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Abstract  1 

Bohai Bay Basin is a Meso-Cenozoic terrestrial sedimentary basin in eastern China. Its 2 

offshore regions, including Bozhong and Liaodongwan Depressions, are favourable 3 

exploration targets which provide near a half of the petroleum reserves in the basin. Eocene 4 

Shahejie (Es) Formation and Oligocene Dongying (Ed) Formations are two important 5 

exploration targets in Bozhong Depression, and overpressure is commonly seen in Es and Ed 6 

Formations in this area. Our research examined the distribution characteristics of overpressure 7 

in the formations and suggest the main mechanism of overpressure is compaction 8 

disequilibrium due to the rapid sedimentation rates (~500m/Ma) of fine-grained sediments in 9 

this area. Also, oil and gas generation within the thick mudstones of the two formations has 10 

added the magnitude of overpressure. We investigated the reservoir quality especially primary 11 

porosity in Es and Ed formations, and their relationship with overpressure. The positive effect 12 

of overpressure on reservoir porosity preservation was validated through microscopic 13 

observations and vertical effective stress (VES) analysis. We established a quantitative model 14 

for evaluating the relationship of overpressure, pore structures, porosity, and VES. The result 15 

suggests the overpressure in the targeted formations were primarily originated from 16 

undercompaction. The overpressure kept VES from increasing and helped preserve the primary 17 

intergranular porosity. The porosity preserved by overpressure can be significantly higher than 18 

normally compacted porosity under the same condition of depth and temperature. 19 
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1. Introduction 24 

Reservoir quality evaluation is vital in the exploration and development of deeper targets. 25 

Pore geometry, porosity and permeability are the starting points of reservoir quality research 26 

(Pittman, 1979; Ehrenberg, 1989, 1990). Deeply buried sandstones with anomalous porosity 27 

and permeability are favourable reservoirs providing great probability for commercial 28 

production. Anomalous porosity or permeability is statistically higher than the values in typical 29 

sandstone reservoirs of a given lithology, age, and burial/temperature (Gluyas and Cade, 1997; 30 

Bloch et al., 2002; Taylor et al., 2010). The controlling factors and mechanism of porosity 31 

formation and preservation during diagenesis have long been investigated. Loucks et al. (1977) 32 

studied the reservoir qualities of Lower Tertiary Frio Formation in Texas Gulf Coast and 33 

proposed porosity in shallow reservoirs (<2500m) decrease due to compaction and cementation, 34 

however, deeper reservoirs (2500~3500m) gain greater porosities from late subsurface leaching. 35 

Bjørlykke (1992, 1998, and 2015) investigated clay mineral reactions in shales and sandstones 36 

and discussed their importance in mechanical and chemical compactions. The characteristics 37 

of clay coatings and their contribution to porosity preservation in deeply buried reservoirs have 38 

also been studied worldwide (Pittman, 1992; Ehrenberg, 1993; Hammer et al., 2010; Morad et 39 

al., 2010; Taylor et al., 2010; Maast et al., 2011; Dowey et al., 2012; Stricker et al., 2016a, 40 

2018; Cui et al., 2017; Tang et al., 2018). Overpressure can make great impact on reservoir 41 

quality as well. Scherer (1987) looked into thirteen parameters for their influence on primary 42 

porosity in sandstones and suggested overpressure may resist the compaction process and 43 

preserve primary porosity at a rate of 2% porosity for every 6.9 MPa (1,000 psi) overpressure. 44 

Dixon et al. (1989) studied the preserved high primary porosity in deep Norphlet sandstones 45 

(20% at depths of more than 6000 m) in Alabama and proposed migration of hydrocarbons and 46 

geopressuring is one of the major factors of the preservation. Ramm et al. (1994) predicted the 47 

porosity in Norwegian Continental Shelf and summarised the positive correlation between fluid 48 

pressure and porosity. This positive correlation between porosity and overpressure has been 49 

proved in the researches of the central North Sea (Kugler et al., 1990; Haszeldene et al., 1999; 50 

Lander and Walderhaug, 1999; Osborne et al., 1999; Yardley et al., 2000; Lubanzadio et al., 51 

2002; Wilkinson et al., 2006; Goulty et al., 2012; Nguyen et al., 2013; Grant et al., 2014; Sathar 52 

and Jones, 2016; Stricker et al., 2016b; Oye et al., 2018; O’neil et al., 2018).  53 

