25), and substituting t = α

β we obtain

C2 =





1

3ϕt2 + (14 − ϕ)t+ 3ϕ)




(5 − ϕ)t+ ϕ

3ϕt2 + 3t
6t+ 2ϕ



 | t ∈ (0,∞)




 ⊂ ∆.

Note that t → ∞ implies β → 0, which means that the Euclidean edges
between the 4-gons and the 10-gons shrink to zero and the corresponding
spectral representations converge to equilateral realisations of the buckeyball
(5, 6, 6) (see Figure 3). The convergence behaviour along the other curves
C1, C3 is proved analogously. ✷
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