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Abstract

This paper investigates thermal convection in an anisotropic bidisperse

porous medium. A bidisperse porous medium is one which possesses the

usual pores, but in addition, there are cracks or fissures in the solid skele-

ton and these give rise to a second porosity known as micro porosity. The

novelty of this paper is that the macro permeability and the micro perme-

ability are each diagonal tensors but the three components in the vertical

and in the horizontal directions may be distinct in both the macro and

micro phases. Thus, there are six independent permeability coefficients.

A linear instability analysis is presented and a fully nonlinear stability

analysis is inferred. Several Rayleigh number and wave number calcula-

tions are presented and it is found that novel cell structures are predicted

which are not present in the single porosity case.

1 Introduction

Porous materials which have a double porosity structure are occupying signifi-
cant research attention. Such materials, which are also known as bidisperse or
bidispersive porosity media. contain normal pores as present in a single poros-
ity material, but the solid skeleton contains cracks or fissures which lead to a
second porosity which is known as a microporosity.

The fundamental theory for thermal convection in a bidisperse porous medium
was presented by Nield & Kuznetsov [1], and these writers further developed the
area in Nield & Kuznetsov [2, 3, 4, 5] and in Nield [6]. The theories proposed
by Nield and Kuznetsov are based upon independent velocity, temperature and
pressure fields in both the macro and micro phases.

Falsaperla et al. [7] and Gentile & Straughan [8] employed the Nield -
Kuznetsov theory, but they restrict attention to a single temperature field, T.
This theory still has independent velocity and pressure fields in both the macro
and micro phases and is thus still capable of analysing different behaviour in
both structures. For many classes of problem a single temperature field should
suffice. If it is known that widely different fluid and solid temperatures are
expected such as when a hot fluid is injected into a cold skeleton, cf. Rees et
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al. [9], then perhaps one should consider a theory with separate temperatures
in the solid and in the fluid macro and micro phases, cf. Nield & Kuznetsov [1],
Franchi et al. [10].

The single temperature theory has been further investigated by Franchi et
al. [11], Gentile & Straughan [12], and by Straughan [13, 14]. In particular,
Straughan [13, 14] analyses thermal convection in two types of horizontally
isotropic (transversely isotropic) bidisperse porous media. Bidisperse porous
media are increasingly important in the Chemical Engineering field, see e.g.
Enterria et al. [15], Huang et al. [16], Ly et al. [17], Said et al. [18] and
they can be man made designer materials and so it is advantageous to allow
fully anisotrpic permeabilities at both macro and micro levels. This is the
goal of this work. Both the macro and micro permeabilities are taken to be
diagonal tensors, but the entries in each are independent and thus there are six
permeability coefficients in total.

Thermal convection in anisotropic single porosity media has been intensely
studied, see e.g. Capone et al. [19], Harfash [20], Harfash & Hill [21], Karmakar
& Raja Sekhar [22], Kuznetsov & Nield [23], Nield & Kuznetsov [24], Rees
& Postelnicu [25], Rees & Barletta [26], Rees et al. [27, 28], Rees & Tyvand
[29]. Since many real rocks are anisotropic, see e.g. Fazelalani [30], Widarsono
et al. [31], this attention is understandable. However, thermal convection in
anisotropic bidisperse media has the potential to be much richer than the sin-
gle porosity case. It is worth pointing out that thermal effects in bidisperse
anisotropic porous media have applications in many important areas, see e.g.
in chemical engineering, Enterria et al. [15], Huang et al. [16], Ly et al. [17],
Said et al. [18]; in landslides, Borja et al. [32], Montrasio et al. [33], Scotto di
Santolo & Evangelista [34]; in gas storage in shale, Alnoaimi & Kovscek [35]; in
coal stockpiling, Hooman & Maas [36]; in hydraulic fracturing for natural gas,
Kim & Moridis [37]; in bone replacement technology, Svanadze & Scalia [38],
Zhou et al. [39]; in clinical applications, Dejaco et al. [40], Dufresne et al. [42];
in heat pipe technology, Lin et al. [43], Mottet & Prat [44]; and in many other
areas.

The goal in this paper is to present an analysis of linear instability and
global nonlinear stability for thermal convection in a fully anisotropic bidisper-
sive porous medium, in the sense that the macro and micro permeabilities may
be different in the vertical direction, and in each of the horizontal directions.
Details of the linear instability analysis are given while the nonlinear stability
results are inferred. The global nonlinear stability boundary is found to be the
same as the linear instability one and so our results are optimal and demonstrate
that the linear theory captures correctly the physics of the onset of convection.

2 Governing equations

Throughout we follow Nield & Kuznetsov [1] and employ a sub or superscript
f to denote the macro phase whereas a sub or superscript p indicates the micro
phase. We use standard indicial notation throughout.

2



Let the permeability tensors in the macro and microphases be Kf
ij and Kp

ij ,
let µ be the dynamic viscosity of the saturating fluid, and define the tensors
Mf

ij and Mp
ij by

Mf
ij = µ(Kf

ij)
−1, Mp

ij = µ(Kp
ij)

−1. (1)

In this work Kf
ij and Kp

ij are diagonal tensors of form

Kf =





Kf
11

0 0

0 Kf
22

0

0 0 Kf
33



 Kp =





Kp
11

0 0
0 Kp

22
0

0 0 Kp
33



 (2)

The tensors Mf
ij and Mp

ij take the form

Mf =





a11 0 0
0 a22 0
0 0 a33



 Mp =





b11 0 0
0 b22 0
0 0 b33



 (3)

The governing equations for thermal convection in an anisotropic bidisper-
sive porous medium then have the same form as (2.6), (2.7) of Straughan [14],
although the forms for Mf and Mp are different. Thus, the basic equations are

−Mf
ijU

f
j − ζ(Uf

i − Up
i )− pf,i + ρFαgTki = 0, Uf

i,i = 0 ,

−Mp
ijU

p
j − ζ(Up

i − Uf
i )− pp,i + ρFαgTki = 0, Up

i,i = 0 ,

(ρc)mT,t + (ρc)f (U
f
i + Up

i )T,i = κ∆T.

