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ABSTRACT
We investigate the dependence of the galaxy–halo connection and galaxy density field in
modified gravity models using the N-body simulations for f(R) and nDGP models at z = 0.
Because of the screening mechanisms employed by these models, chameleon and Vainshtein,
haloes are clustered differently in the non-linear regime of structure formation. We quantify
their deviations in the galaxy density field from the standard � cold dark matter (�CDM) model
under different environments. We populate galaxies in haloes via the (sub)halo abundance
matching. Our main results are as follows: (1) The galaxy–halo connection strongly depends
on the gravity model; a maximum variation of ∼40 per cent is observed between halo
occupational distribution (HOD) parameters; (2) f(R) gravity models predict an excess of
galaxies in low-density environments of ∼10 per cent but predict a deficit of ∼10 per cent at
high-density environments for |fR0| = 10−4 and 10−6 while |fR0| = 10−5 predicts more high-
density structures; nDGP models are consistent with �CDM; (3) different gravity models
predict different dependences of the galaxy luminosity function (GLF) with the environment,
especially in void-like regions we find differences around ∼10 per cent for the f(R) models
while nDPG models remain closer to �CDM for low-luminosity galaxies but there is a
deficit of ∼11 per cent for high-luminosity galaxies in all environments. We conclude that the
dependence of the GLF with environment might provide a test to distinguish between gravity
models and their screening mechanisms from the �CDM. We provide HOD parameters for
the gravity models analysed in this paper.
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1 IN T RO D U C T I O N

The standard model of cosmology assumes that our Universe is
homogeneous and isotropic and that our current knowledge of
gravity is well described by general relativity (GR). With the recent
discovery of the late-time accelerated expansion (Riess et al. 1998;
Perlmutter et al. 1999), the most popular approach to describe the
dynamics of our Universe within the general relativity framework
is by introducing the hypothesis of a dark energy component with a
negative pressure permeating all over the space. Among the various
explanations proposed, there are mainly two candidates for dark
energy well studied in literature. One are quintessence models in
which the dark energy is governed by a dynamical scalar field
(Ratra & Peebles 1988). The other candidate is the cosmological

� E-mail: chandrachani@gmail.com

constant �, incarned as a vacuum energy that remains after the
inflationary epoch (for a review see Carroll 2001). Yet the � cold
dark matter model, �CDM, remains as the most popular and widely
accepted cosmological gravity model.

The �CDM model is highly successful in explaining a number of
cosmological probes such as the temperature anisotropies and polar-
ization in the cosmic microwave background radiation (CMBR), the
baryon acoustic oscillations (BAOs) imprinted in the Galaxy spatial
distributions at large scales, and the accelerated expansion inferred
mainly from observations of high-redshift Type Ia supernovae
(Planck Collaboration XIII 2016; Planck collaboration VI 2018).
The �CDM model provides also a successful background to explain
a number of astronomical observations such as the galaxy clustering
for both local and high-redshift galaxies (e.g. Conroy, Wechsler &
Kravtsov 2006; Reddick et al. 2013, see for a review, Frenk & White
2012), the galaxy cluster mass function (e.g. Vikhlinin et al. 2009),
the so-called star-forming main sequence of Galaxies at different
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redshifts (e.g. Behroozi, Wechsler & Conroy 2013b; Rodrı́guez-
Puebla et al. 2016b), and a number of galaxy demographics and
relationships that have been well studied based on analytic and semi-
analytic models (e.g. Mo, Mao & White 1998; Firmani & Avila-
Reese 2000; Baugh 2006) and large cosmological hydrodynamics
simulations (Vogelsberger et al. 2014; Schaye et al. 2015) of galaxy
formation (for a review, see Somerville & Davé 2015, and more
references therein).

Despite of the success of the �CDM cosmology, so far, we
do not have a solution to the problems that raises the explanation
of the origin of � (Weinberg 1989; Sahni & Starobinsky 2000),
nor GR has been tested on cosmological scales, though there are
some hints of being valid at galactic scales (Collett et al. 2018).
In addition, the recently reported ∼3.5σ discrepancy between
the Hubble constant, H0, locally determined (Beaton et al. 2016;
Freedman 2017; Riess et al. 2018) and the one estimated from
the CMBR anisotropies (Planck Collaboration XIII 2016;Planck
Collaboration VI 2018), has led to a tension within the standard
cosmology (Riess et al. 2016); but see Shanks, Hogarth & Metcalfe
(2019) for a possible solution for the above tension and Riess et al.
(2018) for a counterargument to that paper. The above has been
interpreted as the necessity to consider a revision of our knowledge
on gravity over cosmological scales or perhaps new physics.

1.1 Modified gravity models and their screening mechanisms

Recently, alternative modified gravity (MG) models have received
a lot of attention as they offer interesting and possible alternative
explanations to the cosmic acceleration of the Universe, without in-
voking dark energy but by naturally modifying GR on cosmological
scales. None the less, even when these models are modification to
GR on the large scales, they still need to satisfy the tight constraints
on deviations from GR from the Solar system (Will 2014). Screening
mechanisms have helped to overcome the potential inconsistency;
some of them were developed with the aim to suppress efficiently
the fields that mediate the MG force at small scales while enhancing
the effect of gravity over cosmological scales (Vainshtein models) or
at scales smaller than the scalar field Compton wavelength (Khoury
2010; Joyce et al. 2015).

In this work, we will explore two types of MG models: the
normal Dvali, Gabadadze & Porrati (2000) (DGP) model and the
chameleon f(R) model (Hu & Sawicki 2007). The former assumes
that the standard model of particles live in a 4D spacetime brane
embedded within a higher dimensional 5D space in which only
gravity propagates. The latter introduces an arbitrary function of
the Ricci scalar that generalizes the Einstein–Hilbert action; here,
we consider the functional form proposed by Hu & Sawicki (2007).
While there are several other classes of MG models, we explore
here only the above two models as they are the most popular and
widely studied proposals so far (for a review see Koyama 2016).

As for the screening mechanisms, there are two types well
studied, the Vainshtein and the chameleon ones. In this work, the
former is applied to the DGP model and the latter to the f(R)
model. In both models, the screening mechanism is governed by
an extra degree of freedom introduced, most of the time, as a
scalar field that follows a non-linear equation strongly coupled to
the density field. As a result, one expects that the clustering of
the dark matter particles is different between these two screening
mechanisms; the Vainshtein mechanism depends on the locations
of the particles in the cosmic web while in chameleon mechanism is
roughly independent (Falck, Koyama & Zhao 2015). This leads to
the speculation that screening mechanisms might affect the structure

and spatial distribution of dark matter haloes. Indeed, recent studies
have shown that screening mechanisms affect haloes differently.
Based on high-resolution N-body simulations Falck et al. (2015)
showed that the Vainshtein screening mechanism is independent of
halo mass and is very efficient inside the virial radius but decreases
at larger radii. Instead, the chameleon mechanism depends on halo
mass and the strength of fR0, as well as on halo screening profiles;
for similar conclusions see (Zhao, Li & Koyama 2011; Winther,
Mota & Li 2012; Shi, Li & Han 2017). Thus, it is of interest to
see whether such effects can be detected observationally in the
correlations and statistical distributions of galaxies and cluster of
galaxies.

1.2 Exploring the effects of MG models on the galaxy
distributions

Based on the discussion above, we propose to study here the galaxy
density field under the f(R) and DGP MG models and their respective
screening mechanisms. Galaxies are biased tracers of dark matter
haloes, and dark matter haloes are biased tracers of the dark matter
particles distribution. The latter is due to the highly non-linear
evolution of the mass density perturbation field, and the former is
consequence of the complex gastro-physical processes that govern
galaxy formation and evolution (Somerville & Davé 2015). While
galaxy formation within the evolving dark matter haloes remains
as one of the most challenging problems in modern astronomy,
the statistical matching between observed galaxies and simulated
dark matter haloes allows for a direct connection of galaxies to
haloes. This connection has been very well constrained in the past
not only for local galaxies but up to very high redshifts (see e.g.
Rodrı́guez-Puebla et al. 2017; Behroozi et al. 2018; for a recent
review, see Wechsler & Tinker 2018). Thus, the results from N-body
simulations of structure formation under MG cosmologies can be
connected statistically to galaxies, in such a way that the measured
galaxy correlations and spatial distributions in the simulations can
be compared with observations.

Using galaxies to constrain MG models is not a new idea (Koyama
2016, see for a review of various astrophysical test using galax-
ies). Indeed, present and future spectroscopic and imaging galaxy
surveys, such as the extended Baryon Oscillation Spectroscopic
Survey (eBOSS),1 the dark energy survey (DES),2 the Dark Energy
Spectroscopic Instrument (DESI)3 (Aghamousa et al. 2016), and
the European Space Agency’s-Euclid4 not only will allow to test
the gravity theory on the largest scales of our Universe but also will
allow to constrain a wide range of cosmological scenarios.

The main goal of this work is to quantify the effects of the different
gravity models discussed above on the statistics of the dark matter
haloes, and its implication on the distributions of their host galaxies.

In particular, we will do so by studying their density field via
the galaxy luminosity function (GLF) at z ≈ 0, when the effects of
environments are more relevant. This way, we will evaluate whether
observational tests, as the variation of the GLF with environment,
could be useful for discriminating the studied MG models.

In this paper, we generate galaxy mock catalogues using N-
body simulations via the (sub)halo abundance matching (SHAM)
technique. We will focus mainly on the results based on the GLF

1https://www.sdss.org/surveys/eboss/
2https://www.darkenergysurvey.org/es/
3https://www.desi.lbl.gov/
4https://www.euclid-ec.org/
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in the r band and its dependence on large-scale environment. The
viability of our mock catalogues is tested by showing that all the
models produce two-point correlation function that are in agreement
with the observations from the SDSS DR7 (Zehavi et al. 2011). We
also provide halo occupational distribution (HOD) parameters for
all our galaxy mocks based on different MG models.

This paper is organized as follows. In Section 2, we describe
the MG models we employed: f(R) and DGP models. In Section 3
we describe the suite of simulations we use for the MG models,
previously described in Li et al. (2012) and Li, Zhao & Koyama
(2013). Section 4 describes the SHAM approach we use for the
galaxy–halo connection and we show that all our galaxy mocks
produce realistic two-point correlation function. In Section 5 we
present our results on the predicted galaxy density field and the
dependence of the GLF with environment. In Section 6 we discuss
our results. Finally, Section 7 we present a summary with our main
results and a discussion.

The cosmological parameters used for this paper are: �m = 0.281,
�� = 1 − �m, ns = 0.971, and σ 8 = 0.820.

2 MODIF IED GRAV ITY MODELS

In this section, we briefly describe the two models of MG that we
will use in this paper.

