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Abstract

With applications in the Kudla program in mind we employ singular theta lifts
for the reductive dual pair U(p, q) × U(1, 1) to construct two different kinds of
Green forms for codimension q-cycles in Shimura varieties associated to unitary
groups. We establish an adjointness result between our singular theta lift and
the Kudla-Millson lift. Further, we compare the two Greens forms and obtain
modularity for the generating function of the difference of the two Green forms.
Finally, we show that the Green forms obtained by the singular theta lift satisfy an
eigenvalue equation for the Laplace operator and conclude that our Green forms
coincide with the ones constructed by Oda and Tsuzuki by different means.
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1. Introduction

Since its inception 20 years ago ([21]), the Kudla program has yielded many critical
insights at the intersection of arithmetic geometry and automorphic forms. Roughly
speaking, the Kudla program asserts the modularity of generating series of certain ‘spe-
cial’ cycles in (integral models of) orthogonal and unitary Shimura varieties when viewed
as elements in the arithmetic Chow group, in particular as derivatives of Eisenstein se-
ries. For an overview, see e.g. [23]. Note that this program can be viewed as the
considerable refinement and extension of the work of Kudla and Millson in the 1980’s,
see e.g. [26], which employed the theta correspondence and theta series to establish the
modularity of the special cycles in the cohomology of locally symmetric spaces.

One important aspect in the Kudla program is the construction of appropriate Green
currents for the complex points of the cycles which are then used to ‘upgrade’ the cycles
to define elements in the arithmetic Chow group associated to the underlying Shimura
variety.

For special (Heegner) divisors in Hermitian spaces associated to the orthogonal group
O(p, 2), Kudla [21, 22] constructed Green functions in terms of the exponential integral.
Later Bruinier and the first named author of this paper employed Borcherds’ singular
theta lift [2] and its extension to harmonic weak Maass forms to construct another
Green function for the divisors [4, 10, 6]. In [4] an adjointness result between the
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Borcherds lift and the Kudla-Millson lift was established, and in this context also the
relationship in terms of the construction of these two Green functions was clarified. We
note that the underlying structure for all these constructions is the dual reductive pair
O(p, 2)× SL2(R).

For the dual pair U(p, 1) × U(1, 1) the singular theta lift (for weakly holomorphic
input) was first studied in detail by the second named author of this paper, see [19].
Its extension to harmonic weak Maass forms gives again Green functions for the special
cycles which again are divisors. These have been utilized in [9, 7, 8].

The difference between the two Green functions and its consequences in the context
of the Kudla program are fairly subtle. This was studied and clarified by Ehlen and
Sankaran [12]. They show in the cases of O(p, 2) respectively U(p, 1) that the difference of
the generating series can be viewed as a smooth modular form of weight p

2
+1 respectively

p+ 1.

Bruinier [5] considered the situation in the Hilbert modular case. In this case, Bruinier
manages to circumvent the problem of the non-existence of the harmonic weak Maass
forms to define a singular theta lift for ‘Whittaker forms’ which then again gives rise to
Green functions for the special divisors.

For cycles of higher codimension much less has been known until recently. In Kudla’s
original work [21], Liu [27], and Bruinier and Yang [11] star products are used to con-
struct Green forms for cycles of higher codimension for O(p, 2) and U(p, 1). In recent
groundbreaking work, Garcia and Sankaran [17] employed Quillen’s theory of supercon-
nections to construct Green forms in O(p, 2) and U(p, q) in any codimension.

In this paper, we consider the construction of Green currents, in fact Green forms,
for the dual pair U(p, q) × U(1, 1). The associated Shimura varieties for U(p, q) are
very attractive and natural objects to study. Furthermore, the cycles in question are no
longer divisors but have codimension q. On the other hand, as SU(1, 1) is isomorphic to
SL2(R) this case can be still approached via singular theta lifts of Borcherds type.

While this paper is certainly to a large extent written with applications in arithmetic
geometry and the Kudla program in mind, we ignore this aspect in this paper completely
and focus on the Archimedean side of the story.

Let V be an Hermitian space over an imaginary quadratic field of signature (p, q).
Then we can view the associated Hermitian domain D as the Grassmannian of negative
q-planes in V (R). Let L be an even lattice in V and let Γ be a finite-index subgroup of
the stabilizer of L in U(V (R))1. We then define X = Γ\D which gives a quasi-projective
variety of dimension pq.

