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ABSTRACT
We study the statistics of weak lensing convergence peaks, such as their abundance and two-point correla-
tion function (2PCF), for a wide range of cosmological parameters Ωm and σ8 within the standard ΛCDM
paradigm, focusing on intermediate-height peaks with signal-to-noise ratio (SNR) of 1.5 to 3.5. We find
that the cosmology dependence of the peak abundance can be described by a one-parameter fitting formula
that is accurate to within ∼ 3%. The peak 2PCFs are shown to feature a self-similar behaviour: if the peak
separation is rescaled by the mean inter-peak distance, catalogues with different minimum peak SNR values
have identical clustering, which suggests that the peak abundance and clustering are closely interconnected.
A simple fitting model for the rescaled 2PCF is given, which together with the peak abundance model above
can predict peak 2PCFs with an accuracy better than ∼ 5%. The abundance and 2PCFs for intermediate peaks
have very different dependencies on Ωm and σ8, implying that their combination can be used to break the
degeneracy between these two parameters.

Key words: gravitational lensing: weak – large-scale structure of Universe – cosmology:
theory – methods: data analysis

1 INTRODUCTION

Gravitational lensing, the deflection of photon trajectory due to
the presence of massive objects between the source and the ob-
server, is sensitive to the total matter distribution in the Universe
(Bartelmann & Schneider 2001). The total matter content can be
expressed as the sum of baryons (Ωb ) and dark matter (ΩDM).
Combined, these two components make up Ωm ≈ 30% of the Uni-
verse’s energy budget with an abundance ratio of ΩDM/Ωb ≈ 5
(Planck Collaboration et al. 2018). While dark matter is the domi-
nant matter component, it is also the more challenging one to de-
tect since it is not directly observable. Gravitational lensing offers
a promising probe which allows us to examine the distribution of
dark matter in the Universe.

In this paper we are interested in weak lensing (WL), which
is the regime of gravitational lensing where the amplitude of light
deflections is small. These deflections, caused by inhomogeneities
of the total matter distribution, lead to distortions of the images
of distant sources, such as background galaxies or the cosmic mi-
crowave background. While the distortions are small, they can be
extracted with a careful statistical analysis of their correlations
(e.g., Bacon et al. 2000; Kaiser et al. 2000; Van Waerbeke et al.
2000; Wittman et al. 2000). Nowadays, WL is widely used as
a probe of the large-scale structures (LSS) of the Universe
(Albrecht et al. 2006; LSST Dark Energy Science Collaboration
2012; Amendola et al. 2013; Weinberg et al. 2013).

While WL is only the broad name of a physical phenomenon,
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a plethora of statistics can be extracted from observations and cos-
mological simulations. For example, the cosmic shear (the dis-
tortion of the shapes of a lensed image) and convergence (the
magnification of the magnitude of the lensed source), are usu-
ally quantified using their two-point statistics, though higher-
order statistics contain extra information about the nonlinear LSS
evolution. Analyses performed on the low-redshift universe us-
ing shear-shear correlations have led to strong cosmological pa-
rameter constraints (e.g., Schneider et al. 2002; Semboloni et al.
2006; Hoekstra et al. 2006; Fu et al. 2008; Heymans et al. 2012;
Kilbinger et al. 2013; Hildebrandt et al. 2017). Lensing signatures
are also present in the cosmic microwave background for which
the lensing potential power spectra can be used as a cosmological
test (e.g., Planck Collaboration et al. 2018). WL has also been de-
tected around cosmological objects such as galaxy clusters, which
can be used to measure the cluster mass (e.g., Gruen et al. 2014;
Umetsu et al. 2014; Applegate et al. 2014; Von der Linden et al.
2014; Hoekstra et al. 2015; Tudorica et al. 2017), and voids, for
which void WL profiles can be obtained (e.g., Melchior et al. 2014;
Clampitt & Jain 2015; Sánchez et al. 2017).

Weak lensing can be used to test different cosmologi-
cal models. For example, the convergence power spectrum,
shear-shear correlations as well as WL by voids have been
shown to be promising probes for constraining the dark en-
ergy equation of state or modified gravity models (e.g. Schmidt
2008; Tsujikawa & Tatekawa 2008; Huterer 2010; Cai et al.
2015; Barreira et al. 2015; Barreira et al. 2017; Baker et al. 2018;
Cautun et al. 2018; Van Uitert et al. 2018; Paillas et al. 2019).
While WL offers an independant measurement of the absolute
cluster mass, this cannot be done for most clusters; one use of
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WL is to calibrate some observable-cluster-mass scaling relation,
which is then used to infer cluster masses and hence the abun-
dance of massive haloes, which is a powerful cosmological probe
(e.g. Mantz et al. 2015; Umetsu et al. 2016; Pizzuti et al. 2017;
Bocquet et al. 2018). In addition, statistics such as WL Minkowski
functionals and WL bispectrum have been used to constrain the
sum of neutrino masses (e.g. Marques et al. 2018; Coulton et al.
2018).

The most commonly used WL statistics are the shear cor-
relation function and convergence power spectrum. These two-
point statistics alone, however, cannot account for the non-
Gaussian features introduced by the nonlinear evolution of struc-
tures in the Universe, and other statistics can provide addi-
tional and complementary information. In this paper we study
one such additional probe, WL peaks, which are the max-
ima of the WL convergence field. The WL peak abundance
is a good example of a statistic that contains complimentary
information to two-point statistics (Jain & Van Waerbeke 2000;
Pen et al. 2003; Dietrich & Hartlap 2010; Shirasaki et al. 2018),
and can be used to constrain cosmological parameters within
ΛCDM (Shan et al. 2012; Van Waerbeke et al. 2013; Shan et al.
2014; Liu et al. 2015b), to test alternative cosmological models
such as modified gravity (Cardone et al. 2013; Liu et al. 2016b;
Higuchi & Shirasaki 2016; Shirasaki et al. 2017; Peel et al. 2018),
dark energy (Giocoli et al. 2018), and to measure the neutrino mass
(Li et al. 2018). WL peaks can also be extracted from CMB lens-
ing to provide cosmological constraints (Liu et al. 2016a). Var-
ious models have been developed to accurately describe high
signal-to-noise-ratio (SNR) WL peaks (e.g., Hamana et al. 2004;
Hennawi & Spergel 2005; Maturi et al. 2005; Fan et al. 2010;
Marian et al. 2012; Hamana et al. 2012; Liu & Haiman 2016;
Shan et al. 2018; Wei et al. 2018).

In contrast to high WL peaks, there have been relatively
few studies on the abundance of low and intermediate peaks
(see, e.g., Yang et al. 2011; Lin & Kilbinger 2015; Shirasaki
2017), which nevertheless contains rich cosmological informa-
tion (Dietrich & Hartlap 2010; Kratochvil et al. 2010; Yang et al.
2011), and even fewer on the spatial correlation of such peaks (e.g.,
Marian et al. 2013; Shan et al. 2014). Upcoming wide and deep
field galaxy surveys such as EUCLID (Refregier et al. 2010) and
LSST (LSST Science Collaboration et al. 2009) will produce large
high-resolution WL maps, with significant improvements com-
pared to the current generation of WL observations. Understanding
how WL peak statistics behave will be important if we want to max-
imise the cosmological information that can be gained from the new
surveys. In particular, the higher source number density of these
surveys will lead to a reliable determination of peak abundance and
clustering down to low SNR values, so it is important to have ac-
curate models to describe the statistics of low- and intermediate-
height peaks.

In this work we study properties of WL peak statistics in
ΛCDM, by modelling the peak abundance, peak two-point correla-
tion functions (2PCFs) and the convergence rms fluctuation (con-
vergence map standard deviation). Most importantly, we identify
a universal self-similar behaviour in the peak 2PCF, which holds
for a large range of peak heights and different cosmologies. The
self-similarity is observed when expressing the 2PCF in terms of
the angular separation divided by the mean peak separation, with
the resulting rescaled 2PCFs lying on top of each other. We pro-
pose a general model that describes the abundance and clustering
of WL peaks and that allows us to access cosmological information
contained on non-linear scales.

The structure of the paper is outlined as follows: in Section
2 we briefly summarise the relevant theory for WL, describe the
numerical simulations used to construct the WL maps, and intro-
duce the statistics we use to study WL peaks. Next, in Section 3 we
present the WL peak abundance, WL peak 2PCF, and identify a self
similarity in the peak 2PCF for a given fiducial cosmology. Then, in
Section 4 we give general fitting functions that describe the conver-
gence rms fluctuation, peak abundance, 2PCF and its self similarity
in ΛCDM for a large range of Ωm and σ8 values. We then show
in Section 5 that our model can accurately reproduce the original
peak 2PCF. Finally, in Section 6 we show that the self similarity of
the 2PCF is robust to the inclusion of galaxy shape noise.

2 THEORY, SIMULATIONS AND ANALYSIS PIPELINE

In this section we briefly summarise the essential elements of WL
theory, and describe the simulations and methodology used in this
work to study WL peak statistics.

2.1 Theory

The deflection of photon trajectories due to the mass of objects in
the lens plane can be quantified using the lensing convergence κ,

κ =
1
2
∇2
Ψ , (1)

where Ψ is the 2D lensing potential given by:

Ψ(θ) =
Dl s

Dl Ds

2
c2

∫ zs

0
Φ(Dlθ, z)dz . (2)

In the above equation, θ is the observed angular position of the
lensed image (in the Born approximation); Ds ,Dl and Dl s are the
angular diameter distances between the observer and source, ob-
server and lens, and lens and source; zs is the source redshift; and
c is the speed of light. The symbol Φ denotes the 3D gravitational
potential given by the Poisson equation,

∇2
Φ = 4πGa2δρm , (3)

where δρm = ρm − ρm with ρm and ρm respectively the local
and the background matter density; a is the scale factor; and G is
the gravitational constant. Eq. (1) therefore behaves as a projected
version of the Poisson equation weighted by a geometric factor de-
termined by the distances between the lens, source and observer.