2.1 f(R) gravity model

First, we consider the f(R) theories of gravity, where the Ricci scalar
R in the Einstein–Hilbert action is generalized by a functional form
f(R):

S = 1

2κ

∫
d4x

√−g(R + f (R)) + Sm(gμν, ψm) , (1)

where κ = 8πG, G is the Newtonian gravitational constant, g is the
determinant of the metric tensor gμν , f(R) is an arbitrary function of
the Ricci scalar R, and Sm is the matter action that depends on gμν

and matter fields ψm.
By varying the action with respect to the metric gμν , we obtain

the modified Einstein equations (De Felice & Tsujikawa 2010)

fR(R)Rμν − 1

2
f (R)gμν − ∇μ∇νfR(R) + gμν�fR(R) = kTμν, (2)

where fR(R) = df(R)/dR represents the extra degree of freedom,
i.e. the scalar field and often known as the scalaron field. The
d’Alambertian operator is denoted with � = ∇α∇α and ∇α is
the usual covariant derivative associated with respect to the affine
connections of the metric while Tμν is the energy–momentum tensor
of the matter fields.

Thus, under the scalar field representation of f(R), the equation
of motion that determines the dynamics of scalar field, fR, is given
by the trace of equation (1)

�fR = 1

3
[R − fRR + 2f (R) − 8πGρm] = ∂Veff

∂fR

. (3)

Here ρm is the non-relativistic matter (including dark matter and
baryons) density of the Universe. The structure formation in the
non-linear regime is well studied by assuming the quasi-static and
weak-field approximations (Bose, Hellwing & Li 2015). Under such
limits equation (2) reduces to the Poisson equation

∇2
 = 4πGa2δρm − 1

2
∇2fR, (4)

and equation (3) is

∇2fR = a2

3
(δR(fR) − 8πGδρm) , (5)

where 
 represents the gravitational potential at some particular
position in the space and corresponding to the density fluctuation
δρm = ρm − ρ̄m with curvature perturbation δR = R − R̄. Here ρ̄m

and R̄ are the background matter density and the curvature of
the Universe, respectively. This system of equations determines
the effect of MG on the structure formation. While in case of
�CDM model, the Poisson equation has form ∇2
 = 4πGa2δρm.
Therefore, the term ∇2fR in equation (4) drives the MG effect in
comparison to �CDM model.

Different forms of f(R) gravity models have been proposed in the
literature (see e.g. Capozziello & Fang 2002; Chiba 2003; Dolgov &
Kawasaki 2003; Nojiri & Odintsov 2003; Faraoni 2006; Hu &
Sawicki 2007; Cognola et al. 2008; Linder 2009).

For this work, we consider the most widely studied functional
form of f(R), proposed by Hu & Sawicki (2007) which satisfies
both cosmological and Solar system tests (Martinelli, Melchiorri &
Amendola 2009)

f (R) = −m2 c1

(− R

m2

)n

c2

(− R

m2

)n + 1
. (6)

Here n, c1, and c2 are dimensionless model parameters and m2 =
H 2

0 �m0 with H0 and �m0 are respectively the present day values
of the Hubble constant and the matter density parameters of the
Universe. If we set c1/c2 = ��0/�m0, with ��0 ≡ 1 − �m0, the
model is able to mimic the expansion history of �CDM. From
equation (6) the functional form of the scalaron field, fR, is given
by

fR = − c1

c2
2

n(−R/m2)n−1[
(−R/m2)n + 1

]2 , (7)

where

c1

c2
2

= − 1

n

[
3

(
1 + 4

��0

�m0

)](n+1)

fR0 , (8)

with fR0 is the present value of the scalaron field.
We notice that from equation (8), n and fR0 are the remaining free

parameters of the model. Hence, in this work we adopt the values
n = 1 and |fR0| = 10−6, 10−5, and 10−4 (hereafter referred as F6,
F5, and F4, respectively) which correspond to a weak, medium, and
strong deviation with respect to GR, i.e. to �CDM model.

The aim of this work is to study the effect of MG models under
different density environments. Thus, it is important to understand
the screening mechanism implemented in such models that could
have a direct impact in the halo (and thus galaxy) density field.
Recall that the screening mechanisms are applied in MG models to
suppress the enhancement of the fifth force in order to pass high pre-
cision tests of gravity in the high-dense regions like the Solar system
(see e.g. Vainshtein 1972; Khoury & Weltman 2004). To suppress
the effects of the fifth force in high-density regions, the Hu-Sawicki
f(R) gravity model employs the chameleon mechanism (Khoury &
Weltman 2004), where the scalaron field which mediates the fifth
force has a non-zero mass, m2

fR
= ∂2Veff/∂

2fR , depending on the
non-linear terms in the equation of motion, see equation (3). The
corresponding fifth force is of Yukawa-type, decaying exponentially
with mass as ∝ exp(−mfR

r) where r is the separation between two
test masses. Under the high-density environments, this scalaron
field is massive and because of it, the fifth force is suppressed
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sufficiently and allows to recover GR successfully. Depending on
the requirement of screening different density environments of our
Universe, various constrains on the fR0 values are being studied in
the literature (for recent reviews see Jain, Vikram & Sakstein 2013;
Vikram et al. 2013; Lombriser 2014; Burrage & Sakstein 2016).

Recent studies based on Milky-Way-type galaxies, being need
to be screened in order to satisfy the Solar system test, imposes
the constraint on the present day value for the scalaron field to
be within the range of |fR0| < 10−4–10−6 (Hu & Sawicki 2007),
while for dwarf galaxies, it has been reported the values as low as
|fR0| � 10−7 (Lombriser 2014). On the other hand, the abundance
of galaxy clusters, based on X-ray data, in combination with the
CMBR, based on the Planck measurement, and SNIa and BAOs,
Cataneo et al. (2015) found an upper value of |fR0| < 1.6 × 10−5 at
the 95.4 per cent confidence level.

2.2 nDGP model

In the Dvali–Gabadadze–Porrati (DGP) braneworld cosmological
model (Dvali et al. 2000), the standard four-dimensional spacetime
universe (or brane) is embedded in a five-dimensional bulk space–
time with an infinite extra dimension; the standard matter particles
are confined only on the brane surface. In this model, the graviton
field is freely propagated into the extra dimension (Koyama & Silva
2007). Thus, the modifications of Einstein’s general relativity are
quantified in the action:

S =
∫

brane
d4x

√−g
R

2κ
+

∫
bulk

d5x
√

−g(5)
R(5)

2κ (5)
+ Sm(gμν, ψm),(9)

where κ (5) = 8πG(5) with G(5) being the 5D gravitational constant
and R(5) is the Ricci scalar in five dimensions. The gravitational
constants in the brane (G) and in the bulk (G(5)) are related through
the cross-over scale, rc,

rc = 1

2

G(5)

G
, (10)

where below this scale the strength of four-dimensional gravity
becomes dominant and vice versa.

Here, we consider the normal branch of the DGP model, nDGP,
where a dark energy component is included to the matter part of
action in order to have an accelerated expansion of the Universe
(Schmidt 2009). Hence the expansion rate under such scenario is
given by

H (a) = H0

(√
�ma−3 + �DE(a) + �rc −

√
�rc

)
, (11)

with �DE is the contribution of the dark energy component and
�rc = 1/(4H 2

0 r2
c ) is a dimensionless parameter related to the cross-

over scale. From equation (11) we notice that in the limit �rc →
0 or H0rc → ∞ we recover the expansion history of the �CDM
model. Here, we consider two variants of the nDGP model with
H0rc = 5, N5, and H0rc = 1, N1, which represent models with a
weak and medium deviation with respect to GR, respectively.

Similar to f(R) gravity models, the appearance of a new scalar
field, ϕ, associated with the bending modes of the 4D brane mediates
the fifth force. In this model, the modified Poisson equation and the
equation of motion for the scalar field ϕ under the quasi-static
approximation are given by (Koyama & Silva 2007)

∇2
 = 4πGa2δρm + 1

2
∇2ϕ, (12)

with

∇2ϕ + r2
c

3β a2

[
(∇2ϕ)2 − (∇i∇j ϕ)2

] = 8π G a2

3β
δρm, (13)

and

β = 1 + 2H rc

(
1 + Ḣ

3H 2

)
. (14)

Here, the term ∇2ϕ in the Poisson equation (12) governs the MG
effect. One can understand the screening mechanism employed
in this model by simply considering the spherically symmetric
geometry in which the field equation, equation (13), has an analytic
solution given by (Koyama & Silva 2007):

ϕ,r = 4

3β

(
r

rV

)3
[
−1 +

√
1 +

( rV

r

)3
]

GM(r)

r2
. (15)

Here rV is a distance scale called Vainshtein radius defined as

rV (r) =
(

16r2
c GM(r)

9β2

)1/3

, (16)

where M(r) = 4π
∫ r

0 dr ′r ′2δρm(r ′) is the mass enclosed within
a radius r. This Vainshtein radius is an important quantity that
provides the limit on the distance from the centre of overdensity of
M(r) below which the fifth force is suppressed efficiently; the so
called the Vainshtein screening mechanism (Vainshtein 1972).

In other words, if we consider the ratio of fifth force, F5th to
Newtonian forces, FN:

F5th

FN
= ϕ,r


N,r

→ 0 , as
r

rV
→ 0 , (17)

the fifth force is suppressed near massive objects where r < <rV

and ϕ, r → 0, allowing the model to recover GR in high-density
regions.

The nature of Vainshtein mechanism makes difficult to test such
models in small scales in the non-linear regime. But constraints from
the Solar system set an upper value of [rcH0]−1 < 0.1 (Koyama
2016). On the other hand, observations of luminous red galaxies
from the BOSS-DR12 sample constrains the parameter to [rcH0]−1

< 0.97 (Barreira, Sánchez & Schmidt 2016).

3 N- B O DY SI M U L AT I O N S

This Section describes the N-body simulations employed for this
work. Here, we use six different N-body simulations corresponding
to different gravity models, including the standard �CDM one,
based on GR. In this paper, we consider two different sets of MG
models (as we explained above): the chameleon f(R) gravity and the
normal branch of the DGP braneworld model.

All the simulations were generated using the adaptive-mesh-
refinement AMR code ECOSMOG (Li et al. 2012, 2013) based on
the WMAP9 background cosmology (Hinshaw et al. 2013): �m0 =
0.281, h = 0.697, and ns = 0.971. The simulation are in boxes
of side length of 1024 h−1 Mpc, with 10243 dark matter particles,
and the respective particle mass of mp = 7.8 × 1010 h−1 M�, with a
power spectrum normalization of σ 8 = 0.82. Initial conditions for all
the simulations were generated using the Zel’dovich approximation
with the publicly available MPGRAFIC code (Prunet et al. 2008) at
zini = 49. We use the outputs at z = 0.

The f(R) and nDGP model parameters were chosen such that
they deviate from �CDM only at later times. At zini MG effects
can be neglected, and thus all simulations were run with the
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Table 1. The cosmological parameters and specifications of the N-body simulations.

