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ABSTRACT
We perform simulations of giant impacts onto the young Uranus using smoothed particle hydro-
dynamics (SPH) with over 100 million particles. This 100–1000× improvement in particle number
reveals that simulations with below 107 particles fail to converge on even bulk properties like the
post-impact rotation period, or on the detailed erosion of the atmosphere. Higher resolutions appear
to determine these large-scale results reliably, but even 108 particles may not be sufficient to study
the detailed composition of the debris – finding that almost an order of magnitude more rock is
ejected beyond the Roche radius than with 105 particles. We present two software developments
that enable this increase in the feasible number of particles. First, we present an algorithm to place
any number of particles in a spherical shell such that they all have an SPH density within 1% of the
desired value. Particles in model planets built from these nested shells have a root-mean-squared
velocity below 1% of the escape speed, which avoids the need for long precursor simulations to pro-
duce relaxed initial conditions. Second, we develop the hydrodynamics code SWIFT for planetary
simulations. SWIFT uses task-based parallelism and other modern algorithmic approaches to take
full advantage of contemporary supercomputer architectures. Both the particle placement code and
SWIFT are publicly released.

Key words: methods: numerical – hydrodynamics – planets and satellites: physical
evolution – planets and satellites: atmosphere

1 INTRODUCTION

Giant impacts are thought to dominate many planets’ late
accretion and evolution. We see the consequences of these
violent events on almost every planet in our solar system,
from the formation of Earth’s Moon to the odd obliquity of
Uranus spinning on its side. As such, they are expected to
play a similarly important role in the evolution of the many
exoplanetary systems that are now being observed in detail.
These complicated and highly non-linear processes are most
commonly studied using smoothed particle hydrodynamics
(SPH) simulations (e.g. Benz et al. 1986).
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SPH is a Lagrangian (particle-based) method used in a
wide range of topics in astrophysics and many other fields,
from planetary impacts and supernovae to galaxy evolution
and cosmology (Springel 2010; Monaghan 2012). As well as
correctly evolving the simulation particles with time, it is
crucial to start from appropriate initial conditions for any
model’s evolution to accurately reflect its real-world coun-
terpart. Furthermore, enough particles must be used to re-
solve the physical processes in sufficient detail, and recent
work has shown that standard-resolution simulations (105

to 106 particles) can produce unreliable results that have
not converged numerically (Hosono et al. 2017; Genda et al.
2015). This motivates the pursuit of simulation codes that
can take full advantage of contemporary supercomputing ar-
chitectures, enabling more particles to be used to run suit-
able convergence tests and, hopefully, simulations with suf-
ficiently high resolution.
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Towards this end, we present the simple SEA1 scheme
for creating optimal spherical arrangements of particles
(§2.1, §3.1) and the hydrodynamics code SWIFT2 that we
have developed to run planetary impact (and cosmological)
simulations (§2.2). We use these tools to model giant im-
pacts onto a young Uranus at high resolution using over 108

SPH particles, and test the convergence of various physical
properties with increasing particle number (§1.2, §3.2). We
then present conclusions in §4.

1.1 Particle Placement and Initial Conditions

Many problems in astrophysics feature spherical symmetry,
such as those involving stars or planets. Before one can simu-
late and study these problems with a particle-based method
like SPH, each initial object must first be converted into
an appropriate set of particles. Two common approaches to
creating arrangements of SPH particles in spheres are: (1)
to use a lattice that can be distorted until it approximately
matches the required shape and densities; and (2) to relax
an imperfect initial state into a fully settled one with a pre-
production simulation.

A third, more recent approach is to arrange the particles
analytically while accounting for the spherical symmetry
from the outset, by placing particles in nested spher-
ical shells (Saff & Kuijlaars 1997; Raskin & Owen 2016;
Reinhardt & Stadel 2017). These methods aim to combine
the minimal computation required for lattice methods with
the settled and symmetric properties of simulated glasses.
We present a comparable scheme that further ensures every
particle’s SPH density is within 1% of the desired value. This
leads to initial conditions that are quick and simple to pro-
duce, close to equilibrium, and in which every particle has a
realistic density and, therefore, pressure.

Lattice-based methods are popular because they are
easy to implement and, since the inter-particle separations
are uniform by construction, they can accurately match a
simple density profile. This can be achieved either by stretch-
ing the lattice radially or by varying the particle mass –
although keeping the masses of all particles very similar
is usually desirable. However, the grid-like properties of a
lattice introduce unwanted anisotropies to a problem and
may be unstable to perturbations (Herant 1994; Morris 1996;
Lombardi et al. 1999).

Furthermore, a spherically symmetric object like a
planet or star features important boundaries at specific radii.
Both the outer surface and internal layers require discon-
tinuities in density and material. The particles in a lattice
are dispersed at all radii, so cannot reproduce such sharp
changes at these boundaries. A similarly quick and simple
alternative to lattice methods is to randomly place particles
following an appropriate probability distribution function,
either restricted in nested shells or anywhere in the sphere.
However, these methods are noisy and result in extreme vari-
ations in local particle densities.

1 The SEAGen code is publicly available at
github.com/jkeger/seagen and the python module seagen can be

installed directly with pip.
2 SWIFT is in open development and publicly available at
swift.dur.ac.uk.

In SPH, the density of a particle is estimated by
summing the masses of typically ∼50 nearby ‘neighbour’
particles, weighting by a 3D-Gaussian-shaped kernel that
decreases the contribution of more-distant neighbours. Thus
a particle that is placed too close to another will have a
higher density and not be in equilibrium. The accuracy of
every particle’s density is important because of how stiff the
equation of state (EoS) can be for a material, such as the
granite planetary example we test here. This means that a
slightly too-dense particle will be assigned a dramatically
too-high pressure by the EoS, leading to unphysical beha-
viour as soon as the simulation is started. In the case of a
tabulated EoS, this may also cause practical problems by
pushing a particle outside of the parameter space covered
by the tables.

An obvious improvement on these crude analytical dis-
tribution methods is to run a simulation that iterates the
initial particle positions towards a more stable state. One
approach is to use an inverse gravitational field to repel the
particles from each other (Wang & White 2007). A more
sophisticated version of this was developed by Diehl et al.
(2015) based on weighted Voronoi tessellations. Another
method is to add a damping force to reduce any transi-
ent velocities as the particles are allowed to evolve under
otherwise-normal gravitational and material pressure forces.
In all cases, the simulation is run until a condition is met to
call the system ‘relaxed’, such as when the particle velocities
or accelerations reach some small value.

