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ABSTRACT
We study the statistics of weak lensing convergence peaks, such as their abundance and two-
point correlation function (2PCF), for a wide range of cosmological parameters �m and σ 8

within the standard �CDM paradigm, focusing on intermediate-height peaks with signal-to-
noise ratio (SNR) of 1.5–3.5. We find that the cosmology dependence of the peak abundance
can be described by a one-parameter fitting formula that is accurate to within ∼ 3 per cent.
The peak 2PCFs are shown to feature a self-similar behaviour: if the peak separation is
rescaled by the mean interpeak distance, catalogues with different minimum peak SNR values
have identical clustering, which suggests that the peak abundance and clustering are closely
interconnected. A simple fitting model for the rescaled 2PCF is given, which together with the
peak abundance model above can predict peak 2PCFs with an accuracy better than ∼ 5 per cent.
The abundance and 2PCFs for intermediate peaks have very different dependencies on �m

and σ 8, implying that their combination can be used to break the degeneracy between these
two parameters.

Key words: gravitational lensing: weak – methods: data analysis – cosmology: theory – large-
scale structure of Universe.

1 IN T RO D U C T I O N

Gravitational lensing, the deflection of photon trajectory due to the
presence of massive objects between the source and the observer, is
sensitive to the total matter distribution in the Universe (Bartelmann
& Schneider 2001). The total matter content can be expressed
as the sum of baryons (�b) and dark matter (�DM). Combined,
these two components make up �m ≈ 30 per cent of the Universe’s
energy budget with an abundance ratio of �DM/�b ≈ 5 (Planck
Collaboration VI 2018). While dark matter is the dominant matter
component, it is also the more challenging one to detect since it
is not directly observable. Gravitational lensing offers a promising
probe that allows us to examine the distribution of dark matter in
the Universe.

In this paper, we are interested in weak lensing (WL), which
is the regime of gravitational lensing where the amplitude of light
deflections is small. These deflections, caused by inhomogeneities
of the total matter distribution, lead to distortions of the images
of distant sources, such as background galaxies or the cosmic
microwave background. While the distortions are small, they can
be extracted with a careful statistical analysis of their correlations
(e.g. Bacon, Refregier & Ellis 2000; Kaiser, Wilson & Luppino
2000; Van Waerbeke et al. 2000; Wittman et al. 2000). Nowadays,
WL is widely used as a probe of the large-scale structures (LSS)
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of the Universe (Albrecht et al. 2006; LSST Dark Energy Science
Collaboration 2012; Amendola et al. 2013; Weinberg et al. 2013).

While WL is only the broad name of a physical phenomenon,
a plethora of statistics can be extracted from observations and
cosmological simulations. For example, the cosmic shear (the
distortion of the shapes of a lensed image) and convergence
(the magnification of the magnitude of the lensed source) are
usually quantified using their two-point statistics, though higher
order statistics contain extra information about the non-linear LSS
evolution. Analyses performed on the low-redshift universe using
shear–shear correlations have led to strong cosmological parameter
constraints (e.g. Schneider et al. (e.g. Schneider et al. 2002; Hoekstra
et al. 2006; Semboloni et al. 2006; Fu et al. 2008; Heymans et al.
2012; Kilbinger et al. 2013; Hildebrandt et al. 2017). Lensing
signatures are also present in the cosmic microwave background
for which the lensing potential power spectra can be used as a
cosmological test (e.g. Planck Collaboration VI 2018). WL has also
been detected around cosmological objects such as galaxy clusters,
which can be used to measure the cluster mass (e.g. Gruen et al.
(e.g. Applegate et al. 2014; Gruen et al. 2014; Umetsu et al. 2014;
Von der Linden et al. 2014; Hoekstra et al. 2015; Tudorica et al.
2017), and voids for which void WL profiles can be obtained (e.g.
Melchior et al. 2014; Clampitt & Jain 2015; Sánchez et al. 2017).

Weak lensing can be used to test different cosmological models.
For example, the convergence power spectrum, shear–shear correla-
tions, and WL by voids have been shown to be promising probes for
constraining the dark energy equation of state or modified gravity
models (e.g. Schmidt (e.g. Schmidt 2008; Tsujikawa & Tatekawa
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2008; Huterer 2010; Barreira et al. 2015; Cai, Padilla & Li 2015;
Barreira et al. 2017; Baker et al. 2018; Cautun et al. 2018; Van Uitert
et al. 2018; Paillas et al. 2019). While WL offers an independent
measurement of the absolute cluster mass, this cannot be done for
most clusters; one use of WL is to calibrate some observable-cluster-
mass scaling relation, which is then used to infer cluster masses
and hence the abundance of massive haloes, which is a powerful
cosmological probe (e.g. Mantz et al. 2015; Umetsu et al. 2016;
Pizzuti et al. 2017; Bocquet et al. 2019). In addition, statistics such
as WL Minkowski functionals and WL bispectrum have been used
to constrain the sum of neutrino masses (e.g. Coulton et al. 2019;
Marques et al. 2019).

The most commonly used WL statistics are the shear correlation
function and convergence power spectrum. These two-point statis-
tics alone, however, cannot account for the non-Gaussian features
introduced by the non-linear evolution of structures in the Universe,
and other statistics can provide additional and complementary
information. In this paper, we study one such additional probe,
WL peaks, which are the maxima of the WL convergence field.
The WL peak abundance is a good example of a statistic that
contains complimentary information to two-point statistics (Jain
& Van Waerbeke 2000; Pen et al. 2003; Dietrich & Hartlap 2010;
Shirasaki, Yoshida & Ikeda 2018), and can be used to constrain
cosmological parameters within �CDM (Shan et al. 2012; Van
Waerbeke et al. 2013; Shan et al. 2014; Liu et al. 2015b), to test
alternative cosmological models such as modified gravity (Cardone
et al. 2013; Higuchi & Shirasaki 2016; Liu et al. 2016b; Shirasaki
et al. 2017; Peel et al. 2018), dark energy (Giocoli et al. 2018), and
to measure the neutrino mass (Li et al. 2019). WL peaks can also
be extracted from cosmic microwave background (CMB) lensing
to provide cosmological constraints (Liu et al. 2016a). Various
models have been developed to accurately describe high signal-to-
noise ratio (SNR) WL peaks (e.g. Hamana, Yoshida (e.g. Hamana,
Yoshida & Takada 2004; Hennawi & Spergel 2005; Maturi et al.
2005; Fan, Shan & Liu 2010; Hamana et al. 2012; Marian et al.
2012; Liu & Haiman 2016; Shan et al. 2018; Wei et al. 2018)

In contrast to high WL peaks, there have been relatively few
studies on the abundance of low and intermediate peaks (see, e.g.
Yang et al. 2011; Lin & Kilbinger 2015; Shirasaki 2017), which
nevertheless contains rich cosmological information (Dietrich &
Hartlap 2010; Kratochvil, Haiman & May 2010; Yang et al. 2011)
and even fewer on the spatial correlation of such peaks (e.g. Marian
et al. 2013; Shan et al. 2014). Upcoming wide and deep-field
galaxy surveys such as EUCLID (Refregier et al. 2010) and LSST
(LSST Science Collaboration et al. 2009) will produce large high-
resolution WL maps, with significant improvements compared to
the current generation of WL observations. Understanding how WL
peak statistics behave will be important if we want to maximize the
cosmological information that can be gained from the new surveys.
In particular, the higher source number density of these surveys will
lead to a reliable determination of peak abundance and clustering
down to low SNR values, so it is important to have accurate models
to describe the statistics of low- and intermediate-height peaks.

In this work, we study properties of WL peak statistics in �CDM
by modelling the peak abundance, peak two-point correlation func-
tions (2PCFs), and the convergence rms fluctuation (convergence
map standard deviation). Most importantly, we identify a universal
self-similar behaviour in the peak 2PCF, which holds for a large
range of peak heights and different cosmologies. The self-similarity
is observed when expressing the 2PCF in terms of the angular
separation divided by the mean peak separation, with the resulting
rescaled 2PCFs lying on top of each other. We propose a general

model that describes the abundance and clustering of WL peaks
and that allows us to access cosmological information contained on
non-linear scales.

The structure of the paper is outlined as follows: in Section 2,
we briefly summarize the relevant theory for WL, describe the
numerical simulations used to construct the WL maps, and introduce
the statistics we use to study WL peaks. Next, in Section 3, we
present the WL peak abundance, WL peak 2PCF, and identify a
self-similarity in the peak 2PCF for a given fiducial cosmology.
Then, in Section 4, we give general fitting functions that describe
the convergence rms fluctuation, peak abundance, 2PCF, and its
self-similarity in �CDM for a large range of �m and σ 8 values.
We then show in Section 5 that our model can accurately reproduce
the original peak 2PCF. Finally, in Section 6, we show that the self-
similarity of the 2PCF is robust to the inclusion of galaxy shape
noise (GSN).

2 TH E O RY, S I M U L AT I O N S , A N D A NA LY S I S
PIPELINE

In this section, we briefly summarize the essential elements of WL
theory and describe the simulations and methodology used in this
work to study WL peak statistics.

2.1 Theory

The deflection of photon trajectories due to the mass of objects in
the lens plane can be quantified using the lensing convergence κ ,

κ = 1

2
∇2� , (1)

where � is the two-dimensional (2D) lensing potential given by:

�(θ ) = Dls

DlDs

2

c2

∫ zs

0
�(Dlθ , z)dz . (2)

In the above equation, θ is the observed angular position of the
lensed image (in the Born approximation); Ds, Dl, and Dls are
the angular diameter distances between the observer and source,
observer and lens, and lens and source; zs is the source redshift; and
c is the speed of light. The symbol � denotes the three-dimensional
(3D) gravitational potential given by the Poisson equation,

∇2� = 4πGa2δρm , (3)

where δρm = ρm − ρm with ρm and ρm, respectively, the local and
the background matter density; a is the scale factor; and G is the
gravitational constant. Equation (1) therefore behaves as a projected
version of the Poisson equation weighted by a geometric factor
determined by the distances between the lens, source, and observer.

