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ABSTRACT

We perform simulations of giant impacts on to the young Uranus using smoothed particle
hydrodynamics (SPH) with over 100 million particles. This 100-1000 x improvement in
particle number reveals that simulations with below 107 particles fail to converge on even bulk
properties such as the post-impact rotation period, or on the detailed erosion of the atmosphere.
Higher resolutions appear to determine these large-scale results reliably, but even 108 particles
may not be sufficient to study the detailed composition of the debris — finding that almost
an order of magnitude more rock is ejected beyond the Roche radius than with 10° particles.
We present two software developments that enable this increase in the feasible number of
particles. First, we present an algorithm to place any number of particles in a spherical shell
such that they all have an SPH density within 1 per cent of the desired value. Particles in model
planets built from these nested shells have a root-mean-squared velocity below 1 per cent of
the escape speed, which avoids the need for long precursor simulations to produce relaxed
initial conditions. Secondly, we develop the hydrodynamics code SPH with interdependent
fine-grained tasking (SWIFT) for planetary simulations. SWIFT uses task-based parallelism and
other modern algorithmic approaches to take full advantage of contemporary supercomputer
architectures. Both the particle placement code and SWIFT are publicly released.

Key words: hydrodynamics —methods: numerical —planets and satellites: atmospheres—
planets and satellites: physical evolution.

(Springel 2010; Monaghan 2012). As well as correctly evolving the

1 INTRODUCTION . . . PR . .
simulation particles with time, it is crucial to start from appropriate

Giant impacts are thought to dominate many planets’ late accretion
and evolution. We see the consequences of these violent events
on almost every planet in our Solar system, from the formation of
the Earth’s Moon to the odd obliquity of Uranus spinning on its
side. As such, they are expected to play a similarly important role
in the evolution of the many exoplanetary systems that are now
being observed in detail. These complicated and highly non-linear
processes are most commonly studied using smoothed particle
hydrodynamics (SPH) simulations (e.g. Benz, Slattery & Cameron
1986).

SPH is a Lagrangian (particle-based) method used in a wide
range of topics in astrophysics and many other fields, from plan-
etary impacts and supernovae to galaxy evolution and cosmology
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initial conditions for any model’s evolution to accurately reflect its
real-world counterpart. Furthermore, enough particles must be used
to resolve the physical processes in sufficient detail, and recent work
has shown that standard-resolution simulations (10°—10° particles)
can produce unreliable results that have not converged numerically
(Genda et al. 2015; Hosono et al. 2017). This motivates the pursuit
of simulation codes that can take full advantage of contemporary
supercomputing architectures, enabling more particles to be used
to run suitable convergence tests and, hopefully, simulations with
sufficiently high resolution.

Towards this end, we present the simple stretched equal-area
(SEA)! scheme for creating optimal spherical arrangements of

I'The SEAGEN code is publicly available at github.com/jkeger/seagen and the
PYTHON module seagen can be installed directly with pip.
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particles (Sections 2.1 and 3.1) and the hydrodynamics code SPH
with interdependent fine-grained tasking (SWIFT)?> that we have
developed to run planetary impact (and cosmological) simulations
(Section 2.2). We use these tools to model giant impacts on to a
young Uranus at high resolution using over 108 SPH particles, and
test the convergence of various physical properties with increasing
particle number (Sections 1.2 and 3.2). We then present conclusions
in Section 4.

1.1 Particle placement and initial conditions

Many problems in astrophysics feature spherical symmetry, such
as those involving stars or planets. Before one can simulate and
study these problems with a particle-based method such as SPH,
each initial object must first be converted into an appropriate set
of particles. Two common approaches to creating arrangements of
SPH particles in spheres are (1) to use a lattice that can be distorted
until it approximately matches the required shape and densities and
(2) to relax an imperfect initial state into a fully settled one with a
pre-production simulation.

A third, more recent approach is to arrange the particles an-
alytically while accounting for the spherical symmetry from the
outset, by placing particles in nested spherical shells (Saff &
Kuijlaars 1997; Raskin & Owen 2016; Reinhardt & Stadel 2017).
These methods aim to combine the minimal computation required
for lattice methods with the settled and symmetric properties of
simulated glasses. We present a comparable scheme that further
ensures every particle’s SPH density is within 1 percent of the
desired value. This leads to initial conditions that are quick and
simple to produce, close to equilibrium, and in which every particle
has a realistic density and therefore pressure.

Lattice-based methods are popular because they are easy to
implement and, since the interparticle separations are uniform by
construction, they can accurately match a simple density profile.
This can be achieved either by stretching the lattice radially or
by varying the particle mass — although keeping the masses of all
particles very similar is usually desirable. However, the grid-like
properties of a lattice introduce unwanted anisotropies to a problem
and may be unstable to perturbations (Herant 1994; Morris 1996;
Lombardi et al. 1999).

Furthermore, a spherically symmetric object such as a planet or
a star features important boundaries at specific radii. Both the outer
surface and internal layers require discontinuities in density and
material. The particles in a lattice are dispersed at all radii, so cannot
reproduce such sharp changes at these boundaries. A similarly
quick and simple alternative to lattice methods is to randomly place
particles following an appropriate probability distribution function,
either restricted in nested shells or anywhere in the sphere. However,
these methods are noisy and result in extreme variations in local
particle densities.

In SPH, the density of a particle is estimated by summing the
masses of typically ~50 nearby ‘neighbour’ particles, weighting
by a 3D-Gaussian-shaped kernel that decreases the contribution of
more-distant neighbours. Thus, a particle that is placed too close
to another will have a higher density and not be in equilibrium.
The accuracy of every particle’s density is important because of
how stiff the equation of state (EoS) can be for a material, such
as the granite planetary example we test here. This means that a
slightly too-dense particle will be assigned a dramatically too-high

2SWIFT is in open development and publicly available at swift.dur.ac.uk.
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pressure by the EoS, leading to unphysical behaviour as soon as the
simulation is started. In the case of a tabulated EoS, this may also
cause practical problems by pushing a particle outside the parameter
space covered by the tables.

