

22 PO₄ g⁻¹ was measured at the breakthrough of the column, however the pH in the outflow was measured

23 to be higher than 11. Such an increase was due to the very high solubility of the Ca-Fe LDH.

24 **Keywords :** LDH; Iron; Water treatment; Adsorption; Precipitation; Hydroxyapatite

25

26 **1. Introduction**

27 Protection and monitoring of water resources are among the major issues of the twenty-first century 28 due to population growth, rapid industrialization and intensification of agriculture. Among the various 29 pollutants that threaten water quality, orthophosphate species $(H_{3-x}PO_4^x)$ subsequently named PO₄) 30 are of utmost importance since the excess of PO_4 is mainly responsible for the phenomena of water 31 eutrophication. Eutrophication leads to strong perturbation of biodiversity and important economic 32 losses, *e.g.* closing of fisheries and groundwater production wells. As an example, an annual cost of € 33 1.75 million was estimated for the freshwater of the USA alone (Dodds et al., 2009). One of the causes 34 of excess PO₄ in water is the lack of adequate PO₄ treatment and monitoring in waste water treatment 35 plants (WWTP), in particular in ecologically more sensitive rural areas. For economic reasons classical 36 waste water treatments that needs costly infrastructure are often not performed, *e.g.* installations 37 using the activated sludge process in either low population, remote or developing areas. Therefore, 38 WWTP using passive water treatment technologies such as reed bed filters are often preferred. Natural 39 materials such as hydroxyapatite, or industrial waste such as steel slag, were used at the pilot scale to 40 remove phosphate from wastewater (Vohla et al., 2011). If such materials are intended to be used in 41 horizontal filters, the dimensioning of the reactors depends on numerous factors such as: (i) the 42 number of population equivalent (PE) releasing wastewater, (ii) the quantity of P-PO₄ released by 1 PE 43 per day {typically in the range of \sim 1 to \sim 3 g 44 P-PO₄ PE⁻¹ (Henze and Comeau, 2008)}, (iii) the PO₄ removal capacity (mg P-PO₄ g⁻¹) of the Filtration 45 Material (FM) under hydrodynamic flow and (iv) the duration of the water treatment until the material 46 is saturated with PO₄. As an example, a volume of \sim 0.8 m³ of FM per PE was estimated to be necessary

47 for a 4 years treatment if ferrihydrite coated pozzolana was used as a FM (Ruby et al., 2016). Such a 48 volume of FM corresponds also to a surface \sim 2 m² per PE for a horizontal filter with a depth of 0.5 m. 49 Therefore, passive water treatments are generally extensive and need relatively high amount of FM 50 that occupy a relatively large surface. As explained by Vohla (Vohla et al., 2011), large-scale and long-51 term (typically 5 years) experiments are absolutely necessary for evaluating accurately the optimal 52 quantity and lifetime of the FM in such filters. A possibility for reducing the size of the filtration reactors 53 is to synthesize FM characterized by a much higher $PO₄$ removal capacity. For this purpose, Layered 54 Double Hydroxides (LDH) are particularly interesting materials. They constitute of stacking of 55 hydroxide layers containing divalent M^{II} and trivalent M^{III} cations. The positive charge of the cationic 56 sheets is counterbalanced by the presence of anions $Aⁿ$ and water molecules present in the interlayer. 57 LDH obey the general chemical formula $[M^{\parallel}_{(1-x)}M^{\parallel \parallel}_x(OH)_2]^{x+}$ [x/n Aⁿ⁻ m H₂O]^{x-} where *x* represents both 58 the charge of the layers and the M^{III} molar fraction. The values of x depend on the nature of the M^{II} 59 and M^{III} cations and vary in a range from \sim 0.1 to 0.33 (Forano et al., 2013). LDH can remove PO₄ by 60 several mechanisms such as adsorption, anionic exchange or dissolution-precipitation (Baliarsingh et 61 al., 2013). The Theoretical PO₄ Removal Capacity of an LDH (TPRC in mg g^{-1}) by anionic exchange 62 depends on the M^{III} molar fraction (x), the charge (n) of the replacing anions and on the LDH molar 63 mass. As discussed later in this work, the maximal TPRC of Ca-Fe LDH will be estimated to be as high 64 as \sim 110 mg P-PO₄ g⁻¹, a value much higher than the removal capacity reported in homogeneous batch 65 dispersion for other minerals such as ferrihydrite \sim 26 mg P-PO₄ g⁻¹ (Ruby et al., 2016)}, steel slag (up 66 to ~ 2.4 mg PO₄g⁻¹ (Barca et al., 2012) or hydroxyapatite (0.3 mg P-PO₄g⁻¹ (Bellier et al., 2006)). Maximal 67 phosphate removal capacities $\{q_e^{(Max)}\}$ of the same order of magnitude than the TPRC were in fact 68 reported by different authors studying the interaction of Ca based LDH such as Ca-Al LDH (Bekele et 69 al., 2019; Jia et al., 2016; Oladoja et al., 2014; Qian et al., 2012), *i.e.* hydrocalumite, Ca-Mg-Al LDH 70 (Ashekuzzaman et al., 2014) and Ca-Fe LDH (Ashekuzzaman et al., 2014; Tsuji and Fujii, 2014). 71 However, for both Ca-Al LDH and Ca-Fe LDH, the reported values of $q_e^{(Max)}$ varied in a relatively broad 72 range between \sim 46 and \sim 179 mg P-PO₄ g⁻¹ depending on experimental conditions, *e.g.* LDH synthesis