Parameter Definition Value

�m Present matter density 0.281
�� 1 − �m 0.719
h H0/(100 km s−1 Mpc−1) 0.697
ns Primordial power spectral index 0.971
σ 8 r.m.s. linear density fluctuation 0.820
|fR0| Hu & Sawicki f(R) parameter 10−6 (F6), 10−5 (F5), 10−4 (F4)
H0rc nDGP parameter 5 (N5), 1 (N1)
Lbox Simulation box size 1024 h−1Mpc
Np Simulation particle number 10243

mp Simulation particle mass 7.78 × 1010 h−1 M�
Ndc Domain grid cell number 10243

same initial condition. The maximal force resolution in all the
simulations from the adaptive-mesh-refinement (AMR) technique
is of 0.015 h−1 Mpc. This allows us to resolve overdense regions
where the screening effect is strong.

For more details about the simulations, we refer the reader to Li
et al. (2012) and Bose et al. (2017) for the f(R) case, and Li et al.
(2013) and Barreira, Bose & Li (2015) for the nDGP case. The
cosmological and technical parameters are given in Table 1. At z =
0, each simulation has five realizations which were run by slightly
different initial conditions in the random phases of the density field.
Except for F4 model where there are only two realizations available.
We use these realizations to understand the statistical uncertainties
in our results.

Haloes and subhaloes where identified with the phase-space
temporal halo finder ROCKSTAR5 (Behroozi, Wechsler & Wu 2013a).
Here, we use the halo mass definition of M200|c ≡ 4π

3 200ρcR
3
200c

which corresponds to haloes enclosing 200 times the critical density
of the Universe, ρc within the radius R200c. In all the six halo
catalogues, we provide a limit in the number of particles contained
in the haloes, i.e. at least the halo must contain 50 or more particles.
This leads to the resolution limit in the maximum circular velocity
of dark matter haloes, Vmax ∼ 257 km s−1.

3.1 Dark matter halo demographics

Fig. 1 shows the differential maximum circular velocity functions,
φV(Vmax), for distinct dark matter haloes (left-hand panel) and
subhaloes (right-hand panel) for all the gravity models at redshift
z = 0. Here, subhaloes are those haloes, whose radius is inside of a
larger halo; distinct haloes cannot be subhaloes by definition. The
black solid, blue dotted, green dash–dotted, red dashed, magenta
medium dashed, and orange long dashed lines represent GR, F6,
F5, F4, N5, and N1 models, respectively. We will use this convention
for all the figures representing these models throughout the paper.
The lower panel shows the relative difference w.r.t. the �CDM (GR)
simulation, and the corresponding shaded areas represent the error
propagated from the 1σ standard deviation measurement of all the
realizations available as described above. The differential maximum
circular velocity function, φV(Vmax), shown in both panels are the
mean of all the realizations for each gravity model analysed in this
paper.

We begin by describing the differences with the distinct halo
velocity functions. As expected from theoretical arguments, see

5https://bitbucket.org/gfcstanford/rockstar

Section 2, we observe that in general, the smaller the value of the
fR0 parameter, the closer φV(Vmax) to the standard �CDM model.

Based on the above, it is reasonable that the F4 model presents
a significant difference from the standard �CDM model. This is
also true when analysing the nDGP models, especially at the high-
velocity end both for distinct haloes and subhaloes.

Fig. 1 has various point that are worth to highlight. We focus first
on f(R) gravity models and divide our discussion into three different
velocity ranges: (1) Vmax < 500 km s−1; (2) 500 km s−1 ≤Vmax <

1000 km s−1; and (3) 1000 km s−1 ≥Vmax. The reason for the above
three velocity ranges is that the behaviour of the velocity functions
for the f(R) gravity models vary with the present day value of fR0 as
can be seen in the bottom panel of Fig. 1. This panel shows that F6
has a maximum excess of abundance of haloes of ∼25 per cent w.r.t.
the �CDM for haloes with Vmax < 500 km s−1 whereas both F5 and
F4 remain roughly similar to the �CDM model. The recent analysis
of high-resolution N-body simulations in Shi et al. (2015) shows that
the halo mass function of F6 has an excess ∼20 per cent w.r.t. the
�CDM for haloes below M200 ∼ 1013h−1 M�, which is equivalent
to our velocity range and thus consistent with our results. The
authors interpreted the above as the result of the chameleon screen
mechanism begins less efficient in those dark matter haloes, see also
fig. 8 in Falck et al. (2015). Additionally, the authors showed that
the halo profiles for those haloes are significantly steeper in their
inner regions than their GR counterparts. In consequence, their halo
concentrations are enhanced and therefore their Vmax. This further
explains why we observe the above difference between F6 and the
�CDM model at these velocities.

For haloes with 500 km s−1 ≤Vmax < 1000 km s−1, we find an
abrupt deviation for F5 w.r.t. �CDM of 50 per cent. The difference
peaks at Vmax ∼ 630 km s−1 but it decreases for both low and high
velocities. In the case of F4 there is a clear systematic increase in
the abundance of haloes, reaching an excess of ∼50 per cent at Vmax

∼ 1000 km s−1 while F6 remains very similar to the �CDM model.
The above differences observed in F5 are also a direct consequence
of the chameleon screen mechanism. As shown in Li & Efstathiou
(2012), a feature of the chameleon screen mechanism is to produce
an excess of dark matter haloes within some mass range. This leads
to a compensation effect by decreasing the number of low-mass
haloes6 due to the hierarchical mass assembling process of dark mat-
ter haloes. On the other hand, as these authors noted, in high-mass
haloes the chameleon screen mechanism is very efficient in addition
that the fifth force is suppressed due to high-mass haloes living in

6We do not observe this decrease due to resolution limits in the suite of
simulations we are using.
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The galaxy–halo connection in modified gravity 787

Figure 1. Differential Vmax function of the distinct and subhaloes for the MG models considered here along with the �CDM model. The black solid, blue
dotted, green dot–dashed, red dashed, magenta medium-dashed, and orange long-dashed lines represent �CDM(GR), F6, F5, F4, N5, and N1, respectively.
This convention will be followed in the rest of the plots. The relative differences w.r.t. the �CDM are shown in the lower panel, where the shaded regions show
the error propagated from the 1σ standard deviations of all the realizations available. On comparing this figure with the corresponding halo mass functions and
mass–concentration relations showed in Fig. A1, a similar behaviour is observed.

dense environments; thus, the abundance of high-mass dark matter
haloes approaches to the �CDM model. Indeed, we observe that this
is the case for the F5 model. In Appendix A we present the corre-
sponding halo mass functions in the left-hand panel of Fig. A1. Here
the excess in the F5 model is evident and consistent with the dis-
cussion from Li & Efstathiou (2012). Additionally, we also observe
that halo concentrations in the F5 model are significantly enhanced
within the mass range of halo excess (right-hand panel of Fig. A1),
consistent when extrapolating the result from Shi et al. (2015).

In general, the mass range at which the chameleon screen
mechanisms produce an excess of dark matter haloes depends on
the present day value of the scalaron field fR0, see fig. 9 from Li &
Efstathiou (2012). The higher the value in fR0, the larger the halo
masses where the excess of dark matter haloes happens and the
larger this excess. Finally, the increase of dark matter haloes for F4
at Vmax � 1000 km s−1 is just a consequence of the above. We thus
conclude that the trends we observe over the full velocity range is
result of the chameleon screen mechanism and its effects depending
on the present day value of the scalaron field fR0. Similar results have
been noted in previous works using N-body simulations (see e.g. Li
et al. 2012, 2013; Hernández-Aguayo, Baugh & Li 2018).

As for the nDGP models, we observe marginal deviations from
the �CDM. These deviations are in the expected direction as we
observe that N1 has an excess of haloes at Vmax � 1000 km s−1 but
N5 remains very similar to the �CDM model. Finally, in the case of
the subhaloes, we observe a similar behaviour to distinct haloes but
with larger uncertainties, which makes difficult to conclude over the
significance of the result. None the less, similar results have been
reported in Shi et al. (2015) for the F6 model.

The above differences show the effect of the different screening
mechanisms over all ranges of Vmax. Due to the extreme nature
of gravity in F4 and N1 models, the corresponding screening
mechanism (chameleon or Vainshtein) is less efficient for massive
haloes, i.e. haloes with larger Vmax � 1000 km s−1, leading to an
increase in the number density of haloes in these models. For F5,
the inefficiency of the chameleon screening mechanism appears in
haloes with intermediate values of Vmax ∼ 600 km s−1, as discussed
above. On the other hand, the difference is small for F6 and N5
models w.r.t. �CDM.

4 TH E G A L A X Y – H A L O C O N N E C T I O N IN
MODI FI ED GRAV I TY SI MULATI ONS

To assign galaxies to the dark matter haloes we use the SHAM.
The match is between the SDSS r-band luminosity function and the
Vmax halo function, and then we obtain the Mr−Vmax relation. In this
section, we show that the Mr−Vmax relation, for both central and
satellite galaxies, varies among the models with differences below
∼1 per cent, which corresponds to differences of ∼0.2 mag at a
fixed Vmax. We also show that the different models predict similar
galaxy clustering, which are in good agreement with observations.

4.1 Subhalo abundance matching: SHAM

Subhalo abundance matching, SHAM, is a simple rule that connects
dark matter halo properties to galaxy properties under the assump-
tion that there is a one-to-one monotonic relation between galaxies
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788 N. C. Devi et al.

and dark matter halo properties. In addition, SHAM assumes that
centrals and satellite galaxies have identical relationships. In this
work we decide to use the maximum circular velocity of dark matter
haloes Vmax as our halo property and r-band magnitudes for galaxy
properties.

The standard assumptions in SHAM have been criticized in
previous studies (see e.g. Rodrı́guez-Puebla, Drory & Avila-Reese
2012; Yang et al. 2012; Rodrı́guez-Puebla, Avila-Reese & Drory
2013). These studies have shown that assuming similar relations
for centrals and satellites could lead to potential inconsistencies,
particularly in reproducing galaxy clustering and the observed
counts from conditional stellar mass functions (for a more detail
discussion see Rodrı́guez-Puebla et al. 2012). Following Rodrı́guez-
Puebla et al. (2012), we choose to separately derive relations
for centrals and satellites as we will explain in more detail
below.

As mentioned above, in order to perform SHAM we consider to
use the maximum circular velocity of haloes, Vmax, as the main halo
property that correlates with galaxy luminosities. Indeed, previous
studies (e.g. Conroy et al. 2006; Reddick et al. 2013; Campbell et al.
2018) have shown that when using Vmax for dark matter haloes, the
galaxy clustering is in much better agreement with observations. In
particular, the above works have shown that using halo Vmax at z ∼
0 for distinct haloes and the highest Vmax reached along the main
progenitor branch of the halo’s merger tree, typically referred as
Vpeak, for subhaloes, give much better results. This is because the
properties of a halo’s central region, where central galaxies reside,
are better described by Vmax than halo mass. Unfortunately, values
for Vpeak are not available in our set of simulations and contrary to
other works, here we use Vmax for both distinct and subhaloes. Note
however, that Rodrı́guez-Puebla et al. (2012) showed that using
separate relationships for central and satellites, the spatial galaxy
clustering is well recovered even when employing only current (z
∼ 0) halo properties. Using a similar approach as in that paper, we
will show that our mock galaxy catalogues are able to recover the
observed spatial galaxy clustering. Finally, we mention that SHAM
has been applied for f(R) models in previous works (see e.g. He,
Li & Baugh 2016).