An obvious improvement on these crude analytical distribution
methods is to run a simulation that iterates the initial particle
positions towards a more stable state. One approach is to use an
inverse gravitational field to repel the particles from each other
(Wang & White 2007). A more sophisticated version of this was
developed by Diehl et al. (2015) based on weighted Voronoi
tessellations. Another method is to add a damping force to reduce
any transient velocities as the particles are allowed to evolve under
otherwise normal gravitational and material pressure forces. In all
cases, the simulation is run until a condition is met to call the system
‘relaxed’, such as when the particle velocities or accelerations reach
some small value.

These methods can generate particle configurations that are stable
and relaxed, but at a cost of performing extra simulations. Especially
for large numbers of particles, this can be a computationally expen-
sive process and can take large amounts of time, comparable to the
final simulation for which the initial conditions are being generated.
Depending on the method used, the particles may also settle to a
distribution somewhat different to the desired initial profile.

The spherical symmetry and sharp radial boundaries of astrophys-
ical objects strongly motivate the arrangement of particles in nested
spherical shells. If the particles could be distributed uniformly in
each shell, then no computationally expensive simulation would
be required to create relaxed initial conditions. However, the
equidistant distribution of points on the surface of a sphere is a
challenging problem, and has been studied for applications in a
wide variety of fields: from finding stable molecular structures such
as buckminsterfullerene to making area-integral approximations, in
addition to the pure mathematical curiosity of such a trivial question
in 2D (equally spaced points on a circle) becoming so complicated
in higher dimensions (Saff & Kuijlaars 1997).

Similar ideas motivated the work of Raskin & Owen (2016)
and Reinhardt & Stadel (2017), who presented algorithms for
arranging particles in spherical shells. One issue with Raskin &
Owen (2016)’s method is that in each shell there are a few
particles with large overdensities, placing the particles slightly out
of equilibrium (see Section 3.1). Reinhardt & Stadel (2017) divide
the sphere into equal regions that can be further subdivided (using
the HEALPIX scheme), with the disadvantage that only sparsely
distributed numbers of particles (12 x 4" for n € IN) can be placed
in each shell. Furthermore, some particles in each shell show SPH
densities more than 5 per cent discrepant from the desired profile
density (their fig. 4).

In Section 2.1, we present an algorithm for arranging any number
of particles in a spherical shell such that every particle has an SPH
density within 1 percent of the median. Our method involves a
simple division of the sphere into equal-area regions arranged in
latitudinal collars, followed by slightly stretching the collars away
from the poles. Concentric shells can then be set up to precisely
follow an arbitrary radial density profile, taking care to align the
shells with any radial boundaries. We apply this SEA algorithm to
create near-equilibrium models of planets, and present the results
in Section 3.1.

1.2 Convergence and Uranus giant impacts

The need to increase resolution to improve studies of existing topics
was recently demonstrated by Hosono et al. (2017). Concerningly,
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they found giant impact simulations that gave apparently reliable
results with up to 10° particles had not actually converged when
re-tested with 107—108. Genda et al. (2015) also found incomplete
convergence of disruptive impact simulations with up to 5 x 10°
particles.

A numerically converged result is not necessarily physically
correct. For example, several studies (e.g. Woolfson 2007; Deng
et al. 2019) have pointed out the difficulties for SPH in modelling
the interaction of multiple materials or the treatment of density
discontinuities, which may not be immediately fixed by higher
resolutions. That said, it is crucial that we at least obtain a reliable
answer to the (imperfect or not) question that we ask the computer
to solve, so convergence is an important first step.

As an example with which to investigate convergence and test
the simulation tools presented in this paper, we consider the giant
impact that likely knocked over the planet Uranus to spin on its
side. Previously, we ran SPH simulations to study the consequences
of this violent event using ~10° particles (Kegerreis et al. 2018,
hereafter K18) — as an improvement on the <10* particles in the
single previous study by Slattery, Benz & Cameron (1992) almost
30 yrago. As well as confirming that the impact can explain Uranus’
spin, we found that with a grazing collision the impactor could form
athin shell around the planet’s ice layer, perhaps trapping the interior
heat to help explain the freezing outer temperatures. Approximately
10 per cent of the target’s atmosphere becomes unbound to escape
from the system and a small amount of the impactor’s rocky core
is ejected into the debris disc. Kurosaki & Inutsuka (2019) recently
explored a different, complementary part of the wide parameter
space with ~103 SPH particle simulations. They varied the entropy
of the proto-Uranus target to examine the effects on the angular
momentum and the debris.

In Section 2.2, we summarize the SWIFT hydrodynamics code
and its development to run these planetary simulations and take
advantage of contemporary supercomputer architectures. In Sec-
tion 3.2, we use SWIFT and the SEA particle placement method to
repeat simulations of Uranus giant impacts from K18 using 10°-103
SPH particles, and test the convergence of the post-impact planet’s
rotation rate, the erosion of the atmosphere, and the ejection of
rocky material into the debris disc.

2 METHODS

2.1 Particle placement and initial conditions

The goal is to distribute a number of similar-mass particles in
a sphere, such that the SPH density of every particle accurately
matches a given density profile (see Section A). In order to follow
an arbitrary radial profile that may include sharp discontinuities,
such as a core-mantle boundary or a planet’s surface, it is convenient
to distribute the particles in spherical shells. The particles can then
be assigned any property using other radial profiles, such as their
material type and temperature or internal energy.