(4)

As in Straughan [14], Uf
i , U

p
i are the velocities in the macro and micro pores,

pf , pp are the pressures in the macro and micro pores, ζ is an interaction coeffi-
cient due to the macro and micro pores, ρF , α, g are a relative density, coefficient
of thermal expansion, and gravity. The terms (ρc)m and the thermal conduc-
tivity κ have form

(ρc)m = (1− φ)(1 − ǫ)(ρc)s + φ(ρc)f + ǫ(1− φ)(ρc)p ,

κ = (1− φ)(1 − ǫ)κs + φκf + ǫ(1− φ)κp
(5)

where c denotes specific heat at constant pressure, s denotes the solid skeleton,
φ is the micro porosity and ǫ is the macro porosity.

We suppose the bidisperse porous material is contained in the horizontal
layer {(x, y) ∈ R

2} × {0 < z < d} and the boundary conditions are

Uf
3
= 0, Up

3
= 0, on z = 0, d, T = TL, z = 0, T = TU , z = d, (6)

for constants TL > TU .
The basic steady conduction solution to (4) and (6) has form

Ūf
i ≡ 0, Ūp

i ≡ 0, T̄ = −βz + TL , (7)
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where β = (TL − TU )/d is the temperature gradient. Our aim is to investigate
the instability and nonlinear stability of this solution.

Introduce the perturbation variables {uf
i , u

p
i , θ, π

f , πp} to the base solution

{Ūf
i , Ū

p
i , T̄ , p̄

f , p̄p}. We define the variables ω, λ, mα, sα, α = 1, 2, by

b33 = ωa33, λ =
ζ

a33
, m1 =

a11
a33

, m2 =
a22
a33

, s1 =
b11
b33

, s2 =
b22
b33

.

(8)

Introduce the tensors Df
ij and Dp

ij as

Df
ij =





m1 0 0
0 m2 0
0 0 1



 Dp
ij =





s1 0 0
0 s2 0
0 0 1



 (9)

Define the time, velocity, pressure and temperature scales as

T =
(ρc)md2

κ
, U =

κ

(ρc)fd
, P = da33U, T ♯ = U

√

a33βd2

kρFαg
,

where k = κ/(ρc)f . In addition, the Rayleigh number Ra = R2, is

R2 =
βd2ρFαg

ka33
. (10)

(Note that the non-dimensionalization is necessarily different from that of Straughan
[14]).

The fully nonlinear non-dimensional perturbation equations governing the
behaviour of the variables uf

i , u
p
i , θ, π

f and πp are then found to be

Df
iju

f
j + λ(uf

i − up
i ) = −πf

,i +Rθki , uf
i,i = 0 ,

ωDp
iju

p
j + λ(up

i − uf
i ) = −πp

,i +Rθki , up
i,i = 0 ,

θ,t + (uf
i + up

i )θ,i = R(wf + wp) + ∆θ ,

(11)

where wf = uf
3
, wp = up

3
. Equations (11) hold in the domain {(x, y) ∈ R

2} ×
{0 < z < 1} × {t > 0}. We suppose the perturbation solution satisfies a plane
tiling periodicity in the (x, y) directions, and we denote the periodicity cell by
V . The boundary conditions are

wf = wp = θ = 0, on z = 0, 1. (12)

3 Thermal convection

In Straughan [13], pp. 4–6, it is shown that for a system of equations more
general than (11), (12), exchange of stabilities holds and the global nonlinear
stability threshold for R is the same as the one obtained by linear instability
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theory. Thus, we employ this result for (11), (12), and hence the nonlinear
stability boundary may be obtained by ignoring the θ,t and nonlinear terms
in (11)5. Full details of the proof of equivalence of the linear instability and
nonlinear stability boundaries is given in Straughan [13], pp. 4–6.

It is now advantageous to write out explicitly equations (11). Thus, let
uf = (uf , vf , wf ) and let up = (up, vp, wp). In this section we dispense with
the comma notation for a derivative and denote partial derivatives with respect
to x, y or z by a subscript x, y or z. For example, πf

x = ∂πf/∂x, or πf
xz =

∂2πf/∂x∂z, etc. Then, equations (11)1−4 and the reduced form of (11)5 after
dropping θ,t and the nonlinear terms become

m1u
f + λuf − λup = −πf

x , m2v
f + λvf − λvp = −πf

y , (13)

ωs1u
p + λup − λuf = −πp

x , ωs2v
p + λvp − λvf = −πp

y , (14)

and

wf + λwf − λwp = −πf
z +Rθ , ωwp + λwp − λwf = −πp

z +Rθ , (15)

and
uf
x + vfy + wf

z = 0 , up
x + vpy + wp

z = 0 , (16)

together with
Rwf +Rwp +∆θ = 0. (17)

Define M and S by

M = m1s1ω + λ(ωs1 +m1), S = ωm2s2 + λ(ωs2 +m2).

We then solve equations (13) for uf and up and we solve equations (14) for vf

and vp to see that

uf =
1

M

[

−(ωs1 + λ)πf
x − λπp

x

]

, up =
1

M

[

−(m1 + λ)πp
x − λπf

x

]

,

vf =
1

S

[

−(ωs2 + λ)πf
y − λπp

y

]

, vp =
1

S

[

−(m2 + λ)πp
y − λπf

y

]

.