Next, we discuss the observational inputs that we use for the
SHAM, that is, the SDSS r-band luminosity functions of central
and satellite galaxies.

4.1.1 r-band luminosity functions

Here, we use the SDSS DR7 r-band luminosity function measured
in Dragomir et al. (2018) for all galaxies. The authors used the New
York Value Added Galaxy Catalog (NYU-VAGC; Blanton et al.
2005) based on the SDSS DR7 which comprises a catalogue of 6
∼ 105 spectroscopic galaxies over a solid angle of 7748 deg2 in the
redshift range 0.01 < z < 0.2. The authors K + E-corrected r-band
absolute magnitudes at z = 0. In order to derive the luminosity
function for centrals and satellites we used the results from Yang,
Mo & van den Bosch (2009). Using the NYU-VAGC based on
the SDSS DR4, Yang et al. (2009) derive the r-band luminosity
functions for centrals and satellites separately. Below, we describe
our best-fitting model to the fraction of satellite galaxies as a
function of r-band luminosity.

The fraction of satellite galaxies is defined as the ratio of
the satellite luminosity function to the total, fsat = φsat/φtot; the
fraction of central galaxies is simply fcen = 1 − fsat. After some
experimentation with different functional forms, we find that the

Figure 2. Satellite fraction as a function of Mr − 5log h. The black dot with
error bars corresponds to the fraction of satellites inferred by Yang et al.
(2009) from the SDSS data, and the blue line is the best fit using the function
equation (18).

following function reproduces accurately the observations:

fsat(Mr) = A

(1 + 10α(M∗−Mr))
, (18)

where A is an amplitude, M∗ is the characteristic magnitude at which
the fraction fsat = A/2, and α controls the slope of the fraction at
the massive-end. Note that in equation (18) we use r-band absolute
magnitudes Mr while Yang et al. (2009) reported luminosities. We
use log L = −0.4 × (Mr − Mr ,�) with Mr ,� = 4.67. Fig. 2 shows the
observed fraction of satellite galaxies as a function of Mr magnitude,
filled circles with error bars. We find that the best fitting values are
(A, M∗, α) = (0.357, −20.741, 0.504), the best-fitting model is
shown as the blue solid line.

We use the above best-fitting model to derive the r-band lumi-
nosity function separately for centrals and satellites for SHAM. As
mentioned above, we are considering the luminosity function from
Dragomir et al. (2018). Specifically, we use their best-fitting model
to a modified double Schechter function, see their equation 4, with
their best-fitting parameters reported in their table 1.

4.1.2 Results on the galaxy–halo connection

We apply SHAM separately for centrals and satellites to find the
Mr−Vmax relation (Rodrı́guez-Puebla et al. 2012). For centrals we
use∫ ∞

Mr

φcen(M ′
r ) dM ′

r =
∫ ∞

Vmax

φV,haloes(V
′

max) d log V ′
max, (19)

and similarly for satellites∫ ∞

Mr

φsat(M
′
r ) dM ′

r =
∫ ∞

Vmax

φV,subhaloes(V
′

max) d log V ′
max. (20)

Note that the above form of SHAM implies zero-scatter in the
Mr−Vmax relations.

Fig. 3 shows respectively the resulting Mr−Vmax of centrals
and satellites in the left and right upper panels for the models
considered, respectively. We also compared to the results from
Dragomir et al. (2018), who applied the same SHAM we use
here. Dragomir et al. (2018) derived the above relation for all type
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The galaxy–halo connection in modified gravity 789

Figure 3. Obtained central and satellite Mr−Vmax relations by means of the SHAM method for our different gravity models. The relative differences w.r.t.
�CDM are shown in the lower panel. The result of Dragomir et al. (2018) for all type galaxies (see appendix A of their paper) is reproduced in both panels with
grey filled circles. Some differences in Mr−Vmax relation are observed in all MG models with respect to �CDM but the variations are < 1 per cent, mostly
within the 0.5 per cent.

galaxies; as discussed in Rodrı́guez-Puebla et al. (2012) the relation
for all galaxies is closer to the one of centrals than for satellites.
Differences with Dragomir et al. (2018) is just mainly the result of
different cosmological parameters: these authors used a cosmology
based on the results from Planck 2016 (Planck Collaboration
XIII 2016), while here we use a cosmology that is closer to the
results from the WMAP9 mission.7 One can see in figs 10 and
15 of Rodrı́guez-Puebla et al. (2016a) the ratio of the predicted
distinct halo number densities between the Bolshoi-Planck and
Bolshoi-WMAP7 (�m = 0.27, similar to WMAP9) simulations;
similar differences are observed by us. Due to this difference, a
slightly higher number density of dark matter haloes at a fixed halo
mass/Vmax are found in the Bolshoi-Planck simulation than in our
simulation. The SHAM translates this into a shift to higher values of
Vmax for a given luminosity. Note also that the SHAM in Dragomir
et al. (2018) was applied to all haloes while here we separate into
distinct haloes and subhaloes.

The lower panels in Fig. 3 present the differences in the Mr

magnitudes at a fixed Vmax for all the MG models with respect to the
standard �CDM model. The shaded regions show the 1σ standard
deviation calculated using five realizations except for F4, for which
we consider only two realizations. Observe that these differences are
just a direct result of the differences between the velocity functions
described in the previous subsection (see Fig. 1), and not to different
cosmological parameters since all of our simulations use the same
cosmological parameters. Fig. 3 shows that the differences in Mr for
the MG models with respect to the �CDM (GR) one is not larger
than 1 per cent. This statement is valid for both central and satellite
galaxies.

7For Planck 2016, the total matter density at the present day is �m ≈ 0.308
whereas for WMAP9, this density is lower, �m ≈ 0.28.

Indeed, in both cases the differences in Mr for all the models
is within 0.5 per cent. The above is especially true for F4 and
F5 MG models. Note that N1 and N5 models are closer to the
�CDM for the particular case of central galaxies. Note that these
differences are not related to uncertainties in the determination of
the Mr−Vmax relationship but true deviations due to the different
gravity models. As noted above they resemble the differences in the
velocity functions. In terms of magnitudes the differences are up to
∼0.2 mag. We do not propagate uncertainties due to observations
as it will be the same for all the models. Next, we discuss errors in
the Mr−Vmax relationship determinations.

We measure uncertainties around the Mr−Vmax relationships by
using the various realizations from our suite of simulations, shown
as shaded areas in the lower panels of Fig. 3. This figure shows that
for central galaxies N1 has the largest error when determining the
Mr−Vmax relationship over all realizations. However, it is not larger
than ∼0.5 per cent, see orange shaded area. In the case of satellite
galaxies, their number is much lower than centrals and thus more
dominated by Poissonian error. While we expect larger uncertainties
for satellites, we observe uncertainties not larger than ∼1 per cent in
most of the models. The fact that uncertainties, both for central and
satellites, are smaller than ∼1 per cent in the Mr−Vmax relationship
guarantees accurate mock galaxy catalogues, and that cosmic
variance is not an extra uncertainty in our determinations. In other
words, differences in our resulting predictions based on the mock
catalogues will be the result of the differences among the different
gravity models rather than in the technique itself or from cosmic
variance. We will come back to this in Section 6.

4.2 Spatial galaxy clustering

As a standard procedure, we show that our resulting Mr−Vmax

relations for centrals and satellites is consistent with the observed
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790 N. C. Devi et al.

projected two-point correlation functions from the SDSS DR7
(Zehavi et al. 2011). Indeed, spatial galaxy clustering should be
considered as a consistency test for the mock galaxy catalogues that
we generated for all the MG models.

Zehavi et al. (2011) derived the projected two-point correlation
function in the r-band magnitude at z = 0.1 for several magnitude
thresholds. Recall that in this paper we are using the results from
Dragomir et al. (2018), who used r-band magnitude at z = 0. In order
to make a fair comparison between our predicted and the projected
two-point correlation from Zehavi et al. (2011), we transform our
r-band magnitudes to z = 0.1 using the relationship reported in
Dragomir et al. (2018).

Fig. 4 shows the projected two-point correlation function for
two magnitude thresholds; Mr − 5log h < −21.5 and Mr −
5log h < −22 in left-hand and right-hand panels, respectively.
The middle and bottom panels show the relative differences of
the different gravity models with respect to observations from the
SDSS DR7, and of the MG models with respect to the �CDM
(GR) model, respectively. The black error bars (showed only for
the �CDM model) correspond to the uncertainties propagated from
the observations, and the shaded areas show the 1σ error estimated
using the realizations available for each gravity model.

There are various points to highlight from this figure. First,
note that SHAM reproduces the projected two-point correlation
functions for Mr − 5log h < −21.5 (Mr − 5log h < −22) within
the ∼20 per cent (∼30 per cent) for all gravity models, see the
middle panels of Fig. 4. As mentioned above the shaded areas
show the dispersion from all the realizations of the simulations
employed in this paper. Within the uncertainties, all the simulations
are recovering acceptable correlation functions. Note, however, that
there are systematic trends as a function of the projected radius that
are independent of the gravity models employed in this paper. This
implies that the differences from observations as a function of radius
are not particularly intrinsic to some type of gravity model but a
systematic arises when assigning galaxies to haloes. Is this a sign
that SHAM fails in reproducing galaxy clustering even in the case
of the standard �CDM? There are several understandable reasons
why our models do not reproduce to a much higher accuracy galaxy
clustering. The most obvious one is that we have assumed no scatter
in the Mr−Vmax relation both for centrals and satellites. The impact
of including scatter reduces galaxy clustering at large projected
distances as shown in Reddick et al. (2013). Even a moderate value
of scatter, ∼0.2 dex, reduces galaxy clustering for large distances
but does not affect significantly the clustering at small distances, see
fig. 5 from Reddick et al. (2013). This will simply explain why our
galaxy mock models tend to overestimate more the two halo-term
(larger distances) than the one halo term in both panels. Since all
the gravity models follow the same trend in the difference with the
observed galaxy clustering, we do not consider this difference as an
extra source of uncertainty for our further comparative study among
the different gravity models.

In more detail, we observe that the degree of agreement with
respect to the observation as a function of the scale may be slightly
different for each gravity model. For the magnitude limit of Mr −
5log h < −21.5, the �CDM model, on average, remains within
∼10 per cent below rp ∼ 2 Mpc h−1 and, on average, it deviates
around ∼20 per cent above rp ∼ 10 Mpc h−1. Surprisingly, F4 is on
average closer to the observations, within ∼10 per cent at all scales;
recall that for this model, its velocity function significantly deviates
from the �CDM one. For the magnitude limit of Mr − 5log h <−22,
note that uncertainties become larger both in observations as well as
in the theoretical prediction of projected correlation functions. The

reason behind it is quite simple as the number of brighter galaxies
decreases both in the SDSS DR7 survey and in our mock galaxy
catalogues. We expect that with on-going and future surveys, as
well as with larger N-body simulations, the measurements of the
galaxy clustering will improve further and will be sensitive enough
to discriminate among different MG models. Here, despite of the
differences described above it becomes difficult to conclude which
MG model describes better the current observed galaxy clustering.
Additionally, recall that our SHAM does not include scatter around
the Mr−Vmax relation. Even more, this scatter could be different for
the different gravity models. In any case, the aim of this work is
not to use galaxy clustering as a discriminant of gravity models.
We just wanted to show that the SHAM applied to each one of the
gravity models predicts spatial galaxy clustering in rough agreement
with observations, and that differences in the clustering of the MG
models with respect to the �CDM are mostly within the 10 per cent.