The two inputs for this problem are the desired total number
of particles and the radial density profile. The profile is first used
to find the enclosed mass at each radius. The number of particles
then gives the nominal particle mass. We iterate outwards from the
centre, placing particles in successive shells, following the density
profile. First, we must determine the radius of each shell and how
many particles are required to account for its mass (Section 2.1.1).
Then, the question is how to arrange an arbitrary number of particles
on a spherical shell, for which we describe our SEA method
(Section 2.1.2).
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2.1.1 Shells and layers

We begin by placing a tetrahedron of particles near the centre, so
the first ‘shell’ is actually the sphere that encloses the mass of four
particles. If this central sphere has radius dr. and density p., then
the thickness, dr, of a subsequent shell with density p is

P 1/3
dr = dr. (—C> . (H
0

The number of particles in a shell is then simply the mass of that
shell divided by the nominal particle mass. This must be rounded to
an integer, giving an actual particle mass in each shell that may be
slightly different to the nominal mass. This amounts to maximum
deviations of ~1 per cent for 10° total particles and ~0.1 per cent for
108. The shell thickness could be tweaked instead to enforce strictly
equal particle masses. The particles in the shell are then all assigned
the same properties (e.g. temperature), set by the mass-weighted
mean of the profile values across the shell.

It is important to note that this shell spacing will, in general, lead
to shell boundaries that do not line up with any boundaries in the
profile — whether simply the outer profile edge or internal boundaries
separating layers inside a planet or star. In the first case of a single-
layer profile, the penultimate particle shell will typically end close
to the outer edge. This leaves a thin and low-mass outermost shell
with only a small number of particles that both cannot adequately
cover the large area and will be too close in radius to the previous
shell. For interior boundaries such as between core and mantle
layers, a shell will typically straddle the discontinuity. The particles
in this shell then try in vain to represent some of both materials and
conditions.

To avoid these problems, we slightly tweak the input particle
mass to change the mass of the first core shell and hence its radius.
This influences the radii of all the shells (equation 1). We iterate
the input particle masses until the boundary of the outermost shell
in the first (or only) layer coincides with the profile’s boundary.
This leads to a slightly different total number of particles as well,
but ensures a proper particle representation of the final shell in this
layer, as well as of the first shell of the next layer if there is one.

A similar issue and solution arises for any subsequent boundaries.
To maintain a similar particle mass in all layers, we do not change
the particle mass again. Instead, we tweak the number of particles in
the first shell of each outer layer. This changes the mass of that shell
and hence its radius, as before. Using the thickness and density
of this shell instead of the central shell in equation (1) leads to
appropriate changes for all the shells in this layer. We iterate over
slightly different numbers of particles in the first shell until the
outermost shell’s boundary coincides with the profile boundary of
this layer. This is repeated at the start of each layer until a particle
shell boundary matches every profile boundary both internally and
at the profile’s edge.

One remaining decision is at what radius to place the particles
within each shell. Two average radii to consider are ry,, half-way
between the inner and outer radii of the shell, and ry,.y, the mass-
weighted mean radius. For a slowly changing density profile and/or
many particles that lead to thin shells, the density is roughly constant
throughout the shell and ry,., > 71,2 because the mass increases with
47 /2. In the vast majority of shells, where dr < r, these two radii are
approximately equal. However, at small radii near the core, placing
the particles at |, results in too high densities, and ry,.,, gives too
low densities. We found that placing the particles at % (r12 + rmw)
correctly matches the mean SPH density of the particles in each
shell to the profile density at that radius.

MNRAS 487, 5029-5040 (2019)
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Figure 1. An example division of a sphere into 20 equal regions, demon-
strating the main steps in the algorithm: (a) set the polar caps and the initial
collar latitudes; (b) tweak the collar latitudes so that they each contain an
integer number of regions; (c) divide each collar into equal regions; and
(d) rotate the collars to maximize the minimum separation of adjacent
regions.

2.1.2 Particles on a sphere

For every shell, we now have a number of particles, N, to distribute
on the surface of a sphere. We begin by considering the division
of a (unit) sphere into equal-area regions with small diameters,
following the algorithm described by Leopardi (2007) with minor
modifications. The particles can then be placed in the centre of each
region.

We further impose a stretching of the regions by latitude, to
improve the particle density near the poles. Finally, each shell is
randomly rotated so that the particles at the poles do not line up in
successive shells.

For comparison, we also test the recursive primitive refinement
and parametrized spiral (RPR + PS) method described by Raskin &
Owen (2016). Their method uses subdivisions of the Platonic solids
for low-N shells and a spiral placement algorithm for larger numbers
of particles.

2.1.3 Equal-area regions

This method is also illustrated in Fig. 1 and a finished example with
N =100 is shown in Fig. 2.
For N regions on a sphere, the area of each one will be

Areg = 4/N. 2)

The bounding colatitude of a polar cap with area A,y is

. Acap
6 = 2 arcsin ol 3)

which for A,y = A gives the colatitude of the single-region north
pole cap, 6.qp, and south pole cap, 7 — 6cqp.

We start by dividing the rest of the sphere (between the two polar
caps) into collars with ideal initial heights of |/ A,. This gives the
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Figure 2. An example of 100 particles distributed on a sphere using the
SEA (equal-area and subsequent latitude-stretching) method. The colours
highlight each collar of particles. The SPH densities of these particles are
shown by the purple points in Fig. 3.

number of collars (when rounded to an integer)

- 200;1
N.y = round [”"] , (4)

vV Areg

and the actual initial collar height
T — 206,
Ocol = ( Cap> s (5)
Neol

(Fig. 1a). We then divide each initial collar i into the closest integer
number of regions. The area of each collar is

A, =4n (sin2 (0—l> — sin? (9"71 >> , (6)
2 2

so the ideal number of regions in each collar i is

N = A
' Areg .