 procedure, phosphate concentration, adsorbent dose and pH. Several authors reported the mineralogical transformation of the LDH into a calcium phosphate phase such as hydroxyapatite (Qian et al., 2012; Tsuji and Fujii, 2014) or brushite (Bekele et al., 2019; Jia et al., 2016), in particular for high 76 PO₄ concentrations (150 mg L⁻¹ ≤ [PO₄] ≤ 1500 mg L⁻¹). At lower PO₄ concentrations, a significant decrease of intensity and a general broadening of the LDH X-ray diffraction (XRD) peaks were observed (Ashekuzzaman et al., 2014; Oladoja et al., 2014). The synthesis of Ca-Fe LDH was reported to lead to a higher degree of crystallinity in comparison to Mg-Al LDH, i.e. hydrotalcite (Tsuji and Fujii, 2014). 80 However, the concomitant formation of secondary phases supposed to be Ca(OH)₂, "Fe(OH)₃" and 81 CaCO₃ was noted when varying the Ca : Fe ratio between 0.75 and 3. In a recent study we 82 demonstrated that almost single phase Ca-Fe LDH can only be synthesized for a Ca : Fe ratio of 2 : 1, 83 with a higher ratio leading to the formation of either $Ca(OH)_2$ or $CaCO_3$ depending on the synthesis procedure (Al-Jaberi et al., 2015).

85 The first goal of this study was to determine as precisely as possible the mineralogical transformation 86 of single phase Ca-Fe LDH in the presence of $PO₄$ solutions of varying concentrations. The behavior 87 observed at lower PO₄ concentration (< \sim 100 mg L⁻¹) will be particularly relevant for application in 88 waste water treatment where the concentration of PO₄ is often between \sim 10 and \sim 60 mg L⁻¹ (Ruby et al., 2016). Moreover, we recently developed a new method of synthesis allowing the deposition of a high amount of ferrihydrite onto a pozzolana support (Ruby et al., 2015). Such a method of synthesis was adapted here to synthesize pozzolana coated with Ca-Fe LDH (Ca-Fe LDH-Pz). The second goal of 92 this study was to study the PO_4 removal by Ca-Fe LDH-Pz under hydrodynamic conditions. Such an experiment is of upmost importance if the material is finally intended to be used for horizontal, or vertical, filters in the field.

2. Experimental

2.1 Chemical Products

99 Calcium chloride dihydrate (CaCl₂.2H₂O), iron (III) chloride hexahydrate (FeCl₃.6H₂O) and sodium 100 hydrogenophosphate dehydrate (NaH₂PO₄.2H₂O) were purchased from Sigma-Aldrich with a purity greater than 99%. Sodium hydroxide was procured from Carlo Erba with purity greater than 99%. The pozzolana (Pz) was supplied by "Pouzzolanes des Domes" (Saint-Ours-les-Roches, France) and was characterized by a grain size ranging from 1 to 3 mm. As already described previously (Ruby et al., 104 2015), pozzolana is a porous material comprised of a mixture of labradorite (Na,Ca) (Al,Si)₄O₈, diopside 105 CaMgSi₂O₆, forsterite Mg₂SiO₄ and hematite α -Fe₂O₃.

2.2 Materials synthesis

2.2.1 Synthesis of Ca-Fe LDH

 The method of synthesis of the Ca-Fe LDH was optimized in a previous study (Al-Jaberi et al., 2015)*.* Briefly, a first solution (A) was prepared by dissolving 66.7 mmol of Ca(II) and 33.3 mmol of Fe(III) salts 110 (Ca(II) : Fe(III) = 2 : 1) into 300 mL of demineralized ultrapure water (18.2 M Ω). Solution A was introduced progressively with the help of a peristaltic pump (total time of 150 min.) into a 300 mL 112 solution B containing 200 mmol of NaOH (OH⁻ / {Ca(II) + Fe(II)} = 2) to precipitate the LDH product. At the end of the experiment the pH was between 11.4 and 11.8. The LDH dispersion was filtered under 114 suction through a Buchner funnel using 22 μ m pore size Millipore[©] paper filter. All the filtered samples were thoroughly washed with distilled water and cold ethanol, dried at room temperature and ground 116 in a mortar to obtain a fine powder.

2.2.2 Synthesis of Ca-Fe LDH coated pozzolana

 A mass of 20 g of Ca-Fe powder was mixed with 100 g of Pz in a dry state in a 500 mL plastic wide necked bottle. The mixture was shaken during 12 h using a Reax 20/8 overhead shaker (Heidolph Intruments GmbH& Co.K.G, Schwabach, Germany) with a rotation speed of 16 rpm. The LDH coated Pz was subjected to the separation of free particles with a 40 mesh sieve. The quantity of LDH 122 deposited onto Pz was estimated to be 14.2 ± 0.4 g% by comparing the weight of the material before and after coating.

2.3 Characterization of the samples

2.3.1 X-Ray Diffraction (XRD)*.*

The crystal structure of the samples was studied by XRD using a Philips X'Pert pro MPD diffractometer

128 (CuK α radiation λ = 1.5418 Å). Patterns were collected with a step size of 0.03342 ° and a rate of 87.63

s per step.

2.3.2 Raman spectroscopy

 Raman spectra were recorded in backscattering configuration by using a Horiba Jobin-Yvon T64000 132 spectrometer, equipped with an Ar^{2+} laser emitting at 514.53 nm in the range 100 to 4000 cm⁻¹. The 133 spectrum was setup with a 1800 groove mm⁻¹ diffraction grating, and a liquid N₂-cooled Charge 134 Coupled Device (CCD). The spectra resolution was set to 2 cm⁻¹ by selecting the entrance slit width. The objective was x80 (0.95 of numerical aperture). The spectrometer was calibrated with the 520.7 136 cm^{-1} line of a silicon wafer. The laser power was 200 mW.

2.3.3 Mössbauer spectrometry

138 Transmission Mössbauer spectrometry was performed using a Co source to identify the iron containing compounds. The filtered materials were transferred inside a cold head cryostat (Advanced Research Systems) under an inert He atmosphere. Mössbauer spectra were recorded with a constant 141 acceleration spectrometer and a 512 multichannel analyser. The data were calibrated with a 25 µm 142 thick pure α -iron foil. Mössbauer spectra were fitted using the Recoil software. Shape lines were either Lorentzian or Voigt profile, *i.e.* a convolution of a Gaussian distribution with a Lorentzian shape line.