To x ∈ V with positive length we associate a subsymmetric space D(x) = {z ∈ D; z ⊥
x}. Let Γx be the stabilizer of x in Γ, and we define the cycle Z(x) as the image of
Γx\Dx in X. Note that the cycles have codimension q in X and arise from suitable

1In the main text we allow for a coset condition and work in the context of vector-valued modular
forms. The results of this paper of course also hold in an appropriate adelic setting.
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1. Introduction

embeddings U(p− 1, q) ↪→ U(p, q). Finally, for m > 0 we set

Z(m) =
∑

x∈L,(x,x)=m
mod Γ

Z(x) ∈ Hq,q(X)

We let Z(0) = cq, the q-th Chern form on D. Finally, we set Z(m) = ∅ for m < 0.
The starting point for our considerations is the Kudla-Millson Schwartz form

ϕKM ∈
[
S(V )⊗Aq,q(D)

]G
,

which takes values in the closed differential (q, q)-forms in D. Under the action of the
Weil representation of SO(2) ⊂ SL2(R) ' SU(1, 1) it is an eigenfunction of weight
p + q. Then the associated theta series θ(z, τ, ϕKM) to L (τ = u + iv ∈ H) is a (non-
holomorphic) modular form of weight p+ q for a congruence subgroup Γ′ ⊆ SL2(Z) with
values in the closed differential (q, q)-forms in X. Furthermore, in cohomology we have

[θ(z, τ, ϕKM)] =
∑
m≥0

[Z(m)]qm. (q = e2πiτ )

The key observation for our construction is

Theorem 1.1. There exists a Schwartz form

ψ ∈
[
S(V )⊗Aq−1,q−1(D)

]G
such that

ω(L)ϕKM = ddc ψ. (1.1)

Here ω(L) is the Weil-representation action of L = 1
2

(
1 −i
−i −1

)
∈ sl2(C) ' su(1, 1)(C)

which corresponds to the Maass lowering operator L = Lp+q for forms on the upper half
plane, and d and dc are the standard exterior derivatives acting on A•(D). Furthermore,
ψ has weight p+ q − 2 under the action of SO(2).

Note that the solution to the equation ω(L)ϕKM = dψ′ was already constructed in
[26], in fact, more generally for the dual pairs O(p, q)×Sp(n) and U(p, q)×U(n, n). In the
same way our form ψ can be used to solve the higher rank equations for U(p, q)×U(n, n).
We explicitly construct ψ and establish its properties using the Fock model of the Weil
representation, see Appendix A. For convenience and future use we develop the formulas
for the Weil representation much more generally for the dual pair U(p, q)× U(r, s).

We then define the Green form of Kudla type by setting

Ψ0(x, z) := −
∫ ∞

1

ψ(
√
tx, z)eπt(x,x)dt

t

for nonzero x and then for m ∈ Q and w > 0,

ΞK(m,w)(z) :=
∑

λ∈L,λ 6=0
(λ,λ)=m

Ψ0(
√

2wλ, z),
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which defines a (q − 1, q − 1)-form on X with singularities along the cycles Z(m) for
m > 0. For m ≤ 0, the forms are smooth.

The principle of this construction and its properties were already outlined in [15]
for O(p, q) × SL2(R) for the form ψ′ mentioned above and was also implicit in [6] for
the Hermitian case O(p, 2). Garcia and Sankaran [17] also follow these lines but use
superconnections to solve (1.1). We have not checked the details but it seems likely that
for n = 1 their form ν is equal to our form ψ. Garcia and Sankaran then succeed to
construct Green forms for n > 1 using a similar integral as above.

On the other hand, we define a singular theta lift (of Borcherds type) using the theta
series θ(z, τ, ψ) as integral kernel. Namely, for f , a harmonic Maass form of weight
k = 2− p− q, we set

Φ(z, f) :=

∫ reg

Γ′\H
f(z)θ(z, τ, ψ)dµ(τ).

Here the regularization follows the by now standard procedure introduced by Harvey
and Moore [18] and Borcherds [2]. We then define for m > 0 the Green form of Bruinier
type by

GB(m)(z) := Φ(z, Fm).

Here Fm(τ) denotes the Hejhal Poincaré series of weight k which has principal part q−m

and ‘shadow’ ξk(Fm) = Pm, the holomorphic Poincaré series for Γ′ of index m and weight

2− k = p+ q. Here ξk = 2ivk ∂
∂τ̄

= vk−2Lk is the differential operator mapping forms of
weight k to weight 2− k. For m ≤ 0, we set GB(m)(z) = 0. We show

Theorem 1.2. The forms ΞK(m,w) and GB(m) both define Green currents for the cycle
Z(m). More precisely, as currents we have

ddc[ΞK(m,w)] + (−i)qδZ(m) = [ϕ0
KM(m,w)],

ddc[GB(m)] + (−i)qδZ(m) = [ddcΦ(Fm)].

