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Abstract
Burial dissolution of feldspar and carbonate minerals has been proposed to generate large volumes of secondary pores in 
subsurface reservoirs. Secondary porosity due to feldspar dissolution is ubiquitous in buried sandstones; however, extensive 
burial dissolution of carbonate minerals in subsurface sandstones is still debatable. In this paper, we first present four types 
of typical selective dissolution assemblages of feldspars and carbonate minerals developed in different sandstones. Under 
the constraints of porosity data, water–rock experiments, geochemical calculations of aggressive fluids, diagenetic mass 
transfer, and a review of publications on mineral dissolution in sandstone reservoirs, we argue that the hypothesis for the 
creation of significant volumes of secondary porosity by mesodiagenetic carbonate dissolution in subsurface sandstones is 
in conflict with the limited volume of aggressive fluids in rocks. In addition, no transfer mechanism supports removal of the 
dissolution products due to the small water volume in the subsurface reservoirs and the low mass concentration gradients in 
the pore water. Convincing petrographic evidence supports the view that the extensive dissolution of carbonate cements in 
sandstone rocks is usually associated with a high flux of deep hot fluids provided via fault systems or with meteoric fresh-
water during the eodiagenesis and telodiagenesis stages. The presumption of extensive mesogenetic dissolution of carbonate 
cements producing a significant net increase in secondary porosity should be used with careful consideration of the geological 
background in prediction of sandstone quality.
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1 Introduction

The term secondary porosity refers to pore space resulting 
from the post-depositional dissolution of detrital grains or 
cements (Taylor et al. 2010). Ten genetic mechanisms have 
been proposed for the generation of aggressive fluids capa-
ble of dissolving minerals in sandstones, which are mete-
oric water penetration (Emery et al. 1990), mixing corro-
sion (Edmunds et al. 1982; Plummer 1975), acidic fluids 
generated from  CO2 produced by the thermal maturation of 
organic matter (Schmidt and McDonald 1979a; Surdam et al. 
1989; Surdam and Boese 1984), carboxylic acids generated 
during the thermal maturation of organic matter (Surdam 
et al. 1989; Surdam and Boese 1984), acidic fluids gener-
ated by clay mineral reactions (Giles and Marshall 1986), 
acid fluids generated by thermogenic sulfate reduction 
(TSR) and bacterial sulfate reduction (BSR) (Machel 2001; 
Machel et al. 1995), deep hot fluids (Taylor 1996), acidic 
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fluids generated by silicate hydrolysis (Hutcheon and Aber-
crombie 1990), acidic fluids generated by silicate–carbonate 
interactions (Smith and Ehrenberg 1989), aggressive fluids 
due to cooling of formation fluids (Giles and De Boer 1989), 
and hot alkaline brines (Pye 1985).

The idea that the sandstone porosity can be significantly 
increased via burial dissolution of minerals (e.g., carbonate 
cements, feldspars) at depths of approximately 3 km by  CO2 
and organic acids originating from kerogen maturation in 
source rocks was proposed in 1970s to 1980s (Schmidt and 
McDonald 1979a; Surdam et al. 1989; Surdam and Boese 
1984) (Fig. 1a). Based on petrographic identification and 
interpretation, this idea has been prominent in the literature 
on sandstone diagenesis for about 40 years (Bjørlykke and 
Jahren 2012; Boggs 2011; Burley 1986; Dutton and Wil-
lis 1998; Higgs et al. 2010; Khidir and Catuneanu 2010; 
Kordi et al. 2011; Schmidt and McDonald 1979a; Shan-
mugam 1984; Xi et al. 2016; Wilkinson et al. 1997; Yuan 
et al. 2015a, b, c). At the same time, however, the advent 
of the deep burial dissolution proposals has caused intense 
debates (Fig. 1b). The opposing views are centered on the 
apparent lack of viable geochemical mechanisms by which 
dissolution and mass transfer could occur in the subsurface 
rocks (Bjørkum et al. 1998; Bjorlykke 1984; Bjørlykke and 
Brendsal 1986; Bjørlykke and Jahren 2012; Ehrenberg et al. 

2012; Giles 1987; Giles and Marshall 1986; Giles and De 
Boer 1990; Taylor et al. 2010).

Secondary pores originating from the dissolution of 
feldspar grains in subsurface rocks are common and eas-
ily recognizable (Yuan et al. 2015a, b, c, 2019a, b; Dutton 
and Loucks 2010; Giles 1987; Taylor et al. 2010). However, 
even until now, there is still much debate about the reality 
of the significant dissolution of carbonate cements in buried 
sandstones (Bjørlykke 2014; Bjørlykke and Jahren 2012; Li 
et al. 2017; Taylor et al. 2010; Yuan et al. 2013a, b, 2015a, 
b, c). Recently, rock diagenesis and the significance of sec-
ondary pores generated by the burial dissolution of feld-
spars and carbonate minerals have been reviewed within the 
constraints of petrography, porosity data, and the openness 
versus closeness of geochemical systems (Bjørlykke 2014; 
Bjørlykke and Jahren 2012; Ehrenberg et al. 2012; Taylor 
et al. 2010; Yuan et al. 2013a, b). These reappraisals showed 
that burial-induced carbonate dissolution in sandstones and 
carbonates is commonly insignificant. This conclusion is 
not new (Ehrenberg et al. 2012); however, the retrospective 
nature of these new presentations is striking because the sub-
jective idea that up to 20% secondary porosity can be formed 
by burial dissolution of minerals still persists in some very 
recent publications (Khidir and Catuneanu 2010; Kordi et al. 
2011) and textbooks (Boggs 2011). Particularly, this idea 
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is still prominent with regard to the origin of anomalously 
high porosity in the deeply buried sandstones in China (Bai 
et al. 2013; Si and Zhang 2008; Tang et al. 2013; Wang 
et al. 2013; Yuan et al. 2012; Zhu and Zhang 2009; Zhu 
et al. 2007).

According to laboratory water–rock interaction experi-
ments, carbonate minerals can be dissolved more easily and 
to be dissolved much faster than feldspar minerals in open 
geochemical systems under steady-state conditions far from 
equilibrium (Bertier et al. 2006; Chen et al. 2008; Liu et al. 
2012; Weibel et al. 2011; Yang et al. 1995), and the carbon-
ate minerals seem likely to be the most important minerals 
for the development of secondary pores in buried sandstones 
(Giles and Marshall 1986; Schmidt and McDonald 1979a). 
However, things may be different in closed subsurface 
sandstone geochemical systems. Based on our studies, we 
identified four types of selective dissolution assemblages of 
feldspar and carbonate minerals in different sandstone rocks 
(Fig. 2), which may have some significant implications for 
this debate (Fig. 1) (Yuan et al. 2015a, b, c). At the same 
time, some recent papers presented the dissolution of silicate 
minerals with no dissolution of carbonate minerals in the 
Kimmeridge Clay mudstones (Macquaker et al. 2014) and 
in the Eocene sandstones in the Bohai Bay Basin (Yuan et al. 
2015a, b, c). Also, Turchyn and DePaolo (2011) suggested 
that the dissolution of carbonate minerals in mudstones can 
be significantly suppressed by the presence of silicate min-
erals, and the dissolution rate is much smaller even when 
compared with the already-slow rates typical of carbonate-
rich sediments (Turchyn and DePaolo 2011).