2.3.4 Transmission Electron Microscopy (TEM).

 The data were collected at the Competence Center for Electronics Microscopy and Microwaves (Institut Jean Lamour UMR 7198 CNRS-Université de Lorraine) by using a JEOL JEM-ARM200F apparatus. The sample was prepared by forming a dispersion of the dried solid product into ethanol. One drop of the dispersion was laid on a copper grid for TEM analysis coupled with an Energy Dispersive X-ray (EDX) analyzer.

2.3.5 X-Ray Photoelectron spectroscopy (XPS)

 XPS spectra were recorded by using a Kratos Axis Ultra DLD (Manchester, UK) instrument. The spectra were recorded at a normal (90°) angle between the surface of the sample and the direction of the ejected electron. The acquisition of low-resolution spectra has been carried out with pass energy of 160 eV and steps of 1 eV and high resolution spectra with a pass energy of 20 eV and steps of 0.5 eV. 155 The analyzed area was 0.3x0.7 mm². The spectra were corrected for charging effects by using the C1s contamination peak situated at 284.6 eV.

2.3.6 Inductive Coupled Plasma Atomic Emission Spectroscopy (ICP-AES)

 Dissolved phosphate, calcium and iron species concentrations were measured by ICP-AES using a Jobin 159 Yvon-ULTIMA apparatus. The solutions were mixed into $HNO₃$ solutions to avoid the presence of trace solid particles before analysis.

2.4 Chemical reactivity of Ca-Fe LDH with phosphate

2.4.1 Batch experiments

164 Phosphate solutions with various concentrations were prepared by dissolving NaH₂PO₄.2H₂0 into ultrapure water. All experiments were conducted at room temperature with a 0.1 M NaCl supporting electrolyte and a pH of 7. All the pH measurements were carried out with a digital pH meter (Almemo model 2690) using a glass electrode (model PHER 112 SE). The pH of the solutions was adjusted manually to the required values by diluted NaOH or HCl solutions. The volume of acid/alkali added for 169 pH adjustment never exceeded 1% of the total volume. The PO₄ removal kinetics was studied over 48 h by adding 1 g of LDH in 1 L of phosphate solution, with concentrations varying in between 20 and 171 1000 mg L⁻¹ (0.21 to 10.53 mmol L⁻¹). The effect of the initial PO₄ concentrations (isotherm experiments) 172 was studied in another set of experiments where 0.1 g of LDH was introduced into 100 mL of PO₄ 173 solution with an initial concentration varying between 20 and 2000 mg L^{-1} for 24 h, this time period having been previously determined from kinetics experiments as being sufficient for reaching quasi-175 equilibrium conditions. At a selected time, 1 mL of the solution was withdrawn to determine PO₄

176 concentrations by ICP-AES and, as required, also other soluble species such as Ca²⁺_{aq} and Fe³⁺_{aq}. Each run was performed in duplicate and the results were averages of the two trials with reproducibility 178 within \pm 5%.

2.4.2 Column flow through experiments

180 The column experiment was conducted in a Plexiglas $^{\circ}$ column with 3.7 cm internal diameter and 50 cm height. The column was loaded with 482 g of LDH coated Pz. The feed solution 182 ($[PO_4] = 100$ mg L⁻¹) was continuously pumped in an up-flow mode from the reservoir through the 183 column at a flow rate of 1.1 mL min⁻¹ using a peristaltic pump. The contact time was \sim 5.5 h. Samples were taken at regular time intervals in the outflow (2 sample per day) for 70 days for performing chemical analyses with ICP-AES.

3. Results

- 3.1 Dissolution properties of Ca-Fe LDH in pure water
- *3.1.1 Measurement of soluble Ca and Fe species*

190 Dried Ca-Fe LDH was introduced into demineralized water ([LDH] = 1 g L⁻¹) under continuous stirring. While soluble Fe concentration stayed below the detection limit of the ICP-AES due to the very low solubility of Fe(III) species in alkaline solution, the soluble Ca concentration exhibited a strong increase 193 during the first 4 hours and reached a threshold value of 203 mg L^1 (Fig. 1). This value was in line with 194 the concentration of Ca measured in the solids of the pristine Ca-Fe LDH (300.5 mg g^{-1}) and the 195 hydrolysed product (100.6 mg g^{-1}). Therefore about 2/3 of the Ca species initially present in the solid was released into solution and 1/3 was in a solid state. After a contact time of 48 hours the final pH of water was 11.8.

3.1.2 Mineralogical transformation of Ca-Fe LDH in pure water.

The XRD patterns of the pristine LDH exhibited hydrocalumite-like structure (PDF 44-0445) (Fig. 2 a).

201 The pattern was indexed in a hexagonal lattice with a R-3 rhombohedral space group symmetry. A

 d003-value of 7.77 Å was calculated in very good agreement with the value of 7.72 Å reported for Ca- Fe-Cl LDH (Tsuji and Fujii, 2014). After a contact time with water of 24 h, the Ca-Fe LDH was completely transformed as testified by the absence of LDH diffraction lines (Fig 2b). The resultant diffraction lines 205 were attributed to the formation of CaCO₃ meaning that a part of the Ca species present initially into the LDH reacted with carbonate ions present in water under the strong alkaline conditions. Raman 207 spectroscopy was used to identify the solid phase containing the Fe^{III} species. Very similar features to those recorded previously for two-line ferrihydrite were observed by Raman spectroscopy (Fig. 2c&d). Indeed, the main bands of the ferrihydrite Raman spectra were reported to be situated at 223, 288 210 and 390 cm⁻¹ (Root et al., 2012). Two-line ferrihydrite also generally exhibited 2 low intensity XRD diffraction peaks that were not clearly observed here (Fig. 2b), most probably due to the formation a 212 very disordered ferric structure in comparison to the well crystallised CaCO₃ compound. The full dissolution of the Ca-Fe LDH was confirmed by XPS, and, indeed, the chloride ions intercalated in the LDH were not detected with XPS anymore after 24 hours of contact time in water (Fig. SI-1).

