
Accepted Manuscript

Adakites without a slab: Remelting of hydrous basalt in the crust
and shallow mantle of Borneo to produce the Miocene Sintang
Suite and Bau Suite magmatism of West Sarawak

H. Tim Breitfeld, Colin Macpherson, Robert Hall, Matthew
Thirlwall, Chris J. Ottley, Juliane Hennig-Breitfeld

PII: S0024-4937(19)30256-7
DOI: https://doi.org/10.1016/j.lithos.2019.06.016
Reference: LITHOS 5114

To appear in: LITHOS

Received date: 29 January 2019
Accepted date: 11 June 2019" role="suppressed

Please cite this article as: H.T. Breitfeld, C. Macpherson, R. Hall, et al., Adakites without
a slab: Remelting of hydrous basalt in the crust and shallow mantle of Borneo to produce
the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak, LITHOS,
https://doi.org/10.1016/j.lithos.2019.06.016

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting proof before
it is published in its final form. Please note that during the production process errors may
be discovered which could affect the content, and all legal disclaimers that apply to the
journal pertain.

https://doi.org/10.1016/j.lithos.2019.06.016
https://doi.org/10.1016/j.lithos.2019.06.016


AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Adakites without a slab: Remelting of hydrous basalt in the crust and shallow mantle of 

Borneo to produce the Miocene Sintang Suite and Bau Suite magmatism of West Sarawak 

H. Tim Breitfeld1,* tim.breitfeld@rhul.ac.uk, Colin Macpherson2, Robert Hall1, Matthew Thirlwall3, 

Chris J. Ottley2, Juliane Hennig-Breitfeld1 

1SE Asia Research Group, Department of Earth Sciences, Royal Holloway University of London, 

Egham, Surrey, TW20 0EX, United Kingdom 

2Department of Earth Sciences, University of Durham, Durham, DH1 3LE, United Kingdom 

3Department of Earth Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, 

United Kingdom 

*Corresponding author. 

 

Abstract 

We present new geochronological and geochemical data for Neogene magmatism from West 

Sarawak. Zircon U-Pb geochronology divides Neogene magmatic rocks of West Sarawak into a Lower 

Miocene West Sarawak Sintang Suite with ages of c. 19 to 21 Ma, and a Middle Miocene Bau Suite 

with ages of c. 12 to 14 Ma. Magmatism occurred in multiple short-lived pulses from approximately 

24 Ma and was coeval with magmatic activity in NW Kalimantan and East Kalimantan. The majority 

of, but not all, Bau Suite samples display adakitic chemistry, while the West Sarawak Sintang Suite is 

predominantly non-adakitic. There was no active subduction zone or subducted slab associated with 

this adakitic magmatism. Instead, the geochemical diversity is consistent with the Bau and West 

Sarawak Sintang suites representing mixtures of mafic, mantle-derived magma with felsic magma 

derived from remelting of hydrous, mafic rock that had been emplaced into the lithosphere of 

Borneo as arc basalt tens or hundreds of millions of years previously. This origin is most evident in 

the main Sintang Suite of central Borneo (Kalimantan)  which has preserved less contaminated 

examples of the mafic endmember. This endmember resembles basaltic rocks from several locations 
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across Borneo suggesting that intraplate, mantle-derived magmatism was responsible for remelting 

older, hydrated basaltic rocks in the crust. 

Keywords: adakites; Sintang Suite; Bau Suite; intraplate magmatism; zircon U-Pb geochronology; 

Sarawak; Borneo  

1. Introduction 

Subduction zones have been major sites of crustal processing since at least the Neoproterozoic. 

While there is debate about early Precambrian geodynamics, including the role and importance of 

subduction (Stern, 2005; van Hunen and Moyen, 2012), modern subduction zones have produced , so 

called, adakitic magmatic rocks that resemble the tonalite – trondhjemite – granodiorite (TTG) suites 

which are common constituents of felsic Archean terranes (Campbell and Taylor, 1983; Kelemen, 

1995; Drummond et al., 1996). Therefore, understanding the genesis of adakitic rocks is an 

important step in understanding the development of the Earth’s continental crust.  

Adakites were initially interpreted as melts derived from young subducted oceanic crust (Defant and 

Drummond et al., 1990), but there have since been many studies that have found adakitic rocks 

either in subduction zones lacking subducted young oceanic lithosphere (e.g. Sajona et al., 1993; 

Castillo et al., 1999; Macpherson et al., 2006), or formed by melting of basaltic rock in the highly 

thickened crust of collision zones (Chung et al., 2003; Hou et al., 2004; Guo et al., 2007). Thus, 

several different processes – some involving slab melting, some not – have been proposed to explain 

the generation of the adakitic chemical signature. Each of these has implications for the geodynamic 

settings in which adakites are found and potentially for processes that might have been common 

during the Archean. 

In this paper, we explore the temporal, petrological, and geochemical development of a suite of 

Neogene magmatic rocks from Borneo that includes adakitic rocks. These were generated in a 

setting that had lacked subduction during, at least, the preceding 50 million years, and where there 

is no evidence of substantial crustal thickening. We show that these adakites were 
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contemporaneous with (i) non-adakitic granodiorites which were derived from similar sources to the 

adakites, and (ii) mantle-derived magmas resembling ocean island basalts. This indicates that the 

hydrated basaltic source of the adakites was present in the Borneo lithosphere, and implies 

subduction before the Oligo-Miocene, but there was no active subduction zone or subducted slab 

associated with the adakitic melts, which probably resulted from intraplate processes. 

2. Regional background 

The Kuching Zone in Borneo of Haile (1974), extending from the Lupar Line in the north to the 

Schwaner Mountains in the south (Fig. 1 and 2), includes Palaeozoic to Cenozoic metamorphic, 

sedimentary and igneous rocks (e.g. Liechti et al., 1960; Hutchison, 2005; Breitfeld et al., 2017, 

2018). The upper Cenozoic in the Kuching Zone is characterised by widespread, small igneous 

intrusions which form the focus of this study (Fig. 2). Geochemically similar rocks from Kalimantan 

and West Sarawak (Kirk, 1968; Williams and Harahap, 1987) are predominantly of Late Oligocene to 

Early Miocene age, and have been referred to as the Sintang Intrusives, the Sintang Intrusive Suite or 

the Sintang Suite (e.g. Doutch, 1992; Moss et al., 1998; Hutchison, 2005, 2010). We follow Hutchison 

in preferring the term Sintang Suite because not all of the igneous rocks are intrusive.  

2.1. Pre-Oligocene magmatism in Borneo 

The extensive Schwaner Mountains granitic batholith, which lies immediately south of the area of 

Sintang Suite magmatism (Fig. 2) formed during Cretaceous subduction that ceased at around 90 to 

80 Ma (Pieters and Sanyoto, 1993; Hutchison, 1996; Moss, 1998; Hall, 2012; Davies et al., 2014; 

Breitfeld et al., 2017; Hennig et al., 2017). Subsequent minor magmatic episodes produced the upper 

Cretaceous Pueh and Gading batholiths of West Sarawak (Kirk, 1968; Hennig et al., 2017; Fig. 3), the 

Eocene Muller Volcanics, Nyaan Volcanics, Piyabung Volcanics and Serantak Volcanics  in NW and 

central Kalimantan (Pieters et al., 1987; Bladon et al., 1989; Fig. 2), and the Eocene Piring stock in 

North Sarawak (Hennig-Breitfeld et al., 2019; Fig. 3) . 
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2.2. Sintang Suite: Upper Oligocene to Lower Miocene magmatism in Borneo 

The Upper Oligocene to Lower Miocene Sintang Suite consists of small sills, stocks and dykes, which 

form distinctive topographic features across a broad swathe of western Borneo (Williams and 

Harahap, 1987 and references therein) between the Schwaner Mountains and the Lupar Line (Fig. 2). 

Compositions are predominantly dacitic, granodioritic, or subordinately dioritic to granitic, with I-

type character (Williams and Harahap, 1987). Whole-rock, biotite, and hornblende K-Ar dating of 12 

samples collected near Sintang in NW Kalimantan (Williams and Harahap, 1987) yielded two distinct 

age groups: an older group of 30.4 to 23 Ma in the Melawi Basin near Sintang (type locality), and a 

younger group of 17.9 to 16.4 Ma in the Ketungau Basin. One biotite age of c. 42 Ma was excluded 

as it came from a rock which intruded probable Oligocene sediments. The NW Kalimantan Sintang 

Suite includes geochemically distinctive Northern, Central and Southern groups (Harahap, 1993; 

Heryanto et al., 1993), which are retained in this study (Fig. 2).  

In West Sarawak the Sintang Suite comprises sills (Fig. 4a), lava flows (Fig. 4b and d), dykes (Fig. 4c) 

and stocks which intrude the Kayan Sandstone and sediments of the northern Ketungau Basin. Kirk 

(1968) reported K-Ar biotite ages of 16 ± 4 Ma at Gunung Rawan and 19 ± 3 Ma at Pulau Satang (Fig. 

3), while Schmidtke et al. (1990) reported K-Ar hornblende ages of 17.2 ± 1.9 for an intrusion south 

of Kuching and 25.8 ± 1.9 Ma for the Serapi dyke (Fig. 3). Prouteau et al. (1996, 2001) reported 

whole-rock K-Ar ages in West Sarawak of 22.3 to 23.7 Ma for calc-alkaline diorites and microdiorites 

in northern West Sarawak. These display similar geochemical diversity to the NW Kalimantan Sintang 

Suite, which they identified as having partly adakitic chemistry. 