The above equations describe the WL effect of a single lens.
However, as the light travels between the source and the observer, it
experiences gravitational lensing from the entirety of the mass dis-
tribution along its path. The single lens equation can be generalised
to multiple lenses as

κ(θ) =
∫ zs

0
W (z)δρm (Dl (z)θ, z)dz , (4)

where W (z) is the lensing kernel that accounts for the redshift dis-
tribution of the lenses. This kernel is given by

W (z) =
3H2

0Ωm

2c
1 + z
H (z)

χ(z)
∫ zs

z

dn
dzs

dzs
χ(zs ) − χ(z)

χ(zs )
, (5)

where H (z) is the Hubble parameter and H0 is its present-day
value; Ωm is the fractional total matter density at present-day; χ
is the comoving distance; and dn

dzs
is the redshift distribution of

sources.
As can be seen from Eq. (4), the WL convergence corresponds
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Figure 1. An illustration of a WL convergence map and the distribution of peaks of different heights (green points). The convergence field is expressed in
terms of the SNR, ν, as indicated by the colour-bar on the right. Peaks with a height below νcut = 1, 2 and 3 are removed to produce the three peak catalogue
shown in the three panels (all plotted on the same convergence map). The axes θ1 and θ2 give angular coordinates of the map in two orthogonal directions.
The map is smoothed with θs = 2 arcmin before the peaks are identified. We use 2 arcmin smoothing here for visualisation purposes, to clearly show the
presence of WL peaks in a convergence map. A 1 arcmin smoothing (which is used in the main analysis of the paper) results in a large number of peaks that
would reduce the clarity of the figure.

to the projected mass density contrast weighted by a geometric fac-
tor, and thus positive and negative κ values correspond to overdense
and underdense lines of sight. For self consistency across different
convergence maps we define the SNR, ν, as

ν =
κ − µ

σ
, (6)

where µ is the mean value of the convergence field of a given map,
and σ is its rms fluctuation. We have subtracted the map mean µ in
the definition of SNR because our maps are relatively small and can
have non-zero means due to sample variance that vary from map to
map, which can affect the consistency of the SNR definition. Note
that the subtraction of µ does not affect σ, and it is not needed in the
case of κ reconstructed from the (directly observable) cosmic shear
field. An example of a κ map generated from numerical simulations
through ray tracing is shown in Fig. 1.

For most of the paper, the lensing quantities are measured in
maps obtained from cosmological simulations without added noise,
except for Section 6 where galaxy shape noise is included and all
quantities are measured from the noise-added maps (for more de-
tails see Section 6).

2.2 Numerical simulations

In order to study weak lensing peak statistics, in this paper we
use a large suite of WL convergence maps constructed from two
sets of N-body simulations. The first are the publicly-available all-
sky convergence maps of Takahashi et al. (2017) (hereafter T17).
These maps have a source redshift of zs = 1 and have been gen-
erated using the ray tracing algorithm described in Hamana et al.
(2015) (see also Shirasaki et al. 2015), with a HEALpix resolution
of Nside = 16384. To avoid probing the same structures along the
line-of-sight, T17 constructed the light cone by stacking a hierarchy
of cubic simulation boxes, with comoving sizes L,2L,3L, · · · ,14L,
where L = 450h−1Mpc. The simulations had a particle number of
20483, where the particle mass depends on the box size, and ranges
from 8.2 × 108 to 2.3 × 1012 M� (see Table 1 of T17 for more
details). Each of the simulation boxes was duplicated 8 times and
nested around the observer, such that nests of larger boxes con-
tain nests of smaller boxes at their centers. Ray tracing was then

performed on the nested simulation boxes by taking the projected
mass distribution in spherical shells of 150 h−1Mpc in thickness
centred on the observer (see T17 for illustration). The cosmologi-
cal parameters adopted for the T17 simulations are Ωm = 0.279,
σ8 = 0.820 and h = 0.7, where h = H0/100 km s−1 Mpc−1.
Throughout this paper we have split the T17 all-sky map into 184
separate 10 × 10 deg2 maps with 20482 pixels per map, for which
we can use the flat sky approximation to simplify our analysis. A
detailed description of the method we use to split the all-sky map
into smaller squares is given in Appendix A

The second set of WL maps we use are taken from
Zorrilla Matilla et al. (2016) (hereafter Z16; see also Gupta et al.
2018) and consist of maps for 96 different cosmologies. It was built
with the simulation pipeline described in Petri (2016). For each cos-
mology, the maps were obtained from an N-body simulation of a
periodic box with length L = 240 h−1Mpc and 5123 simulation
particles with a particle mass of ∼ 1010h−1 M� (the exact value
depends on the actual cosmology). Ray tracing was then performed
by using a source redshift of zs = 1 and by stacking particles into
lens planes with a thickness of 80 h−1Mpc between the source and
the observer. The lens planes were generated by taking a slice along
a coordinate axis of the original simulation box and applying a ran-
dom shift and rotation. This process was repeated to generate 512
3.5 × 3.5 deg2 maps per cosmology with 1024 × 1024 pixels per
map. Note that each of the 512 maps were obtained from the same
periodic simulation by varying the orientation of the line-of-sight
direction. For a more detailed description we refer the reader to
Z16.

In total we have two sets of maps, one with 184 10 × 10 deg2

maps for a fixed cosmology and the other with 512 3.5 × 3.5 deg2

maps for 96 cosmologies with different values of Ωm and σ8.
Larger maps are ideal for 2PCF studies as the 2PCF cannot be re-
liably calculated at large separations where pair measurements are
affected by the finite size of the map. However, the differences in
the two simulation data sets used here bring some benefits for our
analysis. First, given the simulations use different ray tracing codes
and box tiling methods, if we are able to identify certain features of
the WL peak statistics in both simulations, this can be a check that
the said features are not an unphysical consequence of the proce-
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dure used to generate the convergence maps. Second, the different
simulation maps have different angular sizes and resolutions, which
can help highlight any potential systemics in our analysis due to the
box size or the pixel resolution.

2.3 Weak lensing peaks

WL peaks in this paper are defined as the maxima of the conver-
gence field, which trace local over-densities in a range of envi-
ronments. To extract the WL peaks, we first smooth the conver-
gence map with a Gaussian filter. The convergence field has power
on all scales, so the number and spatial distribution of WL peaks
depends on the smoothing scale, with a larger smoothing wash-
ing out low contrast peaks and merging neighbouring peaks. We
mainly study peaks identified with a Gaussian filter with smooth-
ing length θs = 1 arcmin, a range of smoothing scales have been
studied in Liu et al. (2015a), showing that this smoothing scale is
ideal for WL peak studies. In some cases (which will be explicitly
mentioned), we vary θs to understand how the results depend on
smoothing scale. Next we identify WL peaks by finding all pixels
in the maps whose values are larger than those of their 8 neigh-
bours, and peaks within 3θs of the map boundary are removed to
avoid edge effects where the Gaussian filter is truncated. The height
of a peak is given by the ν value of the smoothed convergence field
at the peak position. For a given convergence map, we can generate
multiple peak catalogues by imposing a νcut threshold and keeping
only peaks with ν ≥ νcut.

Fig. 1 illustrates the distribution of peaks (shown as green
dots) for three different SNR thresholds, νcut = 1,2 and 3. To
highlight the distribution of peaks on both small and large scales,
we show peaks identified with a Gaussian smoothing scale, θs =
2 arcmin; using a smaller θs value would result in many more peaks
and make the graph less legible.

Fig. 1 shows that peak catalogues with different νcut values
trace different features of the convergence field. The catalogue with
νcut = 1 traces the over-dense regions of the convergence map,
whilst avoiding the darker under-dense regions. In particular, many
peaks seem to be arranged in a somewhat filamentary pattern. By
increasing νcut to 2, we find that the resulting catalogue has a sig-
nificantly lower number of peaks and the peaks are now more clus-
tered. Most of these peaks are found in highly over-dense regions,
with some small filamentary patterns still remaining. Finally, there
are few peaks with νcut = 3, but they show a high degree of spa-
tial clustering and are located in the very over-dense regions of the
map.

The description of Fig. 1 above highlights two impor-
tant features in the behaviour of WL peaks: the number of
WL peaks and their clustering, which are respectively quanti-
fied by two commonly used statistics, the peak abundance and
the peak two point correlation function (2PCF). The former is
well studied and has been considered for many cosmological ap-
plications (e.g., Liu et al. 2015a; Liu & Haiman 2016; Liu et al.
2016b; Shirasaki et al. 2017; Shirasaki 2017; Shan et al. 2018;
Li et al. 2018; Wei et al. 2018), whereas weak lensing 2PCFs
are usually measured as shear-shear correlations (Fu et al. 2008;
Heymans et al. 2012; Kilbinger et al. 2013), with very few studies
directly focused on the peak 2PCFs (Marian et al. 2013; Shan et al.
2014).

The two point correlation function measures the probability of
finding two points (or in our case, WL peaks) at a given separation
(θ for angular separations on the sky). It can also be interpreted
as a measure of the excessive clustering of a distribution of points

1 0 1 2 3 4 5
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101
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>

) [
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g
2 ]
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Figure 2. WL peak number density as a function of peak signal-to-noise, ν,
for two smoothing scales, θs = 1 arcmin (blue) and θs = 2 arcmin (orange)
from the T17 maps. The shaded grey region highlights the ν range that we
study in this paper, discussed in section 3.3.

relative to the clustering of randomly distributed points. To estimate
the 2PCFs, we use the Landy-Szalay estimator (Landy & Szalay
1993), which is a robust way of measuring 2PCFs, especially for
small maps and low tracer number densities. Using this estimator
requires a catalogue of randomly distributed points, whose role is to
account for boundary effects and serves as a proxy for the volume
(area in 2D) of the sample. The Landy-Szalay estimator is evaluated
as

ξLS(θ) = 1 +
( NR

ND

)2 DD
RR
−

( NR

ND

) DR
RR

, (7)

where ND and NR are the numbers of data and random points and
DD, DR and RR are the number of data-data, data-random and
random-random pairs in bins θ ± δθ. We calculate the 2PCFs by
taking the average over many small maps (see description in sec-
tion 2.2). Since the maps are small, taking the average of the ξ val-
ues measured for each map leads to biased results and we discuss
this subtlety in detail in appendix B. To obtain unbiased results, we
calculate the average of the DD, DR and RR pair counts over all
maps, and then we insert the average pair counts into Eq. (7).