(18)

One now differentiates equations (18) with respect to z and likewise one differen-
tiates equations (15) with respect to x and y. Eliminate the terms πf

xz , π
p
xz, π

f
yz

and πp
yz between the results to find

uf
z =

[ωs1(1 + λ) + λ

M

]

wf
x +

[λω(1− s1)

M

]

wp
x −Rθx

(ωs1 + 2λ

M

)

(19)

and

up
z =

[ωm1 + λ(m1 + ω)

M

]

wp
x +

[λ(1 −m1)

M

]

wf
x −Rθx

(m1 + 2λ

M

)

(20)

and

vfz =
[ωs2 + λ(1 + ωs2)

S

]

wf
y +

[λω(1 − s2)

S

]

wp
y −Rθy

(ωs2 + 2λ

S

)

(21)
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and finally

vpz =
[ωm2 + λ(m2 + ω)

S

]

wp
y +

[λ(1−m2)

S

]

wf
y −Rθy

(m2 + 2λ

S

)

. (22)

Now differentiate equations (19) - (22) to form the quantities uf
zx, v

f
zy, u

p
zx

and vpzy and use the incompressibility conditions (16) to see that

uf
zx + vfzy = −wf

zz , up
zx + vpzy = −wp

zz . (23)

Upon substitution of the relevant forms for uf
zx, v

f
zy , u

p
zx and vpzy into (23) we

arrive at the equations

−wf
zz =wf

xx

[ωs1(1 + λ) + λ

M

]

+ wp
xx

[λω(1− s1)

M

]

−Rθxx

(ωs1 + 2λ

M

)

+ wf
yy

[ωs2 + λ(1 + ωs2)

S

]

+ wp
yy

[λω(1 − s2)

S

]

−Rθyy

(ωs2 + 2λ

S

)

(24)
and

−wp
zz =wf

xx

[λ(1 −m1)

M

]

+ wp
xx

[m1ω + λ(m1 + ω)

M

]

−Rθxx

(m1 + 2λ

M

)

+ wf
yy

[λ(1−m2)

S

]

+ wp
yy

[m2ω + λ(ω +m2)

S

]

−Rθyy

(m2 + 2λ

S

)

(25)
These equations coupled with (17) yield a system of three equations for wf , wp

and θ. One now employs normal modes in wf , wp and θ with forms such as
wf = ŵf sinnπz exp(σt + ilx+ imy) where ŵf is a constant and we may take
σ = 0.

This leads to the system of equations

c11ŵ
f + c12ŵ

p − c13Rθ̂ = 0,

c21ŵ
f + c22ŵ

p − c23Rθ̂ = 0,

Rŵf +Rŵp −Hθ̂ = 0,

(26)

where
H = n2π2 + l2 +m2,
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and where

c11 = n2π2 + l2
[ωs1(1 + λ) + λ

M

]

+m2

[ωs2 + λ(1 + ωs2)

S

]

,

c12 = l2
[λω(1 − s1)

M

]

+m2

[ωλ(1− s2)

S

]

,

c13 = l2
[ωs1 + 2λ

M

]

+m2

[ωs2 + 2λ

S

]

,

c21 = l2
[λ(1 −m1)

M

]

+m2

[λ(1 −m2)

S

]

,

c22 = n2π2 + l2
[ωm1 + λ(m1 + ω)

M

]

+m2

[ωm2 + λ(ω +m2)

S

]

,

c23 = l2
[m1 + 2λ

M

]

+m2

[m2 + 2λ

S

]

.

(27)

We require a zero determinant for (26) and this leads to the expression for
R2,

R2 =
H(c11c22 − c12c21)

[c11c23 + c22c13 − c21c13 − c23c12]
. (28)

The critical Rayleigh number is found by minimizing R2 in n2, l2 and m2. One
may show that the numerator is greater than or equal to zero and we have also
shown that the denominator is strictly positive. For all the computations we
have performed, the minimum has been achieved for n = 1.

The next section discusses numerical results for the minimization of R2 in l
and m with R2 given by (28) with n = 1.

4 Numerical results and conclusions

4.1 One porosity

In this section we report numerical solutions for the minimization of R2 given
by (28). However, it is instructive to recollect results for the thermal convection
problem in a single porous material when the anisotropic permeability is due
to a diagonal permeability tensor of form Kij = diag {K11,K22,K33}. This
problem was analysed in detail by Kvernvold & Tyvand [45]. If we write Mij =
µ(Kij)

−1 and set Mij = diag (a11, a22, a33) then for a single porosity material
the governing equations are

Mijvj = −p,i + αgρFTki, vi,i = 0, T,t + viT,i = κ∆T. (29)

With the analogous boundary conditions to (12) one may show exchange of
stabilities holds and so the stability problem is governed by the system of per-
turbation equations

Dijuj = −π,i +Rθki, ui,i = 0, 0 = Rw +∆θ, (30)
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whereDij = diag (m1,m2, 1),m1 = a11/a33, m2 = a22/a33, andR2 = βd2αgρF /κa33
is the Rayleigh number. One shows from (30) that R2 is given by

R2 = (π2 + l2 +m2)

[

1 +
π2

(

l2

m1

+ m2

m2

)

]

. (31)

As noted by Kvernvold & Tyvand [45], when m1 = m2, R
2 depends only on

a2 = l2 + m2 and then the critical wave number and Rayleigh number values
are given by

ac = πm
1/4
1

, Rac = π2(1 +
√
m1)

2. (32)

Suppose 0 < m1 < m2. By differentiating (31) with respect to l and as-
suming m = 0 one sees that on the m = 0 boundary R2 has a minimum
when l2 = π2

√
m1 and when R2

min = π2(1 +
√
m1)

2. Then, for m 6= 0,
m2/m2 < m2/m1 and so 1/(l2/m1 + m2/m2) > 1/(a2/m1). Therefore, from
(31),

Ra = R2 > (π2 + a2)
(

1 +
π2m1

a2

)

= Ra1.

From (32) we know the minimum value of Ra1 is π2(1 +
√
m1)

2 and so

Ra > π2(1 +
√
m1)

2.

Thus, when m1 < m2 the minimum value of Ra from (31) is given when m = 0
and when

l = πm
1/4
1

, Rac = π2(1 +
√
m1)

2. (33)

A similar argument may be applied with 0 < m2 < m1, noting then for
l 6= 0, 1/(m2/m2 + l2/m1) > 1/(a2/m2) and one may deduce

Ra ≥ (π2 + a2)
(

1 +
π2m2

a2

)

= Ra2.

The minimum of Ra2 is when l = 0 and m = πm
1/4
2

and Rac = π2(1 +
√
m2)

2.