)

This must be rounded to the actual integer number of regions, N;.
The cumulative discrepancy, d;, from the ideal number of regions
must be included to ensure that the total number of regions is
unchanged:

N; =round [N/ +d;] , (3)

diyy =di + N{ — N;. )

Starting from the north pole and using the cumulative number of
regions in each collar, N-;, we find the final colatitude of each collar
by calculating the colatitude of the cap that contains the same area
as N; regions:

N<iAre
6; = 2 arcsin ( 4ng> s (10)

where i = 1 is the north pole cap (Fig. 1b).
The points in the centre of each region j in collar i then have

6 =3O +641), (11)

¢ =0+ j Ay, (12)
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where ¢ is the starting longitude and A¢; = ,3—’(’1 is the angle
between adjacent points (Fig. 1c). B

We choose the starting longitude of each collar, ¢, to maximize
the minimum separation between the points on adjacent collars
(Fig. 1d). This helps to prevent local overdensities. If N; and N; _ |
are both odd or both even, then ¢ is half the smaller of A¢; and
A¢; _ 1. If one is odd and the other is even, then ¢y must be half of
the even one’s A¢, to prevent two particles in adjacent collars from
having the same ¢ and being too close together.

Finally, ¢ should be additionally offset by m A¢;_;, where m
is a random integer between O and N;_ ;. Thus, the ¢ rotation
will be with respect to a random particle in the previous collar.
This prevents successive collars with large N; (and hence small ¢¢)
from creating a sequence of nearly adjacent particles in successive
collars.

2.1.4 Latitude stretching

The equal-area scheme described in Section 2.1.3 results in a small
local overdensity of particles near the poles. We can make the
particle density more uniform by stretching the collars near the
poles. However, the collars near the equator must not be overly
squashed. Therefore, the (absolute) latitude of each point, |5 — 6],
should be reduced by an amount that varies with latitude, from
maximum stretching at the poles to O at the equator. Of course,
the size of the shift at all latitudes depends on the initial size
of the collars, which is set by the total number of particles. The
collar height and the required shift will decrease in proportion with
the square root of the number of particles. Thus, the appropriate
stretching can be given by
bg
|20|:| , (13)

TbN~ %

where a = 0.2 and b = 2 (tested for 80 < N < 10°). For N < 80,
we fit ¢ and b manually to ensure that the maximum deviation of
any particle’s density from the mean is less than 1 per cent. This
requires a to vary (non-monotonically) between 0.18 and 0.27, with
b following this variation as b = 10a, and is only relevant for the
innermost one or two lowest mass shells.

[SIE]

0 =0+ (% —9)xaN_% exp [—

2.2 Planetary simulations with SWIFT

SWIFT is a hydrodynamics and gravity code for astrophysics and
cosmology in open development (swift.dur.ac.uk), designed from
the ground up to run fast and scale well on shared/distributed-
memory architectures (Schaller et al. 2016).

For the past decade, physical limitations have kept the speed
of individual processor cores constrained, so instead of getting
faster, supercomputers are getting more parallel. This makes it ever
more important to share the work evenly between every part of the
computer so that no processors are sitting idle and wasting time.

SWIFT can function as a drop-in replacement for the GADGET-2
code, which has been widely used for cosmological and planetary
impact simulations (Springel 2005; Cuk & Stewart 2012), but with
a > 30 x faster runtime on representative cosmological problems
(Borrow et al. 2018). This speed is partly a result of SWIFT’s task-
based approach to parallelism and domain decomposition for the
gravity and SPH calculations (Gonnet 2015). By evaluating and
dividing up the work instead of just the data, this provides a dynamic
way to achieve good load balancing across multiple processors
within a shared-memory node. The tasks are decomposed over the
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network in distributed memory systems using a graph-partitioning
algorithm, weighting each task by the estimated computational work
it requires. Combined with using asynchronous communications
that are themselves treated as normal tasks, this allows the code to
scale well (Schaller et al. 2016). Core routines, including the direct
interaction between particles, have then been optimized using vector
instructions (Willis et al. 2018).

In some respects, giant impact simulations pose a harder chal-
lenge for load balancing than the cosmological simulations that
SWIFT is also designed for. For a large patch of the universe, although
the density becomes very much higher in a galaxy than a void,
the local average density is roughly constant across a simulation
box. Even a crude division of particles by position in the box to
different computing cores can somewhat effectively speed up the
calculation, and a more careful decomposition such as SWIFT’s can
produce excellent strong scaling across hundreds of thousands of
cores (Borrow et al. 2018).

In contrast, for a giant impact, almost all the mass (and hence
particles) is in the planet at the centre. If we use a large simulation
box in order to follow the ejected debris, then the vast majority of
particles can easily occupy less than 0.01 percent of the volume.
This is similar to cosmological ‘zoom-in’ simulations that use a
high-resolution region to focus on a single galaxy or halo. First, this
makes it harder to divide up particles between computing nodes
and secondly can require much more frequent communication.
This makes it much less efficient to use a large number of cores,
and difficult to fully utilize a large supercomputer to run a single
planetary simulation very quickly.

Happily, most studies of giant impacts can be reframed as
‘embarrassingly parallel’ problems because, instead of investigating
one specific collision in extreme detail, the usual aim is to study
a wide range of scenarios, such as varying the impact angle and
speed. For this reason, perfect scaling across many distributed-
memory nodes or MPI ranks is not as important. Many impacts can
each be simulated on their own single (or small number of) shared-
memory node(s). SWIFT then uses threads and SIMD vectorization
to parallelize efficiently across the tens of cores within each node.
However, as we investigate in Section 3.2, even for parameter-
space surveys, large numbers of particles may be necessary to
obtain sufficiently converged results, depending on the property
being studied.