215 3.2 Reactivity of Ca-Fe LDH with phosphate

216 *3.2.1 Phosphate removal in batch experiments*

217 The quantity of phosphate (PO₄) removed from water, q (mg P-PO₄ g⁻¹), was recorded (Fig. 3a) during 218 a period of 48 hours for a series of initial PO₄ concentrations ranging from 25 mg L⁻¹ to 1000 mg L⁻¹ 219 ([LDH] = 1 g L⁻¹). The quantity of PO₄ removed from water increased rapidly during the first 4 hours and 220 reached a maximum value in between less than \sim 1 hour and \sim 8 hours for increasing PO₄ 221 concentrations. As expected, the maximum value was achieved more quickly at low PO_4 222 concentrations. The maximum PO₄ removal obtained after 48 hours of contact time was plotted as a 223 function of the initial PO₄ concentrations (Fig 3b). The linear increase recorded in Zone A of the curve 224 corresponds to experiments where the removal rate *R* was equal or very close, to 100%. In this case 225 the concentration of PO₄ removed from the water was simply equal to the quantity of PO₄ introduced 226 into the solution. A maximum removal capacity, q_{Max} , of the Ca-Fe LDH is measured at higher PO₄

227 concentrations in zone B where R is lower than 100%. The value q_{Max} is close to 130 mg P-PO₄ g⁻¹ for 228 the highest initial PO₄ concentration of 1000 mg L⁻¹ and is relatively high in comparison to those 229 reported for Ca-Fe LDH, *i.e.* in between \sim 46 and \sim 91 mg P-PO₄ g⁻¹ (Table 1). The value of q_{Max} is also 230 significantly higher than the adsorption capacity of ferrihydrite (\sim 20 mg PO₄ g⁻¹ < q_{Max} < \sim 33 mgP- PO₄ 231 $\,$ g⁻¹ in the pH range between 9 and 4, respectively). Note that ferrihydrite with a Surface Specific Area 232 (SSA) of \sim 300 m² g⁻¹ was reported to be the best PO₄ adsorbent of the iron oxide mineral family (Ruby 233 et al., 2016). This comparison with ferrihydrite suggests that Ca-Fe LDH interacted with PO⁴ *via* another 234 mechanism than a simple adsorption process allowing the removal of a much higher quantity of PO₄.

235 *3.2.2 Mineralogical transformation of LDH in contact with PO⁴*

236 The solid products obtained after 48 hours of contact of the LDH with various PO₄ solutions were 237 analysed with XRD (Fig. 4). At a low PO_4 concentration (Fig. 4b), the XRD pattern obtained was quite 238 similar to the one observed previously in PO₄-free water (Fig. 2b) and exhibited only the peaks of 239 CaCO₃. For increasing PO₄ concentrations, new broad diffraction peaks appeared and sharpened 240 progressively at higher PO_4 concentrations (Fig 4c). These new peaks were attributed to the formation 241 of hydroxyapatite (HA) ${Ca₅(PO₄)}$ 3OH, PDF 41-0490}. The progressive disappearance of the CaCO₃ XRD 242 peaks was concomitant with the progressive appearance of the HA XRD peaks (Fig. 4b-d). The kinetics 243 of transformation of the LDH as function of time was also studied for an initial PO₄ concentration of 600 mg L-1 244 (Fig. 5). In the very initial stages of the reaction, *e.g.* 10 min of reaction (Fig. 5b), the intensity 245 of the LDH peaks decreased and traces of $CaCO₃$ and HA were detected. The disappearance of the 246 diffraction peaks attributed to $CaCO₃$ and LDH occurred after 30 min and 4 h of reaction times, 247 respectively. Therefore, both CaCO₃ and the LDH were dissolved into soluble Ca²⁺_{aq} species that 248 partially precipitated with PO₄ to form HA. The dissolution of the LDH was much faster (30 min) in the 249 presence of a lower PO₄ concentration of (20 mg L⁻¹) and the final solid product was in this case CaCO₃ 250 (Fig. SI2).

251 *3.2.3 Correlation between the concentrations of soluble Ca and PO⁴ species*

252 The evolution of the PO₄ and Ca in solution after 48 h. of interaction between the LDH and PO₄ was 253 plotted as a function of the initial phosphate concentration (Fig. 6). In order to perform a mass balance 254 for the reactions, the concentrations were reported in mmol L^1 (1 mmol L^1 of PO₄ corresponds 255 approximatively to 100 mg L^{-1} of PO₄). The soluble calcium concentration decreased almost linearly in 256 zone A (0.2 mmol L⁻¹ \leq [PO₄]₀ \leq 2 mmol L⁻¹) when PO₄ anions were completely removed by the LDH. For 257 a critical PO₄ concentration of ~ 2 mmol L⁻¹, the Ca²⁺_{aq} concentrations reached a value close to zero and 258 the PO₄ concentration began to increase. For [PO₄]₀ values higher than \sim 2 mmol L⁻¹, the PO₄ 259 concentration increased linearly with a slope of 1, meaning that an excess of PO₄ remained fully in 260 solution. The slope of the linear decrease of PO₄ concentration [0.2 mmol L⁻¹ - 2 mmol L⁻¹] was 261 measured to be close to 5 : 2 (Ca : PO₄ = 2.5), a value significantly higher than the one expected if one 262 considers that phosphate was only removed by the precipitation of hydroxyapatite Ca₅(PO₄)₃OH (Ca : 263 PO₄ = 1.67). This result suggests that PO₄ was removed from water by another mechanism, or a 264 combination of mechanisms.