The above equations describe the WL effect of a single lens.
However, as the light travels between the source and the observer, it
experiences gravitational lensing from the entirety of the mass dis-
tribution along its path. The single lens equation can be generalized
to multiple lenses as

κ(θ ) =
∫ zs

0
W (z)δρm(Dl(z)θ, z)dz , (4)

where W(z) is the lensing kernel that accounts for the redshift
distribution of the lenses. This kernel is given by

W (z) = 3H 2
0 �m

2c

1 + z

H (z)
χ (z)

∫ zs

z

dn

dzs
dzs

χ (zs) − χ (z)

χ (zs)
, (5)

MNRAS 488, 5833–5851 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/488/4/5833/5545212 by U
niversity of D

urham
 user on 21 August 2019



Self-similar WL peaks 5835

where H(z) is the Hubble parameter and H0 is its present-day value;
�m is the fractional total matter density at present day; χ is the
comoving distance; and dn

dzs
is the redshift distribution of sources.

As can be seen from equation (4), the WL convergence cor-
responds to the projected mass density contrast weighted by a
geometric factor, and thus positive and negative κ values correspond
to overdense and underdense lines of sight. For self-consistency
across different convergence maps, we define the SNR, ν, as

ν = κ − μ

σ
, (6)

where μ is the mean value of the convergence field of a given map,
and σ is its rms fluctuation. We have subtracted the map mean μ in
the definition of SNR because our maps are relatively small and can
have non-zero means due to sample variance that vary from map to
map, which can affect the consistency of the SNR definition. Note
that the subtraction of μ does not affect σ , and it is not needed in the
case of κ reconstructed from the (directly observable) cosmic shear
field. An example of a κ map generated from numerical simulations
through ray tracing is shown in Fig. 1.

For most of the paper, the lensing quantities are measured in
maps obtained from cosmological simulations without added noise,
except for Section 6 where GSN is included and all quantities
are measured from the noise-added maps (for more details, see
Section 6).

2.2 Numerical simulations

In order to study WL peak statistics, in this paper, we use a large
suite of WL convergence maps constructed from two sets of N-body
simulations. The first are the publicly available all-sky convergence
maps of Takahashi et al. (2017) (hereafter T17). These maps have
a source redshift of zs = 1 and have been generated using the
ray-tracing algorithm described in Hamana et al. (2015) (see also
Shirasaki, Hamana & Yoshida 2015), with a HEALPIX resolution of
Nside = 16384. To avoid probing the same structures along the line
of sight, T17 constructed the light-cone by stacking a hierarchy of
cubic simulation boxes, with comoving sizes L, 2L, 3L, ···, 14L,
where L = 450 h−1Mpc. The simulations had a particle number of
20483, where the particle mass depends on the box size and ranges
from 8.2 × 108 to 2.3 × 1012M� (see table 1 of T17 for more
details). Each of the simulation boxes was duplicated eight times
and nested around the observer, such that nests of larger boxes
contain nests of smaller boxes at their centres. Ray tracing was then
performed on the nested simulation boxes by taking the projected
mass distribution in spherical shells of 150 h−1 Mpc in thickness
centred on the observer (see T17 for illustration). The cosmological
parameters adopted for the T17 simulations are �m = 0.279, σ 8 =
0.820, and h = 0.7, where h = H0/100 km s−1 Mpc−1. Throughout
this paper, we have split the T17 all-sky map into 184 separate
10 × 10 deg2 maps with 20482 pixels per map, for which we can
use the flat sky approximation to simplify our analysis. A detailed
description of the method we use to split the all-sky map into smaller
squares is given in Appendix A.

The second set of WL maps we use is taken from Zorrilla
Matilla et al. (2016) (hereafter Z16; see also Gupta et al. 2018)
and consists of maps for 96 different cosmologies. It was built
with the simulation pipeline described in Petri (2016). For each
cosmology, the maps were obtained from an N-body simulation of
a periodic box with length L = 240 h−1 Mpc and 5123 simulation
particles with a particle mass of ∼ 1010 h−1 M� (the exact value
depends on the actual cosmology). Ray tracing was then performed

by using a source redshift of zs = 1 and by stacking particles into
lens planes with a thickness of 80 h−1 Mpc between the source
and the observer. The lens planes were generated by taking a slice
along a coordinate axis of the original simulation box and applying
a random shift and rotation. This process was repeated to generate
512 3.5 × 3.5 deg2 maps per cosmology with 1024 × 1024 pixels
per map. Note that each of the 512 maps was obtained from the
same periodic simulation by varying the orientation of the line-of-
sight direction. For a more detailed description, we refer the reader
to Z16.

In total, we have two sets of maps, one with 184 10 × 10 deg2

maps for a fixed cosmology and the other with 512 3.5 × 3.5 deg2

maps for 96 cosmologies with different values of �m and σ 8. Larger
maps are ideal for 2PCF studies as the 2PCF cannot be reliably
calculated at large separations where pair measurements are affected
by the finite size of the map. However, the differences in the two
simulation data sets used here bring some benefits for our analysis.
First, given the simulations use different ray-tracing codes and box
tiling methods, if we are able to identify certain features of the WL
peak statistics in both simulations, this can be a check that the said
features are not an unphysical consequence of the procedure used
to generate the convergence maps. Second, the different simulation
maps have different angular sizes and resolutions, which can help
highlight any potential systemics in our analysis due to the box size
or the pixel resolution.

2.3 Weak lensing peaks

WL peaks in this paper are defined as the maxima of the convergence
field, which trace local overdensities in a range of environments. To
extract the WL peaks, we first smooth the convergence map with
a Gaussian filter. The convergence field has power on all scales,
so the number and spatial distribution of WL peaks depend on
the smoothing scale, with a larger smoothing washing out low-
contrast peaks and merging neighbouring peaks. We mainly study
peaks identified with a Gaussian filter with smoothing length θ s =
1 arcmin; a range of smoothing scales have been studied in Liu
et al. (2015a), showing that this smoothing scale is ideal for WL
peak studies. In some cases (which will be explicitly mentioned),
we vary θ s to understand how the results depend on smoothing
scale. Next, we identify WL peaks by finding all pixels in the maps
whose values are larger than those of their eight neighbours, and
peaks within 3 θ s of the map boundary are removed to avoid edge
effects where the Gaussian filter is truncated. The height of a peak is
given by the ν value of the smoothed convergence field at the peak
position. For a given convergence map, we can generate multiple
peak catalogues by imposing a νcut threshold and keeping only
peaks with ν ≥ νcut.

Fig. 1 illustrates the distribution of peaks (shown as green dots)
for three different SNR thresholds, νcut = 1, 2, and 3. To highlight
the distribution of peaks on both small and large scales, we show
peaks identified with a Gaussian smoothing scale, θ s = 2 arcmin;
using a smaller θ s value would result in many more peaks and make
the graph less legible.

Fig. 1 shows that peak catalogues with different νcut values trace
different features of the convergence field. The catalogue with νcut =
1 traces the overdense regions of the convergence map, while avoid-
ing the darker underdense regions. In particular, many peaks seem
to be arranged in a somewhat filamentary pattern. By increasing νcut

to 2, we find that the resulting catalogue has a significantly lower
number of peaks and the peaks are now more clustered. Most of
these peaks are found in highly overdense regions, with some small
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Figure 1. An illustration of a WL convergence map and the distribution of peaks of different heights (green points). The convergence field is expressed in
terms of the SNR, ν, as indicated by the colour bar on the right. Peaks with a height below νcut = 1, 2, and 3 are removed to produce the three-peak catalogue
shown in the three panels (all plotted on the same convergence map). The axes θ1 and θ2 give angular coordinates of the map in two orthogonal directions. The
map is smoothed with θ s = 2 arcmin before the peaks are identified. We use 2 arcmin smoothing here for visualization purposes to clearly show the presence
of WL peaks in a convergence map. As 1 arcmin smoothing (which is used in the main analysis of the paper) results in a large number of peaks that would
reduce the clarity of the figure.

filamentary patterns still remaining. Finally, there are few peaks
with νcut = 3, but they show a high degree of spatial clustering and
are located in the very overdense regions of the map.

The description of Fig. 1 above highlights two important features
in the behaviour of WL peaks: the number of WL peaks and their
clustering, which are, respectively, quantified by two commonly
used statistics, the peak abundance and the peak 2PCF. The former
is well studied and has been considered for many cosmological
applications (e.g. Liu et al. 2015a; Liu & Haiman 2016; Liu et al.
2016b; Shirasaki 2017; Shirasaki et al. 2017; Shan et al. 2018; Wei
et al. 2018; Li et al. 2019), whereas WL 2PCFs are usually measured
as shear–shear correlations (Fu et al. 2008; Heymans et al. 2012;
Kilbinger et al. 2013), with very few studies directly focused on the
peak 2PCFs (Marian et al. 2013; Shan et al. 2014).

The 2PCF measures the probability of finding two points (or in
our case, WL peaks) at a given separation (θ for angular separations
on the sky). It can also be interpreted as a measure of the excessive
clustering of a distribution of points relative to the clustering of
randomly distributed points. To estimate the 2PCFs, we use the
Landy–Szalay estimator (Landy & Szalay 1993), which is a robust
way of measuring 2PCFs, especially for small maps and low tracer
number densities. Using this estimator requires a catalogue of
randomly distributed points, whose role is to account for boundary
effects and serves as a proxy for the volume (area in 2D) of the
sample. The Landy–Szalay estimator is evaluated as

ξLS(θ ) = 1 +
(

NR

ND

)2 DD

RR
−

(
NR

ND

)
DR

RR
, (7)

where ND and NR are the numbers of data and random points and
DD, DR, and RR are the number of data–data, data–random, and
random–random pairs in bins θ ± δθ . We calculate the 2PCFs
by taking the average over many small maps (see description in
Section 2.2). Since the maps are small, taking the average of the ξ

values measured for each map leads to biased results and we discuss
this subtlety in detail in Appendix B. To obtain unbiased results, we
calculate the average of the DD, DR, and RR pair counts over all
maps and then we insert the average pair counts into equation (7).