Pleistocene Dongying Formation (Ed) and Eocene Shahejie Formation (Es) are two deep 54 

targets (>3000m) in the offshore regions of Bohai Bay Basin, in which overpressure is 55 

commonly seen (Wang et al., 2016; Liu et al., 2016, 2017, 2019). In this work, the 56 

characteristics of overpressure in Es and Ed are summarized, and the relationship between 57 



overpressure and anomalous porosity is investigated through the comprehensive analysis of 58 

wirelines, microscopic features, vertical effective stress, and test data including DST, core 59 

porosity and permeability.  60 

2. Geological settings 61 

2.1 The structural settings 62 

Bohai Bay Basin, also known as ‘Bohai Basin’ (Allen et al., 1997, 1998), is a “young” 63 

sedimentary basin in eastern China. The recently published papers tend to reach an agreement 64 

that Bohai Bay Basin is a rift basin reformed by strike-slip faulting (Cai et al., 2001; Hu et al., 65 

2001; Qi, 2004). The structural frame of the offshore regions, having the area of about 4.7×104 66 

km2 and currently covered by the Bohai Sea, is formed by Cenozoic tectonic deformation which 67 

is a part of Himalayan tectonic movements (Mi and Duan, 2001; Xu et al., 2002; Xu et al., 68 

2006) and consists of two major depressions: Bozhong and Liaodongwan Depressions (Fig. 1). 69 

Bozhong Depression is located in the south and in its centre formed the thickest sedimentation 70 

(>11 km). Significant extension began in Bozhong Depression at approximately 43 ~ 45 Ma 71 

ago. This syn-rift stage formed the thick layers of Es and Ed Formations and ceased at the end 72 

of Oligocene. Then the post-rift thermal subsidence stage have been taking place since the 73 

Miocene (24.6 Ma to present) (Cai et al., 2001; Qi, 2004; Gong, 2004; Zhou et al., 2010).  74 

 75 

Figure 1. Location and structural distribution of Bozhong Depression. 76 



2.2 The stratigraphic settings 77 

The strata revealed by drilling in Bozhong Depression are (from bottom to top): Anz, 78 

Paleozoic (Pz), Mesozoic (Mz), Paleocene-Eocene Kongdian Formation (Ek), Eocene Shahejie 79 

Formation(Es), Oligocene Dongying Formation (generally accepted labelled as Ed), Lower-80 

Neocene Guantao Formation (Ng), Upper-Neocene Minghuazhen Formation (Nm), and 81 

Quaternary (Qp) (Fig. 2). Their total thickness reached 12000m (39372 ft) in the Bozhong Sag 82 

which is the deepest sag of Bozhong Depression, among which Es and Ed Formations take up 83 

more than 70%. Es and Ed Formations are delta-lacustrine formations and form two main series 84 

of source rock and reservoirs.  85 

 86 

Figure 2. Summarized stratigraphic columns of offshore Bohai Bay Basin. 87 

2.3 The burial and thermal maturity history 88 

Es and Ed Formations are of great thickness in Bozhong Depression. Sedimentation rates 89 

of these two formations are relatively high, generally over 200m/Ma, highest reached 525m/Ma. 90 

The rapid sedimentation of Es and Ed made it difficult for pore pressure in and underneath 91 

Lower Ed to dissipate along the burial. This disequilibrium compaction directly caused the 92 



over pressures in Es and Ed Formations. The estimation of pore pressure evolution shows the 93 

overpressure (pore pressure extracts hydrostatic pressure) primarily emerged during the 94 

deposition of the second member of Ed Formation (Fig. 3).  95 

 96 

Figure 3. Burial and thermal history of Bozhong Depression. 97 

3. Data and method 98 

We used thin sections observations, core measurements, pore pressure data, and 99 

microscopic images to investigate the sandstone composition, reservoir property, pore pressure 100 

characteristics, and microscopic features corresponding to different pore pressure conditions. 101 

Basin modelling and VES analysis were used in analysing the origin and effect of overpressure. 102 

194 sandstone thin sections of Ed and Es Formations were observed. Grain size and 103 

sorting data were obtained by measuring the long axis of framework grains that were selected 104 

using a point count grid. 2376 sets of core measurements included porosity and Klinkenberg 105 

permeability at in situ stress and 270 DST pore pressure measurements were used in this study. 106 

89 Scanning electron microscopy (SEM) images were observed to examine the relationship 107 

between overpressure and microscopic textures.  108 

4. Results 109 

4.1 Sandstone composition and grain size 110 

The Es Formation had been deposited through an environmental change of fluvial /delta 111 