2.3. Northeast and East Kalimantan 

In East Kalimantan K-Ar mica ages of 17.5 to 19.4 Ma (Bladon et al., 1989), and 21 to 24 Ma 

(Setiawan and Le Bel, 1987), as well as a Rb-Sr age of 26 Ma (Hutchison, 2010) were reported for the 

Long Laai granite province (Fig. 2). Van de Weerd et al. (1987) and van Leeuwen et al. (1990) 

reported K-Ar ages of 14.4 to 24 Ma for basic igneous rocks associated with gold mineralisation in 
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the Kelian area, which are part of the Kalimantan gold belt. Andesites in the Kelian area yielded U-Pb 

zircon ages of 19 to 20 Ma (Setiabudi et al., 2001, 2007) and are intruded by rhyolites with U-Pb 

zircon ages of 19.5 to 19.8 Ma (Davies, 2002; Davies et al., 2008). K-Ar ages of 18 to 23 Ma for 

magmatic rocks near the Telen and Malnyu Rivers (northern Kutai Basin) were included in the 

Sintang Suite by Moss et al. (1998), Soeria-Atmadja et al. (1999) and Cullen et al. (2013), but we 

retain distinct location names (e.g. Kalimantan gold belt, Long Laai, Telen/Malnyu) in view of their 

significant spatial separation from our study area (Fig. 2). 

2.4. Bau Suite: Middle to Upper Miocene magmatism 

Intrusions around the town of Bau (Figs. 2 and 3), West Sarawak, have been dated as Middle to Late 

Miocene age. Therefore, this Bau Suite is younger than the Sintang Suite and magmatism in East and 

North Kalimantan. JICA (1985) reported whole-rock K-Ar ages of 10 to 12 Ma for quartz porphyries 

while Prouteau et al. (2001) reported whole-rock K-Ar ages of 6.4 to 14.6 Ma for microtonalites and 

dacites near Kuching and Bau, which they also classified as adakites. The Bau Suite is associated with 

gold mineralisation of Carlin-type (Percival et al., 1990; Schuh and Guilbert, 1990), and includes 

disseminated sediment hosted gold deposits within the Bau Limestone and the adjacent Pedawan 

Formation (e.g. Jugan field) (Schuh, 1993; Kirwin and Royle, 2018). 

2.5. Geodynamic Setting of the Sintang Suite 

A broad swathe of Borneo, including West Sarawak, experienced Sintang Suite magmatism from the 

Late Oligocene (Fig. 2) but the causes are not clear. Dating is limited, with most ages from K-Ar 

whole rock dating, and there has been limited geochemical study of this suite. A subduction-related 

origin was inferred by Hamilton (1979), Prouteau et al. (1996, 2001), Soeria-Atmadja (1999), and 

Hartono (2006) but, despite their widespread distribution, the Sintang rocks occur as small isolated 

bodies located far from any potential Oligo-Miocene subduction zone. Others have proposed post-

collisional or post-subduction settings (Kirk, 1968; Williams and Harahap, 1987; Moss et al., 1998; 

Zaw et al., 2011).  

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Hutchison (1996) introduced the term Sarawak Orogeny to explain a major tectonic change in NW 

Borneo in the Late Eocene, to which Prouteau et al. (2001) attributed the Sintang Suite magmatism, 

but recent studies have questioned the implied collisional event (Hall, 2012; Hall and Sevastjanova, 

2012; Hall and Breitfeld, 2017; Hennig-Breitfeld et al., 2019). Early tectonic models (e.g. Taylor and 

Hayes, 1983) suggested an Early Miocene collision in northern Borneo, from Sarawak to Sabah, but 

later work indicates that subduction beneath Sarawak west of the West Baram Line (Fig. 2) ceased in 

the Cretaceous at around 90 to 80 Ma (Williams et al., 1988; Moss, 1998; Hall & Spakman, 2015; 

Breitfeld et al., 2017; Hennig et al., 2017) although deep marine sedimentation continued until the 

Late Eocene (Galin et al., 2017; Hall & Breitfeld, 2017). Between the Late Eocene and Early Miocene, 

to the west of the West Baram Line, NW Borneo was an elevated region (Hall, 2013; Hennig-Breitfeld 

et al., 2019), and offshore and onshore Sarawak were extensive coastal and shelf areas (e.g. 

Hageman, 1987; Madon, 1999; Hassan et al., 2013). There is no evidence of a late Paleogene or 

Neogene subduction margin in Sarawak and subduction was restricted to Sabah, east of the West 

Baram Line, between the Late Eocene and Early Miocene (Hall, 2013; Hall and Spakman, 2015; Hall 

and Breitfeld 2017). Thus, there is no evidence for active subduction beneath west Borneo at the 

time of Sintang and Bau Suite magmatism. 

We present below new geochemical data and U-Pb zircon ages from the Sintang and Bau suites of 

West Sarawak that show different pulses of magmatism. We integrate our new findings with 

published data to offer a new interpretation of their petrogenesis, and then discuss the origin of 

adakitic and non-adakitic geochemical characters in non-subduction environments. 

 

3. Methodology 

3.1. Sampling 

Fresh rocks or rocks with minimal alteration were sampled (TB samples) from outcrops or nearby 

float in West Sarawak (Fig. 3). Additional samples from Bau (BYG) were provided by Menzies Mining. 
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Nine samples from the West Sarawak Sintang Suite and thirteen from the Bau Suite were analysed 

for geochemistry, and zircons from seven samples were separated for radiometric dating. All sample 

locations and type of analysis can be found in Supplementary Tab. 1. 

3.2. Geochemistry 

Whole rock geochemical analysis by X-ray fluorescence (XRF) was conducted at Royal Holloway 

University of London (RHUL; Tab. 1). Samples were processed with a jaw crusher and a tungsten -

carbide mill to produce powders. XRF analyses were mostly performed us ing a PANalytical Axios 

sequential X-ray fluorescence spectrometer with 4kW Rh-anode X-ray tube, while Bau Suite BYG 

samples were analysed using the previous Philips PW1480 XRF. On this latter instrument, a W-anode 

X-ray tube was used to determine Ba, La, Ce, Nd, Ni, Cr, V, Sc, Cu and Zn whereas a Rh-anode tube 

was used for the major elements, Pb, Th, Rb, Sr, Y, Zr, Nb, Cl, and Ga. Major elements were 

measured on fusion discs using the La2O3-bearing Spectroflux 105, after ignition of both rock 

powders and flux at 1100˚C.  All concentrations are reported on a volatile -free basis. The heavy 

absorber La results in very small matrix corrections. SO3 concentrations reported for samples 

analysed on the Axios reflect sulphur present as sulphate, as sulphide sulphur is largely volatilized 

during the fusion process. Trace elements were measured on pressed pellets, with matrix 

corrections calculated from the major elements.  Ca and Ti were analysed on both pellets and discs 

to confirm that the same powder was used for both pellet and disc; the fusion disc data is of higher 

quality. An artificial glass bead was analysed every third sample to correct for instrumental drift, 

which was at the <1 % level on the Axios, and a few % on the PW1480, where the drift monitor was 

analysed for each element following the sample analyses for that element. 30 to 40 international 

rocks standards were used for calibration. Calibration graphs are publicly available at 

https://www.royalholloway.ac.uk/research-and-teaching/departments-and-schools/earth-

sciences/research/research-laboratories/x-ray-fluorescence-laboratory/. The quality of the straight 

line fit of these graphs is the best indicator of accuracy over a wide range of concentrations. Where 

there is more scatter, this can reflect poor precision of the XRF analyses relative to the calibrated 
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concentration range (e.g. Sn, where precision is about ±2 ppm, and the calibrated range only 15 

ppm); inaccuracies in the published standard data (e.g. S, Cl), or inaccuracies in the XRF data (e.g.  at 

<100 ppm F).  Precision of the XRF data is a function of detection limit at low concentrations, and of 

count rate at higher concentrations; this means that the concentration uncertainty is an absolute 

concentration at low levels, and a percentage concentration at higher levels. Estimates of these 

parameters are given in Tab. 1. An example of pellet reproducibility, and comparison between XRF 

and isotope dilution data, are given in the web link referred to above.   

A wider range of trace elements were determined for BYG samples in the Department of Earth 

Sciences at Durham University using Inductively Coupled Plasma Mass Spectroscopy (ICP-MS) on a 

Perkin Elmer Elan 6000 following the procedure of Ottley et al. (2003). Briefly, 4 ml HF and 1 ml 

HNO3 (SPA, ROMIL Cambridge) was added to 100 mg of powdered sample and sealed in a teflon vial 

on a hot plate at 150°C for 48 hours. The acid mixture was evaporated to near dryness followed by 

two cycles of adding a further 1 ml of HNO3 and evaporation to near dryness. Finally, 2.5 ml HNO3 

was added and diluted to 50 ml after the addition of an internal Re and Rh standard to final 

concentrations of 20 ppb each. The internal standard allows compensation for analytical drift and 

matrix suppression effects. ICP-MS analyses were calibrated using international rock standards 

(BHVO1, AGV1, W2) which, along with analytical blanks, were prepared using the same procedure as 

samples. Reproducibility was monitored via replicate analysis of reference standards throughout the  

analysis sequence with % RSD always <3 % RSD, and typically <2 % RSD and by comparison of trace 

element analyses of ICP-MS with XRF (Supplementary Tabs. 2.1 and 2.2).  

3.3. Zircon separation  

A 63-250 μm fraction of zircon was separated at RHUL. This was purified using heavy liquids sodium 

polytungstate (SPT) and lithium heteropolytungstate (LST) at a density of 2.89 g/cm³ and a FRANTZ 

magnetic barrier separator, followed by additional heavy liquid separation with di-iodomethane 

(DIM) at 3.3 g/cm³ and hand picking of zircons. Grains were mounted in epoxy resin blocks and 
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polished to expose mid-grain sections. Analysis spots for each grain were selected using transmitted 

light and cathodoluminescence scanning electron microscope (SEM-CL) images to avoid cracks and 

inclusions. 

3.4. LA-ICP-MS U-(Th)-Pb dating 

Zircon U-Pb geochronology was performed at the Birkbeck College, University of London (UCL) , using 

New Wave NWR 193 (25 μm spot size) and New Wave NWR 213 nm (30 μm spot size) laser ablation 

(LA) systems coupled to an Agilent 7700 quadrupole-based plasma ICP–MS with a two-cell sample 

chamber. The Plešovice zircon standard (337.13 ± 0.37 Ma; Sláma et al., 2008) and a NIST 612 silicate 

glass bead (Pearce et al., 1997) were used to correct for instrumental mass bias and depth-

dependent inter-element fractionation of Pb, Th and U. GLITTER (Griffin et al., 2008) data reduction 

software was used. The data were corrected using the common lead correction method by Andersen 

(2002), which is used as a 204Pb common lead-independent procedure. 