Stimulated by these recent reviews and the selective dis-
solution phenomena of feldspars and carbonate minerals in 
buried subsurface sandstones, the objectives of this article 
are to: (1) provide detailed petrographic evidence of selec-
tive dissolution assemblages of feldspars and carbonate 
minerals in buried sandstones; (2) discuss the significance 
of burial carbonate dissolution in buried sandstones with 
the constraints of porosity-depth data, water–rock experi-
ments, and geochemical calculations; and (3) review the 
literature on the dissolution of carbonate minerals in buried 
sandstones with petrographic and geochemical constraints.

2  Evidence from the reservoirs

2.1  Petrography

Feldspar grains and carbonate cements are common miner-
als in subsurface sandstones. As both the feldspar and car-
bonate minerals can be dissolved by the acids (e.g.,  CO2 
and organic acids) originating from thermal maturation of 
organic matter, the potential to generate secondary pores in 
sandstone reservoirs through the dissolution of the feldspar 

and carbonate mineral has been discussed a great deal. Pet-
rographic evidence has been used to demonstrate the pres-
ence of secondary porosity in sandstones (Bjørlykke and 
Jahren 2012; Giles and Marshall 1986). The porosity related 
to framework grain dissolution (e.g., feldspars) can be rec-
ognized and statistically quantified (Taylor et al. 2010). 
Though extensive burial dissolution of carbonate cements 
has been suggested by many researchers (Schmidt and 
McDonald 1979a; Surdam et al. 1989; Surdam and Boese 
1984), intergranular pores without carbonate cements should 
not be interpreted as secondary porosity unless considerable 
petrographic evidences of its former presence can be estab-
lished (Taylor et al. 2010). Experiments under steady-state 
conditions far from equilibrium illustrate that the dissolution 
rates of carbonate minerals are much faster than the rate of 
feldspars. In the natural sandstone rocks, however, things are 
likely to be more complex. Based on our studies, we identi-
fied four types of typical selective dissolution assemblages 
of feldspar and carbonate minerals in sandstone rocks.

(1) Type I: Little feldspar dissolution vs. extensive carbon-
ate precipitation

In buried sandstones and sandstone outcrops, carbonate-
cemented concretions are very common (Dos Anjos et al. 
2000; Dutton 2008; Gluyas and Coleman 1992; Saigal and 
Bjørlykke 1987; Wang et al. 2016; Yuan et al. 2015a, b, c). 
Petrography and relevant stable isotope data usually suggest 
that the carbonate cements in such concretions formed soon 
after sediment deposition and prior to the occurrence of the 
key dissolution period in the rocks (Dutton 2008; Gluyas 
and Coleman 1992). In such concretions, large amounts of 
carbonate cements precipitated and preserved both the depo-
sitional fabric and the composition of the sand grains with 
little if any grain replacement. The early carbonate cements 
occupied almost all primary intergranular pores (Fig. 2a, 
b) and formed flow barriers (Saigal and Bjørlykke 1987), 
which led to little dissolution of both the feldspars and the 
carbonate cements in such concretions during the later burial 
(Fig. 2a, b). In buried sandstones, the development of such 
concretions usually occurs near the sandstone–mudstone 
interface and the thickness of these concretions ranges from 
centimeters to several meters (Dutton 2008; Gluyas and 
Coleman 1992; Mcbride and Milliken 2006).

(2) Type II: Little feldspar dissolution vs. extensive car-
bonate dissolution

 In buried sandstones, the phenomenon of little feldspar 
dissolution versus extensive carbonate dissolution is rare 
and few publications have ever reported on it. However, 
one paper reported on the extensive dissolution of early 
calcite cements (Fig. 2c, cʹ) in Quaternary beach deposits 
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by meteoric water during periods of falling of sea levels 
(Cavazza et al. 2009). The microphotograph suggests lit-
tle dissolution of the associated silicate minerals (Fig. 2c). 
The associated silicate minerals were dissolved much less 
extensively than the calcite cements, probably due to the 
short geological time period and the low temperature in 

the meteoric diagenetic environment (Cavazza et al. 2009). 
These observations are consistent with the laboratory experi-
ments under steady-state conditions far from equilibrium in 
which calcite can be dissolved more easily than silicate min-
erals (Chen et al. 2008; Liu et al. 2012; Weibel et al. 2011).
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(3) Type III: Extensive feldspar dissolution and extensive 
carbonate dissolution

In buried sandstones, the dissolution of feldspar and car-
bonate minerals has been suggested as common occurrence 
by many authors (Schmidt and McDonald 1979a, 1979b; 
Surdam et al. 1989; Surdam and Boese 1984). Little con-
vincing petrographic evidence, however, has been reported 
to support the coexistence of extensive feldspar dissolution 
and extensive carbonate dissolution in buried sandstones. 
One typical example was provided by Taylor (1990, 1996), 
who presented a striking and convincing microphotograph 
to show the dissolution of carbonate cements and detrital 
carbonate grains at Picaroon field (Fig. 2f) (Taylor 1990, 
1996; Taylor et al. 2010). In the microphotographs, we can 
also identify the dissolution of feldspar grains (Fig. 2f). 
Another example we have identified is the  Es3 sandstones 
from well Yan 16 in the Mingfeng area, Dongying Sag. In 
the thin sections from Well Yan16, we observed the typical 
dissolution of feldspar grains and ferroan calcite cements 
in the sandstones of the middle  Es3 Formation (Fig. 2d, e). 
These sandstones are located close to some faults, which 
connect to the unconformity that developed at the end of 
the Eocene period. In these thin sections, the remnants of 
ferroan calcite cements were irregular and developed dis-
solved pores (Fig. 2d, e). The low-oxygen isotope data 
(− 15.02‰pdb ~ − 17.20‰pdb) of the ferroan calcite cements 
and the maximum depth (1920 m–1960 m with temperatures 
of 75–80 °C) suggest that the fluid that formed these carbon-
ate cements had negative δ18O data (lower than − 8‰SMOW) 
(Matthews and Katz 1977), which support massive meteoric 
water flux in these sandstones (Fayek et al. 2001; Harwood 
et al. 2013).

(4) Type IV: Extensive feldspar dissolution vs. little car-
bonate dissolution

Macquaker et al. (2014) reported the fabric observation of 
kaolinite precipitation (byproduct of the dissolution of alu-
minosilicate minerals) and no dissolution of the associated 
calcareous textures (Fig. 2l) in the Kimmeridge Clay Forma-
tion mudstones and regarded the phenomenon as surprising 
and significant (Macquaker et al. 2014). In both mudstones 
and sandstones, such phenomena have not yet received much 
attention, although they were mentioned in some publica-
tions (Armitage et al. 2010; Baker et al. 2000; Ceriani et al. 
2002; Dos Anjos et al. 2000; Dutton and Land 1988; Fisher 
and Land 1987; Girard et al. 2002; Hendry et al. 1996; Mil-
liken et al. 1994; Salem et al. 2000; Tobin et al. 2010). Using 
thin sections and scanning electron microscopy (SEM) from 
samples from the northern steep slope zone of the Dongy-
ing Sag, we identified the phenomena of typical extensive 
dissolution of feldspar grains with no/little dissolution of 

carbonate cements and detrital carbonate grains in the lower 
 Es3 Formation and the  Es4 Formation (Fig. 2g–k). The car-
bonate cements occurred as connected patches (Fig. 2a), sin-
gle crystals (Fig. 2j, k) or grain-coating carbonate (Fig. 2g, 
h), and individual crystals commonly exhibited euhedral 
crystals faces abutting open pore space (Fig. 2k). The euhe-
dral ankerite engulfed by the stage-II quartz overgrowths 
(Fig.  2j) suggests that the carbonate minerals were not 
leached when the stage-II feldspar dissolution and quartz 
cementation occurred in the acidic geochemical system. In 
addition, the detrital carbonate grains and grain-coating car-
bonate cements show no evidence of dissolution (Fig. 2g–i); 
moreover, carbonate overgrowths are often found accompa-
nying the detrital carbonate grains. However, the feldspar 
grains engulfed by early grain-coating carbonate cements or 
close to detrital carbonate grains are dissolved extensively 
(Fig. 2g–i).