Here ϕ0
KM(m,w) =

∑
λ∈L,(λ,λ)=m ϕKM(

√
2wx)e2πmw.

The proof employs the same Lie-theoretic set-up as in [6] and [15] for the orthogonal
case. We first consider the analogous question for Ψ0(x), and as a consequence we obtain
the Green property for ΞK(m,w). We then show that GB(m) has the same singularities
as ΞK(m,w), hence yielding the same residue.

We can identify the term ddcΦ(z, f) in the previous theorem explicitly as follows:

Theorem 1.3. Let f be a harmonic weak Maass form for Γ′ of weight k = 2 − p − q
with holomorphic constant term a+

0 , and let ξk(f) be its shadow, a cusp form of weight
p+ q. Then

ddcΦ(z, f) = (Θ(·, z, ϕKM), ξk(f))p+q + a+(0, 0)cq

as differential (q, q)-forms on X. Here (α, β)` denotes the Petersson inner product in
weight `. In particular, ddcΦ(z, f) extends to a smooth closed (q, q)-form of moderate
growth and ddcΦ(z, f) = a+(0, 0)cq for f weakly holomorphic.
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2. The unitary group

This can be viewed as an adjointness result between the Kudla-Millson lift and the
singular theta lift associated to ψ. It is the analogue of the main result in [6], and the
proof follows along the same lines.

Following ideas of Ehlen and Sankaran [12] we then compare the two Green forms in
a different way. We show

Theorem 1.4. Assume p+ q > 2. Then for each z ∈ D, the generating series

F (τ) = − log(v)ψ(0)(z)−
∑
m∈Q

(
ΞK(m, v)− GB(m)

)
(z) qm

transforms like a smooth modular form of weight p+ q. In addition, F is orthogonal to
cusp forms and satisfies Lp+qF (τ) = −θ(τ, ψ).

Finally, we construct for m > 0 a different Green object GBs (m)(z) depending on a
complex parameter s. It is given essentially2 as Φ(Fm(s), z), where Fm(τ, s) is the Hejhal
Poincaré series of weight k with complex parameter s (at s = s0 = 1 − k/2 this is the
weak Maass form Fm introduced above). We show

Theorem 1.5. Let ∆ be the Laplace operator acting on differential forms on X. Then

∆GBs (m) =
(
(2s− 1)2 − (2s0 − 1)2

)
GBs (m).

Furthermore, GBs (m) agrees (up to a multiplicative constant) with the Green form con-
structed for m > 0 by Oda and Tsuzuki [28].

In view of applications in the Kudla program but also in its own right it will be
interesting to consider suitable integrals of the singular theta lift Φ(z, f), say along the
lines of [22] and [10], and also to compute the Fourier-Jacobi expansion of the singular
theta lift Φ(z, f) and to analyze the growth at the boundary components at suitable
toroidal compactifications of X. We hope to come back to these questions in the near
future.

We thank Jan Bruinier, Stephan Ehlen, and Steve Kudla for very valuable discussions
and suggestions. Funke thanks the Max Planck Institute for Mathematics in Bonn for
multiple stays throughout the years. The initial considerations but also the final stages
of this work were carried out there. Hofmann thanks the Department of Mathematical
Sciences at Durham University for its hospitality during the academic year 2017/18. His
stay was supported by a research fellowship (Forschungsstipendium) of the DFG.

2. The unitary group

2.1. The unitary symmetric space

We let (V, (·, ·)) be a complex vector space of dimension m with a non-degenerate Her-
mitian form (·, ·) of signature (p, q) with p, q > 0. We assume that (·, ·) is C-linear in

2Due to slightly different regularization process GBs0(m)(z) differs from Φ(z, Fm) by a smooth form.
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2.1. The unitary symmetric space

the second and C-antilinear in the first variable. We pick standard orthogonal basis
elements vα (α = 1, . . . , p) and vµ (µ = p + 1, . . . ,m) of length 1 and −1 respectively.3