265

266 *3.2.4 Complementary analysis of the solid products obtained at low phosphate concentrations*

267 The XRD patterns obtained after the interaction of the LDH with PO_4 at low concentration did not 268 clearly exhibit the diffraction pattern of HA (Fig. 4 b-c), and therefore further investigations were 269 performed with TEM and Mössbauer spectroscopy. The products of transformation of the LDH with 270 [PO₄]₀ = 20 mg L⁻¹ consisted of CaCO₃ crystals mixed with an agglomeration of nanocrystals (Fig. 7). 271 Chemical analysis with EDX of the nanocrystals revealed the presence of O, Fe, Ca and P atoms 272 (Table 2). P atoms were not detected on CaCO₃ crystals (spot C & F) showing that calcite was inactive 273 for PO₄ removal. The chemical composition of the agglomerated nanocrystal was relatively 274 heterogeneous: calcium rich zones were detected in some areas (spots A, B, D & G) while iron rich 275 zones were detected in other areas (spots H & E). These nanocrystals containing Fe^{III} species were 276 assigned to the presence of a ferric paramagnetic doublet when probed with Mössbauer spectroscopy 277 at 77 K (Fig. 8a). The magnetic transition occurred at a temperature situated around 35 K (Fig. 8b) and the Mössbauer spectra recorded at 14 K was essentially constituted of a distribution of very broad 279 sextets. A broad ferric doublet D_1 (RA of 10%) was added to obtained a good fit of the central part of the spectrum (Table 3). The very broad range of the hyperfine field measured for the sextet's distribution was situated in between 133 and 453 kOe such as those arising from superparamagnetism. This observation was in agreement with the TEM data previously shown (Fig. 7), corresponding to the 283 formation of chemically heterogeneous nanocrystals containing Fe(III) and Ca(II) species.

284 *3.2.5 Column flow through experiments*

285 The potential of Ca-Fe LDH coated pozzolana for removing PO₄ was evaluated under hydrodynamic 286 conditions. The quantity of PO₄ measured in the outflow of the column ($[PO_4] / [PO_4]_0$) and the pH were 287 recorded as a function of V / V_p (Fig 9), where [PO₄]₀ is the concentration of phosphate in the inflow = 288 (100 mg L^{-1}), V is the total volume occupied by the filtration material and V_p the porous volume. The 289 pH in the outflow increased very rapidly from 4.6 to 11.3, in agreement with the LDH dissolution 290 process observed previously in homogeneous batch experiments. In the first step, the pH decreased 291 only very slowly and, in a second step, a sharp decrease was observed after 43 days of experiments 292 corresponding to a V / V_p value of 188. This value was also the critical volume corresponding to the 293 breakthrough of the column by the phosphate species: a sharp increase of the $[PO_4] / [PO_4]_0$ value was 294 observed and the concentration of PO₄ in the outflow was almost identical to the concentration of PO₄ 295 in the inflow ($[PO_4] / [PO_4]_0 \sim 1$) after 70 days of experiment.

296 **4. Discussion**

- 297 4.1. Reactivity of Ca-Fe LDH with phosphate in batch experiments
- 298 $4.1.1$ *Removal capacity at high phosphate concentration (> 100 mg L⁻¹)*

299 Three types of reactions were considered in order to evaluate the corresponding phosphate removal 300 capacity. LDH are well known to be anion exchange materials and the question whether such a process 301 could be responsible for a phosphate removal capacity as high as \sim 400 mg L⁻¹ arises. The removal

302 capacity by anionic exchange is strongly dependent on the speciation of the phosphate species (PO₄³⁻, 303 HPO₄² or H₂PO₄) present in the interlayer. Let us consider the intercalation of a monovalent H₂PO₄ 304 that should lead to the maximal removal capacity *via* anionic exchange corresponding to the following 305 chemical reaction:

306
$$
\{[Ca^{II}{}_4Fe^{III}{}_2(OH)_{12}]^{2+} \bullet 2Cl^+\} + 2 H{}_2PO_4 = \{[Ca^{II}{}_4Fe^{III}{}_2(OH)_{12}]^{2+} \bullet 2H{}_2PO_4^-\} + 2Cl^-(1)
$$

307 This reaction leads to a maximal removal capacity by anionic exchange of 113 mg P-PO₄ g⁻¹ slightly lower than the value measured in this study. According to the solid analysis, hydroxyapatite (HA) and a ferric (hydr)oxide are the main products of transformation of the LDH. This corresponds to the following chemical reaction:

311 5
$$
\{[Ca^{II}{}_4Fe^{III}{}_2(OH)_{12}]^{2+}
$$
 2 Cl ⁺ + 12 H ₂ PO_4 = 4 $Ca_5(PO_4)_3(OH)$ + 10 FeOOH + 2 OH + 10 Cl + 34 H ₂O (2)

312 This reaction leads to a removal capacity by dissolution-precipitation of 135 mg P-PO₄ g⁻¹, which is in 313 better agreement with the value measured in this study. Note that the formation of a ${H A, Fe P Q_4}$ 314 mixture would have led to an even higher removal capacity, of around 244 mg P-PO₄ g^{-1} . Considering 315 reaction (2), one may hypothesize that at high phosphate concentration the removal of PO₄ was 316 essentially governed by the dissolution of Ca^{II} species present in the initial LDH reactant. A part of the 317 phosphate species may also be adsorbed on the ferric (hydr)oxide nanocrystals but the relative 318 proportion of this process in the overall phosphate removal was certainly lower. Indeed the PO_4 319 removal capacity of ferric (hydr)oxides is generally situated in a significantly lower range between 3 320 and 26 mg P-PO₄ g^{-1} (Mallet et al., 2013).