These methods can generate particle configurations that
are stable and relaxed, but at a cost of performing extra
simulations. Especially for large numbers of particles, this
can be a computationally expensive process and can take
large amounts of time, comparable to the final simulation
for which the initial conditions are being generated. Depend-
ing on the method used, the particles may also settle to a
distribution somewhat different to the desired initial profile.

The spherical symmetry and sharp radial boundaries of
astrophysical objects strongly motivate the arrangement of
particles in nested spherical shells. If the particles could be
distributed uniformly in each shell, then no computationally
expensive simulation would be required to create relaxed
initial conditions. However, the equidistant distribution of
points on the surface of a sphere is a challenging problem,
and has been studied for applications in a wide variety of
fields: from finding stable molecular structures like buck-
minsterfullerene to making area-integral approximations, in
addition to the pure mathematical curiosity of such a trivial
question in 2D (equally spaced points on a circle) becom-
ing so complicated in higher dimensions (Saff & Kuijlaars
1997).

Similar ideas motivated the work of Raskin & Owen
(2016) and Reinhardt & Stadel (2017), who both presen-
ted algorithms for arranging particles in spherical shells.
One issue with Raskin & Owen (2016)’s method is that in
each shell there are a few particles with large overdensities,
placing the particles slightly out of equilibrium (see §3.1).
Reinhardt & Stadel (2017) divide the sphere into equal re-
gions that can be further subdivided (using the HEALPix
scheme), with the disadvantage that only sparsely distrib-
uted numbers of particles (12 × 4n for n ∈ N) can be placed
in each shell. Furthermore, some particles in each shell show
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SPH densities more than 5% discrepant from the desired
profile density (their Fig. 4).

In §2.1, we present an algorithm for arranging any num-
ber of particles in a spherical shell such that every particle
has an SPH density within 1% of the median. Our method
involves a simple division of the sphere into equal-area re-
gions arranged in latitudinal collars, followed by slightly
stretching the collars away from the poles. Concentric shells
can then be set up to precisely follow an arbitrary radial
density profile, taking care to align the shells with any ra-
dial boundaries. We apply this stretched equal-area (SEA)
algorithm to create near-equilibrium models of planets, and
present the results in §3.1.

1.2 Convergence and Uranus Giant Impacts

The need to increase resolution to improve studies of ex-
isting topics was recently demonstrated by Hosono et al.
(2017). Concerningly, they found giant impact simulations
that gave apparently reliable results with up to 106 particles
had not actually converged when re-tested with 107–108.
Genda et al. (2015) also found incomplete convergence of
disruptive impact simulations with up to 5 × 106 particles.

A numerically converged result is not necessarily phys-
ically correct. For example, several studies (e.g. Woolfson
2007; Deng et al. 2017) have pointed out the difficulties for
SPH in modelling the interaction of multiple materials or the
treatment of density discontinuities, which may not be im-
mediately fixed by higher resolutions. That said, it is crucial
that we at least obtain a reliable answer to the (imperfect
or not) question that we ask the computer to solve, so con-
vergence is an important first step.

As an example with which to investigate convergence
and test the simulation tools presented in this paper, we con-
sider the giant impact that likely knocked over the planet
Uranus to spin on its side. Previously, we ran SPH simula-
tions to study the consequences of this violent event using
∼106 particles (Kegerreis et al. 2018, hereafter K18) – as an
improvement on the <104 particles in the single previous
study by Slattery et al. (1992) almost 30 years ago. As well
as confirming that the impact can explain Uranus’ spin, we
found that with a grazing collision the impactor could form a
thin shell around the planet’s ice layer, perhaps trapping the
interior heat to help explain the freezing outer temperatures.
∼10% of the target’s atmosphere becomes unbound to escape
from the system and a small amount of the impactor’s rocky
core is ejected into the debris disk. Kurosaki & Inutsuka
(2019) recently explored a different, complementary part of
the wide parameter space with ∼105 SPH particle simula-
tions. They varied the entropy of the proto-Uranus target
to examine the effects on the angular momentum and the
debris.

In §2.2 we summarise the SWIFT hydrodynamics code
and its development to run these planetary simulations and
take advantage of contemporary supercomputer architec-
tures. In §3.2 we use SWIFT and the SEA particle placement
method to repeat simulations of Uranus giant impacts from
K18 using 105 up to 108 SPH particles, and test the conver-
gence of the post-impact planet’s rotation rate, the erosion
of the atmosphere, and the ejection of rocky material into
the debris disk.

2 METHODS

2.1 Particle Placement and Initial Conditions

The goal is to distribute a number of similar-mass particles
in a sphere, such that the SPH density of every particle ac-
curately matches a given density profile (see §A). In order
to follow an arbitrary radial profile that may include sharp
discontinuities, such as a core-mantle boundary or a planet’s
surface, it is convenient to distribute the particles in spher-
ical shells. The particles can then be assigned any property
using other radial profiles, such as their material type and
temperature or internal energy.

The two inputs for this problem are the desired total
number of particles and the radial density profile. The pro-
file is first used to find the enclosed mass at each radius. The
number of particles then gives the nominal particle mass. We
iterate outwards from the centre, placing particles in suc-
cessive shells, following the density profile. First, we must
determine the radius of each shell and how many particles
are required to account for its mass (§2.1.1). Then, the ques-
tion is how to arrange an arbitrary number of particles on
a spherical shell, for which we describe our stretched equal-
area (SEA) method (§2.1.2).

2.1.1 Shells and Layers

We begin by placing a tetrahedron of particles near the
centre, so the first ‘shell’ is actually the sphere that encloses
the mass of four particles. If this central sphere has radius
drc and density ρc , then the thickness, dr, of a subsequent
shell with density ρ is

dr = drc

(
ρc
ρ

)1/3
. (1)

The number of particles in a shell is then simply the mass of
that shell divided by the nominal particle mass. This must
be rounded to an integer, giving an actual particle mass
in each shell that may be slightly different to the nominal
mass. This amounts to maximum deviations of ∼1% for 106

total particles and ∼0.1% for 108. The shell thickness could
be tweaked instead to enforce strictly equal particle masses.
The particles in the shell are then all assigned the same prop-
erties (e.g. temperature), set by the mass-weighted mean of
the profile values across the shell.