Figure 2. WL peak number density as a function of peak signal to noise, ν,
for two smoothing scales, θ s = 1 arcmin (blue) and θ s = 2 arcmin (orange)
from the T17 maps. The shaded grey region highlights the ν range that we
study in this paper, discussed in Section 3.3.

3 W EAK LENSING STATISTICS

As mentioned above, we are mainly interested in the one- and two-
point statistics of WL peaks. In order to gain some first insight into
the properties of these quantities, we use the large, 100 deg2, maps
from the T17 simulations for the results shown in this section. In the
next section, we shall use the small maps from the Z16 simulations
to quantify the dependence of peak statistics on cosmology.

3.1 Peak abundance

We start by studying the mean abundance of WL peaks, which is
expressed in terms of the cumulative peak abundance, n(>ν). This
represents the number density in deg−2 of all peaks whose SNRs are
higher than ν. The peak abundance is illustrated in Fig. 2, where the
results are averaged over the 184 T17 maps. The blue (upper) and
orange (lower) curves correspond to a Gaussian smoothing kernel
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θ s = 1 and 2 arcmin, respectively. According to equation (6), the
smoothing scale θ s enters the definition of ν in two ways by affecting
the pixel values of κ and the overall rms κ fluctuation, σ . For the
T17 maps, we find σ = 0.013 and 0.010, respectively, for θ s = 1
and 2 arcmin, and in the next section, we will see that σ has a clear
cosmology dependence as well.

The qualitative behaviour shown in Fig. 2 is as expected. There
are very few peaks with high ν values since these correspond to
massive dark matter structures, which are rare. As ν decreases, the
peak abundance, n(>ν), increases quickly until ν ∼ 0 since lower
ν values correspond to lower mass and thus more abundant dark
matter structures. However, for ν � 01, we see that n(>ν) flattens,
showing that there are few peaks with ν < 0. It highlights that there
are few structures in underdense regions that are massive enough
to lead to a local maximum, especially when smoothing over 1 and
2 arcmin. Increasing the smoothing scale θ s leads to a lower peak
abundances at fixed ν, since smoothing over a larger region tends
to eliminate some peaks.

We have checked that the WL peak abundance shown in Fig. 2
can be well fitted by the function n(>ν) = −a[tanh (bν) − 1] for
the entire ν range. However, for reasons that will become clear in
Section 3.3, in this paper, we are interested in the range ν ∈ [1.5,
3.5] (shown as the grey-shaded region in Fig. 2), where n(>ν) can
be modelled as a power law (see Section 4.2). Note that Fig. 2 also
shows the uncertainties in the n(>ν) measurement, which are the
standard errors of the mean of the 184 T17 maps; however, these
error bars are not visible as they are roughly of the same size as the
line width.

3.2 Peak 2PCF and νcut dependence

For WL peaks, it has been suggested that the 2PCF can be well
modelled by a power law (Shan et al. 2014). In this section, we
will confirm this power-law description using the T17 convergence
maps and show that it works well for peak catalogues with a wide
range of νcut thresholds.

The 2PCF dependence on νcut is of particular interest, because
by decreasing νcut we are including lower peaks into the analysis,
which is equivalent to incorporating smaller dark matter structures
into the clustering statistics. In the current standard cosmological
paradigm, LSS evolve hierarchically, with larger objects forming
from higher initial density peaks. This means that by varying νcut,
we probe the different regimes of non-linear LSS formation and
thus potentially provide more powerful cosmological tests. As an
example, in certain modified gravity models, smaller structures
experience a stronger boost in their non-linear growth (e.g. Clifton
et al. 2012, and references therein), and we expect this to leave
potentially detectable signatures in the peak 2PCFs at different
νcut values. In addition, as we have seen above, lowering the
νcut threshold increases the number of peaks included in the
catalogue, and this can help increase the statistical constraining
power. We will see shortly that there is a self-similarity in the
peak 2PCF, which means that having peak catalogues for multiple
νcut values does not require separate modelling for each catalogue;
this can potentially strongly improve the constraining power by
WL peaks.

The left-hand panels of Fig. 3 show the mean 2PCFs of the T17
maps for a range of νcut values and for two smoothing scales, θ s =

1Note that WL peaks can have ν < 0, or equivalently κ < 0. These are local
maxima in underdense regions of the convergence map.

1 and 2 arcmin. The error bars, which are the standard errors of the
184 maps, are shown as shaded regions around the curves, but they
are very small and barely visible.

A quick inspection of Fig. 3 by eye confirms that the 2PCFs are
well described by power laws. We can see that as νcut increases,
the amplitude of the 2PCF, ξ (θ ), also increases. This is intuitive
to understand: the high WL peaks correspond to more massive
structures that tend to cluster more strongly. Moreover, the 2PCF
amplitude is higher for peak catalogues obtained using a larger
smoothing length, θ s. This is because a higher θ s value suppresses
peaks originating from low-mass dark matter structures that cluster
less. The gradient of the 2PCFs from maps with a fixed θ s increases
slightly with νcut, but this effect is weak for both smoothing scales
shown, and the dominant effect of varying νcut is in the amplitude
of the 2PCF.

Note that smoothing can lead to a merging of peaks separated
by distances comparable to the smoothing scale θ s and therefore
eliminates some peaks that are close to each other. This leads to a
drop off of the 2PCF from the power law on scales � θ s, which
is why we show a different θ range in the two left-hand panels of
Fig. 3. Additionally, for a given WL map size, the 2PCFs cannot
be reliably measured at large separations as there are too few peak
pairs, which is why in Fig. 3 we adopted a conservative θmax, which
is 1/10 the map size. Therefore, the smoothing scale and the map
size set a limited range in θ within which we can measure the 2PCF.
More explicitly, while for the T17 maps we use θ s ∈ [1, 3] arcmin
in this study, for the smaller Z16 maps we use only θ s = 1 arcmin to
avoid having a too narrow θ range. A larger θ s is necessary for maps
where GSNs are included to suppress the biasing effects caused by
the latter (e.g. Davies, Cautun & Li 2018); we will come back to
this point in Section 6 below.

3.3 2PCF rescaling and self-similarity

We now move on to one of the most important results of this work:
the self-similarity of the peak 2PCFs. This has been first studied
(very briefly) in Davies et al. (2018) in the context of explaining
the self-similar behaviour of the abundances for voids identified
from WL peaks with varying νcut. As we show later, the 2PCF self-
similarity is a very useful property that merits the more detailed
investigation presented here.

The quest for a self-similar behaviour in the peak 2PCFs is mo-
tivated by the following observations: the 2PCF amplitude is lower
for peak catalogues with lower νcut; meanwhile, these catalogues
have more peaks and hence a smaller mean peak separation, θp.
By expressing the 2PCF in terms of θ /θp, the various curves could
potentially be brought closer together. The question is whether after
this rescaling the 2PCF curves for different νcut thresholds can be
made to overlap, in which case their modelling can be significantly
simplified.

The right-hand panels in Fig. 3 show the rescaled 2PCF, that is
the 2PCF expressed as a function of θ /θp instead of θ . To obtain this
result, we calculated the mean peak separation as θp = (N/A)−1/2,
where N is the number of peaks in a catalogue and A is the area of the
map. The θp value for a peak catalogue can be directly inferred from
the peak abundance, n(>ν), as θp = n(ν > νcut)−1/2. We find that
the rescaled 2PCFs lie on top of each other and thus it indicates that
the peak 2PCF is self-similar. This shows that the one-point statistic
of WL peaks, n(>ν), can be tied to the amplitude of the 2PCF to
achieve the mentioned self-similarity. The self-similar behaviour
is mainly limited to the range νcut ∈ [1.5, 3.5], with the rescaled
2PCFs starting to peel off from the average relation for νcut < 1.5
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Figure 3. The 2PCFs of WL peaks for different peak catalogues obtained by varying the threshold, νcut, in the range [1.5, 3.5] in increments of �νcut

= 0.25. The results are for the T17 maps and for two different smoothing scales, θ s = 1 (top row) and 2 arcmin (bottom row). The left-hand column
shows the 2PCFs as a function of angular separation, θ . The right-hand column shows the rescaled 2PCFs,which are the 2PCFs expressed in terms of θ /θp,
with θp the mean peak separation in the catalogue. The 2PCFs display a striking self-similar behaviour, with all rescaled 2PCFs curves lying on top of
each other. The black dashed line in the right-hand column shows the best-fitting power law to the rescaled 2PCFswith gradients −0.94 (top) and −1.02
(bottom).

and νcut > 3.5. At this stage, it is unclear whether the breakdown of
self-similarity at νcut > 3.5 is physical or due to the small number of
high SNR peaks in our maps (which, as discussed in Appendix B,
could bias the estimation of the 2PCF); this will be investigated in
more detail in the future. Bearing this issue in mind, in this work
we limit our investigation to the modelling of WL peak statistics for
1.5 < νcut < 3.5 only. Note that this happens to be the same range
within which the peak abundance can be well described by a power
law (see Section 3.1).

The self-similar behaviour holds for both smoothing scales shown
in Fig. 3; however, the rescaled 2PCFs for the larger smoothing
length (θ s = 2 arcmin; bottom right-hand panel of Fig. 3) are
shifted to lower θ /θp values than the results for θ s = 1 arcmin.
It suggests that 2PCFs are self-similar when keeping the smoothing
scale constant, and that the self-similarity behaviour does not hold
when comparing 2PCFs obtained for peak catalogues with different
smoothing scales.

The panels in the right-hand column of Fig. 3 also show that the
rescaled 2PCFs are well fitted by a power law, as shown by the black
dashed curves with gradients −0.94 (θ s = 1 arcmin) and −1.02 (θ s

= 2 arcmin) .

4 C O S M O L O G Y D E P E N D E N C E A N D
UNI VERSAL FI TTI NG FUNCTI ONS

In this section, we study the dependence of peak abundance and
peak 2PCF on the �m and σ 8 cosmological parameters by analysing
these statistics for the set of 96 different cosmologies used for
the Z16 maps. The (�m, σ 8) parameter space of the Z16 maps is
indicated by the points in Fig. 4. The parameter space is densely
sampled around �m = 0.26 and σ 8 = 0.8, which corresponds to
the fiducial cosmology, and only sparsely sampled for models with
very different parameter values. In particular, when describing the
cosmology dependence of various peak statistics, we will limit our
fitting procedure to the (�m, σ 8) pairs shown as orange points
in the figure. This removes extreme and unrealistic cosmological
parameters from our analysis. For comparison, the parameters used
for the T17 maps are indicated by the black triangle in Fig. 4.