Overall, petrography textures suggest that carbonate min-
eral dissolution is not likely to occur all the time. Only in 
two cases, extensive carbonate dissolution in the sandstone 
reservoirs is likely to occur.

2.2  Porosity‑depth data

The porosity evolution model proposed by Schmidt and 
McDonald (Fig. 1a) was initially accepted and embraced by 
many geologists (Bjørlykke and Jahren 2012; Boggs 2011; 
Burley 1986; Dutton and Willis 1998; Higgs et al. 2010; 
Khidir and Catuneanu 2010; Schmidt and McDonald 1979a; 
Shanmugam 1984; Wilkinson et al. 1997) to explain the 
fairly common occurrence of intergranular porosity in sand-
stone buried to significant depth. However, as a general rule, 
global porosity-depth data show a steady decrease in the 
sandstone P50, P10, and the maximum porosity trends as the 
depth increases (Fig. 3) (Ehrenberg et al. 2009; Ehrenberg 
and Nadeau 2005), which is inconsistent with the poros-
ity evolution model proposed by Schmidt and McDonald in 
1979 (Fig. 1a).

Although anomalously high porosities do exist in some 
deeply buried sandstones (Bloch et al. 2002; Warren and 
Pulham 2001), studies on the origin of the anomalously high 
porosities suggest that the dissolution of grains or preexist-
ing cements are just one subordinate aspect of this porosity. 
These anomalously high porosities can be attributed to early 
emplacement of hydrocarbons (Bloch et al. 2002; Gluyas 
et al. 1993; Wilkinson and Haszeldine 2011), fluid overpres-
sure, or grain coats and grain rims (Bahlis and De Ros 2013; 
Bloch et al. 2002; Ehrenberg 1993); the mixture of porosity 
of rocks with different lithology from shallow to deep depths 
may also lead to the occurrence of anomalously high porosi-
ties in a porosity-depth profile (Bjørlykke 2014; Bjørlykke 
and Jahren 2012).
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The Eocene sandstones in the northern steep slope zone 
in the Dongying Sag are an example exhibiting the impact 
of fluid overpressure, hydrocarbon emplacement, and min-
eral dissolution. Detailed geological settings are available in 
some papers (Cao et al. 2013; Guo et al. 2010, 2012; Yuan 
et al. 2013a, b). Subaqueous fans and lacustrine fans were 
deposited in the Eocene Es4

x–Es3
z Formations in the northern 

steep slope zone together with contemporary organic-rich 
mudstones and shales. The development of anomalously 
high porosities in the reservoirs has been reported (Cao 
et al. 2014). In this paper, two types of porosity-depth pro-
files were plotted and presented, using the 7936 core poros-
ity data collected from the Shengli Oilfield Company. The 
lithology and oil-bearing properties of these samples were 
analyzed with core-logging materials. The fluid pressure 
relevant to these samples was analyzed using the equivalent 
depth method (Gao et al. 2008) using acoustic logging data 
with the constraint of the measured formation fluid pressure. 
And a database of the reservoir properties was established 
using the information of the porosity, depth, lithology, oil-
bearing properties, and fluid pressure data. Type-A porosity-
depth profiles were plotted using the porosity data of all 
reservoir samples (Fig. 4a1), and the porosity data of each 
individual lithology (Fig. 4a2–a7). Type-B porosity-depth 
profiles were plotted using the porosity data of the samples 
with normal pressure and low oil-bearing saturation (oil-
free, oil trace, fluorescence, and oil patch), and the porosity 

data of the samples with overpressure and (or) with high 
oil-bearing saturation were not employed in the Type-B pro-
files. The Type-A porosity-depth profiles of the combined 
lithology (Fig. 4a1) show that anomalously high porosities 
do exist at the depth intervals of 2.8–3.7 km and 3.9–4.4 km, 
and the porosity-depth profiles of each individual lithology 
also show the existence of anomalously high porosities in 
some specific depth intervals (Fig. 4a2–a7). However, the 
Type-B porosity-depth profiles (Fig. 4b1–b7) show no exist-
ence of the anomalously high porosities when the impact 
of the fluid overpressure and hydrocarbon emplacement 
on the reservoir porosity was removed. This analysis sug-
gests that even where anomalously high porosities exist in 
deeply buried reservoirs, significant dissolution of carbonate 
cements may not be the cause. This is consistent with the 
petrographic evidence of selective dissolution of feldspar in 
the presence of carbonate minerals and the precipitation of 
authigenic clays and quartz cements following the feldspar 
dissolution in these rocks (Yuan et al. 2013a, b).

3  Water–rock experiments

3.1  Samples and methods

Pure calcite crystals were crushed, and the calcite grains 
with a size of 2–4 mm were selected. In each experiment, 
one grain with a polished surface was employed to inves-
tigate the dissolution features after the experiments. The 
grains were ultrasonically cleaned with analytical-grade 
distilled water three times to remove submicron-to-micron-
sized particles adhering to the grains. The calcite grains were 
dried at 60 °C for 12 h and examined with a Coxem-EM-30 
plus scanning electron microscope (SEM) to check the total 
removal of the small particles. Calcite grain samples were 
prepared using a high-precision electronic balance (error < 
0.005 g). High salinity waters with different salinity were 
prepared with 99.99% NaCl, 99.99%  CaCl2, and deionized 
water (DW). Glacial acetic acid with a purity of more than 
99.5% was used to prepare acidic water with different pH.

The detailed experiment conditions are listed in Table 1. 
The calcite dissolution experiments at different tempera-
tures (20 °C, 90 °C) were conducted in Hastelloy Reactors. 
For experiments with participation of  CO2,  CO2 gas with a 
purity of more than 99.995% was injected into the reactor by 
pumping to reach the designed p

CO
2
 of 50 bar. The experi-

ments were conducted for 3, 8, and 15 days, respectively. 
After the experiments at 20 °C, the calcite grains were sepa-
rated from the water quickly, while for the experiments at 
90 °C, the reactor was firstly cooled to approximately 20 °C 
using cold water in less than 1 h, and then, the calcite grains 
were separated from the water. The water pH was tested 
after the separation of the water from minerals. The reacted 
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calcite minerals were cleaned in DW three times to remove 
possible salt precipitated on the mineral surfaces. And the 
reacted calcite minerals were weighed after being dried at 
60 °C for 12 h.