3 WEAK LENSING STATISTICS

As mentioned above, we are mainly interested in the one- and two-
point statistics of WL peaks. In order to gain some first insight into
the properties of these quantities, we use the large, 100 deg2, maps
from the T17 simulations for the results shown in this section. In the
next section we shall use the small maps from the Z16 simulations
to quantify the dependence of peak statistics on cosmology.

3.1 Peak abundance

We start by studying the mean abundance of WL peaks, which is
expressed in terms of the cumulative peak abundance, n(> ν). This
represents the number density in deg−2 of all peaks whose SNRs
are higher than ν. The peak abundance is illustrated in Fig. 2, where
the results are averaged over the 184 T17 maps. The blue (upper)
and orange (lower) curves correspond to a Gaussian smoothing ker-
nel θs = 1 and 2 arcmin, respectively. According to Eq. (6), the
smoothing scale θs enters the definition of ν in two ways, by af-
fecting the pixel values of κ and the overall rms κ fluctuation, σ.
For the T17 maps we find σ = 0.013 and 0.010 respectively for
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θs = 1 and 2 arcmin, and in the next section we will see that σ has
a clear cosmology dependence as well.

The qualitative behaviour shown in Fig. 2 is as expected.
There are very few peaks with high ν values since these correspond
to massive dark matter structures, which are rare. As ν decreases,
the peak abundance, n(> ν), increases quickly until ν ∼ 0 since
lower ν values correspond to lower mass and thus more abundant
dark matter structures. However, for ν . 01 we see that n(> ν)
flattens, showing that there are few peaks with ν < 0. It highlights
that there are few structures in underdense regions that are massive
enough to lead to a local maximum, especially when smoothing
over 1 and 2 arcmin. Increasing the smoothing scale θs leads to a
lower peak abundances at fixed ν, since smoothing over a larger
region tends to eliminate some peaks.

We have checked that the WL peak abundance shown in Fig. 2
can be well fitted by the function n(>ν) = −a [tanh(bν) − 1]
for the entire ν range. However, for reasons that will become
clear in Section 3.3, in this paper we are interested in the range
ν ∈ [1.5,3.5] (shown as the grey shaded region in Fig. 2), where
n(> ν) can be modelled as a power law (see Section 4.2). Note
that Fig. 2 also shows the uncertainties in the n(> ν) measurement,
which are the standard errors of the mean of the 184 T17 maps;
however, these error bars are not visible as they are roughly of the
same size as the line width.

3.2 Peak two point correlation function and νcut dependence

For WL peaks it has been suggested that the 2PCF can be well
modelled by a power law (Shan et al. 2014). In this section, we
will confirm this power-law description using the T17 convergence
maps, and show that it works well for peak catalogues with a wide
range of νcut thresholds.

The 2PCF dependence on νcut is of particular interest, because
by decreasing νcut we are including lower peaks into the analysis,
which is equivalent to incorporating smaller dark matter structures
into the clustering statistics. In the current standard cosmological
paradigm, large-scale structures (LSS) evolve hierarchically, with
larger objects forming from higher initial density peaks. This means
that by varying νcut we probe the different regimes of nonlinear
LSS formation and thus potentially provides more powerful cos-
mological tests. As an example, in certain modified gravity mod-
els, smaller structures experience a stronger boost in their nonlin-
ear growth (e.g., Clifton et al. 2012, and references therein), and
we expect this to leave potentially detectable signatures in the peak
2PCFs at different νcut values. In addition, as we have seen above,
lowering the νcut threshold increases the number of peaks included
in the catalogue, and this can help increase the statistical constrain-
ing power. We will see shortly that there is a self-similarity in the
peak 2PCF, which means that having peak catalogues for multiple
νcut values does not require separate modelling for each catalogue;
this can potentially strongly improve the constraining power by WL
peaks.

The left panels of Fig. 3 show the mean 2PCFs of the T17
maps for a range of νcut values and for two smoothing scales, θs =
1 and 2 arcmin. The error bars, which are the standard errors of the
184 maps, are shown as shaded regions around the curves, but they
are very small and barely visible.

A quick inspection of Fig. 3 by eye confirms that the 2PCFs

1 Note that WL peaks can have ν < 0, or equivalently κ < 0. These are
local maxima in underdense regions of the convergence map.

are well described by power laws. We can see that as νcut increases
the amplitude of the 2PCF, ξ (θ), also increases. This is intuitive to
understand: the high WL peaks correspond to more massive struc-
tures which tend to cluster more strongly. Moreover, the 2PCF
amplitude is higher for peak catalogues obtained using a larger
smoothing length, θs . This is because a higher θs value suppresses
peaks originating from low mass dark matter structures that cluster
less. The gradient of the 2PCFs from maps with a fixed θs increases
slightly with νcut, but this effect is weak for both smoothing scales
shown, and the dominant effect of varying νcut is in the amplitude
of the 2PCF.

Note that smoothing can lead to a merging of peaks separated
by distances comparable to the smoothing scale θs , and therefore
eliminates some peaks which are close to each other. This leads
to a drop off of the 2PCF from the power law on scales . θs ,
which is why we show a different θ range in the two left panels of
Fig. 3. Additionally, for a given WL map size, the 2PCFs cannot
be reliably measured at large separations as there are too few peak
pairs, which is why in Fig. 3 we adopted a conservative θmax which
is 1/10 the map size. Therefore, the smoothing scale and the map
size set a limited range in θ within which we can measure the 2PCF.
More explicitly, while for the T17 maps we use θs ∈ [1,3] arcmin
in this study, for the smaller Z16 maps we only use θs = 1 arcmin
to avoid having a too narrow θ range. A larger θs is necessary for
maps where galaxy shape noises (GSNs) are included, to suppress
the biasing effects caused by the latter (e.g., Davies et al. 2018); we
will come back to this point in Section 6 below.

3.3 2PCF rescaling and self-similarity

We now move on to one of the most important results of this work:
the self similarity of the peak 2PCFs. This has been first studied
(very briefly) in Davies et al. (2018) in the context of explaining
the self-similar behaviour of the abundances for voids identified
from WL peaks with varying νcut. As we show later, the 2PCF self
similarity is a very useful property that merits the more detailed
investigation presented here.

The quest for a self-similar behaviour in the peak 2PCFs is
motivated by the following observations: the 2PCF amplitude is
lower for peak catalogues with lower νcut; meanwhile, these cat-
alogues have more peaks and hence a smaller mean peak sepa-
ration, θp . By expressing the 2PCF in terms of θ/θp the various
curves could potentially be brought closer together. The question
is whether after this rescaling the 2PCF curves for different νcut
thresholds can be made to overlap, in which case their modelling
can be significantly simplified.

The right panels in Fig. 3 show the rescaled 2PCF, that is the
2PCF expressed as a function of θ/θp instead of θ. To obtain this
result, we calculated the mean peak separation as θp = (N/A)−1/2,
where N is the number of peaks in a catalogue and A is the area of
the map. The θp value for a peak catalogue can be directly inferred
from the peak abundance, n(> ν), as θp = n(ν > νcut)−1/2. We
find that the rescaled 2PCFs lie on top of each other and thus it in-
dicates that the peak 2PCF is self similar. This shows that the one-
point statistic of WL peaks, n(> ν), can be tied to the amplitude of
the 2PCF to achieve the mentioned self similarity. The self-similar
behaviour is mainly limited to the range νcut ∈ [1.5,3.5], with the
rescaled 2PCFs starting to peel off from the average relation for
νcut < 1.5 and νcut > 3.5. At this stage it is unclear whether the
breakdown of self-similarity at νcut > 3.5 is physical or due to the
small number of high SNR peaks in our maps (which, as discussed
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Figure 3. The 2PCFs of WL peaks for different peak catalogues obtained by varying the threshold, νcut, in the range [1.5, 3.5] in increments of ∆νcut = 0.25.
The results are for the T17 maps and for two different smoothing scales, θs = 1 (top-row) and 2 arcmin (bottom-row). The left column shows the 2PCFs as a
function of angular separation, θ. The right hand column shows the rescaled 2PCFs,which are the 2PCFs expressed in terms of θ/θp , with θp the mean peak
separation in the catalogue. The 2PCFs displays a striking self-similar behaviour, with all rescaled 2PCFs curves lying on top of each other. The black dashed
line in the right-hand column shows the best fitting power law to the rescaled 2PCFswith gradients −0.94 (top) and −1.02 (bottom).

in Appendix B, could bias the estimation of the two-point correla-
tion function); this will be investigated in more detail in the future.
Bearing this issue in mind, in this work we limit our investigation
to the modelling of WL peak statistics for 1.5 < νcut < 3.5 only.
Note that this happens to be the same range within which the peak
abundance can be well described by a power law (see Section 3.1).

The self-similar behaviour holds for both smoothing scales
shown in Fig. 3, however, the rescaled 2PCFs for the larger smooth-
ing length (θs = 2 arcmin; bottom right panel of Fig. 3) are
shifted to lower θ/θp values than the results for θs = 1 arcmin. It
suggests that 2PCFs are self-similar when keeping the smoothing
scale constant, and that the self-similarity behaviour does not hold
when comparing 2PCFs obtained for peak catalogues with different
smoothing scales.

The panels in the right column of Fig. 3 also show that the
rescaled 2PCFs are well fitted by a power law, as shown by the
black dashed curves with gradients −0.94 (θs = 1 arcmin) and
−1.02 (θs = 2 arcmin) .

0.2 0.3 0.4 0.5 0.6 0.7
m

0.4

0.6

0.8

1.0

1.2

8

P16
T17

Figure 4. The (Ωm ,σ8) parameter space that is probed with our suite of 96
simulations from Z16. The faded grey lines indicate the cuts that are made to
remove extreme cosmological parameters and give the orange points which
we use to construct our Ωm ,σ8 dependant model for 2PCF reconstruction
in section 4. The black triangle shows the Ωm and σ8 values of the T17
simulations.
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Figure 5. The rms fluctuations, σ, of the WL convergence map as a function of σ8 (Ωm/0.3)α . The power α indicates the degeneracy direction between σ8
and Ωm that gives the same rms fluctuations in the convergence field. The blue points correspond to the 96 cosmologies from Z16 (see Fig. 4) and the orange
point corresponds to the T17 one. The left and right hand panels show the mean σ values for two smoothing scales, θs = 1 and 2 arcmin, respectively. The
bottom sub-panels show the residuals between the mean σ values and the best fitting line (blue). The vertical bars show the standard errors, which may be
underestimated as discussed in Appendix C.