The two cosmological parameters, �m and σ 8, are degenerate
because they can impact the size of the matter fluctuations in similar
ways, and the direction of degeneracy depends on the physical
quantity which is being studied. In order to better assess the potential
and limitations of using WL peak statistics to constrain these
cosmological parameters, it is important to know the degeneracy
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Figure 4. The (�m, σ 8) parameter space that is probed with our suite of 96
simulations from Z16. The faded grey lines indicate the cuts that are made
to remove extreme cosmological parameters and give the orange points that
we use to construct our �m, σ 8 dependent model for 2PCF reconstruction
in Section 4. The black triangle shows the �m and σ 8 values of the T17
simulations.

direction for the physical quantities of interest. Following the
usual approach, we define the parameter combination, �8(α) ≡
σ 8(�m/0.3)α , where α characterizes the degeneracy for a given
statistic (α is allowed to vary for different statistics since they
usually do not have exactly identical degeneracy directions). Note
that for studying the cosmology dependence, we use only the Z16,
and not the T17, convergence maps, and the latter is used as a
consistency check of the fitted models.

The fittings carried out in this section are mainly to exemplify
the cosmology dependence of the self-similar feature present in the
2PCF in Fig. 3, which applies only to theoretical (simulated) lensing
maps with no noises and with a specific smoothing length. Before
this approach can be used for observational constraints, further
development will be required, notably the inclusion of GSN. We
discuss briefly the impact the latter has on the self-similarity of
the 2PCF in Section 6. In order to study the rescaled 2PCF for a
range of cosmologies using more realistic noise-added maps, larger
simulations for this range of models are required, which we leave
to future work.

4.1 Convergence rms fluctuation

We describe peaks in terms of the convergence SNR value at their
position. To calculate this, we use the rms fluctuations, σ , of the
convergence field (see e.g. equation 6). In principle, σ is used merely
as a normalization factor and it is not entirely unreasonable to use the
same value to define ν across all cosmologies. However, the standard
deviation (or rms fluctuation) of the corresponding WL convergence
map, σ , is a quantity with a clear physical meaning, and hence it is
natural to use its correct value for a given cosmology. Therefore, we
need a general description of σ as a function of input cosmological
parameters, σ = σ (�m, σ 8). Having this function is also of interest
on its own, since it is useful to know how the rms fluctuation of the
WL convergence field depends on the cosmological model.

The dependence of the convergence rms fluctuation, σ , on σ 8

and �m is illustrated in Fig. 5, where we show the results for two
smoothing lengths, θ s = 1 (left-hand panel) and 2 arcmin (right-
hand panel). In both cases, we varied α such that σ is well described

by a linear function of �8(α), that is:

σ = m�8(α) + c ≡ mσ8

(
�m

0.3

)α

+ c . (8)

We achieved this by performing a χ2 minimization procedure with
three free parameters: m, c, and α. The best-fitting parameter values
are: m = 2.08 × 10−2, c = −3.39 × 10−3, and α = 6.66 × 10−1

for θ s = 1 arcmin and m = 1.59 × 10−2, c = −2.37 × 10−3, and
α = 6.56 × 10−1 for θ s = 2 arcmin. For these fits, we used the
standard errors in the determination of σ . These errors are shown
in Fig. 5 as vertical error bars; however, in most cases the error
bars are smaller than the size of the data points plotted and are
not visible. The bottom panels in Fig. 5 show the residuals, i.e. the
deviations of the σ values for each cosmology from the best-fitting
lines. The fit residuals are small when compared to the absolute
values of σ and show no systematic trend with �8, indicating that
equation (8) provides an excellent description for both smoothing
lengths. In particular, we notice that the best-fitting value of α is
similar for θ s = 1 and 2 arcmin and thus weakly dependent on the
smoothing scale. It is also reassuring to note that T17 is in very
good agreement with the best-fitting lines, which are obtained from
the Z16 convergence maps only, even though the two sets of maps
are constructed from very different simulations.

Even though it is not the main line pursued in this work, we
note that the measured standard deviation of the (reconstructed)
WL maps is a useful quantity (see, e.g. Van Waerbeke et al. 2013),
and therefore a simple fitting formula for σ in terms of �m and
σ 8 will be useful both theoretically and observationally. However,
because GSN introduces a major systematic uncertainty in real WL
maps, it is necessary to study the equation (8) fitting formula using
maps in which realistic GSN is included; this is beyond the scope
of this study, because the Z16 maps used in the analysis above
have relatively small sizes. In this paper, instead, the primary use of
equation (8) will be to define ν for a convergence map with given
�m and σ 8 values.

As shown in Fig. 5, within the large range of cosmological
parameters covered in this study, σ varies strongly by up to a factor
of 5–7. By defining ν relative to the σ of the corresponding model,
we are able to define the SNR in different models relative to their
own clustering amplitude. The alternative way to is use a constant
σ definition, such as the value for a fiducial model or the rms of the
typical noise map. However, in our case this would mean comparing
the clustering of map pixels with smaller κ values in one model to
the clustering of pixels with large κ values in another model, when
using the same νcut, and so a cosmology-dependent νcut range would
have to be applied, which is a far more complicated approach. We
have explicitly checked by defining the SNR ν in equation (6) using
the σ of the fiducial model where σ 8 = 0.8 and �m = 0.3 and found
that the self-similar behaviour still holds though slightly worse than
shown here. Later in Section 6, when dealing with noisy maps, we
shall use the σ measured from the smoothed noisy maps to define
the SNR.

4.2 WL peak abundance

The peak abundances for the 96 models in the Z16 simulations are
shown in Fig. 6. The colour bar shows the cosmological parameters
for a given curve with the form �8 = σ 8(�m/0.3)−0.637. The spread
of the amplitudes of the peak abundances across the 96 cosmologies
is up to a factor of 2. Most of the curves appear straight, indicating
that the peak abundance is well described by a power law. The
only exceptions are the black curves with very small values of �8:
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Figure 5. The rms fluctuations, σ , of the WL convergence map as a function of σ 8(�m/0.3)α . The power α indicates the degeneracy direction between σ 8

and �m that gives the same rms fluctuations in the convergence field. The blue points correspond to the 96 cosmologies from Z16 (see Fig. 4) and the orange
point corresponds to the T17 one. The left-hand and right-hand panels show the mean σ values for two smoothing scales, θ s = 1 and 2 arcmin, respectively.
The bottom sub-panels show the residuals between the mean σ values and the best-fitting line (blue). The vertical bars show the standard errors, which may be
underestimated as discussed in Appendix C.

Figure 6. The peak abundance, n(>ν), for the 96 cosmologies from Z16
plotted against ν. The lines are coloured according to a combination of the
cosmological parameters �m and σ 8 (see colour bar).

these curves will be removed in the analysis as they correspond to
the extreme cosmological parameter values indicated by the blue
points in Fig. 4. As �8 increases, the slope of the peak abundance
decreases, while its amplitude increases at larger ν (ν � 2.5) and
decreases for small ν (ν � 2.5). This ‘rotation’ of the curves about
ν ≈ 2.5 as �8 changes implies a correlation between the slope and
amplitude of the peak abundances as the cosmological parameters
vary, and we shall see shortly that this fact can be utilized to reduce
the number of fitting parameters in our peak abundance model.

In the range 1.5 < νcut < 3.5, the peak abundance as a function
of ν is well described by the power law,

log n(> ν) = Bnν + An, (9)

in which the fitting parameters An and Bn depend on the input
cosmology.

In order to model An = An(�m, σ 8) and Bn = Bn(�m, σ 8), we
fit equation (9) to the peak abundance for each of the cosmological
models indicated by the orange points in Fig. 4. The fitting results
confirm that An and Bn – which respectively characterize the
amplitude and slope of the peak abundance – are strongly correlated,

so that Bn can be replaced with a function of An, Bn(An), and the
peak abundance can now be described using a one-parameter power
law of the form

log n(> ν) = νBn(An) + An, (10)

with

Bn(An) = −0.33An + 0.28. (11)

This indicates that a universal model for WL peak abundance that
works for a wide range of cosmological models can be obtained if
one can fit the cosmology dependence of the single parameter An.
The result is shown in the left-hand panel of Fig. 7, where the An

values measured from the 96 Z16 cosmologies are plotted against
�8(α) with α = −0.637. The value of α corresponds to the one for
which An is well fitted by a linear function of �8(α). The latter is
shown as the solid line in the left-hand panel of Fig. 7 and is given
by

An = −0.30 σ8(�m/0.3)−0.637 + 2.20 . (12)

For fitting the above equation, the errors in An are given by the
uncertainties of fitting equation (11) to the peak abundance. These
errors are small and are not visible in Fig. 7 since they are smaller
than the symbol size.

Equations (10)–(12) can be used to predict the peak abundance
for any input �m and σ 8 values. For this, we first use equation (12)
to calculate An for given (�m, σ 8) and then infer n(>ν) using
equation (11). The accuracy of this prediction is shown by circle
symbols in the right-hand panel of Fig. 7. We quantify the success
of the method in terms of the mean percentage residual, which is
defined as the absolute value of the fractional difference between
the measured peak abundance and the predicted one, averaged over
all bins in ν ∈ [1.5, 3.5]. We find a mean percentage residual of 1–5
per cent, indicating that the model performs well. To understand
what is the major factor affecting the model accuracy, we also
calculate the mean percentage residual between the measured n(>
ν) and the direct one-parameter power-law fit to it, which is shown
as triangles in the right-hand panel of Fig. 7. There is only a very
slight difference between the triangles and the circles, with the
former being generally lower. This indicates that our prediction of
the peak abundance is very similar in accuracy to the original fit,
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Figure 7. Left-hand panel: the dependence of An, which is the one parameter fit to the peak abundance (see equation 10), on a combination of σ 8 and �m

parameters. The exact combination is σ 8(�m/0.3)−0.637, where the power represents the degeneracy direction between σ 8 and �m that gives the same An

value. The blue line shows the best-fitting linear function (see equation 12). Right-hand panel: the triangle symbols show the percentage residuals of the one
parameter power-law fit to the peak abundance. The circle symbols show the extent to which our model can predict the peak abundance. The model works in
two steps: (i) use the blue solid line shown in the left-hand panel to predict An for a pair of σ 8 and �m values, and (ii) given An, infer the peak abundance using
equation (10). The various symbols are coloured according to the �m cosmological parameter (see colour bar on the right).

which is further supported by the fact that the blue line in the left-
hand panel fits the various An data points rather well. In summary,
our model is able to predict the peak abundance to within ∼3 per
cent accuracy for most of the chosen cosmological models.