321 $4.1.2$ *Removal capacity at low phosphate concentration (* ≤ 100 *mg L⁻¹)*

322 The XRD patterns showed the progressive disappearance of HA when the phosphate concentration 323 decreased (Fig 5). This decrease was concomitant with a progressive decrease of the PO₄ removal 324 capacity. In the concentration range 25 - 100 mg L^{-1} , calcite CaCO₃ is formed rather than HA. Therefore,

325 a competitive association of Ca either with phosphate or carbonate was evidenced. This competition 326 was won either by phosphate, or by carbonate, at high and low $PO₄$ concentration, respectively.

327 TEM showed that calcite (CaCO₃) did not adsorb PO₄ species that were rather associated with a very 328 disordered solid phase containing both Ca^{II} and Fe^{III} species. Therefore, a significant proportion of the 329 Ca^{II} species initially present in the LDH phase did not participate to the PO₄ removal and are either 330 released as soluble species or present in CaCO₃. However, a minor part of the Ca species coexists with 331 Fe species in a solid phase resembling ferrihydrite. As previously described (Ruby et al., 2016) the co-332 existence of Ca species and ferrihydrite led to a global increase of PO_4 removal in comparison to Ca 333 free ferrihydrite. Such a synergistic effect may explain the relatively high PO₄ removal observed even 334 at low PO₄ concentrations in this study, e.g. for an initial PO₄ concentration of 100 mg L⁻¹, the removal 335 capacity was not determined accurately since the removal rate was close to 100% and the Fe-Ca solid 336 surfaces are certainly under-saturated. However, the data showed that the removal capacity is at least 337 as high as 33 mg P-PO₄ g^{-1} , a value higher than those measured for Ca free iron oxides (Ruby et al., 338 2016).

339 4.2 Reactivity of Ca-Fe LDH with phosphate in column experiment

 The experiment performed in the column demonstrated that pozzolana (Pz) coated with Ca-Fe LDH was particularly efficient for removing phosphate. Indeed, the experiment may be compared to another set of column experiments performed recently using ferrihydrite (Fh) coated Pz (Ruby et al., 2015; Ruby et al., 2016) where the experimental conditions were quite similar, *i.e.* identical dimensions 344 of the columns, $[PO_4] = 100$ mg L⁻¹ in the inflow, but with a contact time of \sim 8 h instead of \sim 5.5 h in 345 this study. The removal capacity measured here at the breakthrough for Ca-Fe LDH-Pz, *i.e.* $q_B \sim 4$ mg 346 P-PO₄ g⁻¹, was \sim 3.2 times higher than the value measured previously for Fh-Pz, *i.e.* $q_B \sim 1.3$ mg P-PO₄ g^{-1} . However, the pH values higher than 11 measured in the outflow represent a problem for an eventual application for waste water treatment. Indeed, such pH values are significantly higher than the usual discharge standards with pH values that should be situated in between 6 and 8.5. In order to

350 use Ca based LDH materials for such an application, a better control of the LDH dissolution properties 351 would be necessary. On one hand the dissolution of Ca is beneficial for PO₄ removal by precipitation, 352 but on the other hand the LDH dissolution leads also to the release of OH⁻ species by inducing an 353 increase of pH {see equation (2)}. According to the different reactions paths obtained in batch 354 experiments (Fig. 10), a significant proportion of the Ca species present in the LDH was not efficient 355 for PO₄ removal and was released in the aqueous medium. A decrease of the solubility of the LDH may 356 be obtained by introducing in the solid structure less soluble divalent species than Ca²⁺ such as Mg²⁺ 357 (Ashekuzzaman et al., 2014). Tuning carefully the relative proportion of Ca^{II} and Mg^{II} in a ternary Ca^{II}-358 Mg^{II}-Fe^{III} LDH system in order to control both the resulting pH at lower values and the amount of 359 dissolved Ca²⁺ and Mg²⁺ could be an interesting way to enhance the applicability of using these LDH 360 materials for PO₄ removal in wastewater. Less soluble LDH such as Mg-Al hydrotalcite or Mg-Fe 361 pyroaurite may also remove PO_4 by anionic exchange, a process that can be concomitant to adsorption 362 or precipitation of phosphate species. Natural hydroxyapatite or shell-sand was also studied for 363 removing PO₄ from wastewater; similarly a slow release of Ca²⁺ soluble species was suggested as an 364 efficient way for driving PO₄ removal by a surface precipitation process (Lyngsie et al., 2014; Molle et 365 al., 2005).

366

367 **5. Conclusion**

368 The interaction between Ca-Fe layered double hydroxide and phosphate species was studied both in 369 homogeneous dispersion and in a flow through column experiment. In phosphate free water, the LDH 370 was fully transformed into a mixture of a ferrihydrite-like Fe^{III}-Ca^{II} disordered solid phase, calcite CaCO₃ 371 and soluble Ca²⁺_{aq} species. At high phosphate concentration ([PO₄] > 100 mg L⁻¹), Ca²⁺_{aq} species released 372 by the LDH precipitated as hydroxyapatite leading to the removal of a very high concentration of 373 phosphate (q_e ~ 130 mg P-PO₄ g⁻¹). At low phosphate concentration ([PO₄] \leq 100 mg L⁻¹), phosphate is 374 most probably removed by adsorption on the ferrihydrite-like Fe^{III}-Ca^{II} compound. Pozzolana coated

 with Ca-Fe LDH very efficiently removed phosphate from water under hydrodynamic conditions, the breakthrough of the column occurring at least 3 times later in comparison to ferrihydrite coated pozzolana (Ruby et al., 2015). However, the high solubility of the Ca-Fe LDH led also to a strong increase 378 of the pH (> 11) preventing any direct application of such a material for wastewater treatment. Future 379 work dedicated to the control of the slow release of Ca²⁺_{aq} and OH⁻ species leading to a partial 380 dissolution of the LDH may improve the overall performance of the material, *i.e.* a high PO₄ removal capacity and concomitantly limited alkaline modification of the aqueous medium.