3.2  Experimental results and geological implication

The weight loss and relevant volume changes of the cal-
cite minerals are presented in Table 1. The experiments 
A1–A3 demonstrate that low pH water with acetic acid (pH 
= 3.93–3.98) can dissolve calcite at 20 °C. As the water 
salinity and the  Ca2+ concentration in water increase, the 
dissolution capacity of the acidic water decreases dramati-
cally. Even with a high water/rock volume ratio (45:1), the 
ratio between the mass loss after dissolution and the pri-
mary weight of the calcite mineral prior to the experiments 

suggests that only a small amount of calcite was dissolved, 
and this can only have resulted in a few secondary pores in 
the calcite grains (less than 1%); even the dissolved calcite 
was not re-precipitated (Fig. 5). The results of the experi-
ments D1–D7 at 90 °C show a similar trend.

The results of the experiments B1–B3 show that deion-
ized water and saline water with a partial pressure of  CO2 
( p

CO
2
 ) at 50 bar can dissolve calcite at 20 °C. A compari-

son of the results of the experiments B2 and B3 shows a 
decrease in the corrosion ability of the acidic water as the 
salinity increases. A comparison between the results of the 
experiments B1 and B3 shows that the calcite–CO2 interac-
tions reached dynamic equilibrium in 8 days (maybe in an 
even shorter time) after the dissolution of 0.212 g calcite and 
a longer (15 days) exposure of calcite to the  CO2-charged 
water did not result in more dissolution. This result indicates 
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that in a relative closed geochemical system with a fixed 
p
CO

2
 , the available water volume dominates the dissolution 

volume of the calcite, even if  CO2 is available in sufficient 
quantities. Also, with a high water/rock volume ratio (45:1 
or 90:1), only a small amount of calcite (less than 2%) was 
dissolved by the  CO2-rich water.

A comparison of the results of the experiments C1, A3, 
and B1 shows that the coexistence of acetic acid and  CO2 
in saline water promotes more calcite dissolution than with 
only acetic acid or  CO2 in the saline water. However, no 
more than 2.5% of the calcite was dissolved in the C1 experi-
ments. Overall, the experiments with a high water/rock vol-
ume ratio, low pH, and sufficient  CO2 resulted in the dissolu-
tion of only a small amount of calcite.

As low temperature, low pH, high p
CO

2
 , and high water/

rock ratio cannot generate a large volume of secondary pores 
by the dissolution of carbonate minerals, it is not likely that 
extensive carbonate dissolution will occur in buried sand-
stone geochemical systems with high temperature and low 
water/rock ratio. Many studies on water–rock interaction 
experiments also support this idea when the data were ana-
lyzed quantitatively, although dissolution does take place 
at low/high temperatures (Weibel et al. 2014). In addition, 
the dissolved carbonate minerals were commonly reported 
to be re-precipitated in long-term numerical simulation 

experiments (Bertier et al. 2006; Liu et al. 2012). As the 
initial pH values (< 4) of the waters used in the experiments 
were much lower than those of most formation waters and 
the water/rock ratios were much higher than those in sub-
surface rocks (Birkle et al. 2009; Birkle et al. 2002; Egeberg 
and Aagaard 1989; Frape et al. 1984; Surdam et al. 1985), 
we conclude that the calcite dissolution in deeply buried 
sandstones without a favored pathway (e.g., faults) is likely 
to be weaker than in the experiments.

4  Aggressive fluids and mass transfer 
in sediments

4.1  Pyrolysis experiments of kerogen

Hydrous and anhydrous pyrolysis experiments with pure 
kerogen or source rocks have been used to investigate the 
maturation of organic matter in source rocks with respect 
to the generation of organic acids and  CO2 (Barth et al. 
1988; Barth et al. 1996; Barth and Bjørlykke 1993). Using 
worldwide source rocks and different types of kerogens with 
various total organic carbon (TOC) contents and different 
maturities, more than 110 pyrolysis experiments have been 
conducted in the last 40 years to analyze the yield of organic 

10 μm 20 μm

10 μm 20 μm

(a) (b)

(c) (d)

Fig. 5  SEM microphotographs of the calcite grain surfaces prior to and after the experiments. a, b Smooth surface of the polished calcite grain, 
some intercrystal pores can be identified occasionally (b); c, d dissolution of the polished calcite surface after dissolution experiments
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acids and  CO2 during kerogen maturation (Table 2) (Barth 
et al. 1988; Barth et al. 1996; Barth and Bjørlykke 1993; 
Chen et al. 1994; Kawamura et al. 1986; Kawamura and 
Kaplan 1987; Meng et al. 2008; Zeng et al. 2007; Zhang 
et al. 2009). The results of the experiments demonstrate that 
the maximum yield of acetic acids and total organic acids 
(TOA) is 0.685 ×  10−3 mol/g TOC and 1.34 ×  10−3 mol/g 
TOC, respectively. The experiments with the acetic acids 
yield more than 0.5 ×  10−3 mol/g TOC account for only 
approximately 5% of the total experiments, and the experi-
ments with the TOA yield more than 0.6 ×  10−3 mol/g TOC 
account for 10% of the total experiments. In the pyrolysis 
experiments,  CO2 has a yield equivalent to (0.30–10.9) × 
 10−3 mol/g TOC, which is higher than that of the organic 
acids. Commonly, high TOC and high maturation result in 
low yields of organic acids and  CO2 of one unit kerogen.

4.2  Acids in pore water

The dissolution of feldspar grains is a natural consequence 
of water–rock interactions under conditions of increasing 
burial depth and temperatures (Giles and De Boer 1990; 
Taylor et al. 2010). Although organic acids and  CO2 were 
commonly suggested as the cause of feldspar dissolution 
(Giles and De Boer 1989; Schmidt and McDonald 1979a; 
Surdam et al. 1989; Surdam and Boese 1984), Giles and 
De Boer (1990) suggested that no unusual or special source 
of acidic pore fluids is required for this dissolution process 
(Giles and De Boer 1990). To dissolve carbonate minerals 
characterized by retrograde solubility (Giles and De Boer 
1989), however, there must be a supply of a large amount of 
acidic water that has the capacity to provide  H+.

(1) Various organic acids from kerogens are present in most 
of the formation waters in petroliferous basins. Ace-
tic acid with a relative content of approximately 80% 
dominates the organic acids in most cases (Surdam and 
Crossey 1987; Surdam et al. 1989; Surdam and Boese 
1984). It was suggested by Surdam et al. (1984, 1987, 
1989) and Meshri (1986) that organic acids were more 
aggressive than  CO2 and could be responsible for the 
dissolution of silicate and carbonate minerals (Meshri 
1986; Surdam and Crossey 1987; Surdam et al. 1989; 
Surdam and Boese 1984). The leaching of calcite by 
acetic acid can be expressed as  CaCO3 +  CH3COOH—
Ca2+ +  HCO3

− +  CH3COO−. Using the data of the 
concentration of organic acid in oilfield waters, Surdam 
(1984, 1987) further suggested that large volumes of 
water-soluble organic acids are generated during the 
thermocatalytic degradation of kerogen in the range 
of 80–120 °C and the concentration of organic acids 
can even reach up to 10000 ppm (Surdam et al. 1989; 
Surdam and Crossey 1987; Surdam and Boese 1984). 