2.2.1 Planetary SPH

SWIFT has a modular structure that separates different code sec-
tions for clean modifications to, for example, the physics or the
hydrodynamics scheme without affecting (or even being aware
of) the parallelization and other structural components. Any such
module is switched in or out with configuration flags, allowing
SWIFT to run planetary, cosmological, or any other simulation as
required.

The hydrodynamics scheme used for the simulations in this paper
uses a simple ‘vanilla’ form of SPH as described in, e.g. Price
(2012), with the Balsara switch for the artificial viscosity (Balsara
1995). Multiple other schemes are also implemented in SWIFT, as
well as various SPH kernels. Here, we use the simple 3D cubic spline
kernel with 48 neighbours, corresponding to a ratio of smoothing
length to interparticle separation of y = 1.2348 (Dehnen & Aly
2012). The default artificial viscosity parameters for the Monaghan
(1992) model are set to « = 1.5 and B = 2 «, as is typical in the
literature (e.g. Reinhardt & Stadel 2017).

MNRAS 487, 5029-5040 (2019)
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Figure 3. The SPH densities of 100 particles placed using three different
schemes, normalized by the median density. The grey lines show %1 per cent
of the median. The 3D positions of these SEA particles are illustrated in
Fig. 2.

The EoS for a material relates its pressure to its density and
temperature (or internal energy or entropy). So far,> we have imple-
mented several Tillotson, SESAME, and Hubbard & MacFarlane
(1980; for Uranus materials) EoS in SWIFT, as well as an ideal
or isothermal gas. Any number of these different materials can
be simulated together, as is required in a multilayered planet, for
example.

3 RESULTS AND DISCUSSION

3.1 Particle placement

In this section, we first test the arrangement of particles on
an isolated spherical shell. Then, we investigate full 3D initial
conditions for a simple Earth-mass planet, considering the SPH
densities of the particles in their initial positions and how close they
are to equilibrium when allowed to evolve.

Fig. 3 shows the densities of 100 particles arranged on a unit
spherical shell using three different methods: Raskin & Owen
(2016)’s RPR and PS method (RPR + PS, specifically PS in this
case) and our equal-area method without (EA) and with (SEA) the
extra latitude stretching, as described in Section 2.1.2.

The RPR + PS and EA methods both show significant over-
densities at the poles, with maximum deviations from the median
density approaching 20 and 10 per cent, respectively. This is still a
big improvement on a random distribution of particles on a shell,
which leads to densities that are wrong by a factor of >10. The SEA
stretching reduces the scatter to less than 1 percent, with typical
maximum deviations of 0.5 per cent, depending on the exact number
of particles. Only 100 particles are shown here for clarity; the three
methods show similar relative deviations for 102106 particles in a
single shell.

3The simulations in this paper used SWIFT version 0.8.1.
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Figure 4. The SPH densities of ~10° particles placed using the three
different shell schemes as labelled in the legend. The EA and RPR + PS
particles are shown offset to slightly higher radii for clarity. The black line
shows the input density profile, representing a simple model of an Earth-
mass planet. The SEA particles’ densities stay within 1 percent of the
profile, as in the Fig. 3 isolated shell case.

Unfortunately, this dramatic improvement of SEA over the
unstretched EA method cannot be replicated for RPR+PS because
the distribution of particles is not azimuthally symmetric. Stretching
the RPR + PS particles at the poles reduces the overdensity for some
particles but creates unavoidable underdensities for others because
of their asymmetry.

To investigate how these properties of an isolated shell translate
into nested shells in 3D, we now consider a full model of an Earth-
mass planet with ~10° particles (see Appendix A). The results from
using the same three placement methods are shown in Fig. 4. As in
the isolated-shell case, the RPR + PS particles show a large range
of densities, with a systematic spread of particle densities more than
10 per cent discrepant from the profile. The unstretched EA method
shows similar density discrepancies around 4 per cent, while the
SEA stretching again ensures the scatter is within 1 per cent of the
profile density. These values are for a cubic spline kernel with 48
neighbours. Using another common example of the Wendland-C6
kernel with 200 neighbours yields the same qualitative results but
reduces the density scatter in all cases by roughly 1/2.

The underdensity of particles in the outermost shell is caused by
the nature of the SPH density calculation, so is seen equally for
all methods. The spherical kernel volume extends into the empty
space above the planet’s surface without finding any neighbours,
artificially reducing the density.

It is noteworthy that the density deviations of the RPR + PS and
EA methods were reduced when switching from the 2D to the 3D
case, while the SEA deviations were approximately unchanged.
This reflects the contributions of the particles in other shells to the
SPH density. The high overdensities are reduced in 3D because the
nearby particles in adjacent shells are also summed over, mitigating
the impact of the too close particles in the same shell. For SEA,
the particles in the randomly rotated adjacent shells are just as
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Figure 5. Mid-collision snapshots in the early stages of the same giant impact on Uranus at the same times from simulations with the ~103 SPH particles
(left-hand panels) typical in the literature, up through 10° and 107 to the 10® (right-hand panels) made possible with SWIFT, resolving more of the detailed
evolution of both internal structure and debris. Snapshots shown are ~2, 3, 4, and 7 h after the start of the simulation. An animation of the highest resolution

impact is available at icc.dur.ac.uk/giant_impacts.

likely to be very slightly too close or too far as the particles in
the same shell, so the density discrepancies are largely unchanged.
This suggests that there would be little benefit to improving the
distribution of particles within each shell beyond that of SEA,
e.g. by running a relaxing simulation within each shell. Even if
the particles in every isolated shell were perfectly arranged, then
the imperfect contributions from adjacent-shell particles would
negate any improvement. So, if even smaller density deviations
were desired, then it would be necessary to consider all particles at
once.