– shallow/deep lacustrine – shallow lacustrine/ delta – lacustrine (Zhu et al., 2008). The 112 

changes formed four distinct members and sandstones are mainly encountered in the second 113 

and fourth members in Es Formation. Thin sections and casting thin section observations 114 

suggest the Es sandstones are mainly well sorted lithic arkose and Feldspar litharenite, and a 115 

small portion of arkose (Fig. 4a, red circles). The rock fragments are mainly from igneous and 116 

metamorphic rocks. The Ed Formation was dominantly formed in lacustrine environment with 117 



delta sediments in the slopes. The Ed sandstones comprise lithic arkose and feldspar litharenite, 118 

in which lithic arkose takes up slightly more portions (Fig. 4a, blue filled circles). Es and Ed 119 

sandstones are generally fine-medium grained. The sandstones are coarser in Es Formation 120 

than which in Ed Formation (Fig. 4b).   121 

 122 

Figure 4. Composition and grain size of the Es and Ed sandstones in Bozhong Depression. 123 

4.2 Porosity and permeability 124 

Core measured sandstone porosities in Es Formation range 10 ~ 30 % from the depth of 125 

2600 m; in Ed Formation they value 8~ 35% from the depth of 1700m (Fig. 5). The porosities 126 

in Es and Ed Formations generally demonstrate a decreasing trend versus depth, but off-trend 127 

high porosities are encountered in both formations. The porosity can reach 30% at the depth of 128 

~4300 m (13124 ft.), which deviate from the regional porosity trend significantly. As the 129 

sandstone type and grain size don’t vary substantially in the two formations, pore pressure is 130 

taken into account to explain the generation and maintaining of the off-trend high porosities in 131 

deep reservoir. Seen from the correlation of the porosities of the entire sandstone reservoir and 132 

porosities in the overpressured intervals, the off-trend high porosities predominantly fall in the 133 



overpressured intervals. Klinkenberg permeability in Bozhong Depression ranges 0.001 ~ 7000 134 

mD and corelates well with porosities, suggesting the porosity can be relied solely to estimate 135 

the reservoir quality (Fig. 6). 136 

 137 

Figure 5. Porosity versus depth in Bozhong Depression. 138 

 139 

Figure 6. Porosity-permeability correlation in Bozhong Depression. 140 



4.3 Pore pressure characteristics in Bozhong Depression 141 

Vertically, DST data shows there are abnormally high pressures in Es and Ed Formations 142 

in this area (Fig. 7). Generally, the overpressure onset can be recognised from ~2500 m (8202 143 

ft.) in depth and get the greatest magnitude between 3500m and 3800m (11483~12467 ft.). 144 

Pore pressure in Ed Formation reaches 59.63 MPa (8647 psi) at the depth of 3650 m (11977 145 

ft.), with the overpressure coefficient (the ratio of pore pressure to hydrostatic pressure) of 1.65; 146 

in Es Formation, the maximum measured pore pressure, 61.46 MPa (8912 psi), occurs at the 147 

depth of 3768 m (12363 ft.). Wells revealed overpressure distribute around the Bozhong 148 

Depression (Fig. 8). There is no well drilled in the deep sag centre where current water depth 149 

of Bohai Sea reaches 85 m (279 ft.) or deeper, hence the regional distribution of overpressure 150 

was estimated from basin modelling. 151 

 152 

Figure 7. Measured data of pressure and temperature versus depth.  153 

 154 

Figure 8. Distribution maps and profiles of overpressure in Bozhong Depression. 155 



 156 

4.4 Microscopic characteristics 157 

Micro analysis of porosity has been carried out to analysis the porosity preservation 158 

situations in normally compacted sandstones and overpressured ones. SEM photos of the 159 

sandstone samples are differentiated by their stratum and sedimentary facies. When compared, 160 

the micro porosities of sandstones in same stratum and same facies show significant difference 161 

as the pore pressure conditions are different  162 

In Ed Formation, sample ① is taken from the depth of 2888 m (9475 ft.), the excess 163 

hydrostatic pressure is 8MPa (1160 psi); Neutron porosity at this depth is ~27% (Fig. 9a). In 164 

the SEM image, primary pores can be seen and the cementation is not severe. Cements are 165 

quartz, illite, and some kaolinite (Fig. 9b, ①).  166 

Sample ② is taken from the depth of 2702 m (8866 ft.), the excess hydrostatic pressure is 167 