4.3 Halo occupation distribution model: HOD

In the context of SHAM, the halo occupation distribution of galaxies
in dark matter haloes arises naturally. In this section, we explore and
quantify the resulting halo occupation distribution (HOD) based on
SHAM for our set of different gravity models. So far, HOD remains
as one of the most powerful tools to connect the galaxies to the
cold dark matter haloes, with the aim to constraint various physical
processes that govern the galaxies formation and its evolution (for
a review see, Wechsler & Tinker 2018). None the less, HOD is
not only a powerful tool for constraining galaxy formation but it
is also a useful tool to constrain cosmology (see e.g. Yang, Mo &
van den Bosch 2003; van den Bosch et al. 2013; More et al. 2013,
2014, and references therein). Thus, it is interesting to study the
changes in HOD under different cosmological scenarios specially
when applying SHAM results in different Mr−Vmax relations.

Briefly, the HOD quantifies the probability of finding N galaxies
above some magnitude threshold within a given halo with mass
M200c. Here, we calculate the mean occupation of central and
satellite galaxies above the limit of Mr − 5log h < −21.5. Fig. 5
shows the resulting HOD separately for centrals and satellites. Next
we describe the best fitting functions to our HOD models and
provide separate fits to the satellite and central mean occupation
functions for all the gravity models studied in this paper. For
the mean occupation of satellites, we use the standard power law
with an exponential decreasing function that consists of three free
parameters (Kravtsov et al. 2004):

〈Nsat(M200c)〉 =
(

M200c

M1

)α

exp

(
− Mcut

M200c

)
, (21)

where the parameter M1 corresponds to the mass scale at which
haloes host at least a satellite on average, Mcut, the mass scale below
which the satellite mean occupation starts to decay exponentially
and α provides the power-law slope of the relation between halo
mass M200c and Nsat. On the other hand, for the mean occupation
function of central galaxies, we consider the standard error function
representation:

〈Ncen(M200c)〉 = 1

2

(
1 + erf

(
logM200c − logMmin

σlog M

))
, (22)

where erf is an error function erf(x) = 2√
π

∫ x

0 exp(−t2) dt . The Mmin

is the minimum mass at which a halo hosts at least one central galaxy
and σ log M width of the transition between Ncen = 0 and Ncen = 1.
Under the assumption that the HODs of central and satellite galaxies
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The galaxy–halo connection in modified gravity 791

Figure 4. Upper panels: Projected two-point correlation function in the r-band calculated from the simulation-based mock catalogues of the different gravity
models, using our SHAM results for the galaxy–halo connection. We split the catalogues into two sets of luminosity limits, Mr − 5log h < −21.5 and Mr

− 5log h < −22 (left-hand and right-hand panels, respectively). The black circles with error bars show the results from SDSS DR7 (Zehavi et al. 2011).
Middle panels: Relative differences of the model predictions with respect to the observational data points. The black error bars show the 1σ error in the
observational results propagated to the differences with respect to the �CDM model. The shaded colour regions represent the variations estimated from the
different realizations of each MG model. Note that though we observe differences up to 30 per cent in amplitude with respect to observations, the trends in the
differences are similar for all the models, including the �CDM one. This means that the main differences with respect to observations are rather systematical
for all the cases, and related mainly to the fact that we assumed no scatter in mocking the galaxies (see text). Lower panels: Relative differences of the MG
models with respect to the �CDM. Note that the main differences of MG models with respect to the �CDM one is mostly within ∼10 per cent in the left-hand
panel and ∼20 per cent in the right-hand panel.

are independent, we can fit the total mean occupation with five free
parameters as

〈Ntot〉 = 〈Ncen〉 + 〈Nsat〉. (23)

The resulting best-fitting parameters for all the gravity models are
shown in Fig. 5 with the solid lines for centrals and dotted lines for
satellites. The colour code corresponds to the different MG models
using the above equations. We report the best-fitting values of HOD
parameters in Table 2. The maximum variation between the best-
fitting values of the HOD parameters among the models are around
∼40 per cent for M1; ∼35 per cent for Mcut; ∼26 per cent for Mmin;
10 per cent for α; and 20 per cent for σ log M.

The bottom panel of Fig. 5 shows the differences w.r.t. the
�CDM standard model as a function of halo mass. Here we
observe that in the case of central galaxies, there is a difference
around 10–50 per cent between MG models and �CDM, specially
for f(R) models at lower halo mass limits, 1012.5 h−1 < M200c <

1013 M� h−1. As for N5 and N1 models they are distinguishable
from the standard �CDM in less than 5 per cent to 10 per cent
at mass 1012.5 M� h−1, respectively. The above results are not
surprising as similar difference were noted in Mr−Vmax relation for
central galaxies in Fig. 3. There, we noted that larger differences
with respect to �CDM were observed in f(R) gravity models than

in nDGP models. So, the results of HOD we have obtained are
consistent with what we expected. The HOD of satellite galaxies
is also different and depends on the gravity model that is used.
Recall, that in our case we are using subhaloes as tracers of
satellite galaxies as we have constrained separately the galaxy-
halo connection for satellite galaxies. At high-mass limits, where
satellite mean occupation number is dominated, we find that the total
mean occupation numbers of galaxies of F4 model show a deficit of
10–20 per cent from the �CDM model at mass 1014.5–1015 M� h−1

while rest of the MG models remains within 5 per cent difference.
The above results lead to a clear conclusion: HODparameters

depend on the gravity model employed. Thus, the use of HOD
parameters derived from the �CDM cosmology and employed in
MG simulations, would lead to biased conclusions from the analysis
of the mean occupation of galaxies, as one can clearly see from
Fig. 5. This will potentially reflects on the inferred galaxy clustering
in MG models that will be in tension with observations. In other
words, the differences in the HOD models described in the above
figure should be interpreted as the result of the same degree of
success in the galaxy clustering discussed in Fig. 4.

Independent constraints on the HOD of centrals and satellites
may be an interesting possibility to search for some signature of
MG.
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792 N. C. Devi et al.

Figure 5. Upper panel: Mean galaxy occupation numbers as a function
of host halo mass for central and satellite galaxies (filled circles) as
estimated from our mock galaxy catalogues for the �CDM and MG
models; the colour coding is shown inside the panel and it is the same
as in Fig. 1. The dashed and dotted lines are best fits using the functional
forms of mean occupation numbers for centrals (equation 22) and satellites
(equation 21), respectively. The solid lines correspond to the total mean
occupation numbers from the fit (equation 23). Lower panel: Relative
differences of the fitted total mean occupation numbers between each MG
model w.r.t. the �CDM. A sharp difference of 10–50 per cent is observed
for the f(R) models in the HOD corresponding to central galaxies in the
mass range 1012.5 h−1 < M200c < 1013 M� h−1. For the nDGP models, the
differences remain within 10 per cent for central occupation numbers and
within ∼5 per cent for satellite numbers. Similar differences in the satellite
occupation numbers are seen for the f(R) models, except for F4.

4.4 Measuring the dependence of the luminosity function on
environment

As discussed in this paper, it is natural to expect some deviations
from different statistics between gravity models. The most obvious
is the demographics of dark matter haloes, namely, the velocity
functions described in Section 3. Indeed, as shown in Fig. 1, we
observe differences of approximately ∼50 per cent between the
velocity functions φV(Vmax) of the different MG models analysed
in the paper. Unfortunately, direct measurements of the velocity
function from observations is not yet possible, thus, in this paper
we look for other observable quantities that are natural projections
of the halo velocity functions. The luminosity function is one of
the most obvious observable distribution. While the observed total
luminosity function is, by construction, the same in all our gravity
models, so we expect that the observed differences in the halo
velocity functions affect the dependence of the luminosity function
on environment.

Thus, in this section we attempt to understand the effect of MG
under different density environments; ranging from underdense
regions like voids to highly dense regions like galaxy groups and
clusters.

In the past, studies have already shown that the SHAM technique
recovers the correct dependence of environmental density under the
assumption of a �CDM universe (see e.g. Dragomir et al. 2018, and
references therein). In particular, the recent work of Dragomir et al.
(2018) showed that SHAM reproduces the correct dependence of
the r-band galaxies luminosity functions for centrals and satellites of
the SDSS DR7 from the Bolshoi-Planck simulation (Klypin et al.
2016; Rodrı́guez-Puebla et al. 2016a).Here we extend the study
by Dragomir et al. (2018) to other gravity models to understand

whether the observed dependence of the luminosity function with
environment is a simply tool to constrain gravity models.

In order to quantify environments that can be directly compared
to observations, particularly to volume-limited samples, we define
a density-defining population or DDP (Croton et al. 2005). Due to
resolution limitations, for this work we define DDP galaxies within
the absolute magnitude limit of −21.5 > Mr − 5log h > −22.5.
Our definition for the DDP population is a compromise between the
lowest masses sample in our mock simulations and observations
that can be done with current galaxy surveys, such as SDSS.

Among various existing methods to define local density environ-
ments (see e.g. Muldrew et al. 2012, for a review), we adopt the
aperture-based methods where one measures the overdensities by
counting the number of DDP galaxy neighbours, Nn, around each
galaxy in the sample. Here, we are using an aperture of spheres of
radius, R8 = 8h−1 Mpc and define the local density as

ρR = Nn

4/3πr3
R

. (24)

In order to calculate the density contrast, we need to determine the
mean number density of galaxies, ρ̄. Based on the global r-band
luminosity function we find that the number density at the range
−21.5 > Mr − 5log h > −22.5 is ρ̄ = 5.824 × 10−4 h3 Mpc−3.
Then, for every galaxy in the mock we measure the density contrast
within a sphere of radius R as

δR = ρR − ρ̄

ρ̄
. (25)

Following previous studies (Croton et al. 2005; McNaught-
Roberts et al. 2014; Dragomir et al. 2018), we focus our analysis
mainly on spheres of radius R = 8h−1 Mpc. This radius is optimal for
sampling both underdense and overdense regions. None the less, we
also use a large search radii, R = 10h−1 Mpc, to amplify the signal
in void regions. We expected that voids contain more information
about different gravity models due to the nature of the screening
mechanisms implemented on such MG models.