The actual success of our method is determined by how close the
particles are to equilibrium when allowed to evolve in a simulation.
A standard criterion for initial conditions to be considered ‘relaxed’

enough for use is that the root-mean-square velocity, vynys, is below
~1 per cent of the escape speed, here ve, = 11.2kms~'. Because
of their precise densities, the SEA particles immediately have v,
below 0.01 ves, and the maximum particle speed first peaks at
under 0.04 ves.. (‘Immediately’ here meaning the fastest speeds the
particles reach, soon after being allowed to evolve from a stationary
start.) In comparison, a random distribution of particles in shells
has initial v = 0.2 Vegc.

Most of the SEA particles’ motion is caused by the previously
mentioned underdensity of the outermost shell, which causes the
entire planet to gently oscillate and settle into a slightly lower
density profile. Because this dominates the discrepancy from an
equilibrium state, the RPR + PS particles’ v, is almost identical to
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Figure 6. A mid-collision snapshot of a grazing impact with 108 SPH particles — compared with the more head-on collision in Fig. 5 — coloured by their
material and internal energy, showing some of the detailed evolution and mixing that can now be resolved. In the left-hand panel, light and dark grey show the
target’s ice and rock material, respectively, and purple and brown show the same for the impactor. Light blue is the target’s H-He atmosphere.

SEA in spite of their comparatively noisy densities. Their maximum
speed is slightly higher at 0.07 v. If a modified density estimator
is used to fix the outer boundary problem, then a larger difference
might be expected between the two methods. Planets with layers
of different materials — such as the proto-Uranus and impactor
in Section 3.2 — face similar SPH density problems at interior
boundaries as well.

We confirmed that these relaxed SEA results are unchanged
for Moon- and Pluto-mass planets (~0.01 and 0.002 Mg), which
are less strongly gravitationally bound, making them slightly less
stable. However, the Tillotson EoS used here (Tillotson 1962) is
even steeper close to the low density at which the pressure is zero,
as is the case for other EoS and depending on the temperature. This
exacerbates any density errors into even greater pressure discrepan-
cies. For RPR + PS, some underdense particles in the Pluto-mass
planet are even pushed below the zero-pressure density, while the
most overdense ones get assigned a pressure over four times the
desired value. Nevertheless, these particles can quickly be relaxed
without much affecting the overall structure or v,,;. SEA has
the mild advantage that it avoids such issues in the first place,
and requires similarly trivial computation to generate the initial
conditions.

The SEAGEN code for quickly generating both isolated shells and
full spheres of points is publicly available at github.com/jkeger/se
agen or can be installed directly with pip as the PYTHON module
seagen.

3.2 Uranus giant impacts and convergence

We now use these tools for first creating and then simulating
planets to study the convergence (or lack thereof) of giant impact
simulations using 10°—~108 SPH particles. We focus on three science-
motivated questions about the giant impact that likely knocked over
the planet Uranus to spin on its side: (1) How much atmosphere is
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ejected from the system? (2) How much rocky material is placed
into orbit? (3) What is the post-impact rotation period of the planet?

Here, we repeat some of the simulations from K18 (Kegerreis
et al. 2018) with ~10°, 10°, 107, and 10% particles to investigate
how these higher resolutions compare with the current standard,
and to demonstrate the simulation tools described in this paper. The
full details of the EOSs and initial conditions are described in K18.

Fig. 5 shows comparisons of a typical impact simulated at dif-
ferent resolutions, repeating the ‘low angular momentum’ scenario
of K18’s Fig. 2. Although the overall behaviour is encouragingly
similar, details such as the tidal stretching of the impactor’s core
and the distribution of the debris clearly cannot be fully resolved
by the 10° or 10° particle simulations. Fig. 6 highlights some the
details that can be resolved with 10® particles for the grazing impact
of the ‘high angular momentum’ scenario of K18’s Fig. 3.

3.2.1 Ejected debris

In K18, we found that the majority of the atmosphere survives
the impact, but that a small fraction can be fully ejected. Fig. 7
highlights the particles that will become gravitationally unbound
and escape from the system. The initial collision blasts away much
of the outer atmosphere and some ice, some of which will escape
but most remains gravitationally bound. The 107 and 108 particle
runs show that a deeper shell of now-exposed particles then gets
ejected during the subsequent violent oscillations as the impactor
remnants fall back in and the planet slowly starts to settle. The
time at which this ejected material becomes unbound in each
simulation is shown in Fig. 8. Significant mass is blasted off the
planet even several hours after the initial collision in all cases.
The 107 and 10® simulations closely agree that 9 percent of the
total atmosphere mass escapes. The 103 and 10° simulations differ
(non-systematically) with 8 percent and 12 per cent, respectively.
This suggests that atmospheric erosion has converged by ~107
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Figure 7. The particles that will become unbound and escape the system, highlighted in orange on a pre-impact snapshot from the same simulations with
~10°-10% SPH particles as in Fig. 5. Only particles in a thin cross-section are shown for clarity. The colours are the same as in Fig. 6. The times at which these
particles become unbound are shown in Fig. 8. The total mass lost is broadly similar in all cases, but 103—10° particles fail to resolve the detailed results.
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Figure 8. The time evolution of the mass of gravitationally unbound
atmosphere (light blue) and impactor-ice (purple) material that is ejected
from the system — the same particles highlighted in Fig. 7 — for the different
resolution simulations.

particles in this case. On the positive side, although the lower
resolution simulations do not show perfectly converged behaviour,
for answering the practical question of how much atmosphere
is lost, all simulations give a qualitatively similar answer of
~10 per cent.

Most studies of impact erosion use analytical or 1D models to
estimate the ejected atmosphere given a certain ground speed from
the shock induced by the impact (e.g. Inamdar & Schlichting 2016).
In this case, the initial shock removes 8 per cent of the atmosphere,
then an additional 1 per cent is lost in the subsequent sloshing. So,
much like the minor resolution dependence, general conclusions
about the fraction of atmosphere lost to an impact of this scale
are unlikely to change. However, for more precise studies, smaller
atmospheres, and perhaps other impact scenarios, this process
should not be ignored.