We let zα and zµ be the corresponding coordinate functions so that

(x, x) =

p∑
α=1

|zα|2 −
m∑

µ=p+1

|zµ|2,

for x =
∑

α zαvα +
∑

µ zµvµ ∈ V . The choice of basis also gives a decomposition
V = V+ ⊕ V− into definite subspaces. We let G = U(V ) be the unitary group of V ,
and let D = G/K be the associated symmetric space of complex dimension pq. Here
K ' U(p) × U(q) is the maximal compact subgroup corresponding to the basis of V
chosen above. We realize the symmetric space as the Grassmannian of negative definite
q-planes in V :

D ' {z ⊂ V : dim(z) = q, (·, ·)|z < 0} .
Given z ∈ D, the standard majorant (x, x)z is given by

(x, x)z = (xz⊥ , xz⊥)− (xz, xz),

where x = xz + xz⊥ using the orthogonal decomposition V = z ⊕ z⊥. We also set

R(x, z) := −(xz, xz).

Note that R(x, z) ≥ 0 with R(x, z) = 0 if and only if x ∈ z⊥. When x has positive norm,
let D(x) denote the codimension q sub-Grassmannian

D(x) := {z ∈ D : z ⊥ x} = {z ∈ D : R(x, z) = 0}.

Also, for convenience, if x is non-positive, set D(x) = ∅.
Let L ⊂ V be an even Hermitian lattice, i.e., a projective module over the ring of

integers OF of an imaginary quadratic number field F, on which the restriction of (·, ·) is
OF-valued. We fix an embedding of F into C. Denote by D−1

F the inverse different ideal
of F. The dual lattice L] is given by

L] = {x ∈ V : (x, λ) ∈ D−1
F , ∀λ ∈ L} = {x ∈ V : traceF/Q(x, λ) ∈ Z, ∀λ ∈ L}.

Note that L ⊂ L]. The quotient L]/L is called the discriminant group of L.
For m ∈ Q and h ∈ L]/L, we define the special cycle D(m,h) in D by

D(m,h) =
∑
λ∈L+h

(λ,λ)=m

D(λ).

Note that D(m,h) is locally finite. We let Γ = Fix(L#/L) ⊂ G and write

X = Γ\D

for the resulting quasi-projective variety. Further, we let Z(x) respectively Z(m,h) be
the image of D(λ) respectively D(m,h) in X.

3Throughout the paper we will follow [26] and use ‘early’ Greek letters for indices ranging from 1 to
p and ‘late’ for indices from p+ 1 to m.
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2. The unitary group

2.2. The unitary Lie algebra

We let g0 = u(V ) be the Lie algebra of G. We define the R-linear surjective map

φV :
∧2

R
V −→ u(V )

by
φV (v ∧ ṽ)(x) = (v, x)ṽ − (ṽ, x)v

Note that we have
φV (iv ∧ ṽ) = φV (v ∧ −iṽ).

In the following we will abuse notation and drop φV and just write v ∧ ṽ ∈ u(V ). Note

that in this way we realize u(V ) as a quotient of
∧2

R
V by the relation iv∧ ṽ+v∧iṽ = 0.

We have
g0 = spanR{vr ∧ vs, ivr ∧ vs}.

We put
Xrs = vr ∧ vs and Yrs = ivr ∧ vs.

In the Cartan decomposition g0 = k0 ⊕ p0 with k0 = Lie(K) = u(p)× u(q), we note that

p0 = spanR{Xαµ, Yαµ; 1 ≤ α ≤ p, p+ 1 ≤ µ ≤ m}.

We let {ωαµ, ω′βν} be the corresponding dual basis for p∗0. Furthermore, the natural
complex structure on p0 is given by Xαµ 7→ Yαµ; Yαµ 7→ −Xαµ.

We let g = g0 ⊗ C be the complexification of g0, which we view as a right C-vector
space. We define

Z ′rs =
1

2
(Xrs − Yrsi) and Z ′′rs =

1

2
(Xrs + Yrsi).

Note that Z ′′rs = −Z ′sr. In the Harish-Chandra decomposition

g = k⊕ p+ ⊕ p−,

we see that

k = spanC{Z ′αβ, Z ′µν}, p+ = spanC{Z ′αµ}, p− = spanC{Z ′′αµ}.

We let {ξ′αµ} and {ξ′′αµ} be the corresponding dual basis of p+ and p−.