It is important to note that this shell spacing will, in
general, lead to shell boundaries that do not line up with any
boundaries in the profile – whether simply the outer profile
edge or internal boundaries separating layers inside a planet
or star. In the first case of a single-layer profile, the penultim-
ate particle shell will typically end close to the outer edge.
This leaves a thin and low-mass outermost shell with only a
small number of particles that both cannot adequately cover
the large area and will be too close in radius to the previ-
ous shell. For interior boundaries such as between core and
mantle layers, a shell will typically straddle the discontinu-
ity. The particles in this shell then try in vain to represent
some of both materials and conditions.

To avoid these problems, we slightly tweak the input
particle mass to change the mass of the first core shell and
hence its radius. This influences the radii of all the shells
(Eqn. 1). We iterate the input particle masses until the
boundary of the outermost shell in the first (or only) layer
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coincides with the profile’s boundary. This leads to a slightly
different total number of particles as well, but ensures a
proper particle representation of the final shell in this layer,
as well as of the first shell of the next layer if there is one.

A similar issue and solution arises for any subsequent
boundaries. To maintain a similar particle mass in all layers,
we do not change the particle mass again. Instead, we tweak
the number of particles in the first shell of each outer layer.
This changes the mass of that shell and hence its radius, as
before. By using the thickness and density of this shell in
Eqn. 1 instead of the central shell, this leads to appropri-
ate changes for all the shells in this layer. We iterate over
slightly different numbers of particles in the first shell un-
til the outermost shell’s boundary coincides with the profile
boundary of this layer. This is repeated at the start of each
layer until a particle shell boundary matches every profile
boundary both internally and at the profile’s edge.

One remaining decision is at what radius to place the
particles within each shell. Two average radii to consider
are r1/2, half-way between the inner and outer radii of the
shell, and rm-w, the mass-weighted mean radius. For a slowly
changing density profile and/or many particles that lead to
thin shells, the density is roughly constant throughout the
shell and rm-w > r1/2 because the mass increases with 4πr2.
In the vast majority of shells, where dr � r, these two radii
are approximately equal. However, at small radii near the
core, placing the particles at r1/2 results in too-high densit-
ies, and rm-w gives too-low densities. We found that placing
the particles at 1

2

(
r1/2 + rm-w

)
correctly matches the mean

SPH density of the particles in each shell to the profile dens-
ity at that radius.

2.1.2 Particles on a Sphere

For every shell, we now have a number of particles, N , to
distribute on the surface of a sphere. We begin by consid-
ering the division of a (unit) sphere into equal-area regions
with small diameters, following the algorithm described by
Leopardi (2007) with minor modifications. The particles can
then be placed in the centre of each region.

We further impose a stretching of the regions by latit-
ude, to improve the particle density near the poles. Finally,
each shell is randomly rotated so that the particles at the
poles do not line up in successive shells.

For comparison, we also test the recursive primitive re-
finement and parametrised spiral (RPR+PS) method de-
scribed by Raskin & Owen (2016). Their method uses sub-
divisions of the Platonic solids for low-N shells and a spiral
placement algorithm for larger numbers of particles.

2.1.3 Equal-Area Regions

This method is also illustrated in Fig. 1 and a finished ex-
ample with N = 100 is shown in Fig. 2.

For N regions on a sphere, the area of each one will be

Areg = 4π/N . (2)

The bounding colatitude of a polar cap with area Acap is

θ = 2 arcsin



√

Acap

4π


 , (3)

θcap

θcol

(a)

θi=2

θi=3

(b)

∆φi=2

∆φi=3

(c)

φ0

(d)

1

Figure 1. An example division of a sphere into 20 equal regions,

demonstrating the main steps in the algorithm: (a) set the polar
caps and the initial collar latitudes; (b) tweak the collar latitudes

so that they each contain an integer number of regions; (c) divide

each collar into equal regions; (d) rotate the collars to maximise
the minimum separation of adjacent regions.

which for Acap = Areg gives the colatitude of the single-
region north pole cap, θcap, and south pole cap, π − θcap.

We start by dividing the rest of the sphere (between
the two polar caps) into collars with ideal initial heights of√

Areg. This gives the number of collars (when rounded to
an integer),

Ncol = round

π − 2θcap√

Areg

 , (4)

and the actual initial collar height,

θcol =

(
π − 2θcap

Ncol

)
, (5)

(Fig. 1a). We then divide each initial collar i into the closest
integer number of regions. The area of each collar is

Ai = 4π
(
sin2

(
θi
2

)
− sin2

(
θi−1

2

))
, (6)

so the ideal number of regions in each collar i is

N′i =
Ai

Areg
. (7)

This must be rounded to the actual integer number of re-
gions, Ni . The cumulative discrepancy, di , from the ideal
number of regions must be included to ensure that the total
number of regions is unchanged:

Ni = round
[
N′i + di

]
(8)

di+1 = di + N′i − Ni . (9)

Starting from the north pole and using the cumulative num-
ber of regions in each collar, N≤i , we find the final colatitude
of each collar by calculating the colatitude of the cap that
contains the same area as N≤i regions:

θi = 2 arcsin



√

N≤i Areg

4π


 , (10)
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Figure 2. An example of 100 particles distributed on a sphere
using the SEA (equal-area and subsequent latitude-stretching)

method. The colours highlight each collar of particles. The SPH

densities of these particles are shown by the purple points in
Fig. 3.

where i = 1 is the north pole cap (Fig. 1b).
The points in the centre of each region j in collar i then

have

θ = 1
2 (θi + θi+1) (11)

φ = φ0 + j ∆φi , (12)

where φ0 is the starting longitude and ∆φi =
2π

N≤i
is the

angle between adjacent points (Fig. 1c).
We choose the starting longitude of each collar, φ0, to

maximise the minimum separation between the points on
adjacent collars (Fig. 1d). This helps to prevent local over-
densities. If Ni and Ni−1 are both odd or both even, then
φ0 is half the smaller of ∆φi and ∆φi−1. If one is odd and
the other is even, then φ0 must be half of the even one’s ∆φ,
to prevent two particles in adjacent collars from having the
same φ and being too close together.

Finally, φ0 should be additionally offset by m∆φi−1,
where m is a random integer between 0 and Ni−1. Thus,
the φ0 rotation will be with respect to a random particle
in the previous collar. This prevents successive collars with
large Ni (and hence small φ0) from creating a sequence of
nearly adjacent particles in successive collars.