In Section 5 we will also discuss results based on R = 10h−1

Mpc.
Next, we describe the procedure to determine the GLFs for

different environments. Here we follow Dragomir et al. (2018)
for determining the effective volume,Veff (δR) as the fraction of
effective volume f(δR) sampled by the different environments in
the simulation. In other words, the effective volume is given by
Veff (δR) = f (δR) × Vsim where Vsim is the volume of the simulation.
Hence, the r-band GLFs within a magnitude range of Mr ± �Mr/2
and δR ± �δR/2 density binning is given by

φr (Mr, δR) =
N∑

i=1

wi(Mr ± �Mr/2, δR ± �δR/2)

f (δR) × �Mr × Vsim
, (26)

where wi:

wi =
{

1 if δr,i ∈ (δr ± �δr/2) and Mr ∈ (Mr ± �Mr/2)
0 Otherwise

. (27)

Following Dragomir et al. (2018), the fraction of effective
volume, f(δR), as function of δR is measured by counting the number
of DDP galaxy neighbours around a catalogue of random points:

f (δR) = 1

Nr

Nr∑
i=1

�(δR,i), (28)
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The galaxy–halo connection in modified gravity 793

Table 2. Best-fitting values of the HOD parameters for satellite and central galaxies fitted to functions equations (21) and (22), respectively, based on the
mock catalogues generated for all the models. Mass parameters are in units of M� h−1. Error bars on the HOD parameters correspond to 1σ , derived from
the marginalized distributions. The HOD parameters vary from model to model; the largest differences among the constrained parameters are: ∼40 per cent
between F4 and F5 for M1; ∼35 per cent between F5 and N1 for Mcut; ∼26 per cent between �CDM and F5 for Mmin; 10 per cent between F6 and N1 for α;
and 20 per cent between �CDM and F5 for σ log M.

Models log M1 log Mcut α log Mmin σ log M

�CDM 14.204 ± 0.012 13.403 ± 0.02 0.797 ± 0.021 12.627 ± 0.0002 0.201 ± 0.001
F6 14.184 ± 0.014 13.459 ± 0.017 0.739 ± 0.027 12.725 ± 0.003 0.24 ± 0.006
F5 14.156 ± 0.017 13.508 ± 0.018 0.762 ± 0.023 12.727 ± 0.003 0.236 ± 0.006
F4 14.300 ± 0.011 13.381 ± 0.013 0.79 ± 0.020 12.707 ± 0.002 0.228 ± 0.004
N1 14.195 ± 0.01 13.379 ± 0.023 0.80 ± 0.023 12.64 ± 0.0003 0.205 ± 0.001
N5 14.198 ± 0.01 13.402 ± 0.021 0.80 ± 0.021 12.633 ± 0.0002 0.203 ± 0.001

Figure 6. GLFs in the r band of all galaxies estimated from our mock
galaxy catalogues for the �CDM model in six different density environments
indicated inside the panel. Shaded regions represent 1σ standard deviation
measured from their five realizations available.

where the function � counts the number of random points within
the overdensity bin δR ± �δR/2 :

�(δR,i) =
{

1 if δr,i ∈ (δr ± �δr/2)
0 Otherwise

. (29)

Similar to equation (25), the local density contrast around each
random point δr is calculated as

δr = ρr − ρ̄

ρ̄
. (30)

We use a random catalogue that is ∼4 times larger than the
mock galaxy catalogues we created for all the gravity models,
∼4 × 106. We found that the variation in the fraction of effective
volume measurements between the models with respect to �CDM
is approximately within ∼2 per cent.

In the following we present results in six density bins: −0.4 < δ8

< 0.0, 0.0 < δ8 < 0.7, 0.7 < δ8 < 1.6, 1.6 < δ8 < 2.8, 2.8 < δ8 <

4.0, and 4.0 < δ8.
Finally, Fig. 6 shows the resulting dependence of the luminosity

function on environment for the standard �CDM model. Note that
as higher is the density environment bin the larger is the number
of galaxies per comoving volume. Additionally, the GLF resembles
a Schechter function, similarly to previous determinations for the
�CDM model (Dragomir et al. 2018). While not shown here, we
derive similar luminosity functions for all the gravity models. In the
next section we will show just the differences with respect to the
�CDM model.

5 G A L A X Y D I S T R I BU T I O N S A S A FU N C T I O N
O F E N V I RO N M E N T IN T H E D I F F E R E N T
GRAV I TY MODELS

In this section we present the resulting density distributions pdf(1 +
δ8) and the dependences of the luminosity functions on environment
for all the MG models studied in this paper. We investigate whether
the effects of environment from the MG models lead to differences
on the luminosity functions, as different gravity models posse
different screening mechanisms that should have some signatures
under different environmental conditions.

5.1 The density distribution

We begin by describing the probability distribution of densities as
measured for all the simulations. The left-hand panel of Fig. 7 shows
the probability distribution of galaxy densities, pdf(1 + δ8). Recall
that densities were defined as the number of DDP neighbours within
spheres of R = 8h−1 Mpc. The bottom panel shows the difference
with respect to the �CDM model. In general, Fig. 7 shows that
the probability distribution for all the models are similar, though in
more detail, some differences appear.

Fig. 7 shows that the largest significant differences between
models appear for the low values of the overdensity, that is, for
the void-like environments, δ8 < 0.

Moreover, there is a systematic trend among the models; F4,
F5, and F6 predict up to 10 per cent for more low overdensities
than the �CDM model, in contrast, the nDGP N1 and N5 models
are slightly below the �CDM model but barely indistinguishable.
This is in agreement with what we expect; for f(R) models in the
low-dense environments screening mechanisms are not that much
effective (see e.g. Falck et al. 2015; Shi et al. 2017). For values of δ8

∼ 1, F4 predicts an excess of low overdensities compared to F5, F6,
and the �CDM. Thus, the differences observed above clearly show
the dependence of the chameleon mechanism with the parameter
fR0 as well as with environment.

While in case of nDGP models, the Vainshtein mechanism seems
to work efficiently, we observe no environmental effect which is
consistent with the previous results of Falck et al. (2015). In denser
environments, δ8 > 4, the above situation reverses and F4 and F6
models predict a lower fraction of cluster-like environments, by
∼10 per cent, while F5 predicts a larger number of high-density
environments, by ∼20 per cent. Note that the excess of dark matter
haloes observed in Fig. 1 are within the magnitude range definition
of our DDP population. While, at this point, it is not clear how
they would affect the definition of environment, one could argue
that there is a non-negligible chance that the difference observed
above are simply the result of including those haloes in our DDP
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794 N. C. Devi et al.

Figure 7. Left-hand panel: Differential (1 + δ8) probability functions of all type of galaxies for all the models, where overdensity δ8 is calculated within the
sphere of radius R = 8 Mpc h−1. Right-hand panel: Cumulative (1 + δ8) probability function. The binning is done with 0.3 dex.

definition. We will discuss further this point in Section 6. Finally, as
for nDGP N1, this model makes excursions around the �CDM
expectations but at the largest density environments it predicts
more structures with high δ8, > 20 per cent. But for the nDGP
N5 we observe that is consistent with the �CDM at all density
environments and it is difficult to conclude whether there is some
environmental dependence for these models due the large errors in
our determinations.

The right-hand panel of Fig. 7 shows the cumulative probabilities
P(>δ8 + 1), while the bottom panels present the residuals with
respect to the �CDM model. While the trends observed in this
figure are well understood from the density probability distribution
(left-hand panel), Poissonian errors have a lower impact in P(>δ8

+ 1), which could be used for constraining gravity models.

5.2 The dependence of the luminosity function on
environment in modified gravity models

As discussed above, we find evidence that the resulting galaxy
density fields are different for different gravity models as well as
for their screening mechanisms. Next, we study the effect of the
gravity models on the dependence of the luminosity function with
environment.

The main goal of this work is to quantify the differences on
the dependence of the r-band GLF with environment for all the
gravity models studied here. Recall that Fig. 6 shows the GLFs
under different environments (δ8 values) for the standard �CDM
model.

The resulting differences of the respective GLFs in the different
gravity models w.r.t. the �CDM model are shown in Fig. 8. Each
panel corresponds to the different environments, ranging from void-
like structures, −0.4 < δ8 < 0, to clusters-like environments, δ8

> 4. The shaded regions show the 1σ standard deviation from
the 5 realizations for the F6 and N5 gravity models. We only
present uncertainties in F6 and N5 to avoid overcrowding as they
are expected to be the closer in nature to the �CDM model. We
note, however, that we find similar uncertainties for all the other
gravity models. The solid vertical line in each panel shows the
threshold limit, Mr < −22.8, below which we cannot trust the
results due to sampling variance in the simulations. In Appendix B,

we show that when recovering the cumulative luminosity function
from the simulations, uncertainties due to sampling variance,
∼5–10 per cent, become relevant for bright galaxies. Thus, as a
conservative limit we use the threshold limit of Mr < −22.8, as
shown in Fig. B1.

In Fig. 8, we observe that overall all MG models considered here
deviate from the standard �CDM model at all density bins. This is
especially true at low-density environments where we find differ-
ences of the order of ∼10 per cent in some of the models, where
the screening mechanisms are not efficient. At the high-density
environments, where the screening mechanisms are expected to be
more efficient, the differences are around ∼5 per cent.

In general the F4 and F6 models predict a higher number of
galaxies for all magnitudes and for most of the environments. This
situation is inverted at the highest density bin at which they predict
a lower amplitude for low-luminosity galaxies but approaches to
the �CDM model at the bright end. The model F5 is closer to the
�CDM model within 0 � δ8 � 4. At the lowest overdensity bin
it seems to be higher than the �CDM model but this depends on
luminosity, galaxies with Mr ∼ −22.5 have a maximum deviation
of ∼9 per cent from the �CDM model. At the largest overdensity
bin, δ8 > 4, F5 predicts ∼9 per cent more galaxies at Mr ∼ −21.9
but it is similar to the �CDM model for brighter galaxies. As for
nDGPs models, both N5 and N1, are almost indistinguishable to
the �CDM model for magnitudes below Mr ∼ −22.2. None the
less, we find some deviations for brighter galaxies with differences
around 8–10 per cent and 10–15 per cent respectively for N5 and
N1 at a fixed luminosity Mr ∼ −22.7.

The above trends are surprising and unexpected, specially for the
F4, F5, and F6 models. In fact, the F4 model is expected to deviate
significantly from the �CDM, followed by F5 and F6 due to the
chameleon screening mechanism. Note, however, that in Fig. 1 (see
also Fig. A1) we showed that the differences of the F4, F5, and F6
models w.r.t. �CDM depend on the halo velocity (mass). Moreover
we showed that for haloes with Vmax ∼ 630 km s−1 (corresponding
to Mr ∼ −22.2 in terms of galaxies) there is a maximum excess of
∼50 per cent of haloes for the F5 model. As before, we do not see
the above features in Fig. 8. In the case of the nDGP models, N5
was expected to be closer to the �CDM than N1, something that we
notice. However, it is not clear why they are below the predictions
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The galaxy–halo connection in modified gravity 795

Figure 8. GLFs in the r band of each one of the MG models considered here with respect to the �CDM GLF in six different density environments determined
within the sphere of R = 8 Mpc h−1. The overdensities δ8 decrease from upper left to the right lower corners. The resulting GLFs are the mean of all the available
simulation realizations. The shaded regions show the respective error propagation from the standard deviation calculated from the realizations available for
the F6 and N5 MG models, which are the closest in nature to the �CDM from the theoretical background. The error propagation for the other models is not
shown to avoid overcrowding in the figures. The solid vertical line shows the threshold limit below which we cannot trust on the results due to uncertainties,
coming from various factors, e.g. SHAM technique, estimation of the fsat function, etc.

from the �CDM model for brighter galaxies. In the next section we
discuss on the possible origin of the above tensions.