We let VC = V ⊗R C. We view VC as a right complex vector space of dimension 2m
and hence write vi for v ⊗ i. Note that iv (internal multiplication of the left C-vector
space V ) is not equal to vi. We decompose VC = V ′⊕V ′′ into the +i and −i eigenspaces
under left multiplication by i. The maps

v 7−→ v − ivi and v 7−→ v + ivi
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realize a C-linear isomorphism of (the left C-vector space) V with (the right C-vector
space) V ′ and a C-anti-linear isomorphism with V and V ′′. Hence we can view V ′′ ' V ∗

as C-vector spaces. We denote the natural bases of V ′ and V ′′ by

v′r := vr − ivri and v′′r := vr + ivri,

respectively. Furthermore, we obtain decompositions V ′ = V ′+ ⊕ V ′− and V ′′ = V ′′+ ⊕ V ′′−
in the natural way. We have

Z ′rs(v
′
t) = −(vs, vt)v

′
r and Z ′rs(v

′′
t ) = (vr, vt)v

′′
s ,

and we note that this realizes the isomorphism g ' glm(C) by the action of g on V ′.
More precisely, we obtain

k ' Hom(V ′+, V
′

+)⊕ Hom(V ′−, V
′
−), p+ ' Hom(V ′−, V

′
+), p− ' Hom(V ′+, V

′
−).

Correspondingly, the action of g on V ′′ realizes the dual of the standard representation
of g.

We write VR for V considered as a real quadratic space together with the quadratic
form (·, ·)R = Re(·, ·) = 1

2
traceC/R(·, ·)4. Then {vα, ivα, vµ, ivµ} forms an orthogonal

basis of VR. We let oVR be the Lie algebra of the orthogonal group O(VR). We now have
the isomorphism

φVR :
∧2

VR ' o(VR)

given by
φVR(v ∧ ṽ)(x) = (v, x)Rṽ − (ṽ, x)Rv.

We let ι : g0 = u(V ) 7→ o(VR) be the natural embedding. We easily see

ι(φV (v ∧ ṽ)) = φVR(v ∧ ṽ) + φVR(iv ∧ iṽ).

Note this realizes u(V ) as the subspace of
∧2

R
V which is fixed by (left)-multiplication

with i in both factors.

3. Schwartz forms

3.1. Weil representation

Let S(V ) be the Schwartz space of V . Associated to an additive character ψ of R
we consider the Weil representation (ω, ψ) for the dual reductive pair U(1, 1) × U(V ),
acting in the Schrödinger model on S(V ). Recall that all such characters are given
by ψα(t) = e(αt) with α ∈ R. Here e(t) = e2πit as usual. The setup of the Weil
representation in the polynomial Fock model is explained in detail in the Appendix B.

4This works better for our purposes.
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3. Schwartz forms

We note that for any Schwartz function φ(x), the unitary group U(V ) acts linearly,
ω(g)φ(x) = φ(g−1x). For matrices in SL2(R) ' SU(1, 1) it is given as follows, see eg
Shintani [29]:

ω (( 1 b
0 1 ))φ(x) = ψα(1

2
b(x, x))φ(x),

ω
((

a 0
0 a−1

))
φ(x) = amφ(ax),

ω (( 0 −1
1 0 ))φ(x) = iq−pφ̂(x),

where φ̂(x) = αm
∫
V
φ(y)ψα(−(y, x)R)dy denotes the Fourier transform of φ(x). Here

we identify V with R2m and dy denotes the usual Lebesgue measure. Note that for
α > 0 all representations (ω, ψα) are isomorphic. Explicitly, an intertwiner of (ω, ψ1)
with (ω, ψα) can be given by φ(x) 7→ φ(

√
αx). From now on we will take α = 1 so

that the additive character is given by t 7→ e(2πit). We say φ has weight r ∈ Z if
ω(k′θ)φ = eriθφ for k′θ =

(
cos θ sin θ
− sin θ cos θ

)
in K ′ = U(1) ' SO(2), the maximal compact

subgroup of SL2(R) ' SU(1, 1)5. Note the standard Gaussian

ϕ0(x, z) := e−π(x,x)z

has weight p − q6. For τ = u + iv ∈ H, let g′τ be any element of SL2(R), mapping i to
τ . Then for φ of weight r we set

φ(x, τ) := v−
r
2ω(g′τ )φ(x) = v−

r
2

+ p+q
2 φ0(

√
vx)eπi(x,x)τ . (3.1)

Here we set
φ0(x) = eπ(x,x)φ(x),

which will be convenient throughout.

3.2. The Kudla-Millson form ϕKM

We now consider the complex [S(V )⊗A•(D)]G of G-invariant Schwartz functions on V
with values in the differential forms on D. Note that evaluation at the base point z0

yields an isomorphism

[S(V )⊗A•(D)]G '
[
S(V )⊗

∧•
(p∗)

]K
.