2.1.4 Latitude Stretching

The equal-area scheme described in §2.1.3 results in a small
local overdensity of particles near the poles. We can make the
particle density more uniform by stretching the collars near
the poles. However, the collars near the equator must not be
overly squashed. Therefore, the (absolute) latitude of each
point, | π2 − θ |, should be reduced by an amount that varies
with latitude, from maximum stretching at the poles to 0 at
the equator. Of course, the size of the shift at all latitudes
depends on the initial size of the collars, which is set by the
total number of particles. The collar height and the required
shift will decrease in proportion with the square root of the
number of particles. Thus, the appropriate stretching can be

given by:

θ′ = θ +
(
π
2 − θ

)
× aN−

1
2 exp

−
π
2 − |

π
2 − θ |

π bN−
1
2

 , (13)

where a = 0.2 and b = 2 (tested for 80 ≤ N ≤ 106). For
N < 80, we fit a and b manually to ensure that the maximum
deviation of any particle’s density from the mean is less than
±1%. This requires a to vary (non-monotonically) between
0.18 and 0.27, with b following this variation as b = 10 a,
and is only relevant for the innermost one or two lowest
mass shells.

2.2 Planetary Simulations with SWIFT

SWIFT (SPH With Inter-dependent Fine-grained Task-
ing) is a hydrodynamics and gravity code for astrophys-
ics and cosmology in open development (swift.dur.ac.uk),
designed from the ground up to run fast and scale well
on shared/distributed-memory architectures (Schaller et al.
2016).

For the past decade, physical limitations have kept the
speed of individual processor cores constrained, so instead
of getting faster, supercomputers are getting more parallel.
This makes it ever more important to share the work evenly
between every part of the computer so that no processors
are sitting idle and wasting time.

SWIFT can function as a drop-in replacement for the
Gadget-2 code, which has been widely used for cosmo-
logical and planetary impact simulations (Springel 2005;
Ćuk & Stewart 2012), but with a >30× faster runtime on
representative cosmological problems (Borrow et al. 2018).
This speed is partly a result of SWIFT’s task-based ap-
proach to parallelism and domain decomposition for the
gravity and SPH calculations (Gonnet 2015). By evaluat-
ing and dividing up the work instead of just the data,
this provides a dynamic way to achieve good load bal-
ancing across multiple processors within a shared-memory
node. The tasks are decomposed over the network in distrib-
uted memory systems using a graph-partitioning algorithm,
weighting each task by the estimated computational work
it requires. Combined with using asynchronous communica-
tions that are themselves treated as normal tasks, this allows
the code to scale well (Schaller et al. 2016). Core routines,
including the direct interaction between particles, have then
been optimized using vector instructions (Willis et al. 2018).

In some respects, giant impact simulations pose a harder
challenge for load balancing than the cosmological simula-
tions that SWIFT is also designed for. For a large patch of
the universe, although the density becomes very much higher
in a galaxy than a void, the local average density is roughly
constant across a simulation box. Even a crude division of
particles by position in the box to different computing cores
can somewhat effectively speed up the calculation, and a
more careful decomposition like SWIFT’s can produce ex-
cellent strong scaling across hundreds of thousands of cores
(Borrow et al. 2018).

In contrast, for a giant impact, almost all the mass (and
hence particles) is in the planet at the centre. If we use a
large simulation box in order to follow the ejected debris,
then the vast majority of particles can easily occupy less
than 0.01% of the volume. This is similar to cosmological
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‘zoom-in’ simulations that use a high-resolution region to fo-
cus on a single galaxy or halo. This firstly makes it harder to
divide up particles between computing nodes, and secondly
can require much more frequent communication. This makes
it much less efficient to use a large numbers of cores, and dif-
ficult to fully utilise a large supercomputer to run a single
planetary simulation very quickly.

Happily, most studies of giant impacts can be reframed
as ‘embarrassingly parallel’ problems because, instead of in-
vestigating one specific collision in extreme detail, the usual
aim is to study a wide range of scenarios, such as varying
the impact angle and speed. For this reason, perfect scal-
ing across many distributed-memory nodes or MPI ranks
is not as important. Many impacts can each be simulated
on their own single (or small number of) shared-memory
node(s). SWIFT then uses threads and SIMD vectorisation
to parallelise efficiently across the tens of cores within each
node. However, as we investigate in §3.2, even for parameter-
space surveys, large numbers of particles may be necessary
to obtain sufficiently converged results, depending on the
property being studied.

2.2.1 Planetary SPH

SWIFT has a modular structure that separates different
code sections for clean modifications to, for example, the
physics or the hydrodynamics scheme without affecting (or
even being aware of) the parallelisation and other struc-
tural components. Any such module is switched in or out
with configuration flags, allowing SWIFT to run planetary,
cosmological, or any other simulation as required.

The hydrodynamics scheme used for the simulations in
this paper uses a simple ‘vanilla’ form of SPH as described
in e.g. Price (2012), with the Balsara switch for the arti-
ficial viscosity (Balsara 1995). Multiple other schemes are
also implemented in SWIFT, as well as various SPH ker-
nels. Here, we use the simple 3D cubic spline kernel with 48
neighbours, corresponding to a ratio of smoothing length to
inter-particle separation of γ = 1.2348 (Dehnen & Aly 2012).
The default artificial viscosity parameters for the Monaghan
(1992) model are set to α = 1.5 and β = 2 α, as is typical in
the literature (e.g. Reinhardt & Stadel 2017).

The equation of state (EoS) for a material relates its
pressure to its density and temperature (or internal energy
or entropy). So far,3 we have implemented several Tillotson,
SESAME, and Hubbard & MacFarlane (1980) (for Uranus
materials) EoS in SWIFT, as well as an ideal or isothermal
gas. Any number of these different materials can be simu-
lated together, as is required in a multi-layered planet, for
example.

3 RESULTS AND DISCUSSION

3.1 Particle Placement

In this section, we first test the arrangement of particles
on an isolated spherical shell. Then, we investigate full 3D
initial conditions for a simple Earth-mass planet, consider-

3 The simulations in this paper used SWIFT version 0.8.1.
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Figure 3. The SPH densities of 100 particles placed using three
different schemes, normalised by the median density. The grey

lines show ±1% of the median. The 3D positions of these SEA

particles are illustrated in Fig. 2.

ing the SPH densities of the particles in their initial posi-
tions and how close they are to equilibrium when allowed to
evolve.