Finally, despite of the details discussed above, Fig. 8 shows that
the differences in halo distributions among the different gravity
models are projected somehow in the dependence of the GLFs on
environment in such a way that is possible to distinguish between
the different models by means of observations.

As noted previously, the most significant differences of MG
models w.r.t. the �CDM standard model is at low-density envi-
ronments, δ8 < 1. While there are hints of some differences at
high-overdensity bins, most of the models are very close to the
�CDM. This is actually expected due to the enhancement of the
screening mechanism in the different models that allows to recover
GR in high-density regions.

The above trend with environment gives an idea on how does the
MG affects the GLFs at different environments, providing thus a
valuable tool for distinguishing MG effects from �CDM. Moreover,
based on our results, we propose that the dependence of the GLF on
environment can be used to constrain screening mechanisms along
with the gravity models.

Similarly to Fig. 8, Fig. 9 shows the dependence of the luminosity
function with environment w.r.t. �CDM but this time using an
aperture sphere of R = 10 Mpc h−1. Note that using larger apertures
would tend to oversample voids and thus increasing the effects of

the fifth force from the MG models. None the less, we observe
approximately the same trends as in the case of spheres of R = 8
Mpc h−1. Thus increasing the aperture radius do not significantly
change our conclusions.

6 D ISCUSSION

In the non-linear regime of structure formation, different screening
mechanisms predict that dark matter particles will cluster differ-
ently. In consequence, as it has been shown by previous studies
(see e.g. Falck et al. 2015), haloes themselves cluster differently
as well. In this paper, we study the environmental dependence of
the GLFs as predicted by different gravity models. Here we use
two different class of MG models and their screening mechanism,
the f(R) (Hu & Sawicki 2007) and the nDGP (Dvali et al. 2000),
in order to build mock galaxy catalogues and their corresponding
galaxy density field.

In the preceding section, we conclude that the dependence of
the GLF on environment is a valuable tool for constraining the
screening mechanisms in addition of the MG models. None the less,
we noted that the trends in the GLFs were counter-intuitive to what
theoretically is expected, see Fig. 1 from Section 3, specially for
the F4, F5, and F6 models. There, we discussed that the chameleon
screen mechanism tends to produce an excess of abundance of dark
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796 N. C. Devi et al.

Figure 9. Same as Fig. 8 but for a sphere of R = 10 Mpc h−1. By varying from 8 to 10 Mpc h−1, the radius of the sphere where the overdensities are measured,
we do not see major differences for the MG models throughout all the different environments.

matter haloes around some characteristic velocity/mass that depends
on the present day value of the scalaron field (Li & Efstathiou 2012).
In the halo velocity/mass range of the suite of N-body simulations
we are employing for this paper, we observe that the maximum
excess of dark matter haloes for the F5 model is of ∼50 per cent,
w.r.t. �CDM, at Vmax ∼ 600 km s−1, which corresponds to haloes
with M200c ∼ 6 × 1013 M�; see Figs 1 and A1, respectively. On
the other hand, F6 and F4 models show an excess of dark matter
haloes respectively of ∼20 per cent (at low velocities/masses) and
more than 100 per cent (at high velocities/masses). In the case of the
nDGP models, N1 predicts an excess of haloes at the high-mass end
while N5 is almost indistinguishable from the �CDM. Further, we
discuss why we do not recover the above trends into the predicted
GLFs.

Fig. 10 presents the dependence of the halo velocity functions
for the various MG models w.r.t. �CDM on the environment. Note
that we employed the same definition of environments, δ8, derived
for their host galaxies from the previous section. The halo velocity
functions were derived using the same methodology as described
in Section 4.4. Fig. 10 shows that the trends observed in Fig. 1
are replicated in all the environments. As expected, at the low-
density environments the effects of the fifth force are more relevant
leading to a larger differences w.r.t. �CDM than at the high-density
environments, where the fifth force is suppressed and the screening
mechanisms are more efficient. Note, however, that even in the
highest overdensity bin we do observe similarities with Fig. 1.
Naively, the above signatures are what we would expect to be printed

in the dependence of the GLFs with environment. Therefore, we
discard that the methodology employed in Section 4.4 is responsible
for erasing the features observed in Fig. 1. Moreover, we also discard
that choosing our DDP population within the magnitude range at
which the F5 model shows an excess of haloes, is not introducing
an extra source of bias between the F5 and the other models. Next,
we investigate whether the differences on the Vmax−Mr relations
are responsible for the counterintuitive results of the dependence of
the GLFs with environment.

In this paper we derived the Vmax−Mr relationship via SHAM
under the assumptions of zero scatter and separately for all the
gravity models. Thus, in this approach, haloes with identical Vmax

will host galaxies with identical luminosities Mr, no matter what
their environmental density is. In other words, the Vmax−Mr relation
is independent of environment. Assuming that we have a model
for the dependence of the velocity function with environment
φV(Vmax|δ8) and using the universality of the Vmax−Mr relation,
we can thus derive the dependence of the GLF with environment
as

φr (Mr |δ8) = φV (Vmax(Mr )|δ8)

∣∣∣∣d log Vmax(Mr )

dMr

∣∣∣∣ . (31)

Notice that the above equation is simply the differential form of
SHAM. When examining equation (31), it clearly shows that when
two models have different Vmax−Mr relationships, the observed
features from these models in their corresponding velocity functions
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The galaxy–halo connection in modified gravity 797

Figure 10. Variations with environment the halo Vmax functions of the MG models with respect to the �CDM. The shaded areas represent the error propagated
from the standard deviations of all the available realizations. Some of the trends seen in Fig. 1 for haloes in all the environments are enhanced in the low-density
environments. While in high-density environments the fifth force is expected to be suppressed but we observe differences between screening models and similar
features to Fig. 1.

will not be directly projected into their GLFs. This is due to the
non-trivial relationship between galaxies (magnitudes) and haloes
(velocities), depending strongly not only in the functional forms of
the Vmax−Mr relations but also on their slopes.

To understand the above, imagine that we want to compare two
models with different Vmax−Mr relations such that Model 1 has a
higher amplitude than Model 2. That is, at a fixed Vmax the Model
1 host brighter galaxies than the Model 2. Equivalently, at a fixed
luminosity we find that Vmax,1 < Vmax,2, where the subscripts ‘1’ and
‘2’ indicate the models. Equation (31) shows that when comparing
two models with identical magnitudes (this is actually our situation
in Fig. 8 where we are comparing different models at a fixed
magnitude) the differences observed in Figs 1 and 10, at a fixed
Vmax, will project differently into the GLFs, due to the shift in the
halo velocities by simply fixing the galaxy magnitudes. This could
explain the observed trends from Fig. 8. The mapping between Vmax

and Mr would perhaps in some cases compress, stretch, squash or
just shift, or a combination of all of them, the features observed in
Figs 1 and 10.

We test the above idea, by choosing one (from the five realiza-
tions) of the simulations for each gravity models and by employing
equation (31) combined with our determinations of φV(Vmax|δ8),
similarly to Fig. 10, and the Vmax−Mr relations for all the gravity
models, see Fig. 3. The resulting GLFs as a function of environment,
φr(Mr|δ8), are shown in Fig. C1 from Appendix C. Note that our
results based on SHAM, equation (31), are very similar to the direct
measurements from the simulations. Next we study the ration w.r.t.
�CDM.

Similarly to Fig. 8, Fig. 11 shows the dependence of the GLF with
environment from equation (31) w.r.t. �CDM. Observe that we are
replicating the same features in both figures. The above confirms
that the differences in the Vmax−Mr relations of the gravity models
are responsible for the intriguing and counter-intuitive results from
Section 5.2. The differences within 10 per cent among the models
are being observed in the GLFs under different environments with
the fact that different gravity models lead to have different Mr–Vmax

relationships.
We end this section by emphasizing that the features derived for

the distributions of dark matter haloes would not necessarily map
directly into their host galaxies. As we have discussed, the mapping
between galaxies and dark matter haloes is not trivial and it depends
on the gravity model. In order to compare predictions from different
gravity models, one should use the correct galaxy–halo connection
for each model. Otherwise, one would be pruned to draw wrong
conclusions on the real viability of one model over the others. That
would be the case when using HOD parameters derived from the
�CDM model but employed in other MG models, see also the
discussion in Section 4.3.

7 SU M M A RY A N D C O N C L U S I O N S

We have studied the differences of several halo and galaxy distri-
butions predicted within the context of two classes of MG models
and their respective screening mechanisms. We explored (i) the f(R)
model of Hu & Sawicki (2007) with n = 1 and three different |fR0|
values: F6 = 10−6, F5 = 10−5, and F4 = 10−4 (see equation 6), and
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Figure 11. As Fig. 8 but for the GLFs calculated from the respective halo Vmax functions as a function of environment, φV(Vmax|δ8), and the Mr−Vmax relation
(see equation 31). Only one realization for each model has been used for this plot. The results in this plot are similar to those obtained directly from the mock
catalogues, shown in Fig. 8.

(ii) the normal branch of Dvali et al. (2000) (nDGP) Braneworld
model, with rcH0/c = 5 and 1.0, denoted respectively by N5 and
N1. We used a large suite of high-resolution N-body cosmological
simulations for these MG models and for the standard �CDM
model. The simulations were presented in Li et al. (2012, 2013).
Each model has five different realizations, which are ran using
slightly different random phases for the initial conditions, except for
F4 model that has only two realizations. We used these realizations
to determine uncertainties from sampling variance.

The dark matter (sub)haloes were populated with galaxies by
means of the SHAM. For the SHAM, we used the halo maximum
circular velocity (Vmax) function from the simulations and the r-
band GLF from SDSS. As the result, and following Rodrı́guez-
Puebla et al. (2012), we obtained the Mr−Vmax relationships for
both the central and satellite galaxies (haloes and subhaloes). These
relationships connect galaxies with (sub)haloes, in such a way that
the spatial clustering of galaxies at different r-band luminosities can
be measured in the simulations. For all the gravity models studied
here, the predicted projected two-point correlation functions (Fig. 4)
agree with observational determinations, with differences at some
scales up to ∼30 per cent, and with the deviations from them being
similar for all the models. This shows that the employed SHAM
method is relatively robust and that the systematic differences with
observations do not introduce biases in our further comparative
analysis among the different gravity models.