We use the same symbol for corresponding objects. Note

ϕ0(x, z) ∈
[
S(V )⊗A0(D)

]G
,

and evaluation at the base point gives ϕ0(x) = ϕ0(x, z0) = e−π
∑m
i=1|zi|

2 ∈ S(V )K .

5We could also work with U(1)×U(1) inside U(1, 1), but we won’t need this for our purposes.
6This coincides with the normalizations given in [24], see Section 3.2. This will cause some com-

plications when defining theta series later where it would have been more convenient to pick the
Weil representation for ψα with α = 2. However, we think it is more important to stick with the
Kudla-Millson conventions fo the construction of the Schwartz forms.
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3.3. The Schwartz form ψ

Following [24, Proposition 5.2] and [26, Section 5], we define the differential operator

D =
1

22q

m∏
µ=p+1

{
p∑

α=1

(
z̄α −

1

π

∂

∂zα

)
⊗ A′αµ

}
=

1

22q

m∏
µ=p+1

{
p∑

α=1

Dα ⊗ A′αµ

}
,

where ∂
∂zα

= 1
2

(
∂
∂xα
− i ∂

∂yα

)
, and A′αµ denotes the left multiplication with ξ′αµ. Also, we

have set Dα :=
(
z̄α − 1

π
∂
∂zα

)
.

Following Kudla and Millson [24], we then define

ϕKM := DDϕ0 ∈
[
S(V )⊗

∧q,q
(p∗)

]K ' [S(V )⊗Aq,q(D)
]G
.

Thus, using multi-index notation with α = {α1, . . . , αq} and β = {β1, . . . , βq},

ϕKM =
1

22q

∑
α,β

DαDβ ϕ0 ⊗ Ωq(α; β),

where Dα =
∏q

j=1Dαj and

Ωq(α; β) = ξ′α1p+1 ∧ · · · ∧ ξ′αqp+q ∧ ξ
′′
β1p+1 · · · ∧ ξ′′βqp+q

= (−1)q(q−1)/2ξ′α1p+1 ∧ ξ′′β1p+1 ∧ · · · ∧ ξ′αqp+q ∧ ξ
′′
βqp+q.

The properties of the Schwartz form ϕKM are summarized in the following theorem.

Theorem 3.1 (Kudla-Millson). The Schwarz form ϕKM has the following properties:

1. ϕKM is an eigenfunction of weight p+ q under the operation of K ′ [see 24].

2. As a differential form, ϕKM(x, z) is closed for every x ∈ V [see 24, Section 4].

3. The Thom Lemma holds for ϕKM [see 25, Theorem 4.1], i.e.,∫
Γx\D

η ∧ ϕKM(x) = i−q
(∫

Γx\D(x)

η

)
e−π(x,x)

for any compactly supported closed differential 2(p− 1)q form η on Γx\D.

3.3. The Schwartz form ψ

We define another Schwartz form ψ by setting

ψ :=
2i(−1)q−1

22(q−1)

∑
α={α1,...,αq−1}
β={β1,...,βq−1}

DαDβ ϕ0 ⊗ Ωq−1(α; β)

11



3. Schwartz forms

where

Ωq−1(α; β)

= (−1)q(q−1)/2

q∑
j=1

ξ′α1p+1 ∧ ξ′′β1p+1 ∧ · · · ∧ ̂ξ′·p+j ∧ ξ′′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′βq−1p+q

.

In Appendix A we will employ the Fock model of the Weil representation to show

Proposition 3.2. (i) The Schwartz form ψ is invariant under the operation of K,
that is,

ψ ∈
[
S(V )⊗

∧q−1,q−1
(p∗)

]K ' [S(V )⊗Aq−1,q−1(D)
]G
.

(ii) The Schwartz form ψ is an eigenfunction of weight p + q − 2 under the operation
of K ′.

The main property linking ϕKM and ψ is the following.

Theorem 3.3. Let d = 1
2

(
∂ + ∂̄

)
and dc = 1

4πi

(
∂ − ∂̄

)
be the standard exterior deriva-

tives acting on A•(D), and let Lκ = −2iv2 ∂
∂τ̄

be the Maass lowering operator of weight
κ acting on functions on the upper half plane. Then

Lp+q ϕKM(x, τ, z) = ddc ψ(x, τ, z).

This implies

v
∂

∂v
ϕ0
KM(
√
vx, z) = ddcψ0(

√
vx, z).