Thus, when m1 = m2, a = m
1/4
1

π and Rac = π2(1+
√
m1)

2; when m1 < m2,

m = 0, l = m
1/4
1

π, Rac = π2(1 +
√
m1)

2; and when m2 < m1, l = 0 and
Rac = π2(1 +

√
m2)

2. Thus, when m1 < m2 instability is initiated with rolls
with axis in the y−direction. Let K = diag {K11,K22,K33} be the permeabil-
ity tensor in the one porosity case, then m1 < m2 is equivalent to K22 < K11

and so the horizontal permeability is larger in the x−direction and as a conse-
quence it is easier for the fluid to move in the x−direction rather than in the
y−direction. Thus, rolls aligned along the y−axis are to be expected physically.
When m2 < m1 instability is initiated with rolls aligned along the x−direction.
The condition m2 < m1 is equivalent to K11 < K22 and with the horizontal per-
meability being greater in the y−direction one expects movement in the y and z
directions and, therefore, rolls along the x−axis are expected physically. These
are results of Kvernvold & Tyvand [45], but they are important to understand
the bidisperse case studied here.
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4.2 Dual porosity

The case where m1 = m2 = s1 = s2 but ω = b33/a33 = Kf
33
/Kp

33
6= 1 is

analysed in Straughan [13]. The more general case, m1 = m2, s1 = s2 but
m1 6= s1 and ω 6= 1 is covered in Straughan [14]. However, care must be taken
when comparing the results of those articles with the present one since the
Rayleigh number, Ra, and interaction parameter, λ, in those works differs from
the ones used here in (8) and (10).

The results for the minimization of R2 given by (28) over l and m are re-
ported in tables 1 - 12. Tables 1 and 2 take m1 = 10,m2 = 1, s1 = 0.1 and
s2 = 1 and vary ω with λ = 0.1 or 0.5. Tables 4 - 6 choose m1 = 0.1,m2 =
1, s1 = 10, s2 = 1 and vary ω with λ = 0.01, 0.1 and 0.5. In table 8 we set
m1 = 5,m2 = 0.9, s1 = 0.3, s2 = 1.1, λ = 0.1 and ω is varied. Tables 9 - 12 take
ω = 5, λ = 0.1 and we choose the same mα and sα values as in table 8 except
we vary m1,m2, s1 and s2 in turn to assess the effect each variable has upon the
Rayleigh number, Ra, and the critical wavenumbers l and m.

In the tables the numbers x̂ and ŷ are the wavelength in the x and y directions
given by x̂ = 2π/l and ŷ = 2π/m. When ŷ/x̂ = 0 then l = 0, the solution is
a function of y and z and so the convection cells are rolls in the x−direction.
When ŷ/x̂ → ∞ then m = 0 and the solution is a function of x and z. In this
case the cells are rolls in the y−direction.

It is useful to recollect the relations

ω =
b33
a33

=
Kf

33

Kp
33

, m1 =
Kf

33

Kf
11

, m2 =
Kf

33

Kf
22

, s1 =
Kp

33

Kp
11

, s2 =
Kp

33

Kp
22

. (34)

4.3 Relatively large values of m
α

In both tables 1 and 2 we observe that for ω small enough the critical value of l
is zero and so the convection patterns are rolls with the axis in the x−direction.
As ω increases there is a transition to where the convection patterns become
cells with non-zero l and m values. Once ω increases further eventually the
convection patterns become rolls along the x−axis again. The transition values
depend on ω, but also on what value the interaction parameter λ has. For
λ = 0.1, the smaller value, we see that the first transition from a roll to a cell is
for ω = 0.04, whereas the transition back to a roll occurs when ω = 10.00; the
transition values of ω are generally reported to 2 decimal places.

The equivalent transition values for rolls to cells and then from cells to rolls
when λ = 0.5 occur for ω = 1.00 and ω = 10.00, respectively. The maximum
value of ŷ/x̂ when λ = 0.1 occurs for ω near 0.3, while for λ = 0.5 the maximum
is for ω near 2.5, although the values at this maximum differ a lot. When
ω = 0.3 and λ = 0.1 we see that ŷ/x̂ = 1.279 whereas when ω = 2.5 and λ = 0.5

we note ŷ/x̂ = 0.310. Since ω = Kf
33
/Kp

33
it means that when this ratio is

small or it is large rolls in the x−direction are found. For the parameters in
tables 1 and 2 one has Kf

33
= Kf

22
= 10Kf

11
and Kp

33
= Kp

22
= 0.1Kp

11
, thus

Kf
22

>> Kf
11

whereas Kp
22

<< Kp
11
. Thus, when ω is small or large it appears
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that the macro permeability is playing a leading role since the larger value of
Kf

22
allows the fluid to move easier in the y and z directions creating rolls along

the x−axis. When ω has values closer to 1 then Kf
33

and Kp
33

are closer and it
would appear that the macro permeability favours convective movement in the y
and z directions whereas the micro permeability is tending to create convective
movement in the x and z directions. Thus, rolls are not predicted and a three-
dimensional cellular pattern is expected. We might expect a hexagonal pattern
(with generally elongated hexagonal cells), but the analysis given here cannot
confirm this.

To interpret the Rayleigh number effect physically we employ a different
measure because from (10) one observes that the Rayleigh number depends on

a33 and, consequently, invoking (1), (2) and (3) it depends on Kf
33
. Upon using

(10), (1), (2), (3) and (34), one observes that for fixed Kp
33
, we may write

Ra

ω
= C∆T, (35)

where the constant C is given by C = ρFαgK
p
33
/kµ, and ∆T = TL − TU . For

a fixed depth of layer the measure Ra/ω indicates the temperature difference
required to initiate convective overturning. Table 3 shows how Ra/ω varies with
different values of λ. One sees that as λ increases the equivalent Ra/ω values
increase indicating that the layer is more stable. This is to be expected since
the λ term is stabilizing and increasing Ra/ω means it is less easy for the layer
to initiate convective overturning.

From tables 1 and 2 we also note that as ω increases Ra/ω = C∆T decreases

substantially. Since ω = Kf
33
/Kp

33
we might expect increasing Kf

33
relative

to Kp
33

will increase the likelihood of convective overturning and so the layer
convects more easily as ω increases. This is precisely what is seen in tables 1
and 2.