If we use the original form of the power law, equation (9), to
model the peak abundance, with the two parameters, An and Bn,
both left to vary freely in the fitting, we get fits and predictions that
match the raw data at the sub-per cent level. However, in attempt
to minimize the number of parameters in our model, we chose the
one parameter power law, equation (10), at the cost of roughly a
2 per cent loss in accuracy.

4.3 Peak 2PCFs

We now move on to check whether peak 2PCFs display the self-
similar behaviour described in Section 3.3 for a wide range of
cosmological models. The result is shown in Fig. 8, where we plot
the rescaled 2PCFs for all the pairs of (�m, σ 8) values of the Z16
maps (96 models in total). The rescaled 2PCFs are normalized to the
centre of the panels to exemplify the self-similar behaviour. Fig. 8
illustrates that the self-similarity of the 2PCFs is indeed robust
against the change of cosmological parameters σ 8 and �m. The
parameter space in Figs 4 and 8 is much larger than what is allowed
by current constraints. Thus, a model describing this self-similarity
will not only have the potential to provide additional cosmological
constraints but can also be applied to scenarios where prediction for
a large parameter space is required, such as generating training sets
for machine learning algorithms.

Fig. 8 also shows that the rescaled 2PCFs are well described by
power laws that have very similar slopes across all cosmological
models. To be more quantitative, we have fitted the following power-
law function,

ξ = ξ0

(
θ

θp

)β

, (13)

to the curves in each of the panels, with each data point weighted
by its standard error (see Appendix C for details about the error
calculation). The best-fitting slope, β, as a function of cosmological
parameters is shown in Fig. 9, where the horizontal axis shows σ 8

while the colour of the points indicates the �m value. The scatter of
the points in Fig. 9 does not follow any clear trends, and combination
of σ 8 and �m in the form of σ 8(�m/0.3)α , where α is allowed to
vary, does not to lead to improvements in the correlation between
β and the input cosmology. In Fig. 9, we find that the mean value
across the entire sample is β ≈ −1.1. As such, for simplicity, we
take β = −1.1 as the power-law slope of the rescaled 2PCF (we
have checked that the results are not particularly sensitive to the
value of β).

On the other hand, we find that the amplitude of the rescaled
peak 2PCFs, ξ 0 = ξ 0(�m, σ 8) in equation (13) shows a systematic
dependence on the cosmological parameters. Therefore, in order to
have a complete description, we also need to model ξ 0(�m, σ 8). The
fitting result for ξ 0 for the selected cosmological models (orange
points in Fig. 4) is displayed in the left-hand panel in Fig. 10,
where it is plotted against σ 8(�m/0.3)0.501 with the index α = 0.501
characterizing the degeneracy direction between �m and σ 8 for the
rescaled 2PCF amplitude ξ 0. The value 0.501 is tuned such that
the data points on the left-hand panel of Fig. 10 are fitted using a
smooth quadratic curve with the lowest χ2. This is shown as the
blue solid line in the left-hand panel of Fig. 10, which takes the
form

ξ0 = ξ0,ax
2 + ξ0,bx + ξ0,c , (14)

where

ξ0,a = 0.253 , ξ0,b = −0.605 , ξ0,c = 0.514 , (15)

and x = σ 8(�m/0.3)0.501. The lower sub-panel of the left-hand panel
shows the residual between the measured amplitude ξ 0 and its
fitted values. The residuals show no systematic trends with varying
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5842 C. T. Davies, M. Cautun and B. Li

Figure 8. The rescaled 2PCFs as a function of θ /θp for various cosmological models. Each panel corresponds to a pair of (�m, σ 8) parameters (see labels in
each panel). The lines in each panel correspond to peak catalogues with different νcut thresholds, with νcut varying from 1.5 to 3.5 in �νcut = 0.25 increments.
We find that all cosmologies have self-similar 2PCFs for peak catalogues with νcut ∈ [1.5, 3.5]. The x- and y-axis amplitudes of each sub-panel have been
normalized to their respective centres to highlight the presence of the rescaled self-similarity across all of the �m, σ 8 models.

Figure 9. The gradient, β, of the power laws fitted to each of the rescaled
self-similar 2PCFs in Fig. 8 plotted against the σ 8 of the respective model
with the associated �m value given by the colour bar. The vertical bars show
the uncertainties in determining β.

σ 8(�m/0.3)0.501, indicating that the fitting function works equally
well for all cosmologies.

In the middle panel of Fig. 10 we have randomly selected one
of the cosmologies from the Z16 maps and compared the rescaled
2PCFs at several νcut values between 1.5 and 3.5 (coloured lines),
the power-law fit to these rescaled 2PCFs (black solid line, which
we call the ‘fitted’ curve), and the predicted rescaled 2PCF for
this particular cosmology (the grey straight line, which we call the
‘predicted’ curve). The latter was obtained by calculating ξ 0 using
equation (14) and then inferring the 2PCF from equation (13). This
matches the original fitted power law very closely, indicating that
the model described by equations (13) and (14) works very well.

We next quantify the accuracy of our prediction for the rescaled
2PCF. For a given cosmological model, such as the one shown in the
middle panel of Fig. 10, we calculate the residuals, i.e. the fractional
differences of the ‘fitted’ and ‘reconstructed’ curves with respect
to the rescaled measured 2PCFs. This is done for each of the five
νcut values shown in Fig. 10, and we define the mean residual as the
average over all θ /θp bins and all νcut values. The mean residuals for
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Self-similar WL peaks 5843

Figure 10. Left-hand panel: the amplitude parameter of the power law best fitting the rescaled 2PCFs as a function of σ 8 and �m. Each blue point shows the
amplitude for a pair of (σ 8, �m) values and the solid line shows the best-fitting quadratic function. Middle panel: an example of the rescaled 2PCF for different
νcut values and its best-fitting power law (black line). The solid grey line shows our reconstructed power law, which was calculated using the best-fitting line
from the left-hand panel. Right-hand panel: the percentage residuals between the fitted power law and the data (triangles) and between the reconstructed power
law and the data (circles). The x-axis (σ 8) and the colour bar (�m) indicate the cosmology of the model for which the residuals are being measured.

the fitted and predicted curves are, respectively, shown by a large
triangle and a large circle in the right-hand panel of Fig. 10. We have
repeated this procedure for all the cosmological models and have
plotted their residuals in the right-hand panel, with the associated σ 8

values shown in the x-axis and �m values shown by the colour bar
to the right. We find that the model prediction is almost as accurate
as the direct fitting and is able to match the rescaled 2PCFs at about
5 per cent accuracy level. The large symbols in the right-hand panel
correspond to the model shown in the middle panel to give a visual
illustration about how well the 2PCF model in equations (13) and
(14) works for an ‘average’ cosmology for which the mean residual
is 4.8 per cent.

5 A PIPELINE FOR 2PCF RECONSTRUCTI ON

We can combine the models developed in the previous section for
the convergence rms fluctuation, peak abundance, and rescaled peak
2PCF to develop an integrated pipeline that allows us to predict the
(un-rescaled) peak 2PCFs, ξ (θ ), as a function of νcut. The procedure
is schematically illustrated in Fig. 11 and outlined as follows:

(i) For chosen �m and σ 8 values, one can use the models to
predict the peak abundance (Section 4.2) and the rescaled 2PCF
(Section 4.3).

(ii) These two statistics are combined, using θp = 1/
√

n(> νcut),
to give the 2PCF, ξ (θ ), for peak catalogues with νcut ∈ [1.5, 3.5].

(iii) If needed, the above-predicted peak abundance and 2PCFs
can then be expressed in terms of κ by using the σ (�8) fit in
Section 4.1.

This pipeline offers a simple apparatus to make predictions of
the one- and two-point statistics for intermediate (ν ∈ [1.5,3.5])
WL peaks, which can be used (on its own or together with
other cosmological probes) to constrain the parameters (σ 8, �m)
using observational data. It will be interesting to see if these new
statistics are complimentary to other probes, such as the shear–shear
correlation, when constraining (�m, σ 8), but this will be left for
future follow-up works. In the next section, we will discuss further
aspects that need to be checked before applying this method.

As a proof of concept, we show an example of this 2PCF
reconstruction pipeline in the left-hand panel of Fig. 12. The solid

Figure 11. This flowchart describes the pipeline our model uses to recon-
struct the peak 2PCF by exploiting its self-similarity. First, we take input
cosmological parameters, �m and σ 8, which our model uses to predict
the rescaled 2PCF, the peak abundance, and the rms fluctuations of the
convergence map. These statistics can then be combined to give the original
2PCF for peaks of different heights, expressed in terms of either ν or κ .

curves show the 2PCFs measured from the simulation data for an
arbitrarily selected cosmology, with shaded regions showing the
(under) estimated standard error (see Appendix C for more detail).
The dashed lines show the predictions by our 2PCF reconstruc-
tion pipeline. We find a reasonably good agreement between the
simulated and reconstructed 2PCFs, with the latter mostly lying
within or just outside the (under)estimated errors bars. The second
panel in Fig. 12 shows the mean percentage difference between
the reconstructed and measured 2PCFs, averaged over the five
plotted 2PCFs and all θ bins with νcut ∈ [1.5, 3.5] separated by
a �νcut = 0.5 increment. The model that has been selected to
exemplify the reconstruction is indicated by the large symbol in the
left-hand panel of Fig. 12, which is an ’average’ one in terms of
the performance of the reconstruction (there are many models for
which the reconstruction works better). We can see that for all of
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Figure 12. Left-hand panel: Reconstructed 2PCFs from our model (dashed) compared to measured 2PCFs from N-body simulations (solid) for peak catalogues
with νcut ∈ [1.5, 3.5]. Right-hand panel: Mean percentage residuals between the reconstructed and measured 2PCFs. The larger symbol indicates the example
model that is shown in the left-hand panel. The x-axis and colour bar indicate the σ 8 and �m values of the models, respectively.

the selected cosmologies, our model is able to predict the 2PCF to
within a roughly 6 per cent uncertainty on average. Relative to the
estimated errors bars, the quality of our reconstruction is reasonably
good.