For grains older than 1000 Ma, the 207Pb/206Pb ratio is given and for grains younger than 1000 Ma, 

the 238U/206Pb ratio is given, because 207Pb cannot be measured with sufficient precision in these 

samples resulting in large uncertainties on the age (Nemchin and Cawood, 2005). Ages greater than 

1000 Ma are considered to be concordant if the difference between the 207Pb/206Pb and 206Pb/238U 

ages is <10%, and ages less than 1000 Ma were considered to be concordant if the 207Pb/235U and 

206Pb/238U age difference is <10%. For young ages a simple concordance test is insufficient (Nemchin 

and Cawood, 2005) as the concordance range is too small to test reliably. Instead all analyses <25 

Ma were considered for the age calculation, except analyses which were interpreted to be affected 

by lead loss, inheritance or common Pb.  

Isoplot 4.11 (Ludwig, 2003) was used for graphical illustration of Tera-Wasserburg concordia 

diagrams (Tera and Wasserburg, 1972). Tera-Wasserburg plots were used to identify individual 

peaks or visually assess outliers (e.g. lead loss, inheritance and common lead) within the population 

which were then excluded from the weighted mean age calculation. The reject function of Isoplot 
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was used to further exclude statistical outliers (Ludwig, 2003). The youngest significant population 

were interpreted as crystallisation ages and used to calculate the weighted mean age. U-Pb zircon 

data for each sample are presented in the Supplementary Tabs. 3.1 to 3.7 and a summary of 

weighted mean ages is displayed in Tab. 2. Conventional concordia plots are given in Supplementary 

Fig. 2. 

 

4. Petrography  

4.1. West Sarawak Sintang Suite 

4.1.1. Intrusive rocks 

Micro-tonalites/granodiorites (TB33, TB148a, STB36c, and STB61b) dominate the intrusive West 

Sarawak Sintang Suite. They are composed mainly of quartz, plagioclase, an opaque phase and alkali 

feldspar. Plagioclase is more abundant than alkali feldspar and both form large , zoned phenocrysts, 

commonly idiomorphic to hypidiomorphic. Larger plagioclase phenocrysts may be altered to 

epidote. The matrix consists of fine grained quartz, plagioclase and sericite. The composition of 

granodiorite TB58 closely resembles the micro-granodiorites/tonalites, but has a coarser grained 

phaneritic texture (Fig. 4e). Plagioclase occurs as abundant prismatic crystals (Fig. 4e).  Scarce 

amphibole occurs as subhedral grains which show advanced epidote group mineral alteration (Fig. 

4f). Biotite occurs as brown and green varieties with only minor chlorite alteration (Fig. 4e). There is 

some sericite alteration of feldspar and biotite. More mafic monzodiorites and (gabbro-) diorites 

(TB23, TB231) contain plagioclase, alkali feldspar, biotite, epidote, amphibole, quartz and an opaque 

phase. Plagioclase and alkali feldspar form large idiomorphic to hypidiomorphic phenocrysts. Biotite 

is often replaced by sericite, chlorite and titanite. Amphiboles are subhedral and replaced by epidote 

group minerals and calcite. 
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4.1.2. Volcanic rocks 

Volcanic rocks of the West Sarawak Sintang Suite comprise felsic rhyolites to rhyodacites (TB18, 

TB141, TB176b, TB209a) and a mafic trachydacite (TB161). The felsic samples are porphyritic, 

containing idiomorphic to hypidiomorphic phenocrysts of quartz (Fig. 4g), alkali feldspar (Fig. 4h), 

and plagioclase (Fig. 4i), often zoned,  in a very fine grained groundmass. Idiomorphic volcanic quartz 

commonly has a bipyramidal shape, embayments and inclusions of sericite, biotite and plagioclase. 

Sericite alteration of the matrix is common. TB161 is a more mafic trachydacite with phenocrysts of 

biotite, plagioclase, epidote, pyroxene and quartz. Quartz is monocrystalline  and unstrained with 

bipyramidal idiomorphic or hypidiomorphic shapes. Plagioclase and clinopyroxene form 

hypidiomorphic phenocrysts in a very fine grained altered matrix of sericite, plagioclase and epidote 

group minerals (Fig. 4j). Biotite is commonly chloritised. 

4.2. Bau Suite 

Bau Suite samples are predominantly micro-granodiorites and micro-tonalites. Plagioclase, alkali 

feldspar and biotite form phenocrysts in a fine grained quartz and feldspar matrix. Plagioclase is 

zoned and forms idiomorphic to subidiomorphic crystals (Fig. 4k). Alkali feldspar is very rare, forming 

subidiomorphic crystals. Sericite alteration is common within feldspars, more so in  alkali feldspar 

than plagioclase. Biotite commonly forms idiomorphic to subidiomorphic crystals (Fig. 4l), which may 

be heavily altered to sericite, epidote and titanite with chlorite rims. Hornblende forms idiomorphic 

to subidiomorphic crystals (Fig. 4m), but is uncommon. 

A conspicuous feature of many Bau samples are large, resorbed quartz crystals. Up to 2 mm across, 

these display a variety of textures from slightly sub-angular to a majority which are highly rounded 

(Fig. 4m) or have scalloped margins. Some crystals also show evidence of newly-grown rims of 

microscopic quartz. Internal textures also vary from unstrained to significantly strained. In rare cases 

a number of quartz crystals, usually no more than 3 or 4, can be found together with contacts which 

suggest that they were part of a pre-existing quartz-rich mass. Together, these observations suggest 
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that the Bau magma assimilated grains of a very quartz-rich lithology that has experienced various 

amounts of deformation and disaggregation. 

 

5. Geochemistry 

5.1. West Sarawak Sintang Suite 

5.1.1. Intrusive rocks 

Intrusive rocks of the West Sarawak Sintang Suite are predominantly felsic with a range of SiO2 

contents from 56 to 70 wt. %, classified as granodiorite, monzodiorite and gabbro-diorite 

(Supplementary Fig. 1). On the basis of their K2O contents of 1.28 to 2.65 wt. % (Tab. 1) they are calc-

alkaline (Supplementary Fig. 1). According to the granite classification of Frost et al. (2001) they are 

magnesian calcic or magnesian calc-alkaline, peraluminous or metaluminous granitoids 

(Supplementary Fig. 1). 

The new analyses show major element variations that are coherent with those previously recorded 

for Sintang Suite diorites from the Kuching area (Prouteau et al., 2001), but over a slightly wider SiO2 

range (Fig. 6). Al2O3, Fe2O3, MgO, CaO and TiO2 decrease with increasing silica contents while K2O 

increases slightly and Na2O shows no systematic variation. Major element variations in the West 

Sarawak Sintang intrusive rocks are also coherent with those of Sintang intrusive rocks from 

Kalimantan (Fig. 5a). Like the Northern and Southern Kalimantan Sintang groups, West Sarawak 

Sintang intrusive rocks have a wider range of silica and slightly lower Al2O3 and higher K2O than the 

Central Kalimantan Sintang Suite group for any SiO2 content (Fig. 5a & g). Intrusive rocks with less 

than 55 wt. % SiO2 have not been found in West Sarawak. 

Like major elements, the incompatible trace element concentrations in West Sarawak Sintang 

intrusive rocks are coherent with diorites previously analysed from this area (Prouteau et al., 2001), 

having substantial enrichment in the most incompatible elements with pronounced depletions of Nb  

compared to MORB (Fig. 6a). This means that their trace element ratios broadly resemble volcanic 
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arc or post-collision rocks (Supplementary Fig. 1). However, the new analyses show that the Nb 

depletion is accompanied by large enrichments in Pb. While these characteristics can be indicative of 

subduction, they can also be produced or enhanced if crust contaminates intruding magma, as 

demonstrated for the Semporna peninsula of northeast Borneo in Sabah (Fig. 7a; Macpherson et al., 

2010). Likewise, melting of a crustal source with such patterns would also generate these features. 

The new Kuching intrusive rock data show concentrations of Y and Yb that are similar to or slightly 

lower than N-MORB (Fig. 6a). We found no West Sarawak Sintang intrusive rocks showing the strong 

depletion of Y and heavy rare earth elements that led Prouteau et al. (2001) to identify adakites in 

this area. Trace element ratios support the conclusion from major element data, that these West 

Sarawak Sintang intrusive rocks more closely resemble the Northern and Southern Kalimantan 

Sintang groups than the Central Kalimantan Sintang group (Fig. 6d). 

5.1.2. Volcanic rocks 

Volcanic samples are rhyolites and rhyodacites with SiO2 ranging from 74 to 77 wt. %, and a single 

trachydacite with SiO2 = 61 wt. % (Supplementary Fig. 1). Major elements in TB161 are similar to 

West Sarawak Sintang intrusive rocks with similar SiO2 contents, except for lower CaO and higher 

Na2O (7.87 wt. %; Fig. 5). The more silicic volcanic rocks lie on extensions of the array for West 

Sarawak Sintang intrusive rocks. Based on potassium contents the volcanic rocks are calc-alkaline, 

and they are predominantly peraluminous (Supplementary Fig. 1). 

Normalised incompatible element patterns show slight differences from the intrusive rocks. The 

most incompatible elements show similar ratios with similar to slightly higher contents. However, 

compared to intrusive rocks these more silicic rocks display depletions of several elements that can 

be accommodated in phases crystallised from felsic melts (Fig. 6b). Thus, pronounced depletions in P 

suggest crystallisation of apatite while depletion of Sr, along with Al 2O3 and CaO, is consistent with 

plagioclase fractionation, and Zr depletion may result from zircon fractionation. Relative depletion of 

Ti could reflect fractionation of oxide phases or of amphibole. The mild, overall enrichment of 
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incompatible elements with relative depletion of compatible elements is consistent with the West 

Sarawak Sintang volcanic rocks being more differentiated equivalents of the West Sarawak Sintang 

intrusive rocks. High-silica rocks with very similar trace element patterns are found in the Northern, 

Central, and Southern groups of the Kalimantan Sintang Suite (Williams and Harahap, 1987; 

Harahap, 1993). 