Proof. This is carried out in Appendix A, again using the Fock model.

In order to derive a more explicit description of the Schwartz form ψ, when evaluated
at the base point z0, we examine the properties of the differential operators Dα and
D̄α for α ∈ {1, . . . , p}. First, we note that all the differential operators commute, i.e.
DαDβ = DβDα, D̄αD̄β = D̄βD̄α and DαD̄β = D̄αDβ for all α, β ∈ {1, . . . , p}.

Further, by direct calculation, we get

Dαϕ0 = 2z̄αϕ0, D̄αϕ0 = 2zαϕ0 and DαD̄αϕ0 =
(
4|zα|2 − 2

π

)
ϕ0.

In fact (see e.g., [25, p. 303 (6.41)]),

DkαD̄kαϕ0 =
(
DαD̄α

)k
ϕo =

(
1

π

)k
2kk!Lk

(
2π|zα|2

)
ϕ0, (3.2)

where Lk(t) = et

k!

(
d
dt

)k (
e−ttk

)
is the k-the Laguerre polynomial. More generally, we get

DlαD̄kαϕ0 = 2k
l∑

m=0

(
l

m

)min(m,k)∑
n=0

z̄l−nα zk−nα

(
m

n

)
k!

(k − n)!

(
−1

π

)n
ϕ0. (3.3)

12



3.3. The Schwartz form ψ

Hence the Schwartz form ψ can be expressed using (in general non-homogeneous) poly-
nomials P 2q−2

α,β ∈ P(V ) as follows:

ψ(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β

(
x
)
ϕ0(x)⊗ Ωq−1(α; β), (3.4)

ψ0(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β (x) e−2πR(x,z0) ⊗ Ωq−1(α; β). (3.5)

The following lemma is easily obtained.

Lemma 3.4. For any pair of multi-indices α, β ∈ {1, . . . , p}q−1, the attached polynomial

P 2q−2
α,β (x) has the following properties:

1. It has degree 2q − 2 and depends only on V+.

2. The leading term is given by

22(q−1)

q−1∏
l=1

z̄αl

q−1∏
k=1

zβk .

3. All monomials occurring in P 2q−2
α,β (x) have even degree.

4. The constant term is non-zero if and only if for every α ∈ {1, . . . , p} the multiplicity
of α in the multi-indices α and β is the same. In which case, P 2q−2

α,β (x) is a product

of Laguerre functions, and the constant term is given by

2q−1

(
−1

π

)q−1 ∏
α∈α

m(α)!,

where m(α) is the multiplicity of α.

In particular, the situation in part 4 of the lemma occurs when x = zαvα, and only
the terms with α = β = (α, α, . . . , α) are non-zero.

We write

Pψ(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β

(
x
)
⊗ Ωq−1(α; β) (3.6)

for the polynomial part of ψ. Furthermore, it will be convenient to write P 2q−2
α,β as a sum

of its homogeneous components,

P 2q−2
α,β (x) =

q−1∑
`=0

P 2q−2
α,β;2`(x),

with 2` the respective weight. Note that P 2q−2
α,β;2`(wx) = |w|2`P 2q−2

α,β;2`(x) for any w ∈ C.

Remark 3.5. We mention that besides (3.3) the polynomials P 2q−2
α,β (x) can also be ex-

pressed using derivatives of Laguerre functions by (3.2) or, alternatively through Hermite
functions in the real and imaginary parts of the zα’s as indeterminates.
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4. A singular Schwartz form

4. A singular Schwartz form

Analogously to Kudla [23] for O(p, 2), we define for x 6= 0 the singular Schwartz form

Ψ0(x, z) := −
∫ ∞

1

ψ0(
√
tx, z)

dt

t
. (4.1)

The form Ψ0 has its singularities where R(x, z) = 0, i.e., precisely along the cycles D(x).
Thus, in particular, Ψ0(x, z) is smooth for (x, x) ≤ 0. We also set

Ψ(x, z) = Ψ0(x, z)e−π(x,x).

Recall the definition of the incomplete Γ-function, Γ(s, a) =
∫∞
a
ts−1e−tdt. The fol-

lowing lemma is obtained by a straightforward calculation.

Lemma 4.1. At the base point z = z0, the singular Schwartz form Ψ0 is given by

Ψ0(x, z0) =
2i(−1)q−1

22(q−1)

∑
α,β

[
q−1∑
`=0

P 2q−2
α,β;2`

(
x
)

(2πR(x, z0))−` Γ (`, 2πR(x, z0))

]
⊗ Ωq−1(α; β).