2 MPa (290 psi); Neutron porosity at this depth is ~17% (Fig. 9a). In the SEM image, primary 168 

pores are filled by illite, kaolinite and some carbonate (Fig. 9b, ②). 169 

 170 

Figure 9. The SEM images of Ed sandstones within different pore pressure horizons. 171 

Unlike Ed Formation which is overpressured in deeper part, Es Formation is generally 172 

overpressured. In Es Formation, sample ① is taken from the depth of 3002 m (9850 ft.), the 173 

excess hydrostatic pressure is 10 MPa (1450 psi); Neutron porosity at this depth is ~23% (Fig. 174 

10a). In the SEM image, primary pores can be seen and the cements are quartz, illite, and some 175 

kaolinite (Fig. 10b, ①).  176 

Sample ② is taken from the depth of 3704 m (12153 ft.), the excess hydrostatic pressure 177 

is 23 MPa (3335 psi); Neutron porosity at this depth is ~24% (Fig. 10a). In the SEM image, 178 



chlorite grain coats may help preserve the primary pores (Fig. 10b, ②). Though it is deeper, 179 

the porosity maintains high compare to other samples. 180 

Sample ③ is taken from the depth of 3430 m (11254 ft.), the excess hydrostatic pressure 181 

is 9 MPa (1306 psi); Neutron porosity at this depth is ~17% (Fig. 10a). In the SEM image, 182 

primary pores are filled by illite and kaolinite (Fig. 10b, ③). The overpressure magnitude is 183 

relatively small considering its depth when compare to sample ①, and the porosity is smaller. 184 

Sample ④ is taken from the depth of 3091 m (10141 ft.), the excess hydrostatic pressure is 5 185 

MPa (725 psi); Neutron porosity at this depth is ~20% (Fig. 10a). In the SEM image, grains 186 

are cemented by calcite and some kaolinite (Fig. 10b, ④).  187 

 188 

Figure 10. The SEM images of Es sandstones within different pore pressure horizons. 189 



5. Discussion 190 

5.1 The origin of overpressure 191 

As stated in the geological settings, Es and Ed Formations are of great thickness in 192 

Bozhong Depression. Sedimentation rates of these two formations are relatively high, averaged 193 

over 200 m/Ma, with the highest reached 525m/Ma (see section 2.3). In normal compaction 194 

basin with similar age and lithology, the sedimentation rate is usually less than 100 m/Ma 195 

(Ibach, 1982; Katz, 2005). The rapid sedimentation of Es and Ed prevented pore pressure in 196 

and underneath Lower Ed to dissipate during the burial processes. This disequilibrium 197 

compaction gradually accumulated overpressures in Es and Ed Formations. The estimation of 198 

pore pressure evolution shows the overpressure (pore pressure extracts hydrostatic pressure) 199 

primarily emerged during the deposition of the middle member of Ed Formation (E3d
2) (see 200 

Fig. 8).  201 

Hydrocarbon generation is considered to be the second cause of overpressure. The source 202 

rocks in Es and Ed Formations were buried deep during the rapid burial which may have 203 

accelerated their maturation and generation behaviour. Source rocks in Es and Ed Formations 204 

have a vitrinite reflectance (Ro) values of 0.6% or higher under the depth of 2500 m (8203 ft.). 205 

5.2 Vertical effective stress – porosity relationships 206 

Since the overpressure in Bozhong Depression is mainly caused by disequilibrium 207 

compaction, mechanical compaction may have controlled the primary porosity preservation in 208 

sandstones. We used equation derived from Terzaghi's effective stress principle to investigate 209 

the VES (Nur and Byerlee, 1971; Tuncay and Corapcioglu, 1995). The relationship of porosity 210 

and vertical effective stress (VES) is employed in this research to investigate the process of 211 

mechanical compaction and its effect on the porosities. Sandstone porosities in Es and Ed 212 

Formations generally show a decreasing trend while the VES increases (Fig. 11, first column). 213 

The porosities in overpressured horizons are on the trend but a bit higher at same VES 214 

compared to which in normal pressured horizons, which may indicate overpressured 215 

sandstones have better porosity than normally compacted ones at the same depth.  216 