5.2. Bau Suite 

Rocks from the Bau District are granodiorites and can be described as magnesian calcic and range 

from peraluminous or metaluminous (Supplementary Fig. 1). Based on K2O content, they are calc-

alkaline (1.3 to 2.9 wt. %; Supplementary Fig. 1). SiO2 contents range from 67.5 to 71.8 wt. %. This 

extends the range previously recognised by Prouteau et al. (2001) to slightly higher silica values, 

while other major elements are similar to those by Prouteau et al. (2001) except for slightly higher 

Al2O3 in the least silicic rocks. Major elements of the Bau Suite resemble West Sarawak Sintang rocks 

with similar SiO2 although they have slightly more elevated Al2O3 and CaO. This makes the Bau Suite 

more similar to Kalimantan’s Central Sintang group than the Northern or Southern groups (Fig. 5). 

Compared to N-MORB, the most incompatible trace elements are the most enriched in Bau Suite 

rocks. For most elements, the level of enrichment gradually diminishes through to the middle rare 

earth elements and then remains constant or becomes progressively depleted for less incompatible 

elements (Fig. 6c). Superimposed upon this pattern are relative depletions in Nb, Ta, and Ti and, to a 

lesser extent, P along with pronounced enrichments in K and Pb and, to a lesser extent, Sr as 

discussed above (Fig. 6c).  

The new analyses of the Bau Suite rocks show contents and ratios of incompatible trace elements 

similar to prior analyses of the Bau Suite and other adakitic rocks from the Kuching/Bau area 

(Prouteau et al., 2001; Fig. 7b). For both, contents of and ratios between more incompatible 

elements are similar to the West Sarawak Sintang intrusive rocks with similar SiO2, but the heavy 

rare earth elements and Y are more variable. Some resemble the West Sarawak Sintang Suite but 
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most are relatively depleted in Y and HREE (Fig. 6c). Compared to the Kalimantan Sintang Suite, the 

Bau Suite most closely resembles the Central group (Fig. 6d, Fig. 7b), consistent with the conclusion 

drawn from major elements. 

 

6. U-(Th)-Pb zircon geochronology 

6.1. West Sarawak Sintang Suite 

6.1.1. Intrusive rocks 

Sample TB63b 

TB63b is a granodioritic sill intruding the Kayan Sandstone at Tanjung Santubong. Zircons are usually 

euhedral to subhedral or anhedral. Simple internal zoning is evident in most grains. Concentric, 

patchy and sector zoning are rare. 

86 U-Pb ages were obtained from 86 zircon grains (Fig. 8a). The zircon age population is 

predominantly Early Miocene (83 ages) with one inherited age of 256 ± 4 Ma. Two Miocene ages 

were excluded because of high common lead. Two outliers of Miocene age were excluded from the 

weighted mean age calculation because of lead-loss, resulting in a unimodal population (Fig. 9a) of 

81 Miocene ages (98% of total Miocene ages) that cluster between 19 and 23 Ma with a weighted 

mean age of 21.1 ± 0.2 Ma (MSWD = 3.5). 

Sample TB58 

TB58 is a stock that intrudes sediments of the Silantek Formation sampled from a granodiorite 

boulder in a small gully from Bukit Kelambi (Klambi).  Zircons are angular, with a euhedral to 

subhedral or anhedral shape. Elongate zircons dominate. Simple internal zoning is evident in most 

grains. Concentric, oscillatory, patchy and sector zoning were also observed. Zircons with inherited 

ages are commonly oscillatory zoned and subrounded. 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

51 U-Pb ages were obtained from 51 zircon grains (Fig. 8b). A single Miocene age was excluded 

because of high common lead. The population is predominantly Early Miocene (43 ages) with 7 

inherited zircons of Mesozoic to Permian age, ranging from 114 to 267 Ma. 7 outliers of Miocene 

ages (grey in Fig. 8b) have either lead-loss or inheritance, and were excluded from the weighted 

mean age calculation. This includes a small population composed of 5 inherited Miocene zircons at 

around 23 Ma, leaving a unimodal population of 36 of the 43 Miocene ages (84% of the Miocene 

ages), which cluster between 19.4 and 21.8 Ma with a weighted mean age of 20.3 ± 0.2 Ma (MSWD = 

3.0). 

Sample TB33 

TB33 is a dyke sampled from Gunung Bawang at 300 m above sea level and close to the Serapi dyke 

dated by the K-Ar method as 25.8 ± 1.9 Ma (Schmidtke et al., 1990). Zircons are euhedral to 

subhedral or anhedral. Elongate varieties are common. Simple internal zoning is evident in most 

grains. Concentric, patchy and sector zoning is also observed. Oscillatory zoned grains are rare. 

Zircons are bright to grey with darker edges in CL. Very thin light coloured, potentially magmatic, 

rims are observed in a few grains.  

66 U-Pb ages were obtained from 61 zircon grains (Fig. 8c). Two ages were excluded because of 

partial ablation of the resin mount. The zircon population is predominantly Early Miocene (63 ages) 

with one inherited age of 500 Ma. Six Miocene outliers, including a small population of inherited 

Miocene zircons at around 24 Ma and a number of zircons affected by lead-loss, were identified and 

excluded from the weighted mean age calculation. The remaining Miocene population has a 

unimodal distribution (Fig. 9c) including 57 of the 63 (91% of all) Miocene ages, clustering between 

18 and 22 Ma with a weighted mean age of 20.1 ± 0.2 Ma (MSWD = 2.1). 
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6.1.2. Volcanic rocks 

Sample TB141 

TB141 is a rhyolite from a lava flow exposed in a road cut near Kampung Matang in the Gunung 

Serapi area and contains zircons of two different varieties. The majority are elongate euhedral 

needle-like grains with simple internal or sector zoning, which are Miocene (see below). Other 

zircons are subhedral to subrounded with simple internal or oscillatory zoning which yielded 

inherited ages. 

42 U-Pb ages were obtained from 41 zircon grains (Fig. 9a). Six ages were excluded because of 

discordance or lead-loss (not displayed in the Tera-Wasserburg diagram). The remainder are mainly 

Early Miocene (23 ages), with inherited zircons of Oligocene (33 ± 0.5 Ma), Cretaceous (66.6 ± 0.8 

Ma and 100 ± 1 Ma), Triassic (216 to 240 Ma), Permian (271 ± 4 Ma) and Proterozoic (773 to 1911 

Ma) age. After rejection of one age, potentially affected by lead-loss, the Miocene population is 

bimodal. 7 Miocene ages (violet in Fig. 10a) range from 20.9 to 22.3 Ma with a weighted mean age of 

21.5 ± 0.4 Ma (MSWD = 1.5) and are interpreted as inherited from an early phase of magmatism. The 

younger population includes 15 of the 23 (65% of all) Miocene clustering between 19 and 20.5 Ma 

with a weighted mean age of 19.8 ± 0.3 Ma (MSWD = 1.3) interpreted as the eruption age. 

Sample TB209a 

Sample TB209a was sampled from a rhyolite boulder field near Bukit Buwaya. Like TB141, there are 

two varieties of zircon from TB209a. Euhedral to subhedral elongate needle varieties have simple 

internal or sector zoning with bright to greyish CL imagery and are Miocene (see below). Inherited 

zircons are subrounded to anhedral, usually with sector or oscillatory zoning. 

41 U-Pb ages were obtained from 38 zircon grains (Fig. 9b). Two inherited ages were excluded for 

failing the 10% discordance criteria and two Miocene ages were also excluded because of abundant 

common lead. The age population is mainly Miocene, with inherited Eocene (47.1 ± 0.6 Ma), 

Cretaceous (68.5 to 105 Ma), and Neoproterozoic (649 ± 7 Ma) ages. Two Miocene outliers (violet 
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colour) were identified and are interpreted as inherited ages of c. 20.3 Ma.  The remaining unimodal 

population (Fig. 10b) includes 25 of 27 (93% of all) Miocene ages clustering between 17.9 and 19.4 

Ma with a weighted mean age of 18.6 ± 0.2 Ma (MSWD = 2.0). 

6.2. Bau Suite 

Sample TB9 

TB9 is a micro-tonalite from the Bukit Stigang quarry southeast of Kuching (Kota Samarahan). 

Euhedral, elongated zircons with simple or concentric zoning and greyish CL imagery are common.  

25 U-Pb ages were obtained from 22 zircons (Fig. 9c). Two inherited ages were excluded for failing 

the 10% discordance criteria. The youngest grain of 5 Ma is interpreted to be affected by lead-loss 

and was also excluded. Of the valid ages 19 are Miocene, with three Miocene outliers either affected 

by lead-loss or inheritance (marked in grey) and excluded from the weighted mean age calculation, 

leaving a unimodal population which includes 16 of 19 (84% of all) Miocene ages which cluster 

between 12.6 and 14.5 Ma with a weighted mean age of 14.1 ± 0.1 Ma (MSWD = 0.5). 