Fig. 3 shows the densities of 100 particles arranged
on a unit spherical shell using three different methods:
Raskin & Owen (2016)’s recursive primitive refinement and
parametrised spiral method (RPR+PS, specifically PS in
this case) and our equal-area method without (EA) and with
(SEA) the extra latitude stretching, as described in §2.1.2.

The RPR+PS and EA methods both show significant
overdensities at the poles, with maximum deviations from
the median density approaching 20% and 10% respectively.
This is still a big improvement on a random distribution of
particles on a shell, which leads to densities that are wrong
by a factor of >10. The SEA stretching reduces the scatter to
less than 1%, with typical maximum deviations of 0.5%, de-
pending on the exact number of particles. Only 100 particles
are shown here for clarity; the three methods show similar
relative deviations for 102–106 particles in a single shell.

Unfortunately, this dramatic improvement of SEA
over the unstretched EA method cannot be replicated for
RPR+PS because the distribution of particles is not azi-
muthally symmetric. Stretching the RPR+PS particles at
the poles reduces the overdensity for some particles but cre-
ates unavoidable underdensities for others because of their
asymmetry.

To investigate how these properties of an isolated shell
translate into nested shells in 3D, we now consider a full
model of an Earth-mass planet with ∼105 particles (see ap-
pendix A). The results from using the same three place-
ment methods are shown in Fig. 4. As in the isolated-shell
case, the RPR+PS particles show a large range of densities,
with a systematic spread of particle densities more than 10%
discrepant from the profile. The unstretched EA method
shows similar density discrepancies around 4%, while the
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Figure 4. The SPH densities of ∼105 particles placed using the
three different shell schemes as labelled in the legend. The EA

and RPR+PS particles are shown offset to slightly higher radii for

clarity. The black line shows the input density profile, represent-
ing a simple model of an Earth-mass planet. The SEA particles’

densities stay within 1% of the profile, as in the Fig. 3 isolated

shell case.

SEA stretching again ensures the scatter is within 1% of
the profile density. These values are for a cubic spline ker-
nel with 48 neighbours. Using another common example of
the Wendland-C6 kernel with 200 neighbours yields the same
qualitative results but reduces the density scatter in all cases
by roughly 1

2 .
The underdensity of particles in the outermost shell

is caused by the nature of the SPH density calculation,
so is seen equally for all methods. The spherical kernel
volume extends into the empty space above the planet’s sur-
face without finding any neighbours, artificially reducing the
density.

It is noteworthy that the density deviations of the
RPR+PS and EA methods were reduced when switching
from the 2D to the 3D case, while the SEA deviations were
approximately unchanged. This reflects the contributions of
the particles in other shells to the SPH density. The high
overdensities are reduced in 3D because the nearby particles
in adjacent shells are also summed over, mitigating the im-
pact of the too-close particles in the same shell. For SEA, the
particles in the randomly rotated adjacent shells are just as
likely to be very slightly too close or too far as the particles
in the same shell, so the density discrepancies are largely
unchanged. This suggests that there would be little benefit
to improving the distribution of particles within each shell
beyond that of SEA, e.g. by running a relaxing simulation
within each shell. Even if the particles in every isolated shell
were perfectly arranged, then the imperfect contributions
from adjacent-shell particles would negate any improvement.
So, if even smaller density deviations were desired, then it
would be necessary to consider all particles at once.

The actual success of our method is determined by how

close the particles are to equilibrium when allowed to evolve
in a simulation. A standard criterion for initial conditions to
be considered ‘relaxed’ enough for use is that the root mean
square velocity, vrms, is below ∼1% of the escape speed, here
vesc = 11.2 km s−1. Thanks to their precise densities, the
SEA particles immediately have vrms below 0.01 vesc, and
the maximum particle speed first peaks at under 0.04 vesc.
(‘Immediately’ here meaning the fastest speeds the particles
reach, soon after being allowed to evolve from a stationary
start.) In comparison, a random distribution of particles in
shells has initial vrms = 0.2 vesc.

Most of the SEA particles’ motion is caused by the
previously mentioned underdensity of the outermost shell,
which causes the entire planet to gently oscillate and settle
into a slightly lower density profile. Because this dominates
the discrepancy from an equilibrium state, the RPR+PS
particles’ vrms is almost identical to SEA in spite of their
comparatively noisy densities. Their maximum speed is
slightly higher at 0.07 vesc. If a modified density estimator is
used to fix the outer boundary problem, then a larger differ-
ence might be expected between the two methods. Planets
with layers of different materials – such as the proto-Uranus
and impactor in §3.2 – face similar SPH density problems at
interior boundaries as well.

We confirmed that these relaxed SEA results are un-
changed for Moon- and Pluto-mass planets (∼0.01 and
0.002 M⊕), which are less strongly gravitationally bound,
making them slightly less stable. However, the Tillotson
EoS used here (Tillotson 1962) is even steeper close to the
low density at which the pressure is zero, as is the case for
other EoS and depending on the temperature. This exacer-
bates any density errors into even greater pressure discrepan-
cies. For RPR+PS, some under-dense particles in the Pluto-
mass planet are even pushed below the zero-pressure dens-
ity, while the most over-dense ones get assigned a pressure
over 4 times the desired value. Nevertheless, these particles
can quickly be relaxed without much affecting the overall
structure or vrms. SEA has the mild advantage that it avoids
such issues in the first place, and requires similarly trivial
computation to generate the initial conditions.

The SEAGen code for quickly generating both isol-
ated shells and full spheres of points is publicly available at
github.com/jkeger/seagen or can be installed directly with
pip as the python module seagen.

3.2 Uranus Giant Impacts and Convergence

We now use these tools for first creating and then simulating
planets to study the convergence (or lack thereof) of giant
impact simulations using 105 up to 108 SPH particles. We
focus on three science-motivated questions about the giant
impact that likely knocked over the planet Uranus to spin
on its side: (1) How much atmosphere is ejected from the
system? (2) How much rocky material is placed into orbit?
(3) What is the post-impact rotation period of the planet?

Here, we repeat some of the simulations from K18
(Kegerreis et al. 2018) with ∼105, 106, 107, and 108 particles
to investigate how these higher resolutions compare with the
current standard, and to demonstrate the simulation tools
described in this paper. The full details of the equations of
state and initial conditions are described in K18.