The concentrations of organic acids are lower when 
the temperatures are below 80 °C or above 120 °C due 
to the bacterial destruction and thermal destruction of 
the short-chained organic acids, respectively (Surdam 
et al. 1989; Surdam and Crossey 1987). The concentra-
tion data of the organic acids in the formation waters 
from global petroleum sandstone reservoirs show that 
more than 90% of the pore waters contain organic acids 
at concentrations less than 3000 mg/L (Fig. 6a) (Cai 
et al. 1997; Fisher 1987; Kharaka 1986; MacGowan 
and Surdam 1988; Meng et al. 2006; Meng et al. 2011; 
Surdam et al. 1989; Surdam and Crossey 1987; Wang 
et al. 1995, 2007; Xiao et al. 2005). In the petroliferous 
basins in China, the concentrations of organic acids in 
the formation waters are usually less than 2500 mg/L 
(Fig. 6b). With high geothermal gradients (around 35 
°C/1 km), the highest concentrations of organic acids 
developed at the depth of 1500–3500 m in the basins 
in East China; in contrast, the highest concentrations 
developed at the depth of 4500–6000 m in the basins 
in West China with low geothermal gradients (approxi-
mately 20 °C/1 km) (Fig. 6b) (Cai et al. 1997; Fisher 
1987; Kharaka 1986; MacGowan and Surdam 1988; 
Meng et al. 2006; Meng et al. 2011; Surdam et al. 1989; 
Surdam and Crossey 1987; Wang et al. 1995, 2007; 
Xiao et al. 2005).

In rocks with a high mudstone/sandstone ratio (e.g., 
10:1), about 60 mol of acetic acids can be produced in 1 m3 
source rocks if an average TOC of 5% in the mudstone and 
an organic acid yield of 0.5 ×  10−3 mol/g TOC (Table 2) 
are available in the source rocks. Because organic acids 
concentrate at temperatures of 80–120 °C, most organic 
acids are assumed to be released from the source rocks to 
the reservoirs in the depth interval of 1500–4000 m. From 
1500–4000 m, the sandstone porosities generally decrease 
from 35% to 15% and the mudstone porosities decrease from 
20% to 5% (Gluyas and Cade 1997; Pittman and Larese 
1991; Ramm 1992). As organic acids are water soluble 
(Barth and Bjørlykke 1993), we assume that all the pore 
water expelled from the mudstones to the sandstone reser-
voirs have a high concentration of organic acids (10,000 ppm 
acetic acid). In this case, the organic acids expelled to the 
reservoirs can dissolve only 0.46% volume of calcite with 
a thorough consumption of the available acids. In another 
case, if diffusion or hydrocarbon migration can transport 
more organic acids to the sandstone reservoirs (Barth and 
Bjørlykke 1993; Thyne 2001), only 2% volume of calcite can 
be dissolved in the sandstone reservoirs. The organic acids 
are weak acids and the equilibrium constant of the calcite-
leaching reaction by organic acids decreases from 8.5 ×  10−4 
at 25 °C to 7.9 ×  10−5 at 100 °C (Giles and Marshall 1986). 
Under constraints of the equilibrium constant, the calcite 
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Table 2  Pyrolysis experiment data of global source rocks and kerogen. (data from Kawamura et al. 1986; Kawamura and Kaplan 1987; Barth 
et al. 1988; Barth and Bjørlykke 1993; Chen et al. 1994; Barth et al. 1996; Zeng et al. 2007; Meng et al. 2008; Zhang et al. 2009)

Sample loca-
tion

Sample type Sample 
amount

Kerogen type TOC, % Ro, % CO2, 
 10−3mol/
gTOC

Acetic acid, 
 10−3mol/
gTOC

Total organic 
acids, 
 10−3mol/
gTOC

Publications

Well C11 in 
Huanghua 
Depression

Mudstone 13 II-1 2.46 0.42 – – 0.010–0.081 Meng et al. 
(2008)

Es1 Formation 
in Dongying 
Sag

Mudstone 1 – 1.04 0.33 – – 0.175–0.608 Zeng et al. 
(2007)

Es4 Formation 
in Dongying 
Sag

Mudstone 1 – 2.11 0.40 – – 0.084–0.220

Es4 Formation 
in Dongying 
Sag

Mudstone 1 – 3.70 0.42 – – 0.086–0.128

Es4 Formation 
in Dongying 
Sag

Mudstone 1 – 1.73 0.24 – – 0.160–0.445

Well Chun11 
in Dongying 
Sag

Mudstone 5 I 3.50 0.32 – – 0.134–0.330 Zhang et al. 
(2009)

Well Cao 
13-15 in 
Dongying 
Sag

Mudstone 3 II-1 2.29 0.32 – – 0.024–0.177

Well Ying 10 
in Dongying 
Sag

Mudstone 3 II-2 1.19 0.48 – – 0.051–0.341

Well YMian4-
5-165 in 
Dongying 
Sag

Mudstone 1 I 1.32 0.36 – – 0.676

Well Lunnan 
54 in Tarim 
Basin

Mudstone 4 II-III 8.04 0.61 – 0.002–0.005 0.010–0.04 Chen et al. 
(1994)

Well Lunnan 
54 in Tarim 
Basin

Mudstone 12 II-III 8.04 0.61 – 0.004–0.084 0.011–0.110

Well Tan26 
in Jianghan 
Basin

Mudstone 1 II-III – 0.41 – 0.612 0.700

Green River 
Shale

Kerogen 7 I 2.30 – – 0.007–0.036 0.010–0.048 Kawamura 
et al. (1986)

Monterey 
Formation

Kerogen 2 II 10.0 – – 0.015–0.035 0.023–00060

Monterey 
Formation

Kerogen 1 II – – – 0.025 0.036 Kawamura 
and Kaplan 
(1987)Green River 

Shale
Kerogen 1 I – – – 0.04 0.056

Tanner Basin Kerogen 1 II – Immature – 0.149 0.278
Sierra Bog 

sediments
Humic acid 1 III – – – 0.14 0.249



740 Petroleum Science (2019) 16:729–751

1 3

Table 2  (continued)

Sample loca-
tion

Sample type Sample 
amount

Kerogen type TOC, % Ro, % CO2, 
 10−3mol/
gTOC

Acetic acid, 
 10−3mol/
gTOC

Total organic 
acids, 
 10−3mol/
gTOC

Publications

Kimmeridge 
oil shale, 
Dorset, 
Upper Juras-
sic

Oil shale 5 – 12.6 Immature – 0.057–0.215 0.104–0.345 Barth et al. 
(1988)

Jurassic, the 
Norwegian 
continental 
shelf

Coaly shale 3 – 14.3 Mature – 0.009–0.013 0.011–0.016

Lower Juras-
sic, the 
Norwegian 
continental 
shelf

Coal 3 – 39.6 Immature – 0.069–0.100 0.081–0.123

Upper Juras-
sic, the 
Norwegian 
continental 
shelf

Mudstone 3 – 5.03 Immature – 0.151–0.284 0.263–0.412

Kimmeridge 
ourcrop, 
Dorset, UK

Mudstone 3 II 12.60 Immature 2.86–8.73 0.141–0.231 0.252–0.346 Barth and 
Bjørlykke 
(1993)

Kimmeridge, 
North Sea

Coal 3 II 5.03 Immature 7.95–10.93 0.154–0.282 0.262–0.414

Kimmeridge 
outcrop, 
Dorset, UK

Mudstone 3 II 51.30 0.29 1.65–4.70 0.052–0.116 0.110–0.244

Heather, 
North Sea

Mudstone 3 II 6.49 0.40 1.23–2.16 0.142–0.273 0.177–0.341

The Nor-
wegian 
continental 
shelf

Mudstone 3 III 14.30 Mature – 0.009–0.013 0.011–0.017

The Nor-
wegian 
continental 
shelf

Coaly shale 3 Coal 39.60 Immature 3.18–4.72 0.069–0.100 0.081–0.124

The Nor-
wegian 
continental 
shelf

Coal 3 Coal 23.10 0.38 0.30–1.99 0.124–0.276 0.160–0.377

Western Ger-
many

Coal 3 Coal 70 0.26 1.72–2.41 0.518–0.552 0.609–0.705
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Table 2  (continued)