Sample TB61 

Sample TB61 is a micro-granodiorite collected from the Bukit Stapok quarry in Batu Kawa near 

Kuching that contains euhedral, elongate zircons with simple or oscillatory zoning. Larger zircons are 

anhedral, can be easily distinguished from elongate varieties, and are inherited. 10 U-Pb ages were 

obtained from the sample (Fig. 9d). Two inherited ages were excluded after failing the 10% 

discordance criteria and one Miocene age was excluded because of abundant common lead. The 

sample has one concordant inherited Proterozoic age around 850 Ma. The youngest population of 

the sample ranges from 4.6 to 18.5 Ma (Fig. 9d). The youngest grain of 4.6 Ma is interpreted to be 

affected by lead-loss. Three analyses lie close to 12 Ma (and the excluded Miocene age with 

abundant common lead as well) and the age is interpreted as a crystallisation age with a weighted 

mean age of 12.4 ± 0.9 Ma (MSWD = 1.4). Two ages of 15 and 18.5 Ma are interpreted as inherited. 
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7. Discussion 

7.1. Age of Neogene magmatism 

7.1.1. West Sarawak Sintang Suite 

Our U-Pb dating of zircons in volcanic and intrusive rocks from West Sarawak yielded a restricted 

range of ages (Fig. 10a), suggesting relatively short-lived Miocene magmatic episodes. The intrusive 

rocks gave weighted mean ages of 20.1 to 21.1 Ma (Tab. 2; Fig. 10a). We interpret the slightly older, 

inherited ages of 22 to 24 Ma (n = 7) as recording earlier magmatic activity during the latest 

Oligocene to earliest Miocene. We obtained a U-Pb age of 20.1 ± 0.2 Ma for the Bawang dyke 

(TB33), which is only a few metres away from the Serapi dyke previously dated by the K-Ar method 

as 25.8 ± 1.9 Ma (Schmidtke et al., 1990). Both dykes are likely to be part of the same magmatic 

phase and we suggest the U-Pb age is more accurate. 

Since West Sarawak Sintang volcanic rocks gave ages of 18.6 ± 0.2 Ma and 19.8 ± 0.3 Ma (Tab. 2; Fig. 

10a), which are within analytical uncertainty of the intrusive rocks, we interpret both to be part of 

the same suite. This is consistent with the geochemical data which indicate that the volcanic rocks 

are silicic differentiates of the intrusive magmas. It is notable that both volcanic samples contain 

inherited zircons with ages ranging from 19.8 to 22.7 Ma, which resemble the ages of the intrusive 

rocks (Fig. 10a). This is further evidence for pulsed early Miocene magmatic activity. Thus, we 

suggest the West Sarawak Sintang Suite records a period of magmatism from c. 24 to 18.5 Ma during 

which there were potentially three pulses. A tuff layer in the Temburong Formation on Labuan (Fig. 

2) was recently dated as c. 19.5 ± 0.1 Ma (S. Burley, pers. comm., 2018). The age is indistinguishable 

from the Sintang Suite, and the tuff could be an airfall record of the same activity, 650 km from the 

Sintang rocks. 

7.1.2. Bau Suite 

The youngest magmatic activity we dated in West Sarawak is the 12.4 to 14.1 Ma Bau Suite (Tab. 2; 

Fig. 10a), with ages similar to K-Ar dates from Bau quartz-porphyries (10 to 12 Ma; JICA, 1985), and 
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K-Ar dates of adakitic microtonalites in Bau and south of Kuching (6.4 to 11.6 Ma; Prouteau et al., 

2001). The range of our U-Pb ages is narrower than those of Prouteau et al. (2001), but each of our 

samples contain a younger zircon of c. 5 Ma showing lead loss, which suggest Pliocene thermal 

effects of  magmatism or hydrothermal activity. Basaltic magmatism at c. 5 Ma has been reported 

from Mount Niut in Kalimantan (Harahap, 1994), only 30 km south-southwest of the Bau intrusive 

field (Fig. 2). Pliocene thermal activity could have affected Miocene whole rock ages obtained by the 

K-Ar method.  

We conclude that the Bau episode was confined to a relatively short interval in the Middle Miocene, 

which may be contemporaneous with the Kuching adakites reported by Prouteau et al. (2001). 

Ramkumar et al. (2018) obtained U-Pb ages of 11.44 to 11.76 Ma (n = 3),  indistinguishable from our 

younger Bau age, for a tephra layer in coal beds near Mukah, approximately 300 km northeast of 

Bau (Fig. 2). This tephra layer is around 6 cm thick, contains no large pyroclastic fragments, and 

contains non-vesicular glass along with clasts of non-juvenile origin, which Ramkumar et al. (2018) 

interpreted as reflecting the distal deposit of a large volcanic event. Geochemical characterisation of 

the tephra is complicated by deposition of contemporaneous sediment and then by significant post -

depositional alteration. Some trace element ratios of Mukah tephra resemble Bau, although others 

are more similar to the West Sarawak Sintang Suite, and all have a strong alteration overprint on the 

most mobile elements (Ramkumar et al., 2018). The chemistry of this tephra layer is, however, not 

inconsistent with an origin from Bau. Potential eruptive products near Bau town include a 1 x 2 km 

dome of rhyodacite flow breccia at Gunung Sirenggok (Schuh, 1993). Such silicic magmas are often 

associated with highly explosive eruptions that can disperse large ash falls up to hundreds of 

kilometres from their source. Furthermore, the Bau granites were emplaced into Mesozoic 

limestones (Schuh, 1993), which could have enhanced the volatile content, and therefore the 

explosivity, of magma that reached the surface. Schuh (1993) documents several instances of 

brecciation of Bau intrusive bodies, which could reflect syn-emplacement magmatic activity or late-

stage mineralisation.  
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The main phase of magmatism at Bau is Middle Miocene. We suggest this was part of more 

widespread igneous activity, forming adakitic stocks south of Kuching (Prouteau et al., 2001) and 

explosive volcanism that produced widespread blankets of ash towards the northeast (Ramkumar et 

al., 2018). A single, slightly older, zircon age of c. 19 Ma in TB61, indistinguishable from the age of 

West Sarawak Sintang rocks (Fig. 10a) suggests Early Miocene magmatism in the Bau area. 

 

7.2. Implications of inherited ages 

The West Sarawak Sintang Suite volcanic rocks contain abundant inherited Cenozoic, Cretaceous, 

Permian-Triassic, and Proterozoic zircons (Fig. 10b). Although the intrusive rocks and Bau Suite 

contain fewer inherited zircons, their ages are similar to those in the volcanic rocks. Two inherited 

zircons of Oligocene to Eocene age indicate activity in West Sarawak at a similar time to K-Ar ages 

for NW Kalimantan (Pieters et al., 1987; Bladon et al., 1989). Late Cretaceous inherited ages (c. 66 to 

80 Ma) resemble those from Upper Cretaceous intrusions in West Sarawak (Kirk, 1968; Hennig et al., 

2017), and in NW Kalimantan (Williams et al., 1988). The peak in Cretaceous inherited zircon ages 

between 85 to 100 Ma coincides with that of the Schwaner Mountains (Haile et al., 1977; Williams et 

al., 1988; van Hattum et al., 2013; Davies et al., 2014; Hennig et al., 2017). Triassic inherited zircon 

ages resemble the Triassic Sundaland part of West Sarawak (Breitfeld et al., 2017) and in the 

Northwest Schwaner Zone (Hennig et al., 2017). Precambrian inherited zircons show a distribution 

similar to the Pedawan Formation (Breitfeld et al., 2017) and, although low in number, could 

indicate either re-melting of Pedawan Formation or re-melting of source rocks of the Pedawan 

Formation. The inherited zircons provide clear evidence of significant crustal input to both the 

Sintang and Bau magmatism. 

7.3. Magma source 

The absence of active subduction to the west of the West Baram Line at the time of emplacement  of 

the Bau, the West Sintang-Sarawak, and Kalimantan Sintang suites (Section 2) eliminates fractional 
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crystallisation of arc magma as a possible source for these suites (Macpherson et al., 2006). Any 

petrogenetic model for these suites must also reconcile the restricted contrasts in composition 

between the adakitic and non-adakitic rocks of western Sarawak, and recognise the presence of 

some non-adakitic rocks amongst the Bau Suite. Other than the depletion of heavy rare earth (and 

associated) elements in the adakitic rocks there are few differences between West Sarawak Sintang 

and Bau suites, after accounting for crystallisation of minor phases e.g. apatite and oxides (Fig. 6). 

This leads us to conclude that Bau and West Sarawak Sintang rocks are, ultimately, derived from 

similar sources. Furthermore, the non-HREE-depleted, dioritic West Sarawak Sintang Suite rocks 

resemble Kalimantan’s Northern and Southern Sintang groups, while the HREE-depleted Bau rocks 

more closely resemble the Central Sintang group from Kalimantan (Figs. 5 to 7). This suggests that 

the source(s) of these magmas were present throughout large parts of western Borneo from the late 

Paleogene until the middle Neogene. 

To explain the adakitic character of the Bau Suite in the absence of active subduction, Prouteau et al. 

(2001) proposed that a previously subducted piece of oceanic lithosphere had stalled in the mantle 

and melted. Neither the seismic tomography images available at the time (Rangin et al., 1999) nor 

since (Hall and Spakman, 2015) have identified an anomaly at suitable depths in the mantle 

suggesting such a slab.  

The tomographic observations are insufficient to disprove the absence of a slab, but we note that 

the compositions of Bau Suite rocks show several differences from experimentally-generated melts 

of hydrated basalt at mantle pressures (Winther and Newton 1991; Sen and Dunn, 1994; Rapp and 

Watson, 1995). At any particular SiO2 content, Bau Suite adakitic rocks are displaced to lower Na2O, 

TiO2, and Al2O3, and to higher MgO than predicted by experiments (Fig. 5). The deviation from 

experimental slab melt compositions cannot be due to interaction between slab melts and mantle 

(Kay, 1978; Martin, 1999; Martin et al., 2005; Yogodzinski et al., 2001) since the Borneo rocks do not 

display the systematic decrease in the aluminium saturation index (molar [Al / Ca + K + Na]) with 

only a small change in SiO2 that Rapp et al. (1999) have showed would result from such a process 
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(Fig. 5).  In all respects, the major element compositions of the Bau Suite behave more coherently 

with the non-adakitic West Sarawak Sintang Suite than with the experimental slab melts. For trace 

elements the two suites show differences only in the HREEs and Y, with all West Sarawak  Sintang 

and some Bau rocks showing no trace element adakitic signature (Fig. 6). 