Acknowledgment

 We would like to thank the Ministry of Higher Education and Scientific Research of Irak for the PhD grant of Muayad Al-Jaberi. The authors would like also to thank Ghouti Medjahdi (CNRS, Institut Jean Lamour, Université de Lorraine) for TEM experiments. Claire Genois and Manuel Dossot (LCPME, Institut Jean Barriol, Université de Lorraine) are acknowledged for their help during ICP-AES and Raman Spectroscopy experiments. Prof C. Ruby and Prof. C. Greenwell thank the Institute of Advanced Study of Durham University for the collaborative opportunity. Indeed, C. Ruby was an IAS invited fellow in Durham University from October to December 2017.

References

 [1] Al-Jaberi, M., Naille, S., Dossot, M., Ruby, C., 2015. Interlayer interaction in Ca–Fe layered double hydroxides intercalated with nitrate and chloride species, J. Mol. Struct. 1102, 253-260.

 [2] Ashekuzzaman, S. M., Jiang, J.-Q., 2014. Study on the sorption-desorption-regeneration performance of Ca-, Mg and CaMg-based layered double hydroxides for removing phosphate from water, Chem. Eng. J. 246, 97-105.

- [3] Baliarsingh, N.; Parida, K. M.; Pradhan, G. C., 2013. Influence of the nature and concentration of precursor metal ions in the brucite layer of LDHs for phosphate adsorption - a review, RSC Adv. 3, 23865-23878.
- [4] Barca, C., Gérente, C., Meyer, D., Chazarenc, F., Andrès, Y., 2012. Phosphate removal from synthetic and real wastewater using steel slags produced in Europe, Water Res. 46, 2376-2384.
- [5] Bekele, B., Lundehøj, L., Jensen, N. D., Nielsen, U. G., Forano, C., 2019. Sequestration of orthophosphate by Ca2Al-NO3 layered double hydroxide – Insight into reactivity and mechanism, Appl. Clay Sci. 176, 49-57.
- [6] Bellier, N., Chazarenc, F., Comeau, Y., 2006. Phosphorus removal from wastewater by mineral apatite, Water Res. 40, 2376-2384.
- [7] Dodds, W. K., Bouska, W. W., Eitzmann, J. L., Pilger, T. J. , Pitts, K. L., Riley, A. J., Schloesser, J. T.
- Thornbrugh, D. J., 2009. Eutrophication of U.S. Freshwaters: Analysis of Potential Economic Damages, Environ. Sci. Technol 43 , 12-19.
- [8] Forano, C., Costantino, U., Prévot, V., TaviotGueho, C., 2013. Chapter 14.1 Layered Double Hydroxides (LDH), Developments in Clay Science 5, 745-782.
- [9] M. Henze, Y. Comeau, 2008. Wastewater characterization in M. Hence, M.C.M. van Loosdrecht,
- G.A. Ekama, D. Brdjanovic (Eds.), Biological Wastewater Treatment: Principles, Design and Modelling,
- IWA Publishing, London, pp 33-52.
- [10] Jia, Y., Wang, H., Zhao, X., Liu, X., Wang, Y., Fan, Q., Zhou, J., 2016. Kinetics, isotherms and multiple mechanisms of the removal for phosphate by Cl-hydrocalumite, Appl. Clay Sci. 129, 116-121.
- [11] Lyngsie, G., Borggaard, O.K., Hansen, H. C. B., 2014. A three-step test of phosphate sorption efficiency of potential agricultural drainage filter materials, Water Res. 51, 256-265.
- [12] Mallet, M., Barthélémy, K.,Ruby, C., Renard, A., Naille, S., 2013. Investigation of phosphate adsorption onto ferrihydrite by X-ray Photoelectron Spectroscopy, J. Colloid Interface Sci. 407, 95-101.
- [13] Molle , P., Liénard, A. ,Grasmick, A., Iwema A., Kabbabi, A. 2005. Apatite as an interesting seed to
- remove phosphorus from wastewater in constructed wetlands, Water Sci. Technol. 51, 193-203.
- [14] Oladoja , N.A., Adelagun, R.O.A., Ololade, I.A., Anthony, E.T., Alfred, M.O., 2014. Synthesis of nano-
- sized hydrocalumite from a Gastropod shell for aquasystem phosphate removal, Sep. Purif. Techol. 124, 186-194.
- [15] Qian, G., Feng, L., Zhou, J. Z., Xu, Y., Liu, J., Zhang, J., Xu, Z. P., 2012. Solubility product (Ksp)-
- controlled removal of chromate and phosphate by hydrocalumite, Chem. Eng. J., 181-182, 251*-*258.
- [16] Rietra, R. P. J. J., Hiemstra, T., van Riemsdijk, W. H., 2001. Interaction between calcium and phosphate adsorption on goethite, Environ. Sci. Technol., 35, 3369-3374.
- [17] Rout, K., Mohapatra, M., Anand, S., 2012. 2-Line ferrihydrite: synthesis, characterization and its adsorption behavior for removal of Pb(II), Cd(II), Cu(II) and Zn(II) from aqueous solutions, Dalton Trans. 41, 3302-3312.
- [18] Ruby, C., Barthélémy, K., Hanna, K., Mallet, M., Naille, S., 2015. Synthesis process and hydrodynamic behavior of a new filtration material for passive wastewater dephosphatation, Mater. Des. 86, 168-177.
- [19] Ruby, C., Naille, S., Ona-Nguema, G., Morin, G., Mallet, M., Guerbois, D., Barthélémy, K., Etique, M., Zegeye, A., Zhang, Y., Boumaïza, H., Al-Jaberi, M., Renard, A., Noël, V., Binda, P., Hanna, K., Despas, C., Abdelmoula, M., Kukkadapu, R., Sarrias, J., Albignac, M., Rocklin, P., Nauleau, F., Hyvrard N., Génin, J.-M., 2016. Use of Ferrihydrite-Coated Pozzolana and Biogenic Green Rust to Purify Waste Water Containing Phosphate and Nitrate, Curr. Inorg. Chem 6, 100*-*118.
- [20] Tsuji, H., Fujii, S., 2014. Phosphate recovery by generating hydroxyapatite via reaction of calcium
- eluted from layered double hydroxides, Appl. Clay Sci. 99, 261-265.
- [21] Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., Mander, Ü., 2011. Filter materials for phosphorus
- removal from wastewater in treatment wetlands—A review, Ecol. Eng. 37, 70*-*89.