Further, we characterized the galaxies in the simulations by
their environmental density, δ8, by counting neighbours in spheres
of R = 8 Mpc h−1, and calculated the GLFs as a function
of environment with the aim of exploring whether the depen-
dence of the GLF on environment changes among the differ-

ent gravity models, providing possible observational signatures
to constrain them. Our main results and conclusions are as
follows:

(i) The Vmax function, φV(Vmax), and the halo mass function,
φh(M200c), for haloes and subhaloes depend on the gravity models.
The F4 model predicts ∼50 per cent more haloes and subhaloes
than the �CDM model around Vmax ∼ 1000 km s−1, the difference
increasing for larger values of Vmax. For the F5 model, there is an
excess of haloes/subhaloes w.r.t. the �CDM model up to 50 per cent
at the Vmax range of 400−1000 km s−1. We observe qualitatively
similar differences in the halo mass function but with smaller
amplitude.
This is because the haloes in these f(R) models are also more
concentrated (higher Vmax values for a given halo mass), so that
besides the abundance excess, they have larger velocities than in
the �CDM model.
These differences are expected due to the inefficiency of the
screening mechanism for these models in the relevant Vmax/mass
regime. On the other hand, the F6 model predictions are similar to
those of the �CDM model due to the strong screening mechanism
acting on the Vmax/mass regime explored in the simulations. Finally,
the N1 and N5 models remain indistinguishable from the �CDM
model throughout most of the Vmax/mass ranges due to the effective
suppression of the fifth force under the Vainshtein screening method
employed by these models.

(ii) The obtained Mr−Vmax relationships of central and satellite
galaxies vary among the various gravity models. The differences are
not larger than ∼1 per cent, which correspond to differences of ∼0.2
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mag in Mr. These results are mainly consequence of the differences
among the maximum circular velocity functions reported above.

(iii) The variation of the Mr−Vmax relationships with gravity
models affects the results on the halo occupation distributions,
HOD. The maximum variation in the best fit values of the
HOD parameters among the different gravity models are around
∼40 per cent for M1; ∼35 per cent for Mcut; ∼26 per cent for Mmin;
10 per cent for α; and 20 per cent for σ log M. We observe differences
in the halo occupation numbers between the f(R) models and the
�CDM one up to 50 per cent. The major differences (a deficit of
centrals) are at M200c < 1013 M� h−1, and also at the high-mass end
for the F4 model. For the nDGP models the differences are below the
10 per cent. We stress that since the HOD numbers depend on the
MG, it is not correct then to apply �CDM-based HOD parameters
for seeding galaxies in haloes from simulations for the MG models.

(iv) The galaxy overdensity distribution, pdf(1 + δ8), varies
with the gravity model. For the F4, F5, and F6 models, there is
a 10 per cent excess of void-like regions compared to the �CDM.
In contrast, at the high-end of the (1 + δ8) distribution, for F4 and
F6, there is a ∼10 per cent deficit of high-density environments but
for F5 there is a ∼20 per cent excess of high-density environments.
For the DGP N1 and N5 models, the overdensity distributions are
similar to those predicted for �CDM, excepting at the high-density
end, where the variance is large.

(v) The various gravity models analysed here predict a different
dependence of the GLF with environment. The most significant
difference w.r.t. the �CDM is at the low-density environments,
δ8 � 1. The F4 model has an excess of ∼5–10 per cent at the
lowest density bins and at all luminosities, followed by the F6
model. Contrary to the naive expectation, F5 is closer to the �CDM
prediction than F6 along with some fluctuation in F5. The DGP N5
and N1 models are closer to the �CDM model for lower luminosity
galaxies but we observe a deficit of high-luminosity galaxies in
almost all the environments, ∼9 per cent and ∼12 per cent for N1
and N5 models, respectively.

(vi) We have discussed the counterintuitive results on the ex-
pected dependence of the GLFs with environment and screening
mechanisms, specially for the sequence of models F6, F5, and
F4. The dependence of the halo Vmax function with environment,
φV(Vmax|δ8), is mapped into a dependence of the GLFs by environ-
ment, φr(Mr|δ8), through the Vmax−Mr relationship (equation 31)
in a very non-linear way because the latter has a non-trivial shape
that varies among the different gravity models and their screening
mechanisms. The effects of the shape and differences in the
Vmax−Mr relations could result in some cases in the compression,
stretch, squash or just shift (or a combination of all of them) of the
features produced by the screening mechanisms in the φV(Vmax|δ8)
function.

Our results are in general consistent with the findings of
Hernández-Aguayo et al. (2018), where the authors studied the
impact of f(R) gravity on galaxy clustering using marked correlation
functions. In the marked correlations approach, one gives a ‘weight’
or ‘mark’ to each galaxy as a function of the environment (Sheth,
Connolly & Skibba 2005), with the idea to up-weight low-density
regions to boost the MG signal in galaxy clustering (White 2016).
Hernández-Aguayo et al. (2018) found that up-weighting low-
and intermediate-density regions it is possible to find measurable
differences between f(R) gravity models and GR (�CDM). This
result is similar to the differences found here in the GLFs as a
function of δ8 and δ10 (see Figs 8 and 9), especially in the bins:
−0.4 < δ8/10 < 0, 0 < δ8/10 < 0.7 and 0.7 < δ8/10 < 1.6.

Our simple approach of analysing the GLFs under different
environment can provide a complimentary test to other existent
non-linear observables such as galaxy clustering redshift-space
distortions (Vlah & White 2019; Hernández-Aguayo et al. 2019),
weak lensing measurements (Shirasaki, Hamana & Yoshida 2015),
cluster abundances (Cataneo et al. 2015), and the marked correlation
functions (White 2016; Hernández-Aguayo et al. 2018). Indeed,
our measurements quantify the effect of MG models and their
screening effect as a function of galaxy environment, especially in
the low- (void like) and high- (cluster like) density regions. Perhaps,
combining various observables will improve the constraints on the
different MG models. In addition, the fact that the HOD parameters
depend on the gravity model, as we have found, observational results
on the conditional luminosity/stellar mass functions (e.g. Yang et al.
2007) would be helpful for constraining the models.

Finally, this paper is the first on a series for examining the effects
of the screening mechanism of the MG models at the level of
galaxy properties, particularly the dependence of the GLF with
environment. While our results show that it is, in principle, possible
to use the observed GLFs to establish limits or to constrain MG
models, even though we have ignored errors from observations.
We are currently developing realistic galaxy mocks by including
random errors from magnitude and redshift determinations in order
to test the viability of using the above idea with current facilities
such as the SDSS and DES or even with future surveys such as
DESI. In addition, here we mainly focused on the r-band magnitude
but the analysis can be easily extended to other bands or even at
the level of galaxy stellar mass. Considering the robustness of the
SHAM method mentioned before, performing HOD directly on MG
models is our next future plan.
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A P P E N D I X A : H A L O MA S S FU N C T I O N S A N D
H A L O C O N C E N T R AT I O N S FRO M TH E
GRAV I TY MODELS

The left-hand panel of Fig. A1 shows the halo mass function,
φh(M200c), for all the gravity models employed in this paper. The
bottom panel shows the relative differences with respect to the
�CDM model. The trends noted for the halo velocity functions,
Fig. 1, are similarly observed for the halo mass function, though
the relative differences are of lower in amplitude for the latter. The
right-hand panel of Fig. A1 shows the mean halo concentration–
mass relation measured from the simulations corresponding to all
the gravity models studied here. In the bottom panel, the relative
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Figure A1. Left-hand panel: The differential halo mass M200c function of the dark matter haloes for all the MG models including �CDM at redshift,
z = 0.0. Right-hand panel: The dark matter halo concentrations as a function of M200c at redshift z = 0.0 Their relative differences w.r.t. the �CDM is
shown in their lower panels with the shade regions representing the error propagated from 1σ standard deviations of all the realizations. For this particular
simulation resolution, F5 model is showing the highest deviation 20–25 per cent from �CDM in the mass ranges 1013.5 M� h−1 < M200c < 1014.5 M� h−1

even larger deviation then F4, clearly showing the scales where the chameleon screening mechanism is inefficient for F5. F4 starts to deviate significantly from
1013.5 M� h−1 < M200c and continue to grow the deviation.

differences with respect to the �CDM model are shown. Note
that the halo concentrations for the F5 model are significantly
higher for masses ∼1013–1014 M� h−1, the same mass range where
the halo mass function presents an excess. Similarly, for the F4
model, the haloes become more and more concentrated than in
�CDM for masses � 3 × 1013 M� h−1, the same mass range, where
the halo mass function deviates significantly from the one of
the �CDM model. Therefore, the respective haloes in these MG
models are not only more abundant than in the �CDM model,
but also more concentrated; the latter implies that for the same
halo mass, Vmax is higher in these MG models. As the result, the
differences in the halo mass functions of the MG models with
respect to the �CDM will further increase when plotting the halo
Vmax functions. The trends seen in Fig. A1 are mainly the result
of the behaviour of the screening mechanisms, as discussed in
Section 3.1.

A P P E N D I X B: TH E I M PAC T O F P O I S S O N I A N
E R RO R

The cumulative GLFs for all the gravity models are presented in Fig.
B1 along with their relative differences w.r.t. �CDM in the lower
panel. This figure shows how accurately the SHAM technique has
been applied to generate the mock galaxies catalogues irrespective
of MG. One can notice from the lower panel of the figure that the
noise level remains within 1 per cent until Mr ∼ −22.8; afterward
the Poissonian error becomes prominent. Hence, we mark this value
as our threshold limit on Mr beyond which our results can be biased
by the Poissonian errors. Thus, the results we analysis below this
limit −22.8 > Mr − 5log h are marginal.

Figure B1. The cumulative Mr − 5log h function of all type galaxies for all
the models considered. The relative differences w.r.t. �CDM is shown in the
lower panel. The dashed vertical line marks the threshold limit, below the
threshold Mr < −22.8 the mock catalogues we generated using the SHAM
technique can be biased by the Poisson noise of the cumulative function.
This figure shows that the results we obtained within the ranges −21.6 <

Mr − 5log h < −22.8 can be trust to understand the intrinsic effect of MG
in our analysis.

APPENDI X C : LUMI NOSI TY FUNCTI ONS
F RO M T H E Vmax F U N C T I O N S A N D Mr –Vmax

RELATI ON

The GLFs of all models calculated using equation (31) under
different density environments for one realization of the simulations
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Figure C1. Comparison of the GLFs of all the models calculated using equation (31) (solid lines) with the one measured from our mock catalogues of galaxies
(dotted lines) under six different density environments. The result is an outcome of one realization. Both are come out to consistent be with each other.

are shown in Fig. C1, presented as the solid lines in each panel. We
also plot the corresponding GLFs measured from the simulation-
based mock galaxy catalogues (dashed lines in the figures). As seen,
the results are quite consistent with each other.

APP ENDIX D : TABLES FOR THE Mr –Vmax

RE LATIONSHIP S SEPARATELY FOR
CE N TRALS AND SATELLITES

The Mr−Vmax relationships for central and satellite obtained from
SHAM method separately for all the gravity models are provided as

supplementary. There we report the mean values for the realizations
available for our suite of N-body simulations. Recall that r-band
magnitudes were deriven for a redshift rest frame of z = 0.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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