In view of these observations, we conclude that both the adakitic and non-adakitic rocks of Bau and 

Sintang were derived from similar sources. Although it is reasonable to conclude that this was a 

basaltic source, production of non-adakitic magma from a basaltic composition requires melting at 

pressures of less than 10 kbar which is not feasible for the depth of any subducted slab that may be 

postulated beneath Borneo. Therefore, we conclude that the magmatism of West Sarawak and, by 

extension, the main Sintang Suite of Kalimantan, do not support the model of a stalled slab beneath 

Borneo. 

7.3.1. Crustal melting at low pressure 

The involvement of crust in the genesis of the compositional intermediate magmatism is indicated 

by the zircons with inherited ages in all suites (Fig. 10b). Major element compositions of Sarawak 

igneous rocks are well approximated by melting experiments conducted at pressures below 7 kbar 

where dehydration-melting and water saturated-melting of amphibolites  yield intermediate 

composition melts with Al2O3, TiO2, and Na2O contents that are lower than those from experiments 

above 10 kbar (Beard and Lofgren, 1991). These lower pressure, particularly dehydration, 

experiments also produce intermediate composition melts with MgO contents more elevated than 

from high pressure melting, although not quite to the level of the Sarawak rocks. Thus, melting of 

hydrated basalt in the mid- to deep-crust below Borneo could produce much of the major element 

variation character of non-adakitic rocks of West Sarawak, and in the Northern and Southern groups 

of the Kalimantan Sintang Suite. Such magmas would not have significant depletions in the heavy 

rare earth elements, and therefore would not appear adakitic, because melting occurred at 

pressures below those at which garnet is stable. 
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7.3.2. Crustal melting at high pressure 

We have discounted slab melting for the Sintang and Sarawak adakitic rocks principally because (i) 

they show many similarities to contemporaneous non-adakitic rocks which lack heavy rare earth 

element depletion, and (ii) they show negligible  sign of having interacted with the mantle. These 

factors do not exclude melting of hydrated basalt with garnet present at greater depths in the crust. 

Such melting would produce an adakitic signature (strong depletion of HREE and Y) while having 

negligible effect on other trace elements (Fig. 6). Furthermore, because melting occurred in the 

crust, the intermediate to evolved composition magma would not interact with the mantle (Fig. 11a 

and b). High silica magmas would equate to low degrees of melting, and as the degree of melting 

increase SiO2 would decrease (Rapp and Watson, 1995). However, on its own, this mechanism has 

two problems. First, for any realistic SiO2 content the lowest MgO contents of the Sintang and Bau 

Suite rocks are at the upper range of even the low pressure melting experiments (Beard and Lofgren, 

1991). Second, the presence of mafic rocks, including andesitic compositions in the West Sarawak 

Sintang Suite and basaltic compositions in the Kalimantan Sintang Suite (Fig. 5), would require very 

high degrees of melting, in excess of 50 % at temperatures well above 1050°C (Rapp and Watson, 

1995). These issues can be resolved by considering the origin of the most mafic Sintang Suite rocks 

(MgO> 3 wt. % and SiO2 < 58 wt. %). 

7.3.3. Crustal melting with a contemporaneous mafic input 

Mafic rocks from the Sintang Suite are different to the intermediate and evolved rocks. The mafic 

rocks have basaltic to low-silica andesitic compositions (Williams and Harahap, 1987; Harahap, 1993; 

Heryanto et al., 1993; Prouteau et al., 2001) in which silica correlates positively with Al2O, K2O and 

Na2O, and shows a strong, negative correlation with MgO (Fig. 5). These mafic rocks show less 

extreme ratios of fluid-mobile to non-mobile incompatible trace elements and less marked depletion 

of the moderately incompatible elements (Nd to Y) than the more silicic rocks leading to smoother 

normalised trace element patterns (Fig. 7a). The mafic rocks also tend to have steeper patterns for 

the heavy rare earth elements which, for basaltic rocks, is likely to indicate melting of garnet 
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peridotite. Most show notable depletion in Nb, which might be interpreted as indicating a 

subduction setting. However, HFSE depletion can also be produced by crustal contamination even in 

relatively mafic melts (Thompson et al., 1983), and this has been proposed for basalts from the 

Semporna Peninsula in Sabah, NE Borneo (Macpherson et al., 2010). The major and trace element 

compositions of mafic Sintang rocks resemble basalts from Semporna (Fig. 7a), and we therefore 

interpret the mafic members of the Sintang Suite to be mantle-derived magma that has been 

contaminated by crust. The presence of such rocks among the Sintang Suite has two important 

implications. First, mantle melting was contemporaneous with the emplacement of intermediate to 

evolved magma that makes up the bulk of the Neogene activity. Second, those mafic magmas 

interacted with the crust, both bringing extra heat into, and causing sufficient localised melting of, 

those rocks to allow contamination to occur. 

Projections from compositions of intermediate and evolved West Sarawak and Kalimantan Sintang 

rocks toward lower SiO2 tend towards the more evolved end of the array of mafic rocks for all major 

elements (Fig. 5). This is particularly evident for Al2O3, TiO2, and Na2O, where the Borneo rocks 

diverge from the fields for high pressure melting experiments of hydrated basalt towards lower 

concentrations, and even more striking for the displacement to relatively high MgO contents (Fig. 

5d). We propose that, rather than recording variable degrees of partial melting of hydrated basalt, 

the wide range of silica contents observed in the intermediate and evolved rocks from West Sarawak 

and Kalimantan reflects mixing of mantle-derived and crustal-derived magmas. The low-silica end of 

the array is directed towards input of mantle melts, which must have experienced some 

differentiation to produce the range from basalt through to low-silica andesite. This differentiation 

also involved interaction with crust to lower the Nb contents. The high-silica end of the West 

Sarawak and Kalimantan Sintang array is directed towards crustal melts, which appear to represent a 

restricted range of very high-silica compositions, in turn suggesting relatively low degrees of partial 

melting of hydrated basaltic crust. However, some of the scatter, particularly of Central Sintang 

rocks from Kalimantan, may reflect higher degrees of melting and/or involvement of more deeply 
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derived crustal melts. The depth of melting would determine the strength of the adakitic signature  

i.e. the extent of the HREE-depletion, in the crustal contribution to each melt batch. Thus, for 

example, it is not paradoxical that intermediate rocks of the Central Sintang group have more 

elevated Sr/Y than the more silicic Bau Suite. This is simply a function of the crustal component in 

the Central Sintang magmas being derived from greater depth than the Bau Suite, but that these 

then mixed with a greater volume of mantle-derived mafic magma than occurred at Bau. 

We conclude that the intermediate to evolved rocks from West Sarawak and Kalimantan are 

mixtures of mafic magma generated in the mantle with crustal melt derived from basalt that was 

originally hydrated or became so through subsequent metamorphism (Johnson et al., 1978; Smith et 

al., 1979; Rogers et al., 1985; Macpherson et al., 2006, 2010; Macpherson, 2008). As mixtures, it is 

difficult to place firm constraints on the depth at which crust melted because none of the intrusive 

rocks represent pure crustal melt. The presence of adakitic chemistry does indicate that zone of 

crustal melting extends across the garnet-in boundary. 

7.3.4. Source of the crustal melt 

There are various potential sources of hydrated basaltic rock in the Borneo crust. The Bau Suite 

intrudes crust that contains Triassic arc rocks (e.g. Serian Volcanics, Jagoi Granodiorite), attesting to 

prior arc activity which affected that lithospheric block (Schuh, 1993; Breitfeld et al., 2017). This 

Triassic block does not extend east across the whole area of the Sintang Suite (Breitfeld et al., 2017; 

Hennig et al., 2017), but the Schwaner Mountains granitoids represent a long-lived Mesozoic 

convergent margin (Williams et al., 1988; Davies et al., 2014; Hennig et al., 2017; Hall and Breitfeld, 

2017 and references therein) at which basaltic magma could have been emplaced into the 

arc/forearc region that is now occupied by the Melawi and Ketungau basins, which host most 

Sintang intrusions (Figs. 2 and 11a). Alternatively, these basins may be partly underlain by accreted 

continental crust intruded by basaltic magmas and fragments of oceanic crust (e.g. Haile et al., 1994; 

Moss, 1998; Breitfeld et al., 2017). In either case there is scope for the Borneo crust to contain 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

hydrated basaltic sources (Fig. 11a). The melanges observed at the margins of the Melawi and 

Ketungau basins are further evidence of the presence of basaltic rocks and the significant 

deformation they have experienced (Tan, 1979; Williams et al., 1988; Haile et al., 1994). Melting of 

such basalts could produce the felsic components of the Neogene intrusives in western Borneo by 

melting at higher pressures to produce adakitic magma, and at lower pressures to produce non-

adakitic magma (Fig. 11a and b). 

7.4. Cause of magmatism 

We have discussed how the crustal thickening (Williams and Harahap, 1987) and/or melting of 

subducted crust (Prouteau et al., 2001) that have previously been proposed for the Sintang and Bau 

suites are inconsistent with the geology of Borneo (Section 2). Instead, we have identified that 

emplacement of these suites was accompanied by contemporaneous, mafic, mantle -derived 

magmatism. This magmatism, or the increased heatflow associated with it, was most probably 

responsible for causing crustal melting.  

Roberts et al. (2018) suggested that the mantle beneath Borneo is hotter than ambient mantle but a 

hotspot origin can be discounted for the West Sarawak and Kalimantan Sintang magmatism. 