The compaction rate of sandstones varies significantly from facies to facies. The finer 217 

grained sediments can be compacted relatively faster and easier than coarse grains. To 218 

eliminate the facies variation effect in compaction process, shale content (Vsh) is introduced 219 

to investigate the VES – porosity relationship in similar sandstones. Considering the facies 220 

evolution in Bozhong Depression, sandstones have Vsh less than 25% formed in shallow 221 

lacustrine or slope, Vsh less than 15% mostly occur in delta front. As in Fig. 11 (middle and 222 

right columns), sandstones with Vsh less than 15% show the most distinct and uniform 223 



decreasing trend. The high pore pressure horizons, which are the low in VES, correlate to high 224 

porosities. This indicates overpressure helped preserving the primary porosity.  225 

Some anomalously high porosity occurs in Ed Formation in a deep well (stays 25~30 % 226 

below 4300 m / Fig. 11, upper row). This porosity may be added by the secondary dissolution 227 

porosity. 228 

 229 

Figure 11. The relationship of porosity and vertical effective stress in Bozhong Depression. 230 

5.3 Schematic model of the preservation effect of overpressure on sandstone porosity 231 

Based on the above analysis, we have established a schematic model which illustrate the 232 

vertical effective stress and sandstone porosity evolution (Fig. 12). The intention of this model 233 

is to provide a quantitative reference for the relationship of overpressure, pore structures, 234 

porosity, and VES. For normally compacted sandstone reservoirs which consists mainly of 235 

quartz and feldspars and have initial primary intergranular porosity of ~30%, the initial VES 236 

would be ~20 MPa. The contact of grains were point contact, and cementation was weak. With 237 

the burial depth increasing, the VES increased. With increasing VES, the contact of matrix 238 

grains in sandstones became tighter, from point contact to line contact.  The primary 239 

intergranular pores became smaller or even vanished. When VES reached ~40 MPa, the 240 

primary intergranular porosity would decline to less than 15%. However, the primary 241 

intergranular porosity in undercompacted reservoir (having an overpressure magnitude of ~20 242 



MPa) can retain 25% at the similar depth. Undercompaction induced overpressures would be 243 

preserved in the matrix unless deformed afterwards, hence they can resist the stress act upon 244 

sandstone grains, keeping the VES from increasing. Therefore, the compaction between matrix 245 

grains and reservoir porosity were protected by overpressure. The primary intergranular 246 

porosity preserved by overpressure can be more than 10% higher than normally compacted 247 

porosity under the same condition of depth and temperature. 248 

 249 

Figure 12. The schematic diagram of the relationship between VES and porosity. 250 

6. Conclusion 251 

Extensive overpressure has been encountered in Bozhong Depression of offshore Bohai 252 

Bay Basin. The overpressure is mainly confined in the Es and Ed Formations, and the pore 253 

pressure can reach ~60 MPa (8700 psi) at the depth of ~3700 m (12140 ft.) according to the 254 

measured data. Disequilibrium compaction is identified as the main mechanism of overpressure 255 

generation in this area. Hydrocarbon generation has added to the amount of overpressure at the 256 

present day.  257 

Reservoir quality of sandstone in the Es and Ed Formations is variable but there are off-258 

trend high porosities which can be up to 30% at the depth of ~4000 m (13124 ft.). Almost all 259 

of these off-trend high porosities are recorded in the intervals with overpressure. Porosity-260 

vertical effective stress analysis and the micro pore structures validate the positive effect of 261 

overpressure on high porosity preservation. The primary intergranular porosity preserved by 262 

overpressure can be more than 10% higher than normally compacted porosity under the same 263 

condition of depth and temperature. 264 

 265 
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Figure captions 458 

Figure 1. Location and structural distribution of Bozhong Depression. 459 

Figure 2. Summarized stratigraphic columns of offshore Bohai Bay Basin. 460 

Figure 3. Burial and thermal history of Bozhong Depression. 461 

Figure 4. Composition and grain size of the Es and Ed sandstones in Bozhong Depression. 462 

Figure 5. Porosity versus depth in Bozhong Depression. 463 

Figure 6. Porosity-permeability correlation in Bozhong Depression. 464 

Figure 7. Measured data of pressure and temperature versus depth.  465 

*The hydrostatic pressure gradient in this area is 10 MPa/km (0.442 psi/ft). 466 

*Overlapped depth of different stratum is due to the difference of structural location. 467 

Figure 8. Distribution maps and profiles of overpressure in Bozhong Depression. 468 

Figure 9. The SEM images of Ed sandstones within different pore pressure horizons. 469 

Figure 10. The SEM images of Es sandstones within different pore pressure horizons. 470 

Figure 11. The relationship of porosity and vertical effective stress in Bozhong Depression. 471 

Figure 12. The schematic diagram of the relationship between VES and porosity. 472 