4 COSMOLOGY DEPENDENCE AND UNIVERSAL
FITTING FUNCTIONS

In this section we study the dependence of peak abundance
and peak 2PCF on the Ωm and σ8 cosmological parameters by
analysing these statistics for the set of 96 different cosmologies
used for the Z16 maps. The (Ωm ,σ8) parameter space of the Z16
maps is indicated by the points in Fig. 4. The parameter space is
densely sampled around Ωm = 0.26 and σ8 = 0.8, which corre-
sponds to the fiducial cosmology, and only sparsely sampled for
models with very different parameter values. In particular, when
describing the cosmology dependence of various peak statistics,
we will limit our fitting procedure to the (Ωm , σ8) pairs shown
as orange points in the figure. This removes extreme and unreal-
istic cosmological parameters from our analysis. For comparison,
the parameters used for the T17 maps are indicated by the black
triangle in Fig. 4.

The two cosmological parameters, Ωm and σ8, are degen-
erate because they can impact the size of the matter fluctuations
in similar ways, and the direction of degeneracy depends on the
physical quantity which is being studied. In order to better assess
the potential and limitations of using WL peak statistics to con-
strain these cosmological parameters, it is important to know the
degeneracy direction for the physical quantities of interest. Fol-
lowing the usual approach, we define the parameter combination,
Σ8(α) ≡ σ8 (Ωm/0.3)α , where α characterises the degeneracy for
a given statistic (α is allowed to vary for different statistics since
they usually do not have exactly identical degeneracy directions).
Note that for studying the cosmology dependence we use only the
Z16, and not the T17, convergence maps, and the latter is used as a
consistency check of the fitted models.

The fittings carried out in this section are mainly to exemplify
the cosmology dependence of the self-similar feature present in the
2PCF in Fig. 3, which applies only to theoretical (simulated) lens-
ing maps with no noises and with a specific smoothing length. Be-
fore this approach can be used for observational constraints, further
development will be required, notably the inclusion of galaxy shape
noise. We discuss briefly the impact the latter has on the self simi-
larity of the 2PCF in Section 6. In order to study the rescaled 2PCF
for a range of cosmologies using more realistic noise-added maps,

larger simulations for this range of models are required, which we
leave to future work.

4.1 Convergence rms fluctuation

We describe peaks in terms of the convergence SNR value at their
position. To calculate this, we use the root-mean-square (rms) fluc-
tuations, σ, of the convergence field (see e.g. Eq. 6). In principle,
σ is used merely as a normalisation factor and it is not entirely
unreasonable to use the same value to define ν across all cosmolo-
gies. However, the standard deviation (or rms fluctuation) of the
corresponding WL convergence map, σ is a quantity with a clear
physical meaning, and hence it is natural to use its correct value for
a given cosmology. Therefore, we need a general description of σ
as a function of input cosmological parameters, σ = σ(Ωm ,σ8).
Having this function is also of interest on its own, since it is use-
ful to know how the rms fluctuation of the WL convergence field
depends on the cosmological model.

The dependence of the convergence rms fluctuation, σ, on σ8
and Ωm is illustrated in Fig. 5, where we show the results for two
smoothing lengths, θs = 1 (left panel) and 2 arcmin (right panel).
In both cases we varied α such that σ is well described by a linear
function of Σ8(α), that is:

σ = mΣ8(α) + c ≡ mσ8

(
Ωm

0.3

)α
+ c . (8)

We achieved this by performing a χ2 minimisation procedure with
three free parameters: m, c and α. The best fitting parameter values
are: m = 2.08 × 10−2, c = −3.39 × 10−3 and α = 6.66 × 10−1

for θs = 1 arcmin and m = 1.59 × 10−2, c = −2.37 × 10−3

and α = 6.56 × 10−1 for θs = 2 arcmin. For these fits, we used the
standard errors in the determination of σ. These errors are shown in
Fig. 5 as vertical error bars, however in most cases the error bars are
smaller than the size of the data points plotted and are not visible.
The bottom panels in Fig. 5 show the residuals, i.e., the deviations
of the σ values for each cosmology from the best-fitting lines. The
fit residuals are small when compared to the absolute values of σ
and show no systematic trend with Σ8, indicating that Eq. (8) pro-
vides an excellent description for both smoothing lengths. In par-
ticular, we notice that the best-fit value of α is similar for θs = 1
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Figure 6. The peak abundance, n(> ν), for the 96 cosmologies from Z16
plotted against ν. The lines are coloured according to a combination of the
cosmological parameters Ωm and σ8 (see colour bar).

and 2 arcmin, and thus weakly dependent on the smoothing scale,.
It is also reassuring to note that T17 is in very good agreement with
the best-fitting lines, which are obtained from the Z16 convergence
maps only, even though the two sets of maps are constructed from
very different simulations.

Even though it is not the main line pursued in this work, we
note that the measured standard deviation of the (reconstructed)
WL maps is a useful quantity (see, e.g., Van Waerbeke et al. 2013)
and therefore a simple fitting formula for σ in terms of Ωm and
σ8 will be useful both theoretically and observationally. However,
because GSN introduces a major systematic uncertainty in real WL
maps, it is necessary to study the Eq. (8) fitting formula using maps
in which realistic GSN is included; this is beyond the scope of this
study, because the Z16 maps used in the analysis above have rela-
tively small sizes. In this paper, instead, the primary use of Eq. (8)
will be to define ν for a convergence map with given Ωm and σ8
values.

As shown in Figure 5, within the large range of cosmologi-
cal parameters covered in this study, σ varies strongly, by up to a
factor of 5-7. By defining ν relative to the σ of the corresponding
model, we are able to define the SNR in different models relative
to their own clustering amplitude. The alternative way to is use
a constant σ definition, such as the value for a fiducial model or
the rms of the typical noise map. However, in our case this would
mean comparing the clustering of map pixels with smaller κ val-
ues in one model to the clustering of pixels with large κ values in
another model, when using the same νcut, and so a cosmology de-
pendant νcut range would have to be applied which is a far more
complicated approach. We have explicitly checked by defining the
SNR ν in Eq. (6) using the σ of the fiducial model where σ8 = 0.8
and Ωm = 0.3, and found that the self-similar behaviour still holds
though slightly worse than shown here. Later in Section 6, when
dealing with noisy maps, we shall use the σ measured from the
smoothed noisy maps to define the SNR.

4.2 WL peak abundance

The peak abundances for the 96 models in the Z16 simulations are
shown in Fig. 6. The colour-bar shows the cosmological param-
eters for a given curve with the form Σ8 = σ8(Ωm/0.3)−0.637.
The spread of the amplitudes of the peak abundances across the
96 cosmologies is up to a factor of two. Most of the curves appear
straight, indicating that the peak abundance is well described by

a power law. The only exceptions are the black curves with very
small values of Σ8: these curves will be removed in the analysis
as they correspond to the extreme cosmological parameter values
indicated by the blue points in Fig. 4. As Σ8 increases, the slope
of the peak abundance decreases, while its amplitude increases at
larger ν (ν & 2.5) and decreases for small ν (ν . 2.5). This ‘ro-
tation’ of the curves about ν ≈ 2.5 as Σ8 changes implies a corre-
lation between the slope and amplitude of the peak abundances as
the cosmological parameters vary, and we shall see shortly that this
fact can be utilised to reduce the number of fitting parameters in
our peak abundance model.

In the range 1.5 < νcut < 3.5, the peak abundance as a func-
tion of ν is well described by the power-law,

log n(> ν) = Bnν + An , (9)

in which the fitting parameters An and Bn depend on the input
cosmology.

In order to model An = An (Ωm ,σ8) and Bn = Bn (Ωm ,σ8),
we fit Eq. (9) to the peak abundance for each of the cosmological
models indicated by the orange points in Fig. 4. The fitting results
confirm that An and Bn – which respectively characterise the am-
plitude and slope of the peak abundance – are strongly correlated,
so that Bn can be replaced with a function of An , Bn (An ), and the
peak abundance can now be described using a one-parameter power
law of the form

log n(> ν) = νBn (An ) + An , (10)

with

Bn (An ) = −0.33An + 0.28. (11)

This indicates that a universal model for WL peak abundance
that works for a wide range of cosmological models can be obtained
if one can fit the cosmology dependence of the single parameter An .
The result is shown in the left panel of Fig. 7, where the An values
measured from the 96 Z16 cosmologies are plotted against Σ8(α)
with α = −0.637. The value of α corresponds to the one for which
An is well fitted by a linear function of Σ8(α). The latter is shown
as the solid line in the left panel of Fig. 7, and is given by

An = −0.30 σ8(Ωm/0.3)−0.637 + 2.20 . (12)

For fitting the above equation the errors in An are given by the
uncertainties of fitting Eq. (11) to the peak abundance. These errors
are small and are not visible in Fig. 7 since they are smaller than
the symbol size.