We find that generally the amplitude of the 2PCFs is overesti-
mated for the larger νcut catalogues. This could be a fundamental
aspect of the 2PCF evolution; however, due to small map sizes and
low peak number densities (at approximately 7 deg−2) it is likely
that 2PCFs with ν > 3.5 are biased. The true amplitude of the 2PCFs
with larger νcut could be measured more accurately with larger WL
maps, which we leave to further study.

6 TH E I M PAC T O F G S N

Up to here, we have discussed the WL peak abundance and 2PCF
in a theoretical context with the aim of having a model that allows
us to accurately describe and predict these statistics in an idealized
situation. While this theoretical model can have useful applications
in, e.g. mock WL peak catalogue generation, to be more useful for
cosmological constraints, we need to investigate the self-similarity
of the 2PCF in more realistic situations. One of the things we have
not included in our analysis so far is GSN.

GSN is a source of uncertainty in WL observations, where the
measured ellipticity of galaxies is dominated by their random ori-
entation and only weakly correlated due to gravitational lensing on
scales much larger than the galaxy–galaxy separation. Observation
of cosmic shear, and therefore cosmic convergence, is contaminated
by this noise. One usually uses large smoothing lengths to suppress
this noise in order to recover statistics more reliably. However,
large smoothing lengths could either dampen the amplitude of
the measured statistics, which is evident from the decrease of the
WL peak abundance with increasing smoothing scales in Fig. 2,
or increase the noise in the measurements, which can be seen to
a small extent in the 2PCFs for different smoothing lengths in

Fig. 3. Therefore, a trade-off has to be struck between using a
large enough smoothing length in order to suppress the GSN and
not oversmoothing so that interesting statistics are not suppressed
more than they need to be. With convergence maps from N-body
simulations, we can test the difference in the peak abundance and
2PCF for cases with and without GSN for a range of smoothing
lengths.

For this section, we include GSN in the T17 convergence maps
that match LSST specifications by adding to each pixel within a map
random values drawn from a Gaussian distribution with a standard
deviation σ pix given by

σ 2
pix = σ 2

int

2θ2
pixngal

, (16)

where σ int is the dispersion of the intrinsic source galaxy ellipticity,
θpix is the angular width of the pixel to which noise is added,
and ngal is the number density of source galaxies. To match LSST
specification, we use σ int = 0.4 and ngal = 40 arcmin−2 (LSST
Science Collaboration et al. 2009)

After GSN is added to the pixels, we smooth the maps, identify
peaks in the noise-added smoothed WL maps using equation (6)
with σ also directly measured from the noisy maps, recalculate the
peak abundance and peak 2PCFs, and compare these statistics to
the case with no GSN, with the same smoothing.

The impact of GSN on the WL peak abundance is shown in
Fig. 13, where the solid and dashed lines, respectively, correspond
to peaks identified in WL maps with and without GSN. Here we
study four smoothing scales, θ s = 1, 2, 2.5, and 3 arcmin. In
each instance, ν is defined relative to the WL map in which the
peaks are identified, so for the GSN added case, σ in equation (6)
includes contributions to the rms fluctuations from both GSN and
the underlying convergence signal, while for the no GSN case, ν is
defined by taking σ as the rms convergence fluctuation.
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Figure 13. Weak lensing peak abundances for four smoothing scales, θ s

= 1.0, 2.0, 2.5, and 3.0 arcmin (see labels), for peaks extracted from
convergence maps without GSN (solid) and for peaks extracted from
convergence maps with added GSN (dashed). Here the added GSN matches
LSST specifications (σ int = 0.3, ngal = 40 arcmin−2).

For all smoothing lengths, by adding GSN, the peak abundance
increases at low ν and decreases at high ν, with a crossover
between ν = 1.5 and 2.5 depending on the smoothing scale. GSN
has the largest impact on the peak abundance for the smallest
smoothing length, while for larger θ s, the agreement between the
peak abundances in the GSN and no GSN cases is better, although
substantial difference remains even in the case of θ s = 3 arcmin.
This means that the fitting formulae, equations (10 and 11), which
describe the cosmology dependence of peak abundance, need to be
recalibrated by using peaks extracted from GSN-added maps. Due
to the small size of the Z16 WL maps, this will be left as future work
when larger simulations of different cosmologies are available.

Note that in Fig. 13, the peaks are defined using equation (6),
where σ is the total rms convergence that includes contributions
from the physical rms convergence and from the rms of noise. This
explains the crossover mentioned above: because σ is increased, for
the high peaks their ν values actually decrease, and the number of
such high peaks does not increase quickly enough to maintain n(<
ν) at large ν, which causes the latter to drop compared with the no
GSN case. We have explicitly checked (not shown here) that, if one
defines ν in equation (6) by using the same σ for the GSN and no
GSN cases, then the peak abundance is consistently higher in the
former case, due to artificial peaks created by noise.

In order to closely inspect the impact of using different smoothing
lengths on the self-similarity of the rescaled 2PCFs, we have tried
four different θ s values, respectively, θ s = 1, 2, 2.5, and 3 arcmin.
The results are shown in Fig. 14, where the peaks are all identified
from, and the σ used to define the SNR ν are all measured by using,
the smoothed noisy maps. Interestingly, we find that the rescaled
2PCFs are still on top of each other for all four smoothing lengths.
With θ s = 1 arcmin, the agreement between the rescaled 2PCFs is
weaker, where only the curves with 2 ≤ νcut ≤ 3.5 appear to be self-
similar. For 2 arcmin smoothing, the 2PCFs appear to be self-similar
in the entire 1.5 ≤ νcut ≤ 3.5 range and show that the self-similarity
of 2PCFs is robust against GSN. With 2.5 arcmin smoothing, the
overall self-similarity appears to be tighter; however, the νcut = 1.5
appears to be outside the self-similar range. Finally, for 3 arcmin
smoothing, we see that the self-similarity of the 2PCFs holds up to
νcut = 3, after which the rescaled 2PCFs drop off in amplitude. It is
possible that this drop in amplitude is caused by the small map size
(10 × 10 deg2) and low number density of tracers (≈ 0.5 deg−2),

rather than a breakdown of the self-similarity. As θ s increases, it also
appears that the overall gradient of the rescaled 2PCFs decreases.

Having verified that the 2PCFs remain self-similar in the presence
of GSN, next we want to see how including the latter affects the
power law of the rescaled self-similar peak 2PCFs. In each sub-
panel of Fig. 14, we have overplotted, as the grey dashed lines,
the best-fitting power-law functions for the rescaled 2PCFs of the
peaks extracted from the T17 maps smoothed using the same θ s

values but without adding GSN (the grey dashed lines in the top
two panels of Fig. 14 are the same as the black dashed lines in
Fig. 3). The two cases are in good agreement for all four smoothing
scales, which shows that the impact of GSN on the rescaled 2PCF
is minor. This is a nice property, since it indicates that GSN will not
significantly contaminate the underlying cosmology dependence
of the rescaled 2PCF if the same observation applies to other
cosmologies. However, due to the limited map size from Z16, we
leave this investigation to future study.

In short, we conclude that the prevalence of the self-similarity in
the 2PCFs for peaks extracted from GSN-added WL maps shows
that this feature is robust to this observational systematic, and
therefore has the potential to be used in cosmological constraints.

7 D I SCUSSI ON AND C ONCLUSI ONS

In this paper, we have investigated the one- and two-point statistics
for intermediate peaks, with SNR values ν ∈ [1.5, 3.5], from WL
convergence maps. These WL peaks contain useful information
about the LSS formation, and the analyses of them are expected
to place complementary constraints on the cosmological model.
However, unlike high peaks, the intermediate WL peaks are not
individually associated to the most massive dark matter structures,
making the modelling of their statistical properties more challeng-
ing. To overcome this difficulty, we rely on WL convergence maps
constructed from a large number of N-body simulations with varying
cosmological parameters and technical specifications to attempt to
find patterns of the peak statistics and their cosmology dependence.
Our main findings are summarized as follows:

(i) The rms fluctuation of WL convergence, σ , has a linear depen-
dence on a particular combination of �m and σ 8 via σ 8(�m/0.3)α ,
with the parameter α weakly dependent on the smoothing length of
the convergence map, cf. Fig. 5. This linear dependence is given in
equation (8) and highlights a universal behaviour within �CDM,
which may be exploited to make cosmological constraints.

(ii) A universal one-parameter power-law function is found,
which can describe the WL peak count for ν ∈ [1.5, 3.5] with
an accuracy of within ≈1-5 per cent, for a large range of �m and σ 8

values, cf. Fig. 2 and equation (10). The accuracy of the power-law
description of the peak abundance can reach the sub-per cent level
if two free parameters are used in the power-law function.