For comparison, also shown in Fig. 8 is the mass of unbound
ice. The 107 and 10® simulations again give similar final answers,
but do not show the same behaviour at earlier times. The lower
resolution simulations are discrepant by more than a factor of 2. It
seems plausible that this quantity is approaching convergence, but
without more particles than 10 (or checking 107), it is clearly not
safe to assume this is a fully reliable result.

These quantities are summarized in Fig. 9 at 14 h as a function
of the number of particles, showing by how much each simulation
differs from the highest resolution. That the eroded atmosphere
appears closer to convergence than the ice is not surprising given
the order of magnitude lower mass of ejected ice, meaning corre-
spondingly fewer particles are involved in attempting to resolve
the process — as can be interpreted by the size of the error
bars.

As an example of a property that has certainly not converged, we
also plot the mass of rock that is ejected into orbit in a debris disc
beyond the Roche radius, where it might be available for accretion
into satellites. Not only do the 107 and 10® simulations not agree,
they differ by more than the lower resolutions with no semblance of
convergence. The corresponding number of orbiting rock particles
in each simulation is only 4, 80, 1000, and 20 000, respectively. So,
especially for a messy ejection process that is widely spread out in
both space and time, it is not surprising that 1000 or fewer particles
are far from able to sufficiently resolve what happens. It is possible
that the 108 simulation has already fully resolved and converged on
this result, but our only means of checking this —running even higher
resolution simulations — we leave for future studies where this is a
targeted science result. In comparison, the masses of orbiting ice and
atmosphere particles in the debris are much higher, and converge
similar to the unbound atmosphere mass.

3.2.2 Rotation period

The rotation period of the post-impact planet is a large-scale bulk
property involving a large majority of all particles, so one might
expect it to have converged by fairly low particle numbers. However,
as shown in Fig. 9, while the 107 and 10® simulations agree on a
rotation period of 19.9 h to within 0.5 per cent of each other, the 10°
and 10° simulations find much shorter periods of 14.7 and 17.7 h.
This is a significant change to our results in K18, when it appeared
that even fairly low-impact-parameter 2 Mg, impactors could impart
enough spin to explain the planet today. Assuming an approximately
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Figure 9. The change with resolution of the masses of unbound atmosphere
and ice, the mass of rock placed into orbit beyond the Roche radius, and the
planet’s rotation rate, demonstrating a range of apparent (un)convergence.
Each property is normalized by the highest resolution result to show
the relative differences. The shaded regions show the lo errors, some
of which are too narrow to see. The rotation period appears to have
converged by ~107 particles, as have — with decreasing certainty — the
unbound atmosphere and ice masses, while the orbiting rock mass has
not.
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Figure 10. The early time evolution of the planet’s angular momentum for
the different resolution simulations, summed over all particles within the
Roche radius of 6 Rg. The standard- and high-resolution simulations begin
to differ as the ejecta from the initial impact falls back to the planet.
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similar reduction in spin for other impact scenarios, only a narrower
range of more grazing impacts (or more massive impactors) would
be viable.

The evolution of the planet’s angular momentum for each
simulation is shown in Fig. 10, which, for simplicity, we sum over
all particles within the Roche radius. The total angular momentum
of the entire system remains the same in all cases, but at higher
resolutions more angular momentum is transported out to the debris
disc beyond the Roche radius, leaving less in the planet. All the
simulations agree during the arrival and initial merging of the
impactor, but their behaviour begins to diverge as the thrown-out
debris (see the middle two rows of Fig. 5) begins to fall back in to
the planet, at around 3 h after the start of the simulation.

Even though the total number of particles used to measure the
planet’s rotation rate is very large, the messy ejecta and mixing
around the outer regions of the planet are significant enough to
affect the overall system while also small enough to require high
resolutions to model correctly. This is comparable to the effect seen
by Hosono et al. (2017) where the mass of the post-impact disc
did not converge as expected because of subtle differences in the
detailed behaviour of re-impacting debris.

There will always be even smaller structures that are not properly
resolved, but their ability to alter the rest of the system will also
decrease, so appropriate-scale quantities should stay converged.
However, properties such as small-scale turbulent mixing and the
emergence of smaller structures may never converge without the
addition of regularizing physics such as diffusion or viscosity
mechanisms (Cullen & Dehnen 2010; Lecoanet et al. 2016).

On the convergence of the rotation rate, in addition to the similar
angular momenta of 107 and 108 throughout time, the rotation period
encouragingly changes monotonically with higher resolution and
by less with each increase. So, we interpret the various quantities
shown in Fig. 9 as demonstrating a range of behaviour from the
apparently well-converged rotation rate and unbound atmosphere
mass by 107 particles, through the possibly converged unbound ice,
to the clearly un-converged orbiting rock.

4 CONCLUSIONS

We have presented a simple method for creating spherical arrange-
ments of particles with precise densities, and the SWIFT code for
hydrodynamical simulations, then used them to study giant impacts
at high resolutions.

The SEA algorithm allows the quick creation of near-equilibrium,
spherically symmetric initial conditions of particles (github.com/j
keger/seagen). It ensures that every particle has an SPH density
within 1 per cent of the desired value, unlike the otherwise similarly
successful methods of Raskin & Owen (2016) and Reinhardt &
Stadel (2017). This mitigates the need for expensive computation
that is otherwise required to produce initial conditions that are
relaxed and ready for a simulation.

The open-source SWIFT code is designed to take advantage of
contemporary shared/distributed-memory architectures (swift.dur.
ac.uk). For planetary giant impact simulations, this has enabled a
100-1000x improvement in the number of particles that can be
used, allowing the study of brand new topics that were out of reach
for lower resolution simulations.