Eqs. (10)-(12) can be used to predict the peak abundance for
any input Ωm and σ8 values. For this, we first use Eq. (12) to cal-
culate An for given (Ωm , σ8), and then infer n(> ν) using Eq. (11).
The accuracy of this prediction is shown by circle symbols in the
right panel of Fig. 7. We quantify the success of the method in terms
of the mean percentage residual, which is defined as the absolute
value of the fractional difference between the measured peak abun-
dance and the predicted one, averaged over all bins in ν ∈ [1.5,3.5].
We find a mean percentage residual of 1−5 percent, indicating that
the model performs well. To understand what is the major factor af-
fecting the model accuracy, we also calculate the mean percentage
residual between the measured n(> ν) and the direct one-parameter
power-law fit to it, which is shown as triangles in the right panel of
Fig. 7. There is only a very slight difference between the triangles
and the circles, with the former being generally lower. This indi-
cates that our prediction of the peak abundance is very similar in ac-
curacy to the original fit, which is further supported by the fact that
the blue line in the left panel fits the various An data points rather
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Figure 7. Left panel: the dependence of An , which is the one parameter fit to the peak abundance (see Eq. 10), on a combination of σ8 and Ωm parameters.
The exact combination is σ8 (Ωm/0.3)−0.637, where the power represents the degeneracy direction between σ8 and Ωm that gives the same An value. The
blue line shows the best fitting linear function (see Eq. 12). Right panel: the triangle symbols show the percentage residuals of the one parameter power law
fit to the peak abundance. The circle symbols show the extent to which our model can predict the peak abundance. The model works in two steps: i) use the
blue solid line shown in the left panel to predict An for a pair of σ8 and Ωm values, and ii) given An , infer the peak abundance using Eq. (10). The various
symbols are coloured according to the Ωm cosmological parameter (see colour bar on the right).

well. In summary, our model is able to predict the peak abundance
to within ∼3 percent accuracy for most of the chosen cosmological
models.

If we use the original form of the power law, Eq. (9), to model
the peak abundance, with the two parameters, An and Bn , both left
to vary freely in the fitting, we get fits and predictions that match the
raw data at the sub percent level. However, in attempt to minimise
the number of parameters in our model we chose the one parameter
power law, Eq. (10), at the cost of roughly a 2% loss in accuracy.

4.3 Peak two-point correlation functions

We now move on to check whether peak 2PCFs display the self-
similar behaviour described in Section 3.3 for a wide range of cos-
mological models. The result is shown in Fig. 8, where we plot
the rescaled 2PCFs for all the pairs of (Ωm ,σ8) values of the Z16
maps (96 models in total). The re-scaled 2PCFs are normalised to
the center of the panels to exemplify the self-similar behaviour.
Fig. 8 illustrates that the self-similarity of the 2PCFs is indeed ro-
bust against the change of cosmological parameters σ8 and Ωm .
The parameter space in Figs. 4 and 8 is much larger than what is
allowed by current constraints. Thus a model describing this self
similarity will not only have the potential to provide additional cos-
mological constraints, but can also be applied to scenarios where
predictions for a large parameter space is required, such as gener-
ating training sets for machine learning algorithms.

Fig. 8 also shows that the rescaled 2PCFs are well described
by power laws which have very similar slopes across all cosmolog-
ical models. To be more quantitative, we have fitted the following
power-law function,

ξ = ξ0

(
θ

θp

)β
, (13)

to the curves in each of the panels, with each data point weighted

by its standard error (see Appendix C for details about the error cal-
culation). The best-fitting slope, β, as a function of cosmological
parameters is shown in Fig. 9, where the horizontal axis shows σ8
while the colour of the points indicates the Ωm value. The scatter
of the points in Fig. 9 does not follow any clear trends, and com-
binations of σ8 and Ωm in the form of σ8(Ωm/0.3)α , where α is
allowed to vary, does not to lead to improvements in the correlation
between β and the input cosmology. In Fig. 9 we find that the mean
value across the entire sample is β ≈ −1.1. As such, for simplicity,
we take β = −1.1 as the power-law slope of the rescaled 2PCF (we
have checked that the results are not particularly sensitive to the
value of β).

On the other hand, we find that the amplitude of the rescaled
peak 2PCFs, ξ0 = ξ0(Ωm ,σ8) in Eq. (13), shows a systematic de-
pendence on the cosmological parameters. Therefore, in order to
have a complete description we also need to model ξ0(Ωm ,σ8).
The fitting result for ξ0 for the selected cosmological models (or-
ange points in Fig. 4) is displayed in the left panel in Fig. 10, where
it is plotted against σ8(Ωm/0.3)0.501 with the index α = 0.501
characterising the degeneracy direction between Ωm and σ8 for
the rescaled 2PCF amplitude ξ0. The value 0.501 is tuned such that
the data points on the left panel of Fig. 10 are fitted using a smooth
quadratic curve with the lowest χ2. This is shown as the blue solid
line in the left panel of Fig. 10, which takes the form

ξ0 = ξ0,a x2 + ξ0,b x + ξ0,c , (14)

where

ξ0,a = 0.253 , ξ0,b = −0.605 , ξ0,c = 0.514 , (15)

and x = σ8(Ωm/0.3)0.501. The lower sub-panel of the left panel
shows the residual between the measured amplitude ξ0 and its fit-
ted values. The residuals show no systematic trends with varying
σ8(Ωm/0.3)0.501, indicating that the fitting function works equally
well for all cosmologies.

In the middle panel of Fig. 10 we have randomly selected one
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with the associated Ωm value given by the colour-bar. The vertical bars
show the uncertainties in determining β.

of the cosmologies from the Z16 maps, and compared the rescaled
2PCFs at several νcut values between 1.5 and 3.5 (coloured lines),
the power-law fit to these rescaled 2PCFs (black solid line, which
we call the ‘fitted’ curve), and the predicted rescaled 2PCF for
this particular cosmology (the grey straight line, which we call the
‘prediced’ curve). The latter was obtained by calculating ξ0 using
Eq. (14), and then inferring the 2PCF from Eq. (13). This matches
the original fitted power law very closely, indicating that the model
described by Eqs. (13) and (14) works very well.

We next quantify the accuracy of our prediction for the
rescaled 2PCF. For a given cosmological model, such as the one
shown in the middle panel of Fig. 10, we calculate the residuals,
i.e., the fractional differences of the ‘fitted’ and ‘reconstructed’
curves with respect to the rescaled measured 2PCFs. This is done
for each of the five νcut values shown in Fig. 10, and we define
the mean residual as the average over all θ/θp bins and all νcut
values. The mean residuals for the fitted and predicted curves are
respectively shown by a large triangle and a large circle in the right
panel of Fig. 10. We have repeated this procedure for all the cos-
mological models and have plotted their residuals in the right panel,
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Figure 10. Left panel: the amplitude parameter of the power-law best fitting the rescaled 2PCFs as a function of σ8 and Ωm . Each blue point shows the
amplitude for a pair of (σ8, Ωm ) values and the solid line shows the best fitting quadratic function. Middle panel: an example of the rescaled 2PCF for
different νcut values and and its best fitting power law (black line). The solid grey line shows our reconstructed power law, which was calculated using the
best fitting line from the left panel. Right panel: the percentage residuals between the fitted power law and the data (triangles), and between the reconstructed
power law and the data (circles). The x-axis (σ8) and the colour-bar (Ωm ) indicate the cosmology of the model for which the residuals are being measured

Input cosmology:

Ωm,σ8

Rescaled 2PCF

ξ(θ/θp)
 Section 4.3, Eqs. (12) - (16)

Peak abundance

n(>ν)
Section 4.2, Eqs. (8) - (11)

2PCF

ξ(θ;>ν)
Section 5

Convergence rms 
fluctuation

σ 
Section 4.1, Eq. (7) 

2PCF and Peak abundance 
in terms of κ

ξ(θ;>κ) & n(>κ)
Eq. (5)

Figure 11. This flowchart describes the pipeline our model uses to recon-
struct the peak 2PCF by exploiting its self similarity. First we take input
cosmological parameters, Ωm and σ8, which our model uses to predict the
rescaled 2PCF, the peak abundance and the rms fluctuations of the conver-
gence map. These statistics can then be combined to give the original 2PCF
for peaks of different heights, expressed in terms of either ν or κ.

with the associated σ8 values shown in the x-axis and Ωm values
shown by the colour bar to the right. We find that the model predic-
tion is almost as accurate as the direct fitting, and is able to match
the rescaled 2PCFs at about 5% accuracy level. The large symbols
in the right panel correspond to the model shown in the middle
panel, to give a visual illustration about how well the 2PCF model
in Eqs. (13, 14) works for an ‘average’ cosmology for which the
mean residual is 4.8%.

5 A PIPELINE FOR 2PCF RECONSTRUCTION

We can combine the models developed in the previous section for
the convergence rms fluctuation, peak abundance and rescaled peak
2PCF, to develop an integrated pipeline that allows us to predict the
(un-rescaled) peak 2PCFs, ξ (θ), as a function of νcut. The proce-
dure is schematically illustrated in Fig. 11 and outlined as follows:

(i) For chosen Ωm and σ8 values, one can use the models to
predict the peak abundance (Section 4.2) and the rescaled 2PCF
(Section 4.3).

(ii) These two statistics are combined, using θp =

1/
√

n(> νcut), to give the 2PCF, ξ (θ), for peak catalogues
with νcut ∈ [1.5,3.5].

(iii) If needed, the above-predicted peak abundance and 2PCFs
can then be expressed in terms of κ by using the σ(Σ8) fit in Section
4.1.

This pipeline offers a simple apparatus to make predictions of the
one- and two-point statistics for intermediate (ν ∈ [1.5,3.5]) WL
peaks, which can be used (on its own or together with other cosmo-
logical probes) to constrain the parameters (σ8,Ωm ) using obser-
vational data. It will be interesting to see if these new statistics are
complimentary to other probes, such as the shear-shear correlation,
when constraining (Ωm ,σ8), but this will be left for future follow
up works. In the next section we will discuss further aspects which
need to be checked before applying this method.

As a proof of concept, we show an example of this 2PCF re-
construction pipeline in the left panel of Fig. 12. The solid curves
show the 2PCFs measured from the simulation data for an arbi-
trarily selected cosmology, with shaded regions showing the (un-
der) estimated standard error (see Appendix C for more detail).
The dashed lines show the predictions by our 2PCF reconstruction
pipeline. We find a reasonably good agreement between the simu-
lated and reconstructed 2PCFs, with the latter mostly lying within
or just outside the (under)estimated errors bars. The second panel
in Fig. 12 shows the mean percentage difference between the recon-
structed and measured 2PCFs, averaged over the 5 plotted 2PCFs
and all θ bins with νcut ∈ [1.5,3.5] separated by a ∆νcut = 0.5
increment. The model that has been selected to exemplify the re-
construction is indicated by the large symbol in the left panel of
Fig. 12, which is an "average" one in terms of the performance the
reconstruction (there are many models for which the reconstruction
works better). We can see that for all of the selected cosmologies,
our model is able to predict the 2PCF to within a roughly 6% uncer-
tainty on average. Relative to the estimated errors bars, the quality
of our reconstruction is reasonably good.