446 **Figure captions**

447 **Figure 1:** Evolution of soluble Ca²⁺ and Fe³⁺ concentrations in the supernatant during the interaction 448 of Ca-Fe LDH with P-free demineralized water.

449 **Figure 2:** Evolution of the XRD patterns (a and b) and Raman spectra (c and d) during the interaction

450 of Ca-Fe LDH with P-free demineralized water. (a) and (c) Pristine Ca-Fe LDH materials; (b) and (d) after

- 451 contact with P-free demineralised water during 24 hours.
- 452 **Figure 3:** (a) Evolution the PO⁴ removal capacity of Ca-Fe LDH as a function of time for different initial 453 phosphate concentrations. (b) Evolution of the maximal removal capacity as a function of the initial 454 phosphate concentration.

455 **Figure 4:** (a) Evolution the XRD patterns for Ca-Fe LDH after contact with PO₄ for different initial 456 phosphate concentrations. (a) Pristine Ca-Fe LDH materials, (b) $[PO₄]₀ = 20$ mg L⁻¹, (c) $[PO₄]₀ = 100$ mg 457 L⁻¹, (d) [PO₄]₀ = 200 mg L⁻¹, (e) [PO₄]₀ = 300 mg L⁻¹, (f) [PO₄]₀ = 400 mg L⁻¹, (g) [PO₄]₀ = 500 mg L⁻¹, 458 (h) $[PO_4]_0 = 600$ mg L⁻¹.

459 **Figure 5:** (a) Evolution the XRD patterns for Ca-Fe LDH after contact with PO₄ solution ([PO₄]₀ = 600 mg 460 \lfloor L⁻¹) for different contact times.

461 **Figure 6:** Ions concentrations release from Ca-Fe LDH during the removal process at initial PO4 462 concentrations from 20 to 1000 mg L⁻¹ (0.21 to 10.35 mmoL L⁻¹). The samples were taken after 48 hours 463 of reaction.

464 **Figure 7:** TEM images of the transformation products obtained after the interaction of the Ca-Fe LDH 465 with a PO₄ solution ($[PO_4]_0 = 20$ mg L⁻¹).

466 **Figure 8:** Mössbauer spectra of the transformation products obtained after the interaction of the Ca-467 Fe LDH with a PO₄ solution ($[PO_4]_0 = 20$ mg L⁻¹). The spectra were recorded at a temperature of 77 K 468 (a), 35 K (b) and 14 K (c).

Table captions

Table 1 : Maximal phosphate removal capacity measured by adsorption isotherms for various calcium

482 containing LDH. If available, the values of the initial PO₄ concentration, the LDH dose and the pH of the

isotherm experiments are also reported.

- **Table 2:** Chemical analysis by EDX of the products of transformation of Ca-Fe LDH in contact with an
- 486 initial PO₄ concentration of 20 mg L⁻¹. Three different regions of the sample were analysed.
- **Table 3 :** Hyperfine parameters of the Mössbauer spectra (Fig. 8) measured after contact of a Ca-Fe
- 488 LDH with a 20 mg L^{-1} phosphate solution.

490 491 Figure 1 492 493 494 495 496 497 498 499 500 Figure 2 501 502 503 504 505 506 507 508 497 $\frac{1}{\sqrt{1 + \frac{1}{\sqrt{1 + \frac{1}{\$ $25 50 -$ 75 $100 +$ $125 -$ $150 175 - 2$ $200 -$ (1)
 **Concertration of Concertration of Concertration of Concertration of Concertration of Concertration of Concert

Concentration of Concertration of Concertration of Concertration

Concentration of Concertration of Conce** 250 $[\mathsf{Ca}^{2+}] \\ [\mathsf{Fe}^{3+}] \\$ **Time (hour)** 10 15 20 25 30 35 40 45 50 55 60 65 **(b) (112)**

(112)

(113)

(113)

(113)

(113)

(114)

(114)

(113)

(114)

(11 $\frac{1}{\frac{1}{\frac{1}{2}}\sqrt{\frac{$ **(a)** 200 300 400 500 600 **(c)** 212 Raman intensity Wawenumber (cm⁻¹) 510 357 243 206 280 **(d)**

634 Table 1

635

636 (*) The values reported for $q_e^{(Max)}$ are those corresponding to data obtained by using the fitting of the

637 isotherm experiments (**) The pH values of the isotherm experiments were not provided.

638

639

640

Table 2

645						
	Region	Spot	O (at. %)	P (at. %)	Ca (at.%)	Fe (at.%)
	$\mathbf 1$	$\boldsymbol{\mathsf{A}}$	61.1	5.6	22.4	10.9
		$\sf B$	49.0	10.6	24.1	16.3
		$\mathsf C$	59.6	-	40.4	$\overline{}$
	$\mathbf 2$	$\mathsf D$	56.8	$5.8\,$	24	13.4
		$\mathsf E$	68.1	$3.2\,$	$\boldsymbol{9}$	19.7
		F	59.9	-	40.1	-
	$\overline{\mathbf{3}}$	\overline{G}	61.6	5.7	22.5	$\overline{10.2}$
		$\mathsf{H}%$	63.8	4.9	12.2	19.1
646						
647						
648						
649						
650						
651						
652						
653						
654						
655						

- 659
-

660 Table 3

661

662

663 δ :Isomer shift, Δ or ε : Quadrupole shift or quadrupole splitting, *H*: Hyperfine field, *RA*: Relative area of the 664 component.

665

666

667

668

669