Postulated plumes with similar dimensions to the Sintang province tend to be associated with 

extensive, tholeiitic flood basalt magmatism and/or formation of large-scale batholiths and 

volcanoes (Coffin and Eldholm, 1994; Bryan and Ernst, 2008). In contrast, the Sintang and Bau suites 

form only isolated, and predominantly felsic, stocks, dykes, sills and rare lavas. Furthermore, hotspot 

models allow for a broadly distributed “plume head” stage giving way to more spatially-restricted 

magmatism, usually showing an age progression in a particular direction. However, the post-

Miocene, mafic magmatism on Borneo – from Niut in the west to Semporna in the east – has an 

even broader geographic range than the Oligo-Miocene products (Fig. 2). We consider it highly 

unlikely that a hotspot could produce the widely dispersed, episodic Cenozoic magmatism in Borneo. 
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A west to east younging of Oligo-Miocene magmatism of western and central Borneo has been 

proposed by several studies (Kirk, 1968; Williams and Harahap, 1987; Schmidtke et al., 1990; Moss et 

al., 1998), but our new geochronological data suggest that this is not the case. First, the youngest 

part of this magmatism occurred in the west of Sarawak at Bau and around Kuching. Second, at Bau 

there are older magmatic zircons, similar in age to the West Sarawak Sintang intrusive rocks. Third, 

the West Sarawak Sintang intrusive rocks also show evidence of pulsed magmatism at individual 

sites, albeit over shorter timescales than previously proposed for the magmati c evolution of the 

whole area (Fig. 10a). Fourth, our U-Pb ages suggest that previous K-Ar data may have 

overestimated the spread of ages for magmatism (cf. Bawang and Serapi dykes). Fifth, U-Pb dating of 

Sintang-type magmatism elsewhere in Borneo has obtained ages of 19 to 20 Ma for igneous rocks in 

the Kelian district (Setiabudi et al., 2007; Davies et al., 2008). Although Kelian is about 500 km from 

Kuching (Fig. 2) the similarity of high-precision radiometric ages is striking and suggest a widespread, 

short-lived, Early Miocene magmatic episode across much of central Borneo. 

7.4.1. Extension or transtension 

The distribution of magmatism in western Sarawak appears to represent repeated exploitation of 

particular sites in the lithosphere by multiple phases of magmatism. Williams & Harahap (1987) 

proposed significant crustal control on the intrusion of the Sintang Suite in west Kalimantan, where 

they noted both that intrusions were aligned with one another and that larger intrusions tended to 

be associated with the central parts of basins. Similarly, the overall trend of the West Sarawak 

Sintang Suite suggests reactivation of WNW-ESE-directed faults of similar orientation to the Lupar 

Line (Fig. 2 and Fig. 11b). Schuh (1993) attributed the Bau Suite intrusions to one or two deep 

batholiths intruded along an existing, ENE-striking crustal weakness which he interpreted as a 

transtensional system. Stocks from this intrusion then intruded to shallower levels where an active, 

NNE-striking, regional, transtensional fault system intersected other existing structures in the crust. 

Thus, the actual emplacement of individual intrusive bodies now seen at the surface was controlled 

locally at relatively shallow scale. Evidence that this Bau trend has been a site of magmatism 
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throughout the Neogene comes from the inherited 19 Ma zircon in TB61, and the resetting of some 

Bau zircon ages to the age of younger (c. 5 Ma), Niut magmatism, which lies along the same NNE-

trending fault system (Harahap, 1994). 

Association of magmatism with transtensional settings, similar to the Lupar Line fault system, is 

known from modern and ancient locations such as Death Valley, the Red River Fault, and the 

Midland Valley of Scotland (e.g. Calzia and Ramo, 2000; Monaghan and Parrish, 2006; Hussein et al ., 

2011). Crustal thinning associated with tension allows the mantle to upwell and, hence, melt 

(McKenzie and Bickle, 1988).  

The timing of extension and crustal thinning in Borneo is best constrained by the depocentre of the 

Kuching Supergroup basins, which Breitfeld et al. (2018) interpreted as strike -slip basins. A 

transtensional component to this system could be indicated by the basement pop-up structures that 

bound these sedimentary basins. However, the Maastrichtian to Eocene ages of these deposits 

significantly pre-date the Oligo-Miocene magmatism studied in this paper (Fig. 10a). The Neogene 

igneous rocks are not deformed and indicate that significant movement along these faults had 

stopped prior to magma emplacement. Van Leeuwen et al. (1990) and Doutch (1992) proposed 

emplacement of the Sintang Suite in Kalimantan after folding of Eocene/Oligocene sediments, and 

Moss et al. (1998) concluded that they were emplaced immediately after a phase of deformation at 

about c. 25 Ma. Breitfeld et al. (2017) presented 40Ar/39Ar ages from white micas in schists south of 

Kuching, which can be interpreted as evidence of deformation in West Sarawak at c. 25 to 30 Ma. 

Therefore, the magmatism is unlikely to be associated with large scale active extension or 

transtension of the Borneo crust. 

7.4.2. Lithospheric thinspots and plate motion 

Basaltic magmatism can be generated by mantle melting beneath lithospheric thin spots, even in the 

absence of active extension. As long as there is a mechanism for mantle to rise into, and through, 

those thin spots, then melting can occur (King and Anderson, 1998). A number of studies have 
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recently advocated plate motion as such a mechanism to allow such upwelling (Macpherson et al., 

2010; Conrad et al., 2010, 2011; Ekici et al., 2012, 2014).  

The lithosphere of Borneo is thinner than adjacent portions of the Sunda Shelf (Roberts et al.,  2018) 

and the extensive Kuching depocentre implies that a broad swathe of crust between the Lupar Line 

and the Schwaner Mountains experienced substantial crustal thinning from the Cretaceous until the 

mid-Cenozoic (Eocene-Oligocene) (Fig. 11a). Thermal relaxation times mean that such thin spots 

would persist for the few million years until, at least, the Late Oligocene. Thus, any subsequent 

rotation or translation of Borneo relative to the underlying mantle (Hall et al. 2008; Hall and 

Spakman, 2015) could have caused mantle upwelling and melting where the thinning had been 

greatest. It is possible that the Lupar Line and related structures might have been reactivated at the 

time of magma emplacement to enhance the potential for upwelling, although there is no evidence 

to support this from the sedimentary record or deformation of the Oligo-Miocene intrusives rocks. 

The structural fabric of the basement could, however, have provided conduits for magma transport. 

This is evident in the tectono-magmatic relationships at Bau (Schuh, 1993) but is also seen in 

alignment of stocks in other areas of the Sintang Suite (Williams and Harahap, 1987). The resorbed, 

variably deformed quartz crystals found in the Bau granitoids would be consistent with assimilation 

of vein deposits contained in such basement fault networks.  

7.5. Adakites without subduction 

Their presence in continental collision zones with substantially thickened crust should provide prima 

facie evidence that not all magmatic rocks with adakitic chemistry can be treated as evidence of slab 

melting (Chung et al., 2003; Hou et al., 2004; Guo et al., 2007). Outside collision zones, the sources 

of adakitic magmatism are more controversial, but we have noted the absence of evidence for 

subduction in western Borneo for several tens of millions of years before the Sintang and Bau 

magmas were emplaced. Furthermore, the petrogenetic model most consistent with their 

composition does not support or require a subducted slab. Instead, melting of hydrous basaltic rock 
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in the lithosphere of Borneo is the most probable cause of these rocks. Our findings extend the 

range of known non-subduction occurrences of adakite emplacement to a continental block that has 

not experienced significant, prior or contemporaneous crustal thickening.  

Borneo is not the first non-collisional location where adakitic rocks have been documented with an 

absence of contemporaneous subduction (Johnson et al., 1978; Smith et al., 1979; Rogers et al., 

1985; Sajona et al., 2000). The cause of magmatism in these other settings has been difficult to 

ascertain due to subduction ceasing only recently before adakite emplacement and the potential for 

remnants of subducted oceanic lithosphere in the subjacent mantle (Sajona et al., 2000; Haschke 

and Ben-Avraham, 2005). Our findings for Borneo suggest that, rather than considering the 

subducted plate, melting of the upper plate should be considered as a possible source for such 

adakites. In each of these cases, adakitic magmas were emplaced into tectonically active blocks and 

in several cases were accompanied by basaltic magmatism. Therefore, Borneo may provide a better 

analogue for formation of those adakites than examples found in active subduction zones. 

These conclusions indicate that adakitic chemistry alone should not be used as a direct proxy for slab 

melting, either in modern or ancient subduction zones. In the case of Borneo, hydrated basaltic 

rocks were emplaced and then remained undisturbed for many tens of millions of years, if produced 

by the Schwaner Mountain margin, or even hundreds of millions of years, if produced by the Triassic 

margin that generated the Serian Volcanics and the Jagoi Granodiorite. Thus, while it is reasonable 

to infer that subduction produced the hydrated, mafic rocks in the crust of Borneo from which the 

adakitic signature was derived, this required no more melting of a subducted slab than has been 

inferred to produce non-adakitic arc tholeiites and andesites (Macpherson et al., 2006; Plank et al., 

2009; Bouilhol et al., 2015). Furthermore, for any location, it is not possible to conclude that the 

emplacement of such hydrous, mafic sources was contemporaneous with generation of the adakites 

themselves, without considering the prior history of the margin. Similarly, the presence of adakitic 

magma or rocks in modern subduction zones should not be taken as unequivocal evidence that 

current slabs are unusually hot. Our findings from Borneo suggest that remelting of hydrous, mafic 
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rock produced during an earlier stage of the same margin or during the earlier history of the 

overriding plate should also be considered (Macpherson et al., 2006). 

Conclusions 

1. Neogene magmatism in West Sarawak produced the Lower Miocene West Sarawak Sintang 

Suite with ages of c. 19 to 21 Ma and the Middle Miocene Bau Suite with ages of c. 12 to 14 

Ma (that could extent into the early Late Miocene). Inherited zircons in the West Sarawak 

Sintang Suite suggest magmatism was active by c. 24 Ma. 

2. The Neogene magmatism was not related to active subduction. Geochemistry shows an 

adakite character for the Bau Suite while the Sintang Suite samples plot predominantly 

outside the adakite field. The latter appear to be part of a broader magmatic suite in west 

and central Borneo that does include other instances of adakitic rocks. The geochemical 

character of both suites is consistent with remelting of hydrous mafic rocks in the 

lithosphere of Borneo that were emplaced as arc basalt tens or hundreds of millions of years 

previously. Melting across a range of depths, from the mid- to deep-crust and the shallow 

lithospheric mantle, produced the range of geochemical compositions observed in the 

Sintang and Bau Suites.  