We find that generally the amplitude of the 2PCFs is overes-
timated for the larger νcut catalogues. This could be a fundamental
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Figure 12. Left panel: Reconstructed 2PCFs from our model (dashed) compared to measured 2PCFs from N-body simulations (solid), for peak catalogues
with νcut ∈ [1.5, 3.5]. Right panel: Mean percentage residuals between the reconstructed and measured 2PCFs. The larger symbol indicates the example
model that is shown in the left panel. The x-axis and colour-bar indicate the σ8 and Ωm values of the models respectively.
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Figure 13. Weak lensing peak abundances for four smoothing scales, θs =
1.0, 2.0, 2.5 and 3.0 arcmin (see labels), for peaks extracted from conver-
gence maps without GSN (solid) and for peaks extracted from convergence
maps with added GSN (dashed). Here the added GSN matches LSST spec-
ifications (σint = 0.3, ngal = 40 arcmin−2).

aspect of the 2PCF evolution, however due to small map sizes and
low peak number densities (at approximately 7 deg−2) it is likely
that 2PCFs with ν > 3.5 are biased. The true amplitude of the
2PCFs with larger νcut could be measured more accurately with
larger weak lensing maps, which we leave to further study.

6 THE IMPACT OF GALAXY SHAPE NOISE

Up to here, we have discussed the WL peak abundance and 2PCF
in a theoretical context with the aim of having a model that allows
us to accurately describe and predict these statistics in an idealised
situation. Whilst this theoretical model can have useful applications
in, e.g., mock WL peak catalogue generation, to be more useful for

cosmological constraints, we need to investigate the self similarity
of the 2PCF in more realistic situations. One of the things we have
not included in our analysis so far is galaxy shape noise (GSN).

GSN is a source of uncertainty in WL observations, where the
measured ellipticity of galaxies is dominated by their random ori-
entation, and only weakly correlated due to gravitational lensing on
scales much larger than the galaxy-galaxy separation. Observations
of cosmic shear, and therefore cosmic convergence, is contami-
nated by this noise. One usually uses large smoothing lengths to
suppress this noise in order to recover statistics more reliably. How-
ever, large smoothing lengths could either dampen the amplitude of
the measured statistics, which is evident from the decrease of the
WL peak abundance with increasing smoothing scales in Fig. 2,
or increase the noise in the measurements, which can be seen to a
small extent in the 2PCFs for different smoothing lengths in Fig. 3.
Therefore, a trade-off has to be struck between using a large enough
smoothing length in order to suppress the galaxy shape noise, and
not over smoothing so that interesting statistics are not suppressed
more than they need to be. With convergence maps from N-body
simulations, we can test the difference in the peak abundance and
2PCF for cases with and without GSN for a range of smoothing
lengths.

For this section, we include GSN in the T17 convergence maps
that match LSST specifications by adding to each pixel within a
map random values drawn from a Gaussian distribution with a stan-
dard deviation σpix given by

σ2
pix =

σ2
int

2θ2
pixngal

, (16)

where σint is the dispersion of the intrinsic source galaxy ellip-
ticity, θpix is the angular width of the pixel to which noise is
added and ngal is the number density of source galaxies. To match
LSST specification we use σint = 0.4 and ngal = 40 arcmin−2

(LSST Science Collaboration et al. 2009)
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Figure 14. Rescaled 2PCFs for four smoothing scales, θs = 1.0, 2.0, 2.5 and 3.0 arcmin (see label in each panel), for peak catalogues extracted from
convergence maps with added GSN that matches LSST specifications (σint = 0.3, ngal = 40 arcmin−2). The various solid coloured lines correspond to peak
catalogues with different νcut thresholds (see legend in the upper left panel), with νcut ∈ [1.5, 3.5] incremented in steps ∆νcut = 0.25. The grey thick dashed
lines show the fits to the rescaled 2PCFs for the same smoothing scales but without GSN.

After GSN is added to the pixels, we smooth the maps, iden-
tify peaks in the noise-added smoothed WL maps using Eq. (6)
with σ also directly measured from the noisy maps, recalculate the
peak abundance and peak 2PCFs, and compare these statistics to
the case with no GSN, with the same smoothing.

The impact of GSN on the WL peak abundance is shown in
Fig. 13, where the solid and dashed lines respectively correspond
to peaks identified in WL maps with and without GSN. Here we
study four smoothing scales, θs = 1, 2, 2.5 and 3 arcmin. In each
instance, ν is defined relative to the WL map in which the peaks
are identified, so for the GSN added case, σ in Eq. (6) includes
contributions to the rms fluctuations from both GSN and the under-
lying convergence signal, while for the no GSN case ν is defined
by taking σ as the rms convergence fluctuation.

For all smoothing lengths, by adding GSN, the peak abun-
dance increases at low ν and decreases at high ν, with a crossover
between ν = 1.5 and 2.5 depending on the smoothing scale. GSN
has the largest impact on the peak abundance for the smallest
smoothing length, while for larger θs the agreement between the
peak abundances in the GSN and no GSN cases is better, although
substantial difference remains even in the case of θs = 3 arcmin.

This means that the fitting formulae, Eqs. (10, 11), which describe
the cosmology dependence of peak abundance, need to be recali-
brated by using peaks extracted from GSN-added maps. Due to the
small size of the Z16 WL maps, this will be left as future work
when larger simulations of different cosmologies are available.

Note that in Fig. 13 the peaks are defined using Eq. (6), where
σ is the total rms convergence that includes contributions from the
physical rms convergence and from the rms of noise. This explains
the crossover mentioned above: because σ is increased, for the high
peaks their ν values actually decrease, and the number of such high
peaks does not increase quickly enough to maintain n(< ν) at large
ν, which causes the latter to drop compared with the no GSN case.
We have explicitly checked (not shown here) that, if one defines ν
in Eq. (6) by using the same σ for the GSN and no GSN cases, then
the peak abundance is consistently higher in the former case, due
to artificial peaks created by noise.

In order to closely inspect the impact of using different
smoothing lengths on the self similarity of the rescaled 2PCFs, we
have tried four different θs values, respectively θs = 1, 2, 2.5 and
3 arcmin. The results are shown in Fig. 14, where the peaks are all
identified from, and the σ used to define the SNR ν are all measured
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by using, the smoothed noisy maps. Interestingly, we find that the
rescaled 2PCFs are still on top of each other for all four smoothing
lengths. With θs = 1 arcmin, the agreement between the rescaled
2PCFs is weaker, where only the curves with 2 ≤ νcut ≤ 3.5 appear
to be self similar. For 2 arcmin smoothing the 2PCFs appear to be
self similar in the entire 1.5 ≤ νcut ≤ 3.5 range, and shows that the
self-similarity of 2PCFs is robust against GSN. With 2.5 arcmin
smoothing the overall self similarity appears to be tighter, however
the νcut = 1.5 appears to be outside the self similar range. Finally,
for 3 arcmin smoothing we see that the self similarity of the 2PCFs
holds up to νcut = 3, after which the rescaled 2PCFs drop off in
amplitude. It is possible that this drop in amplitude is caused by the
small map size (10 × 10 deg2) and low number density of tracers
(≈ 0.5 deg−2), rather than a breakdown of the self similarity. As
θs increase it also appears that the overall gradient of the rescaled
2PCFs decreases.

Having verified that the 2PCFs remain self similar in the pres-
ence of GSN, next we want to see how including the latter affects
the power law of the rescaled self-similar peak 2PCFs. In each sub-
panel of Fig. 14, we have overplotted, as the grey dashed lines, the
best-fit power-law functions for the rescaled 2PCFs of the peaks
extracted from the T17 maps smoothed using the same θs values
but without adding GSN (the grey dashed lines in the top two pan-
els of Fig. 14 are the same as the black dashed lines in Fig. 3).
The two cases are in good agreement for all four smoothing scales,
which shows that the impact of GSN on the rescaled 2PCF is minor.
This is a nice property, since it indicates that GSN will not signif-
icantly contaminate the underlying cosmology dependence of the
rescaled 2PCF if the same observation applies to other cosmolo-
gies. However, due to the limited map size from Z16 we leave this
investigation to future study.

In short, we conclude that the prevalence of the self similarity
in the 2PCFs for peaks extracted from GSN-added WL maps shows
that this feature is robust to this observational systematic, and there-
fore has the potential to be used in cosmological constraints.

7 DISCUSSION AND CONCLUSIONS

In this paper, we have investigated the one- and two-point statis-
tics for intermediate peaks, with SNR values ν ∈ [1.5,3.5], from
weak lensing convergence maps. These WL peaks contain useful
information about the LSS formation, and the analyses of them
are expected to place complementary constraints on the cosmo-
logical model. However, unlike high peaks, the intermediate WL
peaks are not individually associated to the most massive dark mat-
ter structures, making the modelling of their statistical properties
more challenging. To overcome this difficulty, we rely on WL con-
vergence maps constructed from a large number of N-body simu-
lations with varying cosmological parameters and technical speci-
fications, to attempt to find patterns of the peak statistics and their
cosmology dependence. Our main findings are summarised as fol-
lows:

• The rms fluctuation of WL convergence, σ, has a linear
dependence on a particular combination of Ωm and σ8 via
σ8 (Ωm/0.3)α , with the parameter α weakly dependent on the
smoothing length of the convergence map, cf. Fig. 5. This linear
dependence is given in Eq. (8), and highlights a universal behaviour
within ΛCDM which may be exploited to make cosmological con-
straints.
• A universal one-parameter power law function is found, which

can describe the WL peak count for ν ∈ [1.5,3.5] with an accuracy

of within ≈ 1-5%, for a large range of Ωm and σ8 values, cf. Fig. 2
and Eq. (10). The accuracy of the power-law description of the peak
abundance can reach the sub-percent level if two free parameters
are used in the power-law function.
• A self-similar behaviour of the WL peak 2PCF has been

found by rescaling the angular separation, θ, between a pair of
peaks by the mean inter-peak separation, θp . While the amplitude
of the original 2PCF increases with νcut, the rescaled 2PCFs for
νcut ∈ [1.5,3.5] lie on top of each other cf. Fig. 3.
• This self-similar behaviour holds for a very wide range of

(Ωm ,σ8) values, and we find a simple quadratic dependence of
the amplitude of the rescaled 2PCFs on σ8 (Ωm/0.3)α , while the
slope of the rescaled 2PCFs have negligible dependence onΩm and
σ8, cf. Figs. 8, 9 and 10. A fitted model to predict the peak 2PCF
for any chosen Ωm and σ8 is given in Eq. (13).
• A pipeline is developed which combines the above three fitted

models, for the convergence rms fluctuation, WL peak abundance
and rescaled peak 2PCF respectively, to predict the raw peak 2PCF
ξ (θ; νcut) for νcut ∈ [1.5,3.5] and any given Ωm and σ8 with good
accuracy, cf. Fig. 12.
• We found that the self similarity of the peak 2PCF holds in

the presence of galaxy shape noise and larger smoothing lengths,
cf. Fig. 14.