(iii) A self-similar behaviour of the WL peak 2PCF has been
found by rescaling the angular separation, θ , between a pair of
peaks by the mean inter-peak separation, θp. While the amplitude
of the original 2PCF increases with νcut, the rescaled 2PCFs for νcut

∈ [1.5, 3.5] lie on top of each other cf. Fig. 3.
(iv) This self-similar behaviour holds for a very wide range of

(�m, σ 8) values, and we find a simple quadratic dependence of the
amplitude of the rescaled 2PCFs on σ 8(�m/0.3)α , while the slope
of the rescaled 2PCFs has negligible dependence on �m and σ 8,
cf. Figs 8–10. A fitted model to predict the peak 2PCF for any
chosen �m and σ 8 is given in equation (13).
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Figure 14. Rescaled 2PCFs for four smoothing scales, θ s = 1.0, 2.0, 2.5, and 3.0 arcmin (see label in each panel) for peak catalogues extracted from
convergence maps with added GSN that matches LSST specifications (σ int = 0.3, ngal = 40 arcmin−2). The various solid coloured lines correspond to peak
catalogues with different νcut thresholds (see legend in the upper left-hand panel), with νcut ∈ [1.5, 3.5] incremented in steps �νcut = 0.25. The grey thick
dashed lines show the fits to the rescaled 2PCFs for the same smoothing scales but without GSN.

(v) A pipeline is developed that combines the above three fitted
models for the convergence rms fluctuation, WL peak abundance,
and rescaled peak 2PCF, respectively, to predict the raw peak 2PCF
ξ (θ ; νcut) for νcut ∈ [1.5, 3.5] and any given �m and σ 8 with good
accuracy, cf. Fig. 12.

(vi) We found that the self-similarity of the peak 2PCF holds in
the presence of GSN and larger smoothing lengths, cf. Fig. 14.

The most important application of the results presented in this
work is in constraining the �m and σ 8 cosmological parameters.
As demonstrated above, the pipeline integrating the models for
WL peak abundance and self-similar rescaled 2PCFs is able to
reconstruct the raw, unrescaled, peak 2PCFs for various νcut values
with a typical accuracy of better than 6 per cent. Furthermore, we
have seen that the WL peak abundance and 2PCFs depend on very
different combinations of �m and σ 8, one with σ 8(�m/0.3)−0.638

and the other σ 8(�m/0.3)0.501. This indicates that a simultaneous
use of these statistics already holds the potential of breaking the
degeneracy between �m and σ 8 before including other cosmological
probes. Marian et al. (2013) found that the 2PCFs of high WL peaks
provide only weakly complimentary constraints on (�m, σ 8) when

combined with the peak abundance. In this work, we investigate the
2PCFs of WL peaks with intermediate heights and above, as well
as combining the 2PCFs from multiple peak catalogues in the form
of a rescaled 2PCF described by a single power law. The power law
describing the rescaled 2PCF may be more sensitive to cosmology
than the 2PCF of high peaks.

We note that the degeneracy direction of the peak abundance
of intermediate height peaks, which are studied in this paper, is
very different to that of low and high peaks, which has also been
observed in Liu et al. (2015a) and explained in Yang et al. (2011).
Therefore, using the counts of intermediate height peaks may be
complimentary to using the full peak abundance and could aid in
breaking the �m and σ 8 degeneracy.

Another potential application of our results is the generation
of mock WL peak catalogues. For a given input cosmological
model, the pipeline can be used to predict the WL peak counts
and 2PCFs as described above. Random realizations of peaks can
then be generated with the peaks arranged such that they have
the desired number density and spatial clustering. One technique
to do this is point process (see, e.g. Öztireli & Gross 2012, for
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some recent progress and applications). This is a Monte Carlo
approach where a candidate point (e.g. a WL peak) is placed in
a field, which is accepted if its inclusion into the field pushes the
measured 2PCF closer to the input one and rejected otherwise.
Point process is a well-developed and widely used technique to
generate point catalogues. In the WL peak case, the situation is
slightly more complicated, because the generated catalogue should
have peaks of different SNR (or ν values), which simultaneously
have the desired 2PCFs at different νcut values. We expect that the
good agreement between the rescaled peak 2PCFs will prove useful
in dealing with this issue, though a detailed investigation into this
interesting question will be left for a future work. The fast generation
of mock WL peak catalogues can be used for evaluating covariance
matrices and studying other cosmological quantities, such as voids
identified from WL peaks (Davies et al. 2018).

The proof-of-concept study in this work has also left various
possible further extensions of the analyses presented here. One
of the most important considerations for future WL surveys and
their cosmological applications is the effect of GSN. Using the all-
sky maps from T17, we have shown that (i) the inclusion of GSN
necessitates a larger smoothing length than used in the bulk of this
paper, θ s = 2-3 arcmin, to suppress its impact on the extracted
cosmological statistics, and (ii) with a suitable smoothing, the self-
similarity of the peak 2PCFs still holds for the cosmology used in
the T17 simulations. While we expect these conclusions to apply for
other cosmological models, Fig. 14 shows that the use of GSN and
larger θ s does indeed affect the slope of the rescaled peak 2PCF.
Therefore, in the presence of GSN, our fitted models need to be
re-analysed before it can be directly useful for cosmological tests.

Unfortunately, the 96 Z16 maps with varying cosmological
parameters have a relatively small size, at 3.5 × 3.5 deg2. Including
GSN in these maps and increasing the smoothing length will reduce
both the number of peaks in the maps and the dynamical range over
which the 2PCFs can be reliably studied. This consideration makes
a compelling case that larger convergence maps, constructed from
N-body simulations with larger boxes and varying cosmologies, are
a natural next step to re-calibrate our peak models so that they can
be readily applied for upcoming WL surveys. Again, we leave these
to a future, more comprehensive, study.

The planned larger simulations will have other applications as
well. For example, they will allow us to study low/intermediate WL
peaks and the high peaks, as well as other statistics such as the WL
shear power spectrum, simultaneously. It will also be possible to
look at source galaxies with a certain redshift distribution compared
to the currently idealized case with a single source redshift, zs =
1. Larger WL maps will also allow us to more accurately estimate
the errors on the 2PCFs, with large-scale modes properly included.
Furthermore, in future studies we will try methods of extracting WL
peaks that are more similar to approaches taken in observations,
such as starting with the shear field and adding GSN to this before
we then transform to the convergence field.

Finally, it will also be interesting to analyse the rescaled WL peak
2PCFs in cosmological models beyond �CDM. We can envisage
two possible scenarios here: the first is that the rescaled 2PCFs
may not be self-similar, which would offer a potentially strong
constraint on these models. Alternatively, the detailed properties
of the self-similarity in the 2PCFs may change, in the form of a
different amplitude or slope, which can also be used to test models
with observational data. Therefore, it will be important to consider
models that are expected to alter the large-scale clustering of matter.
These include the various dark energy models that may couple to
dark matter or have different equation-of-state w parameters. The

neutrino mass is another interesting possibility, as massive neutrinos
tend to dampen structure formation, which leaves signatures in the
WL peak abundance and 2PCF. Modified gravity models can also
be potentially tested since they generally introduce fifth forces on
cosmological scales, which modify the clustering of matter or even
the geodesics of photons. The studies of these topics will require
new simulations and dedicated effort and will be deferred for the
future.
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APPENDI X A : PARTI TI ONI NG AN ALL-SK Y
MAP INTO SMALLER NON-OV ERLAPPI NG
MAPS

The T17 maps are all-sky maps with a HEALPIX data structure, in
which pixels are stored on the surface of a sphere. To simplify
our analysis, we used the flat-sky approximation and thus we
needed to partition the all-sky map into smaller, and preferably,
non-overlapping maps.

To achieve this, we capitalize on the HEALPIX data structure and
first define a set of coarser HEALPIX pixels with a resolution of Nside

= 4, which corresponds to a pixel area of roughly 215 deg2. We then
assign each of the (higher resolution) data pixels to the coarser pixel
that they are enclosed by. This is shown by the illustration on the
left in Fig. A1 (using Mollweide projection), where each coloured
patch shows a course pixel. Next, for each sub-region defined by
the coarse pixels, we define a (flat) plane tangential to the centre of
the coarse pixels and project the data pixels on to that plane. We
then extract a square of 10 × 10 deg2 (centred on the centre of the
plane) from each plane giving us 184 10 × 10 deg2 flat maps. The
HEALPIX pixels that are projected on to the flat maps are converted
into regular square pixels, where we interpolate between HEALPIX

pixels for square pixels that overlap with multiple HEALPIX pixels.
The benefit of this approach is that there is no overlap between any
two maps as illustrated in the right-hand panel of A1.

We note that a
HEALPIX resolution of Nside = 4 actually gives 192 pixels;

however, due to the irregular shapes of HEALPIX pixels (which arises
from the requirement that all pixels have the same area), we find
that 8 pixels have to be discarded since they cannot enclose squares
of size 10 × 10 deg2.
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Figure A1. An illustration of our procedure of partitioning an all-sky map into smaller non-overlapping maps. We first tile the sky using a HEALPIX grid with
Nside = 4. This step is shown in the left-hand panel, with each coloured patch corresponding to a HEALPIX pixel. Then, we further extract a 10 × 10 deg2 map
from the centre of each HEALPIX pixel. The resulting square maps are shown as coloured patches in the right-hand panel. The white space between the patches
shows that our small maps are non-overlapping. Each small square patch is then projected on to a plane tangential to its centre, giving us a 10 × 10 deg2 flat
map.

APPENDIX B: BIASED 2 PCF ESTIMATION
FOR SMALL MAPS

Estimation of 2PCFs is straightforward in idealized situations. The
2PCF, ξ (r), characterizes the excess probability of finding a pair of
tracers in two volume elements, dVi and dVj, that are separated by
a distance r:

dPij (r) = n̄2 [1 + ξ (r)] dVidVj , (B1)

where n̄ represents the expected tracer number density. In N-body
simulations with periodic boundary conditions, as an example, n̄ is
the known mean number density and so the excess probability dPij

can be evaluated by counting the number of pairs that are separated
by a distance r − �r to r + �r and comparing that against n̄2. In
realistic situations, n̄ is not always known – this can, for example
be due to the geometry, mask, fibre collision, and redshift failure in
a galaxy redshift survey, or the small map size with boundaries in
our WL peak catalogues. The uncertainty in the expected number of
tracers in a given volume can cause biased 2PCF estimations. It is
known that, for examples, the Peebles & Hauser (1974) estimator

ξPH(θ ) =
(

NR

ND

)2 DD(θ )

RR(θ )
− 1, (B2)

and the Davis & Peebles (1983) estimator

ξDP(θ ) = 2
NR

ND

DD(θ )

DR(θ )
− 1, (B3)

have errors that depend to the first order on the uncertainty of the
expected tracer number density. On the other hand, the Hamilton
(1993) and the Landy & Szalay (1993) estimators have errors, which
are second order in this uncertainty and are more commonly used.
In the above, ND and NR are the numbers of data and random points,
and DD, DR, and RR are the numbers of data–data, data–random,
and random–random pairs in bins θ ± δθ , respectively.