Fig. 5 shows comparisons of a typical impact simu-
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Figure 5. Mid-collision snapshots in the early stages of the same giant impact on Uranus at the same times from simulations with the
∼105 SPH particles (left panels) typical in the literature, up through 106 and 107 to the 108 (right panels) made possible with SWIFT,
resolving more of the detailed evolution of both internal structure and debris. Snapshots shown are ∼2, 3, 4, and 7 hours after the start

of the simulation. An animation of the highest resolution impact is available at icc.dur.ac.uk/giant impacts.

lated at different resolutions, repeating the ‘low angular mo-
mentum’ scenario of K18’s Fig. 2. Although the overall beha-
viour is encouragingly similar, details like the tidal stretch-
ing of the impactor’s core and the distribution of the debris
clearly cannot be fully resolved by the 105 or 106 particle
simulations. Fig. 6 highlights some the details that can be
resolved with 108 particles for the grazing impact of the ‘high
angular momentum’ scenario of K18’s Fig. 3.

3.2.1 Ejected Debris

In K18 we found that the majority of the atmosphere sur-
vives the impact, but that a small fraction can be fully ejec-
ted. Fig. 7 highlights the particles that will become gravit-

ationally unbound and escape from the system. The initial
collision blasts away much of the outer atmosphere and some
ice, some of which will escape but most remains gravitation-
ally bound. The 107 and 108 particle runs show that a deeper
shell of now-exposed particles then gets ejected during the
subsequent violent oscillations as the impactor remnants fall
back in and the planet slowly starts to settle. - The time at
which this ejected material becomes unbound in each sim-
ulation is shown in Fig. 8. Significant mass is blasted off
the planet even several hours after the initial collision in all
cases. The 107 and 108 simulations closely agree that 9% of
the total atmosphere mass escapes. The 105 and 106 simula-
tions differ (non-systematically) with 8% and 12%, respect-
ively. This suggests that atmospheric erosion has converged
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Figure 6. A mid-collision snapshot of a grazing impact with 108 SPH particles – compared with the more head-on collision in Fig. 5 –

coloured by their material and internal energy, showing some of the detailed evolution and mixing that can now be resolved. In the left
panel, light and dark grey show the target’s ice and rock material, respectively, and purple and brown show the same for the impactor.

Light blue is the target’s H-He atmosphere.
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Figure 7. The particles that will become unbound and escape the system, highlighted in orange on a pre-impact snapshot from the

same simulations with ∼105–108 SPH particles as in Fig. 5. Only particles in a thin cross-section are shown for clarity. The colours are
the same as in Fig. 6. The times at which these particles become unbound are shown in Fig. 8. The total mass lost is broadly similar in

all cases, but 105–106 particles fail to resolve the detailed results.

by ∼107 particles in this case. On the positive side, although
the lower resolution simulations do not show perfectly con-
verged behaviour, for answering the practical question of
how much atmosphere is lost, all simulations give a qualit-
atively similar answer of ∼10%.

Most studies of impact erosion use analytical or one-
dimensional models to estimate the ejected atmosphere
given a certain ground speed from the shock induced by
the impact (e.g. Inamdar & Schlichting 2016). In this case,
the initial shock removes 8% of the atmosphere, then an ad-
ditional 1% is lost in the subsequent sloshing. So, much like
the minor resolution dependence, general conclusions about
the fraction of atmosphere lost to an impact of this scale are
unlikely to change. However, for more precise studies, smal-
ler atmospheres, and perhaps other impact scenarios, this
process should not be ignored.

For comparison, also shown in Fig. 8 is the mass of
unbound ice. The 107 and 108 simulations again give similar

final answers, but do not show the same behaviour at earlier
times. The lower resolution simulations are discrepant by
more than a factor of 2. It seems plausible that this quantity
is approaching convergence, but without more particles than
108 (or checking 107.5), it is clearly not safe to assume this
is a fully reliable result.

These quantities are summarised in Fig. 9 at 14 hours as
a function of the number of particles, showing by how much
each simulation differs from the highest resolution. That the
eroded atmosphere appears closer to convergence than the
ice is not surprising given the order-of-magnitude lower mass
of ejected ice, meaning correspondingly fewer particles are
involved in attempting to resolve the process – as can be
interpreted by the size of the error bars.

As an example of a property that has certainly not con-
verged, we also plot the mass of rock that is ejected into
orbit in a debris disk beyond the Roche radius, where it
might be available for accretion into satellites. Not only do
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Figure 8. The time evolution of the mass of gravitationally un-

bound atmosphere (light blue) and impactor-ice (purple) material
that is ejected from the system – the same particles highlighted

in Fig. 7 – for the different resolution simulations.

the 107 and 108 simulations not agree, they differ by more
than the lower resolutions with no semblance of convergence.
The corresponding number of orbiting rock particles in each
simulation is only 4, 80, 1000, and 20,000, respectively. So,
especially for a messy ejection process that is widely spread
out in both space and time, it is not surprising that 1000
or fewer particles are far from able to sufficiently resolve
what happens. It is possible that the 108 simulation has
already fully resolved and converged on this result, but our
only means of checking this – running even higher resolution
simulations – we leave for future studies where this is a tar-
geted science result. In comparison, the masses of orbiting
ice and atmosphere particles in the debris are much higher,
and converge similarly to the unbound atmosphere mass.

3.2.2 Rotation Period

The rotation period of the post-impact planet is a large-scale
bulk property involving a large majority of all particles, so
one might expect it to have converged by fairly low particle
numbers. However, as shown in Fig. 9, while the 107 and
108 simulations agree on a rotation period of 19.9 hours
to within 0.5% of each other, the 105 and 106 simulations
find much shorter periods of 14.7 and 17.7 hours. This is a
significant change to our results in K18, when it appeared
that even fairly low-impact-parameter 2 M⊕ impactors could
impart enough spin to explain the planet today. Assuming
an approximately similar reduction in spin for other impact
scenarios, only a narrower range of more-grazing impacts (or
more massive impactors) would be viable.

The evolution of the planet’s angular momentum for
each simulation is shown in Fig. 10, which, for simplicity,
we sum over all particles within the Roche radius. The total
angular momentum of the entire system remains the same in
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Figure 9. The change with resolution of the masses of unbound
atmosphere and ice, the mass of rock placed into orbit beyond

the Roche radius, and the planet’s rotation rate, demonstrating a

range of apparent (un)convergence. Each property is normalised
by the highest-resolution result to show the relative differences.