3. The Neogene magmatism of west Kalimantan included a mafic component bearing within-

plate trace element signatures. The mechanisms that generated this magmatism could have 

provided the heat to re-melt the crust, which yielded the intermediate and evolved intrusive 

rocks of the Sintang and Bau suites.  

4. Production of the intraplate magmatism was the result of mantle upwelling into lithospheric 

thinspots. These may have been relicts from the extension which formed the Melawi and 

Ketungau basins and/or products of contemporaneous extension/transtension. In the 

absence of strong evidence for the latter, upwelling into thin spots as the plate migrated is 

most likely to have produced the intraplate magma. 
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5. Inherited zircons within the samples are consistent with the ancient basement of Borneo 

playing a role in the petrogenesis of the Neogene magmatic suite of western Borneo.  
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Figure Captions 

Fig. 1: Tectonic provinces of NW Borneo (modified after Haile, 1974; Hennig et al., 2017). The red 

frame shows the outline of Sintang Suite. The West Borneo basement (Triassic Sundaland) underlies 

also the western part of the Kuching Zone.  

Fig. 2: Cenozoic magmatism in Borneo. Grey shaded area shows the outline of the Neogene igneous 

rocks. Distribution and ages from Kirk (1968), Williams and Harahap (1987), Pieters et al. (1987), van 

de Weerd et al. (1987), Setiawan and Le Bel (1987), Bladon et al. (1989), van Leeuwen et al. (1990), 

Heng (1992), Moss et al. (1998), Prouteau et al. (1996, 2001), Hutchison (2010) and Cullen et al. 

(2013). 
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Fig. 3: Uppermost Cretaceous to Cenozoic igneous rocks of West Sarawak with sample locations of 

the West Sarawak Sintang Suite and the Bau Suite. Map is based on fieldwork observations and on 

the geological map of Liechti et al., (1960), Heng (1992) and Hutchison (2005). Samples in bold and 

underlined are dated by U-Pb zircon geochronology. (Exact location of BYG8 is not known). 

Fig. 4: Field photographs and thin section photomicrographs of Neogene igneous rocks in West 

Sarawak. a) Granodiorite sill at the northern tip of Tanjung Santubong intruding Paleocene 

sediments of the Kayan Sandstone. b) Rhyolite/rhyodacite exposure north of Gunung Serapi.  c) 

Columnar jointed micro-granodiorite dyke of Gunung Bawang. d) Zoomed in of rhyolite lava. e) 

Abundant plagioclase needles and crystals with xenomorphic biotites (crossed polars; TB58). f)  

Epidote pseudomorph after amphibole (plane polars; TB148a). g) Monocrystalline undulose volcanic 

quartz with embayments and inclusions (crossed polars; TB18).  h) Alkali feldspar phenocryst with 

twinning and sericite alteration (crossed polars; TB18). i) Intergrowth of plagioclase phenocrysts 

(crossed polars; TB209a). j) Subhedral clinopyroxene phenocryst (plane polars; TB161). k) Subhedral 

plagioclase phenocryst (crossed polars; TB9). l) Biotite with alteration corona, plagioclase and quartz 

phenocrysts in quartz-sericite matrix (plane polars; TB61). m) Highly rounded quartz grain, 

plagioclase and hornblende phenocryst (crossed polars; BYG12). (Bt = biotite, Plg = plagioclase, Ep = 

epidote, Am = amphibole, Qv = volcanic quartz, Kfs = alkali feldspar, Cpx = clinopyroxene, Ser = 

sericite, Hbl = hornblende). 

Fig. 5: Major element variations in igneous rocks from Bau and Kuching from this work and 

compared with previously published data for these locations (P; Prouteau et al., 2001). Sintang Suite 

from northwest Kalimantan divided into Northern, Central, Southern and unattributed (NW 

Kalimantan) from Williams and Harahap (1987) and Harahap (1993). Basalt and basaltic andesite 

from Tawau on the Semporna Peninsula, NE Borneo (Macpherson et al., 2010). Hydrated basalt 

melting experiments at high-pressure under fluid-present melting conditions (H2O-pres; Winther and 

Newton, 1991), and dehydration melting conditions at and above 8 kbar (DehydMelt; Rapp and 
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Watson, 1995). In panel b) only experimental equilibration of slab melt with peridotite (AB-1 + AVX; 

Rapp et al., 1999). ASI is aluminium saturation index [Al / (Ca + Na + K)].  

Fig. 6: Incompatible trace elements contents of Borneo igneous rocks normalised to N-MORB (Sun 

and McDonough 1989). a) Intrusive rocks from Kuching. b) Volcanic rocks from Kuching with one 

Kuching intrusive rock (TB 58) for comparison. c) Bau intrusive rocks wi th Kuching intrusive (TB 58) 

for comparison. d) Intermediate rocks from Kuching and Bau compared to representative rocks from 

Northern (N), Central (C), and Southern (S) groups of Kalimantan Sintang intrusives (Harahap, 1993). 

Comparators from different locations were chosen for their similar SiO2 to the specimens from the 

primary location displayed on each panel. 

Fig. 7: a) Incompatible trace elements normalised to N-MORB (Sun and McDonough 1989) for the 

least silicic sample from Kuching (TB 23) compared with basaltic or basaltic andesite sample from the 

Northern and Southern Sintang groups of Kalimantan (Harahap, 1993) and Semporna Peninsula, NE 

Borneo (Macpherson et al., 2010). b) Y vs Sr/Y plot showing the adakite field (after Defant and 

Drummond, 1990). Shaded areas are literature data from *Prouteau et al. (2001) and Williams and 

Harahap (1987) and **Thompson et al. (1994), Simmons and Browne (1990), Harahap (1993), 

Heryanto et al. (1993) and Moss et al. (1998).  Bau Suite samples fall predominantly in the adakite 

field, while the West Sarawak Sintang Suite samples are mainly outside the field. 

Fig. 8: U-Pb zircon age dating for the West Sarawak Sintang Suite - intrusive rocks. a) Sample TB63b 

dated as 21.1 ± 0.2 Ma. b) Sample TB58 dated as 20.3 ± 0.2 Ma. c) Sample TB33 dated as 20.1 ± 0.2 

Ma. Colour code for circles in the Tera-Wasserburg plot: red – concordant, black – discordant, grey – 

concordant, discount for weighted mean age calculation due to inheritance, large uncertainty or 

slight Pb loss. 

Fig. 9: U-Pb zircon age dating for the West Sarawak Sintang Suite - volcanic rocks (a, b) and the Bau 

Suite (c, d). a) Sample TB141 dated as 19.8 ± 0.3 Ma. A slightly older population is dated as 21.5 ± 0.4 

Ma. Only concordant ages are displayed. b) Sample TB209a dated as 18.6 ± 0.2 Ma. c) Sample TB9 is 
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dated as 14.1 ± 0.1 Ma (only 24 ages are displayed to improve the display). d) Sample TB61 is dated 

as 12.4 ± 0.9 Ma. Both samples have a younger zircon at c. 5 Ma that is interpreted as lead-loss due 

to hydrothermal overprint. 

Fig. 10: a) Summary of high precision ages for the Neogene magmatism in Borneo. Red colour 

indicates crystallisation ages. Yellow colour indicates inheritance (slightly older ages). For inheritance 

ages of Phanerozoic to Precambrian age see Figure 13. (Note: Period/Epoch is not to scale).* Mukah 

tuff U-Pb zircon LA-ICP-MS data from Ramkumar et al. (2018). ** Kelian volcanics U-Pb LA-ICP-MS 

zircon data from Setiabudi et al. (2007) and Davies et al. (2008). *** Temburong tuff U-Pb zircon LA-

ICP-MS data (S. Burley, pers. comm., 2018). b) Age histogram of all inherited U-Pb zircon ages 

analysed in the upper Cenozoic magmatic rocks derived by re-melting of basement. Mesozoic ages 

resemble the Schwaner Mountains, the Jagoi Granodiorite, the Sadong and Kuching Formations and 

other Triassic rocks of NW Kalimantan (Davies et al., 2014; Breitfeld et al., 2017; Hennig et al., 2017). 

Proterozoic ages indicate a heterogeneous basement. 

Fig. 11: a) Schematic diagram of western Borneo showing the genesis of adakitic and non-adakitic 

melts. Mantle upwelling into lithospheric thinspot results in melting of crust and intra-plate basalt at 

various depths. The zones of melting are bounded by deep rooted faults that are associated with the 

large sedimentary basins in Kalimantan (Melawi) and Kalimantan-Sarawak (Ketungau). b) Schematic 

block diagram of the Neogene magmatism in West Sarawak. Early Miocene Sintang Suite associated 

with the Lupar fault trend is dominated by non-adakitic melts. Melting occurs above the garnet-in 

boundary. Middle Miocene Bau Suite is associated with the Bau fault trend and dominated by 

adakitic melts. Melting occurs in deeper levels below the garnet-in boundary. 

 
 

Table Captions 

ACCEPTED MANUSCRIPT



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

Tab. 1: Major and trace element concentrations for West Sarawak Sintang Suite and Bau Suite. All 

data from XRF analyses, except a), which are from ICP-MS analyses. LOI = loss on ignition. 

(**estimated uncertainty is the largest of the absolute ± error and the percentage error.)  

Tab. 2: Summary of U-Pb zircon dating of this study, subdividing the Neogene igneous rocks into the 

Lower Miocene West Sarawak Sintang Suite (intrusive and volcanic rocks) and into the Middle 

Miocene Bau Suite.  
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Highlights 

 Remelting of hydrous basalt in the crust is source for adakite chemistry 

 Adakitic and non-adakitic geochemistry in Borneo is related to depth of melting 

 Sintang Suite in West Sarawak is dated as c. 19-21 Ma with a non-adakitic character 

 Bau Suite is dated as c. 12-14 Ma with an adakitic character 

 Crustal melting likely caused by mantle upwelling into lithospheric thinspots 
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