4.4 Relatively small values of m
α

Tables 4 - 6 concentrate on another set of values for permeability ratiosm1,m2, s1
and s2, namely when m1 = 0.1, m2 = 1, s1 = 10 and s2 = 1. This means that
0.1Kf

11
= Kf

33
= Kf

22
and Kp

22
= Kp

33
= 10Kp

11
, and so Kf

11
>> Kf

22
and

Kp
22

>> Kp
11
. Here, we allow λ to take the values 0.01, 0.1 and 0.5 and we

analyse the effect of varying ω = Kf
33
/Kp

33
.

For all three cases of λ reported the qualitative pattern of convection struc-
ture is similar. When ω is small the critical value of l is 0 and so the solution
depends on y and z which corresponds to rolls aligned along the x−axis. As
ω increases the rolls disappear and both l and m are non-zero corresponding
to three - dimensional convection cells. Then for ω large enough the critical
value of m becomes zero and the solution depends on x and z which means the
cells transform to rolls aligned along the y−axis. The transition value for ω
when the x−axis rolls change to cells is ω = 0.10, ω = 0.10 and ω = 1.00, for
λ = 0.01, 0.1 and 0.5, respectively. The transition from the cell to rolls along

10



the y−axis occurs when ω = 1.83, ω = 2.69 and ω = 8.95, for λ = 0.01, 0.1 and
0.5, respectively.

It is noteworthy that the transition pattern is different with the values in
tables 4 - 6 to that observed with the values in tables 1 and 2. For the case
of tables 4 - 6 we have Kf

33
= Kf

22
<< Kf

11
and Kp

33
= Kp

22
>> Kp

11
. For the

transitions at the larger values of ω we have (all three cases of λ) Kf
33

> Kp
33
.

Thus,
Kf

11
>> Kf

22
= Kf

33
> Kp

33
= Kp

22
>> Kp

11
.

In this case we might expect the macro permeabilities to dominate. This would
mean the fluid finds it easier to move in the x−direction and the solution will
depend on x and z with rolls along the y−axis. This is precisely what we find
numerically as noted above for ω = 1.83, ω = 2.69 and ω = 8.95.

It appears trickier to interpret the transition for the smaller values of ω. In
this case we have Kf

33
= Kf

22
<< Kf

11
and Kp

33
= Kp

22
>> Kp

11
but for the

values of λ = 0.01 and 0.1, ω = 0.10 and ω = 0.10. Thus, in this situation, at
the transition

10Kf
22

= 10Kf
33

= 10Kp
11

= Kf
11

= Kp
22

= Kp
33
.

Hence,
Kf

22
= Kf

33
= Kp

11
<< Kf

11
= Kp

22
= Kp

33
.

The buoyancy force contribution in this case is determined from Kp
33

which is

much greater than the macro vertical permeability Kf
33
. Thus, the terms which

appear to dominate are Kp
22

and Kp
33
. This encourages motion in the y and z

directions and gives rise to solutions which are rolls aligned along the x−axis.
This is seen in tables 4 and 5 where l = 0 for ω ≤ 0.10. Thus, the micro
permeability appears to dominate the convection cell pattern.

For the value of λ = 0.5 as in table 6 the lower transition value for ω is
ω = 1.00. In this case at the transition we have the situation

Kf
11

= 10Kf
22

= 10Kf
33

= 10Kp
33

= 10Kp
22

= 100Kp
11
.

Thus,
Kf

11
>> Kf

22
= Kf

33
= Kp

33
= Kp

22
>> Kp

11
. (36)

Even though Kf
11

is the dominant permeability coefficient we see from table 6
that for ω ≤ 1.00 one has l = 0. To interpret this physically we note from
(36) that Kf

22
= Kp

22
and Kf

33
= Kp

33
and these are equal. Thus, the buoyancy

force is aided by the Kf
33

and Kp
33

permeabilities and the combined Kf
22

and
Kp

22
coefficients lead to convective motion in the y and z directions and thus

one finds l = 0 and rolls aligned with the x−axis. At the transition value of
ω = 1.00 we find Ra = 2π2, m = π, as may be confirmed by minimization of
R2 in (28), taking l = 0 and minimizing in m.

In all cases the critical Rayleigh number increases as ω increases. Table 7
shows how Ra/ω varies with ω for different values of λ. One observes that as
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λ increases, the ∆T threshold is increased. Since λ is a stabilizing term this is
expected physically and corresponds to the layer being less easy to convect.

Furthermore, from tables 4 - 6, as ω increases, Ra/ω decreases strongly
indicating that a small value of ∆T is required to initiate convective overturning.
Thus, increasing Kf

33
promotes convective overturning and effectively makes the

layer less stable. This effect is also observed in table 8.

4.5 Different m
α
, s

α
values

In table 8 we select m1 = 5, m2 = 0.9, s1 = 0.3 and s2 = 1.1, with λ = 0.1. We
show the variation of Ra, l and m as ω is varied. However, we include tables 9 -
12 to examine the effect of varying m1,m2, s1 and s2 in turn, keeping ω = 5 but
the other parameters as in table 8. The results display a complex relationship
between the macro and micro permeability values and the critical Rayleigh and
wave numbers.

Table 8 shows that the critical Rayleigh number increases with increasing ω.
For the mα and sα values chosen in table 8 we have

Kf
33

= 5Kf
11
, Kf

33
= 0.9Kf

22
, Kp

33
= 0.3Kp

11
and Kp

33
= 1.1Kp

22
.

Thus,
Kf

22
> Kf

33
>> Kf

11
and Kp

11
>> Kp

33
> Kp

22
. (37)

For the transition at the larger values of ω from table 8 we observe that when
ω ≥ 3.15 one finds l = 0. Since ω = Kf

33
/Kp

33
this means Kf

33
/Kp

33
≥ 3.15

and so Kf
33

>> Kp
33
. Thus, in this case, using (37) it appears that the macro

permeabilities are dominating the situation andKf
22

andKf
33

lead to the solution
being a function of y and z and so to rolls aligned along the x−axis with l = 0.
This is what is seen in table 8.