The shaded regions show the 1-σ errors, some of which are too

narrow to see. The rotation period appears to have converged by
∼107 particles, as have – with decreasing certainty – the unbound

atmosphere and ice masses, while the orbiting rock mass has not.

all cases, but at higher resolutions more angular momentum
is transported out to the debris disk beyond the Roche ra-
dius, leaving less in the planet. All the simulations agree
during the arrival and initial merging of the impactor, but
their behaviour begins to diverge as the thrown-out debris
(see the middle two rows of Fig. 5) begins to fall back in to
the planet, at around 3 hours after the start of the simula-
tion.

Even though the total number of particles used to meas-
ure the planet’s rotation rate is very large, the messy ejecta
and mixing around the outer regions of the planet are sig-
nificant enough to affect the overall system while also small
enough to require high resolutions to model correctly. This is
comparable to the effect seen by Hosono et al. (2017) where
the mass of the post-impact disk did not converge as expec-
ted because of subtle differences in the detailed behaviour
of re-impacting debris.

There will always be even smaller structures that are
not properly resolved, but their ability to alter the rest of
the system will also decrease, so appropriate-scale quant-
ities should stay converged. However, properties such as
small-scale turbulent mixing and the emergence of smaller
structures may never converge without the addition of reg-
ularising physics such as diffusion or viscosity mechanisms
(Lecoanet et al. 2016; Cullen & Dehnen 2010).

On the convergence of the rotation rate, in addition
to the similar angular momenta of 107 and 108 throughout
time, the rotation period encouragingly changes monotonic-
ally with higher resolution and by less with each increase.
So we interpret the various quantities shown in Fig. 9 as
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Figure 10. The early time evolution of the planet’s angular

momentum for the different resolution simulations, summed over
all particles within the Roche radius of 6 R⊕ . The standard- and

high-resolution simulations begin to differ as the ejecta from the

initial impact falls back to the planet.

demonstrating a range of behaviour from the apparently
well-converged rotation rate and unbound atmosphere mass
by 107 particles, through the possibly converged unbound
ice, to the clearly un-converged orbiting rock.

4 CONCLUSIONS

We have presented a simple method for creating spher-
ical arrangements of particles with precise densities, and
the SWIFT code for hydrodynamical simulations, then used
them to study giant impacts at high resolutions.

The SEA algorithm allows the quick creation of near-
equilibrium, spherically symmetric initial conditions of
particles (github.com/jkeger/seagen). It ensures that every
particle has an SPH density within 1% of the desired
value, unlike the otherwise-similarly successful methods
of Raskin & Owen (2016) and Reinhardt & Stadel (2017).
This mitigates the need for expensive computation that is
otherwise required to produce initial conditions that are re-
laxed and ready for a simulation.

The open-source SWIFT code is designed to take ad-
vantage of contemporary shared/distributed-memory archi-
tectures (swift.dur.ac.uk). For planetary giant impact sim-
ulations, this has enabled a 100–1000× improvement in the
number of particles that can be used, allowing the study of
brand new topics that were out of reach for lower resolution
simulations.

To demonstrate these tools and test the convergence
of such simulations, we revisited the study of the giant im-
pact onto the young Uranus that may explain its spin and
other strange features (Kegerreis et al. 2018). We find that
even large-scale results such as the rotation rate are not con-
verged with standard-resolution simulations of 105 and 106

particles. The overall behaviour is similar in all cases, but
small variations in the debris that falls back after the initial
impact have a significant effect on the post-impact planet
and its rotation rate, which appears to be well-converged
with 107 and 108 particles, but not fewer. Similar but mildly
less certain convergence is seen for the masses of atmosphere
and ice that are ejected from the system, while the low mass
of rock placed into orbit has not converged at all by 107

particles.
Increasing resolution is only one important challenge for

developing more realistic simulations. We have here used a
simple implementation of SPH with a focus on simply in-
creasing the number of particles. Future studies must con-
tinue to test high resolutions with, for example, more soph-
isticated equations of state and improved SPH formulations
with better treatment of issues such as material and density
discontinuities.

We conclude that standard-resolution simulations with
<107 SPH particles can fail to produce reliable results even
for large-scale properties of planetary system. 107 and 108

particles appear to pass the threshold of resolving the ma-
jor processes in a giant impact. However, different collisions
and other specific simulation outputs will depend more or
less strongly on the behaviour of smaller structures, with
correspondingly different requirements for convergence. The
highly non-linear nature of giant impacts and the combina-
tions of short- and long-term, localised and distributed pro-
cesses prevent simple predictions for how many particles will
be sufficient for a given result to converge.
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Ćuk M., Stewart S. T., 2012, Science, 338, 1047

Cullen L., Dehnen W., 2010, MNRAS, 408, 669

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz1606/5513478 by U

niversity of D
urham

 user on 18 June 2019



12 J. A. Kegerreis et al.

Dehnen W., Aly H., 2012, MNRAS, 425, 1068

Deng H., Reinhardt C., Benitez F., Mayer L., Stadel J., 2017,

preprint, (arXiv:1711.04589)

Diehl S., Rockefeller G., Fryer C. L., Riethmiller D., Statler T. S.,

2015, Publ. Astron. Soc. Australia, 32, e048

Genda H., Fujita T., Kobayashi H., Tanaka H., Abe Y., 2015,
Icarus, 262, 58

Gonnet P., 2015, SIAM J Sci. Comput., 37, C95

Herant M., 1994, Mem. Soc. Astron. Italiana, 65, 1013

Hosono N., Iwasawa M., Tanikawa A., Nitadori K., Muranushi T.,
Makino J., 2017, Publ. Astron. Soc. Jpn., 69, 26

Hubbard W. B., MacFarlane J. J., 1980, J. Geophys. Res., 85, 225

Inamdar N. K., Schlichting H. E., 2016, ApJ, 817, L13

Kegerreis J. A., et al., 2018, ApJ, 861, 52

Kurosaki K., Inutsuka S.-i., 2019, AJ, 157, 13

Lecoanet D., et al., 2016, MNRAS, 455, 4274

Leopardi P., 2007, PhD thesis, Sch. Math. Stat., U. New South

Wales

Lombardi J. C., Sills A., Rasio F. A., Shapiro S. L., 1999,
Journal of Computational Physics, 152, 687