The Landy–Szalay estimator is given by,

ξLS(θ ) = 1 +
(

NR

ND

)2 DD(θ )

RR(θ )
−

(
NR

ND

)
DR(θ )

RR(θ )
. (B4)

When analysing n maps, there are n different ND, DD, and DR
values, that is one per map (NR and RR can be taken as constants
since the same random catalogue can be used for each map). We
checked that our results are stable to a change in the number of
randoms used.

Given the expression of equation (B4), there are two possible
ways to calculate the mean 2PCF, 〈ξ〉, where 〈 · 〉 denotes the mean

value over the n maps, given, respectively, by

〈ξLS(θ )〉1 =
〈

1 +
(

NR

ND

)2 DD

RR
−

(
NR

ND

)
DR

RR

〉
, (B5)

and

〈ξLS(θ )〉2 = 1 +
( 〈NR〉

〈ND〉
)2 〈DD〉

〈RR〉 −
( 〈NR〉

〈ND〉
) 〈DR〉

〈RR〉 , (B6)

where we have dropped the θ dependence of DD, DR, and RR to
lighten the notations. For equation (B5), we calculate n 2PCFs from
the n maps and take the mean value. For equation (B6), we first
calculate the mean over all maps of ND, DD, and DR, and then use
these mean values to calculate the mean 2PCF. In general, these two
approaches do not give identical results, that is

〈ξLS(θ )〉1 �= 〈ξLS(θ )〉2. (B7)

Naively, it seems natural to calculate the mean 2PCF using equa-
tion (B5) – after all, if we had only a single map, we would use this
formula (excluding the outer 〈 · 〉) to estimate the 2PCF. However,
we found that this approach actually leads to biased estimates when
the number of tracers varies considerably between the different
maps. This is particularly the case when the number of peaks in a
catalogue is low, and the effect is particularly strong for peaks with
high ν values, for which the number density is low, and for small
maps, such as the 3.5 × 3.5 deg2 ones.

To see this point, we compare these two approaches as follows.
First, we split each of the 184 T17 maps, whose size is 10 × 10 deg2,
into four 5 × 5 deg2 maps and nine 3.3 × 3.3 deg2 maps, which give
us in total 184, 736, and 1656 maps of the three sizes, respectively.
Then, using, respectively, equations (B5) and (B6), we calculate the
mean 2PCF for the three different maps sizes, and the results are
shown in Fig. B1.

Fig. B1 clearly shows that, as the T17 maps are split into
progressively smaller sections, the mean 2PCF calculated using
equation (B5) drops in amplitude, whereas using equation (B6) leads
to a constant amplitude. The difference between the two approaches
is small for the 10 × 10 deg2 maps and only becomes significant
for the smaller maps. This implies that the bias from equation (B5)
depends on the map size, or more exactly the number of tracers
used for the 2PCF estimation. We have performed similar tests for
3D galaxy 2PCFs and found a similar bias effect when using small
box sizes. Finally, the mean 2PCFs from equation (B6) for the
different map sizes do not line up exactly, which is due to some
pairs being lost at the sub-map boundaries as large maps are split up
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Figure B1. Mean 2PCFs calculated using equations (B5) (dashed) and
(B6) (solid) for maps of size 10 × 10 deg2 (blue), 5 × 5 deg2 (orange), and
3.3 × 3.3 deg2 (green).

into smaller maps. We checked for this and found that the inclusion
of cross sub-map pairs restores the original 2PCFs.

Physically, the reason why equation (B5) leads to biased 2PCF
estimations is that the number of WL peaks per map is small and
this translates into a large uncertainty in the mean tracer number
density when estimated individually for each map. Even though
this uncertainty enters the 2PCF estimation only at second order
for the Landy–Szalay estimator, it can still strongly affect the latter.
In contrast, equation (B6) essentially treats the n maps as a single
(combined) one, for which the uncertainty in the expected mean
peak number is small.

The biased 2PCF estimation using the Landy–Szalay estimator
caused by the small tracer number is important for this study,
since the WL maps from the Z16 simulations have a map size
of 3.5 × 3.5 deg2, which is in the regime where the biasing effect is
strong. As a result, in this paper we calculate the mean 2PCF using
equation (B6).

APPENDIX C : ERROR ESTIMATES

For each of the Z16 cosmologies, we used the N = 512 3.5 × 3.5 deg2

maps to evaluate the mean 2PCF 〈ξ〉. We estimate the standard error
for 〈ξ〉 using the jackknife method by calculating N − 1 mean values
from sequentially removing individual maps from the sample and
taking the standard deviation of the N − 1 means from the 512
maps. However, we found the error to be significantly smaller than
expected, of roughly < 1 per cent of 〈ξ〉 itself. On the other hand,
when repeating the same practice on 512 3.5 × 3.5 deg2 maps
extracted from the T17 all-sky map, we found that the standard
errors were larger and more reasonable, of roughly 2–3 per cent of
the mean 2PCF.

This discrepancy in the magnitudes of the standard errors in the
two different suites of maps is likely caused by the way in which
the multiple convergence maps were generated. In the Z16 case, the
512 maps were generated from multiple lines of sight by shifting,
reorienting, and tiling a single simulation box of size 240 h−1Mpc,
which means that the scatter in the different maps is likely to contain
only an error component representing the line-of-sight variation. In
contrast, the T17 maps were all-sky maps generated using much
larger boxes with minimal repetition of structures along the lines of
sight, which means that these maps better sample the variation due

Figure C1. The mean 2PCFs of 512 3.5 × 3.5 deg2 maps extracted from
the T17 all-sky map for peak catalogues with νcut ∈ [1.5,3.5]. The shaded
regions show the jackknifed error bars.

to large-scale modes. The additional source of variance in the T17
maps can explain the increase in their measured standard error.

In order to have a more realistic estimate of the standard error
associated to the Z16 maps, we extract 512 3.5 × 3.5 deg2 maps
from the T17 all-sky map and use jackknife to find the error of
the mean 2PCFs, 〈ξ〉. For illustration purposes, the resulting 〈ξ〉
and their errors for a few values of νcut are shown in Fig. C1 as,
respectively, lines and shaded regions.

We then take this relative error as our estimate of the standard
error for the mean 2PCFs from the Z16 maps, as a way to
(approximately) include the contributions to the error from large-
scale modes.

The above estimate of the error associated to the Z16 maps is
likely to be an underestimate since the estimated error corresponds
to the case when each of the 512 Z16 maps would have been obtained
from a different N-body simulation. However, this is not the case
since all the Z16 maps were obtained from the same simulation.
Thus, the errors used in this paper serve only as a way to gain rough
indications of the quality of our models for the WL peak statistics,
which we present as a proof of concept. In a future work, we plan
to run a suite of large simulations similar to those used by T17,
for different cosmological models, to further study the self-similar
properties of the rescaled peak 2PCFs.

A P P E N D I X D : TH E I N D E P E N D E N C E O F
SELF-SI MI LARI TY ON THE ν DEFI NI TI ON

In equation (6) we choose to define the SNR, ν, in terms of a
cosmology-dependent rms convergence, σ , which is analytically
parametrized through a simple dependence on (�m, σ 8), as ex-
emplified in Fig. 5. Besides having a readily predictable σ , this
approach has the added benefit of allowing us to more naturally
define the amplitude of WL peaks for a given cosmology relative
to its own convergence rms, bearing in mind that the wide coverage
of cosmological parameters means that the σ values can vary by a
factor of a few across the Z16 maps; cf. Fig. 5.

One can argue that given an observational WL map, the value of
σ receives contributions from both the physical convergence rms
and the GSN, and that the actual value of σ as measured from such
noisy maps is a natural choice that can be used to define ν. Such is
the logic followed in Section 6 where we analysed the rescaled peak
2PCFs in the GSN-added maps. Alternatively, one may argue that
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Figure D1. The same as Fig. 8, except only the cosmological models shown as orange points in Fig. 4 are plotted and the definition for ν is changed from
equation (6) to ν = (κ − μ)/σ GSN where σGSN = 0.013 for all models.

in real observations we do not necessarily know the true cosmology,
but we do understand the survey specifications well enough to know
the expected noise level. This leads to another natural way to define
ν, namely by using σ ≡ σ GSN. Given this flexibility in ν definition,
we would like to check that the self-similar behaviour of the 2PCFs
for the resulting peak catalogues is not affected by it. This is done in
Fig. D1, which is similar to Fig. 8 but for a subset of cosmological
models (the ones represented by the orange symbols in Fig. 4), and
where ν is defined as ν = (κ − μ)/σ GSN with σ GSN = 0.013, which
corresponds to the rms of a GSN only map smoothed with θ s = 1
arcmin, is used for all models.

We find that the cosmology-dependent description of WL peak
amplitude results in a (marginal) improvement of the self-similarity
of the 2PCFs for all cosmologies (shown in Fig. 8) compared to
using a σ definition that is constant across all cosmologies, which
is shown in Fig. D1. It can be seen that the self-similarity of the

2PCFs worsens notably for some of the panels, which correspond to
models with more extreme (�m, σ 8) values. This is not surprising
because, as mentioned above, the models studied here vary wildly
in their σ values and by using a constant σ GSN to define ν one
is essentially selecting very different peak populations in them –
in the more extreme models the peaks that end up being selected
do not possess the self-similarity (remember that this property is
present only for a limited range of peak heights). Hence, by using
the cosmology dependent form of ν in equation (6), the 2PCF is self-
similar for a larger range of cosmologies. However, if one focuses
on the more realistic (�m, σ 8) parameters, then using a constant
σ GSN to define ν should not affect the potential of the rescaled peak
2PCF as a cosmological probe.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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