The transition at ω = 0.042 is somewhat akin to that discussed above for
table 6. At the transition value ω = 0.042 one has, coefficients to 2 decimal
places,

Kp
11

= 3.33Kp
33

= 3.67Kp
22

= 71.36Kf
22

= 79.29Kf
33

= 396.44Kf
11
. (38)

The Kp
11

permeability value is dominant. However, the numerical results in-
dicate l = 0 and rolls along the x−axis. However, from (38) we see that Kp

33

and Kp
22

are close together, as are Kf
22

and Kf
33
, with Kf

11
being much smaller.

Thus, it appears the y and z values of Kp and Kf are reinforcing each other
and ensuring the convective motion is in the form of a solution in y and z and
so rolls aligned along the x−axis. For values of ω between 0.042 and 3.15 there
is an interaction effect of both the macro and micro permeabilities which leads
to cells involving non-zero values of both l and m.
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4.6 Variation of m1 and m2

In table 9 ω is fixed at value 5, hence Kf
33

= 5Kp
33
. Also, m2 = 0.9, s1 = 0.3

and s2 = 1.1. Thus

0.9Kf
22

= Kf
33

= 5Kp
33

= 1.5Kp
11

= 5.5Kp
22
.

This means that
Kf

22
> Kf

33
> Kp

11
>> Kp

33
> Kp

22
. (39)

When m1 ≥ 2.20 it is seen numerically that l = 0 and rolls along the x−axis
form. This inequality on m1 means Kf

33
≥ 2.20Kf

11
so

Kf
22

> Kf
33

>> Kf
11
.

Since these values are larger than the micro permeability values, see (39), it
follows that the fluid moves in the macro pores in the y and z directions and
this is consistent with rolls aligned along the x−axis.

At the other transition in table 9, m1 ≤ 1.041. Inequalities (39) still hold but

now Kf
33

≤ 1.041Kf
11
, and Kf

22
≤ 1.157Kf

11
. From (39) Kp

11
>> Kp

33
> Kp

22
and

with the Kf
11

values now being close to or much smaller than the Kf
22

values the
solution switches to one depending on x and z, and so rolls along the y−axis
are witnessed. For m1 in the region (1.041,2.2) the macro and micro effects
counterbalance each other and three-dimensional cells are found.

For table 10, Kf
33

= 5Kf
11
, Kf

33
= 5Kp

33
, Kp

33
= 0.3Kp

11
and Kp

33
= 1.1Kp

22
.

Thus,
Kf

33
= 5Kf

11
= 5Kp

33
= 1.5Kp

11
= 5.5Kp

22
.

Hence,
Kf

33
> Kp

11
>> Kf

11
= Kp

33
> Kp

22
. (40)

For the transition to x−rolls, m2 ≤ 2.095, or 5Kf
11

= Kf
33

≤ 2.095Kf
22
. There-

fore,

Kf
22

≥ 5

2.095
Kf

11
≈ 2.39Kf

11
.

Since from (40) Kf
33

dominates the buoyancy effect it appears Kf
33

and Kf
22

will
play the major role in determining solution structure and so this in turn will
depend on y and z and lead to x−rolls as seen in table 10.

For the next transition where y−rolls are seen, m2 ≥ 4.255. Hence, Kf
33

≥
4.255Kf

22
and Kf

33
= 5Kf

11
. This suggests the micro permeabilities also come

into play. Relations (40) still hold and so since Kp
11

>> Kp
22

we expect the
solution to depend on x and z and so y−rolls are found, as seen in table 10. For
m2 ∈ (2.095, 4.255) three-dimensional cells are observed according to table 10.

4.7 Variation of s1 and s2

In table 11 we haveKf
33

= 5Kp
33
, Kf

33
= 5Kf

11
, Kf

33
= 0.9Kf

22
and Kp

33
= 1.1Kp

22
.

This means
Kf

22
> Kf

33
>> Kf

11
.
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This favours the formation of x−rolls. The transition is when s1 ≥ 0.22. Thus,
we have

1.1Kp
22

= Kp
33

≥ 0.22Kp
11

and so
Kp

22
≥ 0.2Kp

11
.

This also favours the production of x−rolls. It should be observed, however,
that when s1 ≤ 0.21 the micro permeabilities are having a pronounced effect
and lead to the predicition of three-dimensional cells.

In table 12 the values are such that

Kf
33

= 5Kp
33

= 5Kf
11

= 0.9Kf
22

= 1.5Kp
11
.

Thus,
Kf

22
> Kf

33
> Kp

11
>> Kp

33
= Kf

11
.

This would suggest that the macro permeabilties are dominating convection,
Kf

33
>> Kp

33
, and since Kf

22
> Kf

33
one might expect x−rolls. This is seen in

table 12 providedKp
33

≤ 1.5Kp
22
. However, once Kp

33
> 1.5Kp

22
the micro perme-

ability effects become important and the solution transfers to three-dimensional
convection cells.

There are two special cases worth mentioning. The first is where a) s1 = s2
andmα vary, or where b)m1 = m2 and sα vary. In this case the solution behaves
as in the one porosity situation in that for case a) with m1 = m2 and then b)
with s1 = s2 the switch is from x−rolls to y−rolls without any intermediate
region where three-dimensional cells form, excepting for one special value where
the minimization depends only on a2 = l2 + m2. For example, if we take
s1 = s2 = 1, m2 = 0.9, λ = 0.1, ω = 3 when we select m1 = 0.9 and perform
the minimization we find Ra = 29.440 and a2 = 9.518. As another example,
take m1 = m2 = 1, s2 = 0.9, λ = 0.1, ω = 3. Then when s1 = 0.9 we find
Ra = 30.048 and a2 = 9.716.

In tables 9-11 one observes that for m1 ≥ 2.2, for m2 ≥ 4, 255 and for
s1 ≥ 0.22, respectively, then Ra and the appropriate non-zero value of m or l
do not change. This may be explained by inspection of (28) and taking l = 0
for the situation of tables 9 and 11 and m = 0 for table 10. It is seen in that
case that when m = 0 certain cij terms contain no m2 or s2, or when l = 0, cij
terms contain no m1 or s1.