Melosh H. J., 2007, Meteoritics and Planetary Science, 42, 2079

Monaghan J. J., 1992, ARA&A, 30, 543

Monaghan J. J., 2012, Annual Review of Fluid Mechanics,
44, 323

Morris J. P., 1996, Publ. Astron. Soc. Aust, 13, 97

Price D. J., 2012, Journal of Computational Physics, 231, 759

Raskin C., Owen J. M., 2016, ApJ, 820, 102

Reinhardt C., Stadel J., 2017, MNRAS, 467, 4252

Saff E. B., Kuijlaars A. B. J., 1997, The Math. Int., 19, 5

Schaller M., Gonnet P., Chalk A. B. G., Draper P. W., 2016,
Proc. of PASC’16, pp 2:1–2:10

Slattery W. L., Benz W., Cameron A. G. W., 1992, Icarus, 99, 167

Springel V., 2005, MNRAS, 364, 1105

Springel V., 2010, Annual Review of Astronomy and Astrophysics,
48, 391

Tillotson J. H., 1962, General Atomic Report GA-3216

Wallace D. C., Sidles P. H., Danielson G. C., 1960,

Journal of Applied Physics, 31, 168

Wang J., White S. D. M., 2007, MNRAS, 380, 93

Waples D. W., Waples J. S., 2004, Natural Resources Research,

13, 97

Willis J. S., Schaller M., Gonnet P., Bower R. G., Draper P. W.,

2018, CoRR, abs/1804.06231

Woolfson M. M., 2007, MNRAS, 376, 1173

APPENDIX A: PLANETARY PROFILES

This section details the creation of radial profiles for the
model planets. The main inputs for a profile are the total
mass, the number of layers and their materials, the surface
pressure and temperature, and estimates for the outer radius
and any internal boundary radii that we will later refine. To
set each layer’s material, we must define the equation of
state (EoS), a conversion between temperature and internal
energy e.g. the specific heat capacity and cold curve, and
an expression for how heat is transferred e.g. isothermal or
adiabatic.

We iterate inwards in thin spherical shells from the sur-
face to the centre – not to be confused with the much thicker
shells we define in §2.1.1 to arrange simulation particles in
the resulting sphere. The density at the surface is first found
using the EoS with the input pressure and temperature. As-
suming a constant density within this very thin shell, the
mass of the shell is calculated to find the pressure at the
inner shell boundary that would be required for hydrostatic

equilibrium. The density and temperature that provide this
pressure at the inner shell boundary are then found using
the EoS and the heat transfer (ρ–T) relation. This process
is repeated for the next shell until reaching the centre.

The temperature and pressure are continuous across any
internal layer boundaries, so this iteration continues into the
core, until the input total mass has been used up. If the
input radii for the outer surface and any inner boundaries
are accurate, then the central shell should use up the final
available mass just as its inner boundary reaches the centre.
However, if any of these input radii are too large or too
small, then either the mass will be used up before reaching
the centre or the centre will be reached with some mass still
remaining. In this case, we modify the input radii and repeat
the process, until the mass discrepancy is a tiny fraction of
the total mass.

For our test model of a simple Earth-mass planet in
§3.1, the inputs were the Earth’s mass, the Tillotson granite
EoS (Tillotson 1962; Melosh 2007), and an isothermal tem-
perature of 300 K, leading to an outer radius of 1.036 R⊕ .
We chose a constant specific heat capacity of 710 J K−1 kg−1

(Wallace et al. 1960; Waples & Waples 2004).
The resulting density (and temperature or internal en-

ergy) profile can then be used to create a set of particle
initial conditions, as described in §2.1. This approach is
the same for more complicated planets with multiple lay-
ers and discontinuities in material and density, such as the
proto-Uranus and impactor used in §3.2 with full details in
Kegerreis et al. (2018).

APPENDIX B: TILLOTSON SOUND SPEED

In addition to the pressure, density, and thermal proper-
ties of a material, the EoS is also important for determin-
ing the sound speed. In smoothed particle hydrodynamics
(SPH), the sound speed is used both to control the simu-
lation timestep – to ensure that sound waves do not travel
further than the distance between neighbouring particles in
one step – and as part of the artificial viscosity calculation
that controls the behaviour of shocks (Price 2012).

The popular Tillotson EoS does not include an expres-
sion for the sound speed, c, but it can be derived from the
partial derivative of the pressure, P, with respect to the dens-
ity, ρ, at constant entropy, S:

c2 =
∂P
∂ρ

�����S , (B1)

which we can calculate from Tillotson’s P, ρ, and specific
internal energy u, using du = TdS + PdV = TdS − (P/ρ2)dρ.

The Tillotson pressure is separated into a condensed or
cold state and an expanded and hot state (Tillotson 1962).
Using the standard definitions of η ≡ ρ/ρ0, µ ≡ η − 1, ν ≡
1/η − 1, and ω ≡ u/(u0η

2) + 1, these two pressure formulae
are

Pc =

(
a +

b
ω

)
ρu + Aµ + Bµ2 (B2)

Pe = aρu +
(

bρu
ω
+ Aµe−βν

)
e−αν

2
, (B3)

where ρ0, a, b, A, B, α, β, u0, uiv, and ucv are material-
specific parameters for the EoS (Melosh 2007). In the hybrid
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state, the pressure is a linear combination of the two:

Ph =
(u − uiv) Pe + (ucv − u) Pc

ucv − uiv
. (B4)

For SWIFT, the minimum pressure is set to 0.
Using Eqn. B1, the sound speeds for each state are

c2
c =

Pc
ρ

[
1 + a +

b
ω

]
+

b(ω − 1)
ω2

[
2u −

Pc
ρ

]

+
1
ρ

[
A + B

(
η2 − 1

)]
(B5)

c2
e =

Pe
ρ

[
1 + a +

b
ω

e−αν
2
]
+

{
bρu
ω2η2

[
1

u0ρ

(
2u −

Pe
ρ

)
+

2ανω
ρ0

]

+
A
ρ0

[
1 +

µ

η2 (β + 2αν − η)
]

e−βν
}

e−αν
2
, (B6)

and the hybrid state is the equivalent linear combination:

c2
h =

(u − uiv) c2
e + (ucv − u) c2

c
ucv − uiv

. (B7)

For SWIFT, a minimum sound speed is set using the un-
compressed density and bulk modulus:

√
A/ρ0.

Reinhardt & Stadel (2017) did this same calculation
(with slightly different notation), but their c2

c has a typo
A instead of a in the first term and their c2

e has swapped the
sign of (2u − Pe/ρ), which would change the sound speed by
∼10%.

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/advance-article-abstract/doi/10.1093/m
nras/stz1606/5513478 by U

niversity of D
urham

 user on 18 June 2019