Sample loca-
tion

Sample type Sample 
amount

Kerogen type TOC, % Ro, % CO2, 
 10−3mol/
gTOC

Acetic acid, 
 10−3mol/
gTOC

Total organic 
acids, 
 10−3mol/
gTOC

Publications

Draupne, the 
Norwegian 
continental 
shelf

Dicarbonated 
mudstone

6 – 3.70–7.19 – 1.00–2.36 0.048–0.455 0.081–0.659 Barth et al. 
(1996)

Draupne, the 
Norwegian

continental 
shelf

Mudstone 3 – 3.52–6.21 – 1.58–8.31 0.082–0.315 0.181–0.497

Heather, the 
Norwegian 
continental 
shelf

Dicarbonated 
mudstone

4 – 1.06–5.49 – 0.77–6.61 0.038–0.399 0.077–0.601

Heather, the 
Norwegian 
continental 
shelf

Mudstone 2 – 1.85–7.79 – 3.45–3.78 0.086–0.125 0.148–0.218

Brent, he 
Norwegian 
continental 
shelf

Dicarbonated 
mudstone

2 – 3.46–5.25 – 0.38–1.53 0.085–0.103 0.144–0.151

Dulin, the 
Norwegian 
continental 
shelf

Dicarbonated 
mudstone

2 – 1.32–3.13 – 0.35–10.00 0.008–0.695 0.105–1.349

— Not measured
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Fig. 6  Concentrations of organic acids in the pore water of sandstone reservoirs in oil and gas basins. a Organic acids in global sedimentary 
basins; b organic acids in sedimentary basins in China. (data from Kharaka 1986; Fisher 1987; Surdam and Crossey 1987; MacGowan and Sur-
dam 1988; Surdam et al. 1989; Wang et al. 1995; Cai et al. 1997; Xiao et al. 2005; Meng et al. 2006; Wang et al. 2007; Meng et al. 2011)
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volume that can be dissolved in the reservoirs is reduced 
significantly. In addition, most source rocks contain consid-
erable carbonate minerals and silicate minerals (Ehrenberg 
et al. 2012; Giles and Marshall 1986; Taylor et al. 2010); 
these minerals first consume some of the organic acids gen-
erated in the mudstones, which also decreases the volume 
of acids expelled to the reservoirs and the leaching ability of 
the organic acids in the reservoirs (Barth et al. 1996; Barth 
and Bjørlykke 1993).

(2) CO2 is present in most oil-gas sandstone reservoirs, 
though most natural gas accumulations contain less 
than 10%  CO2 (Seewald 2003). It was suggested by 
Smith and Ehrenberg (1989), Ribstein et al. (1998), and 
Seewald (2003) that the  CO2 content in natural gases 
generally increases with increasing temperature and 
burial depth, and the p

CO
2
 increases systematically in 

the temperature range from 40 to 200 °C (Fig. 7) (Cur-
tis 1978; Ribstein et al. 1998; Schmidt and McDonald 
1979a; Seewald 2003; Smith and Ehrenberg 1989). The 
 CO2 in the reservoirs originates from the degradation 
of organic matter or from water–rock interactions (Cur-
tis 1978; Ribstein et al. 1998; Schmidt and McDonald 
1979a; Seewald 2003; Smith and Ehrenberg 1989). 
In the range of 80–120 °C, the release of  CO2 from 
kerogen in the source rocks is inevitably one important 
source and it was suggested by Schmidt (1979a, b), 
Surdam (1984), and Surdam and Crossey 1987) that 
this  CO2 source is one of the most important carbonic 
acids for carbonate dissolution (Schmidt and McDonald 
1979a; Surdam and Crossey 1987; Surdam and Boese 

1984). Because of the constraints of the mass balance 
calculation, Lundegard et al. (1984) suggested that even 
if all the  CO2 generated from kerogen was expelled 
from the source rocks to the sandstones, only 1%–2% 
of secondary porosity could be generated (Lundegard 
et al. 1984).

In contrast to Schmidt (1979a, b) and Surdam (1984), 
Smith and Ehrenberg (1989) proposed that the increased 
 CO2 abundance results in precipitation rather than dis-
solution of carbonate minerals at the depth interval with 
temperature ranging from 80°C to 120 °C, in which the 
organic acids have the highest concentrations and control 
the alkalinity of the carbonate–silicate–organic acid–car-
bonic acid–p

CO
2
 system.

Using numerical simulations with the constraints of 
thermodynamics, Huang et al. (2009) calculated the pH 
values of different carbonate–H2O–CO2 geochemical sys-
tems in the equilibrium state (Fig. 8a) and the dissolution/
precipitation volumes of the calcite or dolomite minerals 
in these systems at temperatures of 28–235 °C, pressure of 
1–70 MPa, depth of 1–7 km, and a specific molar content 
of  CO2 (Fig. 8b–d). The results show that the systems with 
a higher  CO2 content have lower pH values and this results 
in the dissolution of more carbonate minerals at depths 
shallower than 2000 m. At depths deeper than 2000 m, 
however, more carbonate minerals are precipitated in the 
systems with more  CO2, even if the systems have lower pH 
values of approximately 4.8 (Fig. 8) (Huang et al. 2009). 
Using laboratory water–rock interaction experiments, 
Song and Huang (1990) also demonstrated that calcite can 
be precipitated even when the pH is lower than 5 (Song 
and Huang 1990).

As carbonate minerals are characterized by retrograde 
solubility, cooling of hot fluids have been suggested to 
dissolve carbonate minerals during the uplift stage of the 
formation or during injection of deep hot water to shal-
low formations. Using numerical simulations with the 
constraints of thermodynamics, Yuan et al (2015a, b, c) 
modeled the calcite dissolution in two systems with tem-
perature decreasing from 200 °C to 50 °C (Fig. 9). In the 
system with fixed p

CO
2
 (223 bar) during the cooling pro-

cesses, 1 kg of water may dissolve 5.01 g calcite (Case-1), 
while in the system when p

CO
2
 decreases from 223 bar at 

200 °C to 0.32 bar at 50 °C (according to the equation log 
p
CO

2
 = −1.45 + 0.019 T) (Smith and Ehrenberg 1989), 

1 kg of water can dissolve only 0.027 g calcite (Case-
2). In such cases, the pore water in sandstones with 20% 
porosity can only dissolve calcite (with specific gravity of 
2.7 g/cm3) to increase porosity by 0.037% and 0.0002%, 
respectively, with the occurrence of retrograde dissolution.
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fitted line for US Gulf Coast data after Smith and Ehrenberg (1989)
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4.3  Buffer system and pH needed for burial 
carbonate dissolution