The most important application of the results presented in this
work is in constraining the Ωm and σ8 cosmological parameters.
As demonstrated above, the pipeline integrating the models for WL
peak abundance and self-similar rescaled 2PCFs is able to recon-
struct the raw, unrescaled, peak 2PCFs for various νcut values with
a typical accuracy of better than 6%. Furthermore, we have seen
that the WL peak abundance and 2PCFs depend on very differ-
ent combinations of Ωm and σ8, one with σ8 (Ωm/0.3)−0.638 and
the other σ8 (Ωm/0.3)0.501. This indicates that a simultaneous use
of these statistics already holds the potential of breaking the de-
generacy between Ωm and σ8 before including other cosmologi-
cal probes. Marian et al. (2013) found that the 2PCFs of high WL
peaks only provide weakly complimentary constraints on (Ωm ,σ8)
when combined with the peak abundance. In this work we investi-
gate the 2PCFs of WL peaks with intermediate heights and above,
as well as combining the 2PCFs from multiple peak catalogues in
the form of a rescaled 2PCF described by a single power law. The
powerlaw describing the rescaled 2PCF may be more sensitive to
cosmology than the 2PCF of high peaks.

We note that the degeneracy direction of the peak abundance
of intermediate height peaks, which are studied in this paper, are
very different to that of low and high peaks, which has also been
observed in Liu et al. (2015a) and explained in Yang et al. (2011).
Therefore, using the counts of intermediate height peaks may be
complimentary to using the full peak abundance and could aid in
breaking the Ωm and σ8 degeneracy.

Another potential application of our results is the generation of
mock WL peak catalogues. For a given input cosmological model,
the pipeline can be used to predict the WL peak counts and 2PCFs
as described above. Random realisations of peaks can then be gen-
erated with the peaks arranged such that they have the desired num-
ber density and spatial clustering. One technique to do this is point
process (see, e.g., Öztireli & Gross 2012, for some recent progress
and applications). This is a Monte Carlo approach where a candi-
date point (e.g., a WL peak) is placed in a field, which is accepted if
its inclusion into the field pushes the measured 2PCF closer to the
input one, and rejected otherwise. Point process is a well-developed
and widely-used technique to generate point catalogues. In the WL
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peak case, the situation is slightly more complicated, because the
generated catalogue should have peaks of different SNR (or ν val-
ues), which simultaneously have the desired 2PCFs at different νcut
values. We expect that the good agreement between the rescaled
peak 2PCFs will prove useful in dealing with this issue, though a
detailed investigation into this interesting question will be left for
a future work. The fast generation of mock WL peak catalogues
can be used for evaluating covariance matrices and studying other
cosmological quantities, such as voids identified from WL peaks
(Davies et al. 2018).

The proof-of-concept study in this work has also left various
possible further extensions of the analyses presented here. One of
the most important considerations for future WL surveys and their
cosmological applications is the effect of galaxy shape noise. Using
the all-sky maps from T17, we have shown that (i) the inclusion of
GSN necessitates a larger smoothing length than used in the bulk
of this paper, θs = 2-3 arcmin, to suppress its impact on the ex-
tracted cosmological statistics, and (ii) with a suitable smoothing,
the self-similarity of the peak 2PCFs still holds for the cosmology
used in the T17 simulations. While we expect these conclusions to
apply for other cosmological models, Fig. 14 shows that the use
of GSN and larger θs does indeed affect the slope of the rescaled
peak 2PCF. Therefore, in the presence of GSN our fitted models
need to be re-analysed before it can be directly useful for cosmo-
logical tests.

Unfortunately, the 96 Z16 maps with varying cosmological
parameters have a relatively small size, at 3.5 × 3.5 deg2. Including
GSN in these maps and increasing the smoothing length will reduce
both the number of peaks in the maps and the dynamical range over
which the 2PCFs can be reliably studied. This consideration makes
a compelling case that larger convergence maps, constructed from
N-body simulations with larger boxes and varying cosmologies, are
a natural next step, to re-calibrate our peak models so that they can
be readily applied for upcoming WL surveys. Again, we leave these
to a future, more comprehensive, study.

The planned larger simulations will have other applications
as well. For example, they will allow us to study low/intermediate
WL peaks and the high peaks, as well as other statistics such as the
WL shear power spectrum, simultaneously. It will also be possible
to look at source galaxies with a certain redshift distribution com-
pared to the currently idealised case with a single source redshift,
zs = 1. Larger WL maps will also allow us to more accurately
estimate the errors on the 2PCFs, with large-scale modes properly
included. Further more, in future studies we will try methods of
extracting WL peaks that are more similar to approaches taken in
observations, such as starting with the shear field and adding GSN
to this before we then transform to the convergence field.

Finally, it will also be interesting to analyse the rescaled WL
peak 2PCFs in cosmological models beyondΛCDM. We can envis-
age two possible scenarios here: the first is that the rescaled 2PCFs
may not be self similar, which would offer a potentially strong con-
straint on these models. Alternatively, the detailed properties of the
self-similarity in the 2PCFs may change, in the form of a differ-
ent amplitude or slope, which can also be used to test models with
observational data. Therefore, it will be important to consider mod-
els which are expected to alter the large-scale clustering of matter.
These include the various dark energy models which may couple to
dark matter or have different equation-of-state w parameters. The
neutrino mass is another interesting possibility, as massive neutri-
nos tend to dampen structure formation, which leaves signatures in
the WL peak abundance and 2PCF. Modified gravity models can
also be potentially tested since they generally introduce fifth forces

on cosmological scales, which modify the clustering of matter or
even the geodesics of photons. The studies of these topics will re-
quire new simulations and dedicated effort, and will be deffered for
the future.
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APPENDIX A: PARTITIONING AN ALL-SKY MAP INTO
SMALLER NON-OVERLAPPING MAPS

The T17 maps are all-sky maps with a HEALPix data structure,
in which pixels are stored on the surface of a sphere. To sim-
plify our analysis, we used the flat-sky approximation and thus we
needed to partition the all-sky map into smaller, and preferably,
non-overlapping maps.

To achieve this, we capitalise on the HEALPix data structure
and first define a set of coarser HEALPix pixels with a resolution of
Nside = 4, which corresponds to a pixel area of roughly 215 deg2.
We then assign each of the (higher resolution) data pixels to the
coarser pixel that they are enclosed by. This is shown by the illus-
tration on the left in Fig. A1 (using Mollweide projection), where
each coloured patch shows a course pixel. Next, for each sub region
defined by the coarse pixels, we define a (flat) plane tangential to
the centre of the coarse pixels and project the data pixels onto that
plane. We then extract a square of 10 × 10 deg2 (centred on the
centre of the plane) from each plane giving us 184 10 × 10 deg2

flat maps. The HEALPix pixels that are projected onto the flat maps
are converted into regular square pixels, where we interpolate be-
tween HEALPix pixels for square pixels that overlap with multiple
HEALPix pixels. The benefit of this approach is that there is no
overlap between any two maps as illustrated in the right panel of
A1.

We note that a HEALPix resolution of Nside = 4 actually gives
192 pixels, however due to the irregular shapes of HEALPix pixels
(which arises from the requirement that all pixels have the same
area), we find that 8 pixels have to be discarded since they cannot
enclose squares of size 10 × 10 deg2.

APPENDIX B: BIASED 2PCF ESTIMATION FOR SMALL
MAPS

Estimation of 2PCFs is straightforward in idealised situations. The
2PCF, ξ (r), characterises the excess probability of finding a pair of
tracers in two volume elements, dVi and dVj , that are separated by
a distance r:

dPi j (r) = n̄2 [
1 + ξ (r)

]
dVidVj , (B1)

where n̄ represents the expected tracer number density. In N-body
simulations with periodic boundary conditions, as an example, n̄ is
the known mean number density and so the excess probability dPi j
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Figure A1. An illustration of our procedure of partitioning an all-sky map into smaller non-overlapping maps. We first tile the sky using a HEALPix grid with
Nside = 4. This step is shown in the left panel, with each coloured patch corresponding to a HEALPix pixel. Then, we further extract a 10 × 10 deg2 map from
the centre of each HEALPix pixel. The resulting square maps are shown as coloured patches in the right panel. The white space between the patches shows
that our small maps are non-overlapping. Each small square patch is then projected on to a plane tangential to their centre, giving us a 10 × 10 deg2 flat map.

can be evaluated by counting the number of pairs that are separated
by a distance r − ∆r to r + ∆r and comparing that against n̄2. In
realistic situations, n̄ is not always known – this can for example
be due to the geometry, mask, fibre collision and redshift failure in
a galaxy redshift survey, or the small map size with boundaries in
our WL peak catalogues. The uncertainty in the expected number
of tracers in a given volume can cause biased 2PCF estimations. It
is known that, for examples, the Peebles & Hauser (1974) estimator

ξPH(θ) =
( NR

ND

)2 DD(θ)
RR(θ)

− 1, (B2)

and the Davis & Peebles (1983) estimator

ξDP(θ) = 2
NR

ND

DD(θ)
DR(θ)

− 1, (B3)

have errors that depend to the first order on the uncertainty of the
expected tracer number density. On the other hand, the Hamilton
(1993) and the Landy & Szalay (1993) estimators have errors
which are second order in this uncertainty and are more commonly
used. In the above ND and NR are the numbers of data and ran-
dom points, and DD, DR and RR are the numbers of data-data,
data-random and random-random pairs in bins θ ± δθ respectively.