To demonstrate these tools and test the convergence of such
simulations, we revisited the study of the giant impact on to the
young Uranus that may explain its spin and other strange features
(Kegerreis et al. 2018). We find that even large-scale results such
as the rotation rate are not converged with standard-resolution
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simulations of 10° and 10° particles. The overall behaviour is similar
in all cases, but small variations in the debris that falls back after
the initial impact have a significant effect on the post-impact planet
and its rotation rate, which appears to be well-converged with 10’
and 10% particles, but not fewer. Similar but mildly less certain
convergence is seen for the masses of atmosphere and ice that are
ejected from the system, while the low mass of rock placed into
orbit has not converged at all by 107 particles.

Increasing resolution is only one important challenge for devel-
oping more realistic simulations. We have here used a simple im-
plementation of SPH with a focus on simply increasing the number
of particles. Future studies must continue to test high resolutions
with, for example, more sophisticated EOSs and improved SPH
formulations with better treatment of issues such as material and
density discontinuities.

We conclude that standard-resolution simulations with <107 SPH
particles can fail to produce reliable results even for large-scale
properties of planetary system. A total of 107 and 10% particles
appear to pass the threshold of resolving the major processes in
a giant impact. However, different collisions and other specific
simulation outputs will depend more or less strongly on the
behaviour of smaller structures, with correspondingly different
requirements for convergence. The highly non-linear nature of
giant impacts and the combinations of short- and long-term,
localized, and distributed processes prevent simple predictions
for how many particles will be sufficient for a given result to
converge.
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APPENDIX A: PLANETARY PROFILES

This section details the creation of radial profiles for the model
planets. The main inputs for a profile are the total mass, the number
of layers and their materials, the surface pressure and temperature,
and estimates for the outer radius, and any internal boundary radii
that we will later refine. To set each layer’s material, we must define
the EoS, a conversion between temperature and internal energy, e.g.
the specific heat capacity and cold curve, and an expression for how
heat is transferred, e.g. isothermal or adiabatic.

We iterate inwards in thin spherical shells from the surface to the
centre —not to be confused with the much thicker shells we define in
Section 2.1.1 to arrange simulation particles in the resulting sphere.
The density at the surface is first found using the EoS with the input
pressure and temperature. Assuming a constant density within this
very thin shell, the mass of the shell is calculated to find the pressure
at the inner shell boundary that would be required for hydrostatic
equilibrium. The density and temperature that provide this pressure
at the inner shell boundary are then found using the EoS and the
heat transfer (p—T) relation. This process is repeated for the next
shell until reaching the centre.

The temperature and pressure are continuous across any internal
layer boundaries, so this iteration continues into the core, until the
input total mass has been used up. If the input radii for the outer
surface and any inner boundaries are accurate, then the central shell
should use up the final available mass just as its inner boundary
reaches the centre. However, if any of these input radii are too large
or too small, then either the mass will be used up before reaching the
centre or the centre will be reached with some mass still remaining.
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In this case, we modify the input radii and repeat the process, until
the mass discrepancy is a tiny fraction of the total mass.

For our test model of a simple Earth-mass planet in Section 3.1,
the inputs were the Earth’s mass, the Tillotson granite EoS (Tillotson
1962; Melosh 2007), and an isothermal temperature of 300K,
leading to an outer radius of 1.036 Rg,. We chose a constant specific
heat capacity of 710 J K~! kg~! (Wallace, Sidles & Danielson 1960;
Waples & Waples 2004).

The resulting density (and temperature or internal energy)
profile can then be used to create a set of particle initial con-
ditions, as described in Section 2.1. This approach is the same
for more complicated planets with multiple layers and discon-
tinuities in material and density, such as the proto-Uranus and
impactor used in Section 3.2 with full details in Kegerreis et al.
(2018).

APPENDIX B: TILLOTSON SOUND SPEED

In addition to the pressure, density, and thermal properties of a
material, the EoS is also important for determining the sound speed.
In SPH, the sound speed is used both to control the simulation time-
step — to ensure that sound waves do not travel further than the
distance between neighbouring particles in one step — and as part
of the artificial viscosity calculation that controls the behaviour of
shocks (Price 2012).

The popular Tillotson EoS does not include an expression for the
sound speed, ¢, but it can be derived from the partial derivative of
the pressure, P, with respect to the density, p, at constant entropy,
S:

, 0P
ap |
which we can calculate from Tillotson’s P, p, and specific internal
energy u, using du = TdS + PdV = TdS — (P/p?)dp.

The Tillotson pressure is separated into a condensed or cold state
and an expanded and hot state (Tillotson 1962). Using the standard
definitions of n = p/pg, u=n—1,v=1/np — 1, and w = u/(upn?)
+ 1, these two pressure formulae are

B1)
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Po=(a+2)pu+Aun+ By (B2)

Po = apu+ (2 + Ape ") e, (B3)

where po, a, b, A, B, «, B, up, uy, and u., are material-specific
parameters for the EoS (Melosh 2007). In the hybrid state, the
pressure is a linear combination of the two:

_ (M_Miv)Pe+(Mcv_u)Pc

P, (B4)
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For SWIFT, the minimum pressure is set to 0.
Using equation (B1), the sound speeds for each state are
P, b b(w—1 P
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and the hybrid state is the equivalent linear combination:
2= (U —up) g + (e —wye; (B7)

Uey — Uiy
For SWIFT, a minimum sound speed is set using the uncompressed
density and bulk modulus: +/A/pg.

Reinhardt & Stadel (2017) did this same calculation (with slightly
different notation), but their ¢ has a typo A instead of a in the first
term and their ¢ has swapped the sign of (2u — P./p), which would
change the sound speed by ~10 per cent.
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