Diagenetic reactions in intermediate to deep burial regimes 

are mutually rock buffered (Bjørlykke and Jahren 2012; 
Hutcheon and Abercrombie 1990; Macquaker et al. 2014; 
Smith and Ehrenberg 1989; Taylor et al. 2010; Turchyn and 
DePaolo 2011). The carbonate minerals were commonly 
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suggested to react faster with acids than the aluminosili-
cate minerals (Bjørlykke and Jahren 2012). In the buried 
aluminosilicate–carbonate mineral–acid system, however, 
Smith and Ehrenberg (1989), Hutcheon and Abercrombie 
(1990), and Turchyn and DePaolo (2011) suggested that 
the aluminosilicate minerals–water interaction rather than 
the carbonate mineral–water reaction was the main acid-
buffering mechanism (Bjørlykke and Jahren 2012; Hutcheon 
and Abercrombie 1990; Macquaker et al. 2014; Smith and 
Ehrenberg 1989; Taylor et al. 2010; Turchyn and DePaolo 
2011). The buffer intensity of silicate minerals can be ten 
times that of calcite in an acidic system at high temperature 
(Hutcheon and Abercrombie 1990). The pH of most cur-
rent oil–gas waters is higher than 5.5 due to the buffering 
effect of various aluminosilicate mineral–water interactions 
(Birkle et al. 2009; Birkle et al. 2002; Egeberg and Aagaard 
1989; Frape et al. 1984; Surdam et al. 1985), and the exten-
sive dissolution of carbonate minerals is unlikely in reser-
voirs with such a relative weaker acidity. This concept is a 
rather radical departure from the conventional system, but 
it is now being verified by the significant fabric observation 
of extensive feldspar dissolution and no/little carbonate dis-
solution in many buried sandstones (Armitage et al. 2010; 
Baker et al. 2000; Ceriani et al. 2002; Dos Anjos et al. 2000; 
Dutton and Land 1988; Fisher and Land 1987; Girard et al. 
2002; Hendry et al. 1996; Milliken et al. 1994; Salem et al. 
2000; Tobin et al. 2010) and some mudstones (Macquaker 
et al. 2014; Turchyn and DePaolo 2011). Yuan et al. (2015a, 
b, c) proposed the mechanism of selective dissolution of 
feldspars in the presence of carbonate minerals to generate 
secondary minerals in buried sandstones by organic-original 
 CO2 (Yuan et al. 2015a, b, c). In addition, the dissolution of 
feldspars can, in turn, promote the precipitation of carbon-
ate minerals (Tutolo et al. 2015). The C–O isotopic data of 
carbonate cements developed in subsurface rocks suggest the 
generation of organic-derived and inorganic-derived  CO2. 
The most carbon in these various types of  CO2, however, is 
subsequently sequestered by the precipitation of carbonate 
cements in both source rocks and reservoirs (Curtis 1978; 
Giles and Marshall 1986; Seewald 2003).

4.4  Mass transfer problem

In order to generate enhanced secondary porosity, the solutes 
 (Ca2+,  Mg2+,  HCO3

−,  CO3
2−) released by the dissolution of 

carbonate minerals need to be removed from the dissolu-
tion zone in the sandstone reservoirs (Bjørlykke and Jahren 
2012; Ehrenberg et al. 2012; Giles 1987; Taylor et al. 2010). 
Advection, diffusion, and convection are the three possible 
mechanisms that control the mass transfer in the sedimentary 
basins. However, none of the advective, diffusive, or convec-
tive mass transfer supports significant transfer of the solutes 
released from carbonate dissolution in the buried sandstones 

without favorable flow conduits (e.g., faults and fractures) 
in the mesodiagenetic stage (Bjørlykke and Jahren 2012; 
Ehrenberg et al. 2012; Giles 1987; Taylor et al. 2010).

(1) Advective transfer

Mass transport of a component by the advective flow in 
subsurface porous rocks can be expressed by

where qA is the advective flux of the species, q is the spe-
cific discharge, and C is the component’s concentration. The 
solubility of calcite is a function of the p

CO
2
 and temperature 

in the burial sediments, and the calcite solubility is less than 
0.01 mol/L in systems at temperatures ranging from 80 °C 
(with 1 bar p

CO
2
 ) to 160 °C (20 bar p

CO
2
 ) (Giles and De Boer 

1989). Assuming that a set of sediments has a mudstone/
sandstone ratio of 10:1 and the mudstone porosity decreases 
from 20% to 5% as the burial depth increases from 2000 m to 
4000 m (Pittman and Larese 1991), all the water in the mud-
stone units would be expelled to the sandstone units. The 
water from the mudstone, even with very low salinity, can 
dissolve and remove only approximately 0.05% volume of 
the calcite mineral in the sandstone units under the mecha-
nism of advective flow.

(2) Diffusive transfer

Mass transport by diffusion (Mt) in porous rocks can be 
expressed by Fick’s law:

where Mt is the diffusion flux, D0 is the diffusion coefficient 
of solutes in water  (cm2/s), C is the component’s concentra-
tion, and θ2 is the tortuosity factor of the sedimentary rock.

Tortuosity is generally a ratio of pore connectivity length 
to sediment sample length; thus, its value is always greater 
than 1. In porous sedimentary rocks, the tortuosity of the 
flow path is determined by porosity, permeability, and pore 
structure. Tortuosity can be expressed by Archie’s equation 
(Archie 1942) as:

where η is an adjustable exponent (Boudreau 1996). The 
empirical fit value of η reported by Boudreau (1996) is 2.14 
± 0.03, with an average value of 2.14. Diffusion in a porous 
sediment system is much slower than in an equivalent vol-
ume of water because the convoluted path the solutes must 
follow to circumvent sediment particles (Boudreau 1996).

The pore water composition in the middle-deep buried 
sandstones is generally close to saturation with respect to 
most minerals after long-term contact of the pore water and 

(1)q
A
= qC

(2)M
t
= −�D

0
× �2 ×

dC

dX

(3)�2 = �1−�
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minerals. The solute concentration gradients  (Ca2+,  Mg2+, 
HCO3

−, CO3
2−) are generally very low in the sandstone beds 

with relative homogeneous composition (Bjørlykke 2014; 
Bjørlykke and Jahren 2012), which prevents the large-scale 
diffusive transfer of these masses, even in a long geological 
time.

(3) Convective transfer

Thermal convection is a potential mechanism for mass 
transfer in buried sandstones with high porosity and perme-
ability. Mathematical calculations of thermal convection, 
however, demonstrated that even thin interbedded layers 
of mudstones within permeable sandstone sequences will 
split potentially larger convection cells into smaller units 
of sandstone beds which may then be too small to exceed 
the critical Rayleigh number. After extensive compaction 
and cementation, convective circulation of pore water is 
not likely to occur in the sandstone beds with interbedded 
mudstones characterized by extremely low porosity and 
low permeability (Bjørlykke 1993; Bjørlykke et al. 1988), 
particularly after the formation of tight marginal cemented 
barriers formed by precipitation of eodiagenetic carbonate 
cements in the marginal sandstones close to the mud/sand 
surfaces (Saigal and Bjørlykke 1987).

Overall, large-scale carbonate dissolution is not supported 
by any of the mass transfer mechanisms in buried geochemi-
cal systems without favorable flow conduits.

5  Published examples of carbonate 
dissolution in sandstones

Many papers on mineral dissolution in buried sandstones 
have been published in the last 40 years. After a careful 
analysis of the included petrography evidence on the dissolu-
tion of carbonate minerals, we categorize these publications 
into three groups.