The Landy-Szalay estimator is given by,

ξLS(θ) = 1 +
( NR

ND

)2 DD(θ)
RR(θ)

−

( NR

ND

) DR(θ)
RR(θ)

. (B4)

When analysing n maps, there are n different ND , DD and DR
values, that is one per map (NR and RR can be taken as constants
since the same random catalogue can be used for each map). We
checked that our results are stable to a change in the number of
randoms used.

Given the expression of Eq. (B4), there are two possible ways
to calculate the mean 2PCF, 〈ξ〉, where 〈·〉 denotes the mean value
over the n maps, given respectively by

〈ξLS(θ)〉1 =
〈
1 +

(
NR

ND

)2 DD
RR
−

(
NR

ND

)
DR
RR

〉
, (B5)

and

〈ξLS(θ)〉2 = 1 +
(
〈NR〉

〈ND〉

)2
〈DD〉
〈RR〉

−

(
〈NR〉

〈ND〉

)
〈DR〉
〈RR〉

, (B6)

where we have dropped the θ dependence of DD,DR and RR to
lighten the notations. For Eq. (B5), we calculate n 2PCFs from the
n maps and take the mean value. For Eq. (B6), we first calculate
the mean over all maps of ND , DD and DR, and then use these
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Figure B1. Mean 2PCFs calculated using Eqs. (B5) (dashed) and (B6)
(solid), for maps of size 10 × 10 deg2 (blue), 5 × 5 deg2 (orange) and
3.3 × 3.3 deg2 (green).

mean values to calculate the mean 2PCF. In general, these two ap-
proaches do not give identical results, that is

〈ξLS(θ)〉1 , 〈ξLS(θ)〉2. (B7)

Naively, it seems natural to calculate the mean 2PCF using Eq. (B5)
– after all, if we only had a single map, we would use this formula
(excluding the outer 〈·〉) to estimate the 2PCF. However, we found
that this approach actually leads to biased estimates when the num-
ber of tracers varies considerably between the different maps. This
is particularly the case when the number of peaks in a catalogue is
low, and the effect is particularly strong for peaks with high ν val-
ues, for which the number density is low, and for small maps, such
as the 3.5 × 3.5 deg2 ones.

To see this point, we compare these two approaches as fol-
lows. First, we split each of the 184 T17 maps, whose size is
10 × 10 deg2, into four 5 × 5 deg2 maps and nine 3.3 × 3.3 deg2

maps, which give us in total 184, 736 and 1656 maps of the three
sizes respectively. Then, using respectively Eqs. (B5) and (B6), we
calculate the mean 2PCF for the three different maps sizes, and the
results are shown in Fig. B1.

Fig. B1 clearly shows that, as the T17 maps are split into
progressively smaller sections, the mean 2PCF calculated using
Eq. (B5) drops in amplitude, whereas using Eq. (B6) leads to a
constant amplitude. The difference between the two approaches is
small for the 10 × 10 deg2 maps and only becomes significant for
the smaller maps. This implies that the bias from Eq. (B5) depends
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Figure C1. The mean 2PCFs of 512 3.5 × 3.5 deg2 maps extracted from
the T17 all sky map for peak catalogues with νcut ∈ [1.5,3.5]. The shaded
regions show the jackknifed error bars.

on the map size, or more exactly the number of tracers used for the
2PCF estimation. We have performed similar tests for 3D galaxy
2PCFs and found a similar bias effect when using small box sizes.
Finally, the mean 2PCFs from Eq. (B6) for the different maps sizes
do not line up exactly, which is due to some pairs being lost at the
sub-map boundaries as large maps are split up into smaller maps.
We checked for this and found that the inclusion of cross sub-map
pairs restores the original 2PCFs.

Physically, the reason why Eq. (B5) leads to biased 2PCF es-
timations is that the number of WL peaks per map is small and this
translates into a large uncertainty in the mean tracer number den-
sity when estimated individually for each map. Even though this
uncertainty enters the 2PCF estimation only at second order for the
Landy-Szalay estimator, it can still strongly affect the latter. In con-
trast, Eq. (B6) essentially treats the n maps as a single (combined)
one, for which the uncertainty in the expected mean peak number
is small.

The biased 2PCF estimation using the Landy-Szalay estima-
tor caused by the small tracer number is important for this study,
since the WL maps from the Z16 simulations have a map size of
3.5 × 3.5 deg2, which is in the regime where the biasing effect is
strong. As a result, in this paper we calculate the mean 2PCF using
Eq. (B6).

APPENDIX C: ERROR ESTIMATES

For each of the Z16 cosmologies we used the N = 512 3.5 × 3.5
deg2 maps to evaluate the mean 2PCF 〈ξ〉. We estimate the standard
error for 〈ξ〉 using the jackknife method, by calculating N −1 mean
values from sequentially removing individual maps from the sam-
ple, and taking the standard deviation of the N − 1 means from the
512 maps. However, we found the error to be significantly smaller
than expected, of roughly < 1% of 〈ξ〉 itself. On the other hand,
when repeating the same practice on 512 3.5 × 3.5 deg2 maps ex-
tracted from the T17 all-sky map, we found the standard errors were
larger and more reasonable, of roughly 2-3% of the mean 2PCF.

This discrepancy in the magnitudes of the standard errors in
the two different suites of maps is likely caused by the way in which
the multiple convergence maps were generated. In the Z16 case, the
512 maps were generated from multiple lines of sight by shifting,
reorienting and tiling a single simulation box of size 240h−1Mpc,
which means that the scatter in the different maps is likely to only

contain an error component representing the line-of-sight variation.
In contrast, the T17 maps were all-sky maps generated using much
larger boxes with minimal repetition of structures along the lines of
sight, which means that these maps better sample the variation due
to large-scale modes. The additional source of variance in the T17
maps can explain the increase in their measured standard error.

In order to have a more realistic estimate of the standard error
associated to the Z16 maps, we extract 512 3.5 × 3.5 deg2 maps
from the T17 all-sky map and use jackknife to find the error of
the mean 2PCFs, 〈ξ〉. For illustration purposes, the resulting 〈ξ〉
and their errors for a few values of νcut are shown in Fig. C1 as
respectively lines and shaded regions.

We then take this relative error as our estimate of the standard
error for the mean 2PCFs from the Z16 maps, as a way to (ap-
proximately) include the contributions to the error from large-scale
modes.

The above estimate of the error associated to the Z16 maps is
likely to be an underestimate since the estimated error corresponds
to the case when each of the 512 Z16 maps would have been ob-
tained from a different N-body simulation. However, this is not the
case since all the Z16 maps were obtained from the same simula-
tion. Thus, the errors used in this paper serve only as a way to gain
rough indications of the quality of our models for the WL peak
statistics, which we present as a proof of concept. In a future work,
we plan to run a suite of large simulations similar to those used by
T17, for different cosmological models, to further study the self-
similar properties of the rescaled peak 2PCFs.

APPENDIX D: THE INDEPENDENCE OF
SELF-SIMILARITY ON THE ν DEFINITION

In Eq. (6) we choose to define the SNR, ν, in terms of a cosmology-
dependent rms convergence, σ, which is analytically parameterised
through a simple dependence on (Ωm ,σ8), as exemplified in Fig. 5.
Besides having a readily-predictable σ, this approach has the added
benefit of allowing us to more naturally define the amplitude of WL
peaks for a given cosmology relative to its own convergence rms,
bearing in mind that the wide coverage of cosmological parameters
means that the σ values can vary by a factor of a few across the
Z16 maps; cf. Fig. 5.

One can argue that given an observational WL map, the value
of σ receives contributions from both the physical convergence rms
and the GSN, and that the actual value of σ as measured from such
noisy maps is a natural choice that can be used to define ν. Such is
the logic followed in Section 6 where we analysed the rescaled peak
2PCFs in the GSN-added maps. Alternatively, one may argue that
in real observations we do not necessarily know the true cosmology,
but we do understand the survey specifications well enough to know
the expected noise level. This leads to another natural way to define
ν, namely by using σ ≡ σGSN. Given this flexibility in ν definition,
we would like to check that the self-similar behaviour of the 2PCFs
for the resulting peak catalogues is not affected by it. This is done in
Fig. D1, which is similar to Fig. 8 but for a subset of cosmological
models (the ones represented by the orange symbols in Fig. 4), and
where ν is defined as ν = (κ− µ)/σGSN with σGSN = 0.013, which
corresponds to the rms of a GSN only map smoothed with θs = 1
arcmin, is used for all models.

We find that the cosmology-dependent description of WL peak
amplitude results in a (marginal) improvement of the self similarity
of the 2PCFs for all cosmologies (shown in Fig. 8) compared to
using a σ definition that is constant across all cosmologies, which
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Figure D1. The same as Fig. 8, except only the cosmological models shown as orange points in Fig. 4 are plotted and the definition for ν is changed from
Eq. (6) to ν = (κ − µ)/σGSN where σGSN = 0.013 for all models.

is shown in Fig. D1. It can be seen that the self similarity of the
2PCFs worsens notably for some of the panels, which correspond to
models with more extreme (Ωm ,σ8) values. This is not surprising
because, as mentioned above, the models studied here vary wildly
in their σ values, and by using a constant σGSN to define ν one is
essentially selecting very different peak populations in them – in
the more extreme models the peaks that end up being selected do
not possess the self-similarity (remember that this property is only
present for a limited range of peak heights). Hence, by using the
cosmology dependent form of ν in Eq. (6), the 2PCF is self similar
for a larger range of cosmologies. However, if one focuses on the
more realistic (Ωm ,σ8) parameters, then using a constant σGSN to
define ν should not affect the potential of the rescaled peak 2PCF
as a cosmological probe.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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