We conclude that the fully anisotropic bidispersive problem contains many
interesting effects which await experimental observation. What is now very
much required are numerical values for real materials for the interaction coef-
ficient ζ and the macro and micro permeability coefficients. An analysis akin
to that of Rees [46, 47] where he cleverly produced estimates for coefficients in
a local thermal non-equilibrium porous material would be very welcome in the
bidispersive case.
Acknowledgments This work was funded with the aid of a Leverhulme Emer-
itus Fellowship, no. EM-2019-022/9
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Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
3.108 0.01 310.8 0 3.142 ∞ 2.000 0
3.948 0.04 98.7 0 3.142 ∞ 2.000 0
3.975 0.041 96.951 0.431 3.112 14.569 2.019 0.139
4.082 0.045 90.711 0.921 3.001 6.819 2.093 0.307
4.210 0.05 84.2 1.238 2.879 5.075 2.182 0.430
5.319 0.1 53.19 2.093 2.179 3.002 2.884 0.961
8.802 0.3 29.34 2.162 1.690 2.907 3.718 1.279
11.759 0.5 23.518 2.010 1.812 3.127 3.470 1.111
17.666 1 17.666 1.736 2.186 3.619 2.874 0.794
34.203 5 6.841 0.868 2.987 7.236 2.104 0.291
37.953 9 4.217 0.321 3.125 19.578 2.011 0.103
38.209 9.5 4.022 0.224 3.134 28.099 2.005 0.0714
38.395 9.9 3.878 0.100 3.140 62.832 2.001 0.0318
38.435 9.99 3.847 0.316 3.141 198.692 2.000 0.0101
38.440 10 3.844 0 3.142 ∞ 2.000 0
39.960 15 2.664 0 3.142 ∞ 2.000 0

Table 1: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, m1 = 10,m2 = 1,
s1 = 0.1, s2 = 1.

Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
8.278 0.1 82.777 0 3.142 ∞ 2.000 0
14.099 0.5 28.198 0 3.142 ∞ 2.000 0
19.739 1.0 19.739 0 3.142 ∞ 2.000 0
19.838 1.01 19.641 0.155 3.138 40.558 2.002 0.0494
20.226 1.05 19.262 0.339 3.123 18.528 2.012 0.109
21.607 1.20 18.006 0.616 3.079 10.206 2.041 0.200
24.073 1.50 16.049 0.822 3.025 7.642 2.077 0.272
27.519 2.0 13.759 0.919 2.990 6.835 2.100 0.307
30.353 2.5 12.141 0.925 2.986 6.791 2.104 0.310
32.733 3.0 10.911 0.900 2.993 6.981 2.099 0.301
39.369 5.0 7.874 0.723 3.048 8.688 2.061 0.237
46.054 9.0 5.117 0.285 3.128 22.077 2.008 0.091
47.061 9.99 4.711 0.0316 3.142 198.692 2.000 0.0101
47.070 10.0 4.707 0 3.142 ∞ 2.000 0
50.445 15.0 3.363 0 3.142 ∞ 2.000 0

Table 2: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.5, m1 = 10,m2 = 1,
s1 = 0.1, s2 = 1.
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ω Ra/ω (λ = 0.1) Ra/ω (λ = 0.5)
0.1 53.19 82.777
0.5 23.518 28.198
1 17.666 19.739
5 6.841 7.874
10 3.844 4.707

Table 3: Critical values of Ra/ω vs. ω for quoted values of λ. Here m1 =
10,m2 = 1, s1 = 0.1, s2 = 1.

Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
2.191 0.05 43.82 0 3.142 ∞ 2.000 0
3.844 0.1 38.44 0 3.142 ∞ 2.000 0
4.157 0.11 37.791 0.305 3.126 20.603 2.010 0.0975
5.340 0.15 35.6 0.653 3.062 9.627 2.052 0.213
8.914 0.3 29.713 1.145 2.811 5.490 2.235 0.407
12.090 0.5 24.18 1.421 2.488 4.421 2.525 0.572
15.829 1.0 15.829 1.703 1.749 3.690 3.592 0.974
16.993 1.5 11.329 1.811 1.000 3.469 6.283 1.820
17.191 1.8 9.551 1.845 0.285 3.406 22.077 6.483
17.196 1.82 9.448 1.847 0.158 3.403 39.738 11.679
17.199 1.83 9.398 1.847 0 3.401 ∞ ∞
17.215 1.9 9.061 1.846 0 3.404 ∞ ∞

Table 4: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.01, m1 = 0.1,m2 = 1,
s1 = 10, s2 = 1.

20



Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
4.220 0.05 84.4 0 3.142 ∞ 2.000 0
5.527 0.1 55.27 0 3.142 ∞ 2.000 0
5.778 0.11 52.527 0.214 3.134 29.296 2.005 0.0684
6.745 0.15 44.967 0.503 3.099 12.492 2.028 0.162
7.874 0.2 39.37 0.723 3.048 8.688 2.061 0.237
9.878 0.3 32.927 1.010 2.939 6.221 2.138 0.344
13.034 0.5 26.068 1.345 2.715 4.670 2.314 0.496
17.666 1.0 17.666 1.736 2.187 3.619 2.874 0.794
20.839 2.0 10.420 2.016 1.211 3.116 5.188 1.665
21.264 2.5 8.506 2.079 0.598 3.022 10.516 3.479
21.332 2.68 7.960 2.096 0.122 2.998 51.302 17.111
21.335 2.69 7.931 2.096 0 2.997 ∞ ∞
21.411 3.0 7.137 2.092 0 3.004 ∞ ∞

Table 5: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, m1 = 0.1,m2 = 1,
s1 = 10, s2 = 1.

Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
14.099 0.5 28.198 0 3.142 ∞ 2.000 0
19.739 1.0 19.739 0 3.142 ∞ 2.000 0
19.838 1.01 19.642 0.158 3.138 39.738 2.002 0.0504
20.226 1.05 19.263 0.349 3.122 17.989 2.013 0.119
24.022 1.5 16.015 1.057 2.944 5.945 2.134 0.359
27.241 2.0 13.561 1.420 2.752 4.424 2.284 0.516
34.173 4.0 8.543 2.068 2.063 3.039 3.046 1.002
36.792 6.0 6.132 2.338 1.446 2.687 4.344 1.616
37.801 8.0 4.725 2.488 0.757 2.525 8.300 3.287
37.999 8.9 4.270 2.536 0.161 2.478 38.967 15.725
38.005 8.94 4.251 2.538 0.0548 2.476 114.715 46.329
38.007 8.95 4.247 2.538 0 2.476 ∞ ∞
38.015 9.0 4.224 2.537 0 2.476 ∞ ∞

Table 6: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.5, m1 = 0.1,m2 = 1,
s1 = 10, s2 = 1.
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ω Ra/ω (λ = 0.01) Ra/ω (λ = 0.1) Ra/ω (λ = 0.5)
0.05 43.82 84.4
0.1 38.44 55.27
0.5 24.18 26.068 28.198
1 15.829 17.666 19.739
2 8.618 10.420 13.561

Table 7: Critical values of Ra/ω vs. ω for quoted values of λ. Here m1 =
0.1,m2 = 1, s1 = 10, s2 = 1.

Ra ω Ra/ω l m x̂ ŷ ŷ/x̂
3.077 0.01 307.7 0 3.125 ∞ 2.011 0
4.002 0.042 95.286 0 3.140 ∞ 2.001 0
4.030 0.043 93.721 0.375 3.118 16.733 2.015 0.120
5.427 0.1 54.27 2.088 2.275 3.009 2.762 0.918
12.711 0.5 25.422 2.081 2.123 3.019 2.959 0.980
18.981 1 18.981 1.711 2.520 3.671 2.493 0.679
29.844 3 9.948 0.345 3.086 18.214 2.036 0.112
30.213 3.14 9.622 0.0447 3.103 140.496 2.025 0.0144
30.238 3.15 9.599 0 3.103 ∞ 2.025 0
31.057 3.5 8.873 0 3.101 ∞ 2.026 0
37.033 10 3.703 0 3.082 ∞ 2.039 0

Table 8: Critical values of Ra, l and m for quoted values of ω. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, m1 = 5.0,m2 = 0.9,
s1 = 0.3, s2 = 1.1.
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Ra m1 l m x̂ ŷ ŷ/x̂
17.489 0.1 2.040 0 3.080 ∞ ∞
24.570 0.5 2.587 0 2.428 ∞ ∞
31.020 1.0 2.903 0 2.164 ∞ ∞
31.490 1.041 2.922 0 2.150 ∞ ∞
31.501 1.042 2.916 0.195 2.154 32.232 14.960
31.534 1.045 2.892 0.446 2.173 14.085 6.482
32.039 1.1 2.519 1.578 2.495 3.981 1.596
33.299 1.5 1.305 2.790 4.816 2.252 0.468
33.524 2 0.533 3.048 11.790 2.062 0.175
33.533 2.15 0.251 3.083 25.033 2.038 0.0814
33.534 2.19 0.110 3.091 57.357 2.033 0.0354
33.534 2.2 0 3.093 ∞ 2.031 0
33.534 2.5 0 3.093 ∞ 2.031 0
33.534 10 0 3.093 ∞ 2.032 0

Table 9: Critical values of Ra, l and m for varying values of m1. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, ω = 5.0, m2 = 0.9,
s1 = 0.3, s2 = 1.1.

Ra m2 l m x̂ ŷ ŷ/x̂
19.573 0.1 0 2.132 ∞ 2.947 0
34.877 1 0 3.156 ∞ 1.991 0
46.420 2 0 3.585 ∞ 1.753 0
47.389 2.095 0 3.613 ∞ 1.739 0
47.440 2.1 0.0632 3.614 99.346 1.739 0.0175
55.494 3 1.495 3.417 4.202 1.839 0.438
61.055 4 2.851 2.057 2.204 3.055 1.387
61.421 4.25 3.335 0.405 1.884 15.515 8.235
61.421 4.255 3.353 0 1.874 ∞ ∞
61.421 5 3.353 0 1.874 ∞ ∞
61.421 10 3.353 0 1.874 ∞ ∞

Table 10: Critical values of Ra, l and m for varying values of m2. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, ω = 5.0, m1 = 5.0,
s1 = 0.3, s2 = 1.1.
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Ra s1 l m x̂ ŷ ŷ/x̂
30.169 10−4 0.947 2.628 6.638 2.391 0.360
30.225 10−3 0.954 2.631 6.587 2.388 0.363
30.708 0.01 1.009 2.662 6.224 2.361 0.379
32.904 0.1 1.019 2.873 6.167 2.187 0.355
33.522 0.2 0.451 3.061 13.945 2.053 0.147
33.531 0.21 0.300 3.079 20.944 2.041 0.097
33.534 0.22 0 3.093 ∞ 2.031 0
33.534 0.3 0 3.093 ∞ 2.031 0
33.534 1 0 3.093 ∞ 2.031 0
33.534 10 0 3.093 ∞ 2.031 0

Table 11: Critical values of Ra, l and m for varying values of s1. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, ω = 5.0, m1 = 5.0,
m2 = 0.9, s2 = 1.1.

Ra s2 l m x̂ ŷ ŷ/x̂
26.887 0.01 0 2.475 ∞ 2.538 0
28.058 0.1 0 2.657 ∞ 2.365 0
33.217 1 0 3.079 ∞ 2.040 0
34.582 1.5 0 3.128 ∞ 2.009 0
34.605 1.51 0.110 3.127 57.357 2.009 0.0350
34.692 1.55 0.293 3.120 21.425 2.014 0.0940
35.418 2 0.835 3.057 7.521 2.055 0.273
36.224 3 1.164 2.990 5.400 2.102 0.389
36.849 5 1.359 2.938 4.623 2.138 0.463
37.306 10 1.483 2.901 4.236 2.166 0.511
37.709 100 1.583 2.868 3.969 2.191 0.552

Table 12: Critical values of Ra, l and m for varying values of s2. The numbers
x̂ and ŷ represent the critical wavelengths. Here λ = 0.1, ω = 5.0, m1 = 5.0,
m2 = 0.9, s1 = 0.3.
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