5.1  Papers lacking convincing petrography 
evidence but including hypothesis

Schmidt and McDonald (1979a, b) first proposed the idea 
that significant secondary porosity (up to 20%) can be gen-
erated through burial dissolution of carbonate cements by 
 CO2 during the organic maturity stage (Fig. 1) (Schmidt and 
McDonald 1979a). In their paper, however, no convincing 
carbonate dissolution phenomena such as the microscope 
photography in Taylor (1996) or the SEM microphotogra-
phy in Weedman et al. (1996) and Khidir and Catuneanu 
(2003) were presented (Khidir and Catuneanu 2003; Schmidt 
and McDonald 1979b; Taylor 1996; Weedman et al. 1996). 
Instead, most intergranular pores without carbonate cements 

were interpreted as secondary pores formed by the dissolu-
tion of carbonate cements (Taylor et al. 2010). Based on 
the  CO2/organic acids leaching hypothesis, and the negative 
relationship between porosity and the amount of carbonate 
cements in reservoirs, extensive burial dissolution of carbon-
ate minerals has also been suggested by many other authors 
in the last few decades (Dutton and Willis 1998; Gibling 
et al. 2000; Harris and Bustin 2000; Higgs et al. 2010; Irwin 
and Hurst 1983; Khidir and Catuneanu 2010; Kordi et al. 
2011; Mcbride 1988; Shanmugam 1984; Wilkinson et al. 
1997). Similar to Schmidt and McDonald (1979a, b), no 
convincing petrography evidence on carbonate dissolution 
was provided in these publications.

5.2  Papers with convincing petrographic evidence

Some studies with convincing petrographic evidence of the 
dissolution of carbonate cements in buried sandstones have 
been published. Review of these works suggests that most 
of the extensive dissolutions were related to deep hot fluids 
(Taylor 1996; Taylor et al. 2010) and cold meteoric fresh 
water (Bouch et al. 2006; Cavazza et al. 2009; Khidir and 
Catuneanu 2003; Poursoltani and Gibling 2011; Yuan et al. 
2017; Zaid 2012), while organic  CO2 leaching resulting in 
very limited dissolution (Lu et al. 2011; Weedman et al. 
1996).

(1) Dissolution related to deep hot fluids. Taylor (1996, 
2010) presented a striking exception in the deeply bur-
ied (4.9–5.2 km) Miocene sandstones in the Picaroon 
field, offshore Texas. The anomalously high porosities 
(20%–29%) in the sandstone reservoirs are largely a 
result of the porosity enhancement by the dissolution 
of carbonate minerals (Taylor 1996; Taylor et al. 2010). 
A detailed petrographic study has established evidence 
for the partial dissolution of pore-filling calcite cements 
and detrital carbonate grains in the most porous sands 
(Fig. 2f), and 6%–15% of the calcite cements were 
estimated to have been removed from the reservoirs. 
However, the aggressive fluids that leached the cements 
were not acids originating from kerogen maturation 
but deep hot fluids with high salinity and high con-
centrations of Sr, Ba, Fe, Pb and Zn. The Corsair fault 
systems played a very important role in introducing 
such hot fluids into the Miocene sandstones. As Taylor 
et al. (2010) suggested, the geological conditions in the 
Picaroon field that provide access to deep fluid sources 
are somewhat extraordinary (Taylor 1996; Taylor et al. 
2010).

(2) Dissolution related to meteoric water. Convincing pet-
rographic evidence of carbonate dissolution in sand-
stones with meteoric freshwater incursion was provided 
by some studies. The isotopic composition of the car-
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bonate cements or the burial history of the rocks sug-
gests that the dissolutions were induced by meteoric 
freshwater during the early eodiagenetic stage or the 
uplift telodiagenetic stage (Bouch et al. 2006; Cavazza 
et al. 2009; Khidir and Catuneanu 2003; Poursoltani 
and Gibling 2011; Yuan et al. 2017; Zaid 2012). For 
example, Khidir and Catuneanu (2003) presented con-
vincing SEM photomicrographs to show the dissolution 
of carbonate cements in the Scollard sandstones out-
crop. The sandstones were not buried at depths where 
the temperature reached 120 °C, and the δ18O composi-
tion of the included calcite cements and relevant cal-
culated water δ18O composition suggested a meteoric 
origin of the diagenetic fluids. Poursoltani and Gibling 
(2011) provided an example of the dissolution of car-
bonate cements in sandstones with developed fault sys-
tems that were formed during an uplift period; the cal-
cite cements were suggested to be leached by meteoric 
water. Cavazza et al. (2009) provided excellent outcrop 
photographs, microscope photos, and SEM images to 
show carbonate cement dissolution in the Quaternary 
marine terraces outcrop sandstones; the dissolution was 
the leaching result of meteoric flow during the falling 
period of sea level.

(3) Organic  CO2 leaching with weak dissolution. Some 
authors have presented convincing petrographic evi-
dence of carbonate dissolution that was induced by 
organic  CO2 originating from the thermal evolution of 
kerogen. The authors, however, also stated that only 
a small amount of carbonate minerals were dissolved 
under the constraints of fluid chemistry modeling or 
mass balance calculation (Lu et al. 2011; Weedman 
et al. 1996).

Overall, review of the published papers suggests that the 
extensive dissolution of carbonate minerals in the sandstones 
was generally attributed to the high flux of deep hot fluids 
provided via fractures or the meteoric freshwater available 
during the eodiagenetic and telodiagenetic stages.

5.3  Papers with dissolution of feldspars 
but no carbonate

Some studies have reported the phenomena of extensive 
feldspar dissolution in buried sandstones, but the carbon-
ate cements and detrital carbonate grains in the sandstones 
showed no signs of extensive dissolution (Armitage et al. 
2010; Baker et al. 2000; Ceriani et al. 2002; Dos Anjos 
et al. 2000; Dutton and Land 1988; Fisher and Land 1987; 
Girard et al. 2002; Hendry et al. 1996; Milliken et al. 1994; 
Salem et al. 2000; Tobin et al. 2010). For example, Yuan 
et al (2015a, b, c) presented convincing photomicrographs 
to show the selective dissolution of feldspar minerals in the 

presence of carbonate minerals including detrital carbonate 
grains and early precipitated calcite cements. These carbon-
ate cements display euhedral crystal faces where they border 
open primary pores, and the detrital carbonate grains show 
no corroded fabrics that occur in feldspar grains. Aside from 
the geological examples of buried sandstones, numerical 
simulation results also demonstrated that the feldspar disso-
lution induced by carbonic acid in the subsurface sandstones 
would be accompanied by carbonate precipitation in sys-
tems in the long term, and these relevant carbonate cements 
serve as an analogue of late-stage carbonate cements in the 
subsurface sandstones (Barclay and Worden 2000; Wilson 
et al. 2000).

6  Conclusions

(1) Four types of selective dissolution assemblages of 
feldspar and carbonate minerals can be identified in 
sandstones. A critical eye must be cast on the identifica-
tion of mineral dissolution and intergranular secondary 
pores in sandstones so that possible subjective conclu-
sions can be avoided.

(2) Petrographic data, porosity data, water–rock experi-
ments, geochemical calculations of aggressive fluids, 
and mass transfer do not support significant mesodia-
genetic carbonate dissolution in buried sandstones. A 
review of relevant publications suggests that the exten-
sive dissolution of carbonate minerals was generally 
attributed to a high flux of deep hot fluids provided via 
fractures or the meteoric freshwater available during 
the eodiagenetic and telodiagenetic stages.
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