We conclude that R(x, z)q−1Ψ0(x, z) extends to a smooth differential (q − 1, q − 1)-form
on D.

While it should be emphasized that Ψ is not a Schwartz function on V , we nonetheless
define (as if Ψ had weight p+ q)

Ψ(x, τ, z) = Ψ0(
√
vx, z)eπi(x,x)τ (τ ∈ H).

This is motivated by the second statement in the Proposition below. Note

Ψ(x, τ, z) = −
(∫ ∞

v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ . (4.2)

From the definition of Ψ and the properties of ψ, we get

Proposition 4.2. Outside the singularities, Ψ(x, τ, z) has the following properties:

1. For d and dc the standard exterior differentials on A•(D), we have outside D(x)

ddc Ψ(x, τ, z) = ϕKM(x, τ, z).

2. We have
Lp+qΨ(x, τ, z) = ψ(x, τ, z),

with the Maass lowering operator Lp+q as before.
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4.1. The current equation

Proof. 1. This follows from Theorem 3.3 and the rapid decay of the Schwartz form
ϕKM :

ddcΨ(x, τ, z) = −
(∫ ∞

v

ddcψ(
√
tx, z)

dt

t

)
eπi(x,x)τ

= −
(∫ ∞

v

∂

∂t
ϕ0
KM(
√
tx, z) dt

)
eπi(x,x)τ = ϕKM(x, τ, z).

2. Immediately from the definition,

Lp+qΨ(x, τ, z) = 2iv
∂

∂τ̄

(∫ ∞
v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ

= −v
(
∂

∂v

∫ ∞
v

ψ0(
√
tx, z)

dt

t

)
eπi(x,x)τ = ψ0(

√
vx, z)eπi(x,x)τ = ψ(x, τ, z),

again by rapid decay.

4.1. The current equation

We denote byAkc (D) the space of compactly supported differential forms on D of degree k.
Recall that a locally integrable degree k-form ω on D defines a current, i.e., a (continuous)
linear functional on the compactly supported forms of complementary degree, via

[ω](η) :=

∫
D
η ∧ ω

(
η ∈ A2pq−k

c (D)
)
.

Furthermore, for the exterior derivatives of a current [ω] we have

ddc[ω](η) := [ω](ddcη).

The goal of this section is to prove the following generalization of the Thom Lemma,
see Theorem 3.1 3.

Theorem 4.3. Let x ∈ V and let δZ(x) denote the delta current for the special cycle
Z(x). Then

ddc[Ψ0(x)] + (−i)qδZ(x) = [ϕ0
KM(x)]

as currents on Γx\D. In other words, we have∫
Γx\D

ddcη ∧Ψ0(x) + (−i)q
∫
Z(x)

η =

∫
Γx\D

η ∧ ϕ0
KM(x)

for any η ∈ A2(p−1)q
c (Γx\D).

We prove the theorem in the next two subsections following the same method employed
in [6] and [15].
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4. A singular Schwartz form

With this we can now define a Green current for the special cycles Z(m,h) ⊂ X.
Namely, for m ∈ Q, h ∈ L]/L satisfying m ≡ (h, h) mod Z and a real parameter w > 0
we introduce the Green form of Kudla type on X by setting

ΞK(m,w, h)(z) :=
∑
λ∈L+h

(λ,λ)=m
λ 6=0

Ψ0(
√

2wλ, z). (4.3)

Then by Theorem 4.3 we immediately obtain

Corollary 4.4. The singular differential (q−1, q−1)-form ΞK(m,w, h) defines a Green
current for the cycle Z(m,h) on X.

4.1.1. Local integrability

Proposition 4.5. Let x ∈ V . Then Ψ0(x) and dcΨ0(x) are locally integrable differential
forms on D.

Proof. We view a top-degree differential form φ ∈ A2pq(D) via the Hodge ∗-operator as a
(K-invariant) function on G. We pick suitable coordinates on D, using the decomposition
G = HAK, where H is the stabilizer of the first basis vector v1 of V , A is a one parameter
subgroup A = {at = exp(tX1p+q); t ∈ R}. Set A0 = {at : t ≥ 0}. Then, see [14, Sec. 2]
or [28, Section 2] for details,∫

D
φ =

∫
G

φ(g) dg = C

∫
A0

∫
H

φ(hat) sinh(t)2q−1 cosh(t)2p−1 dh dt, (4.4)

with C a positive constant, depending on the normalization of the invariant measures.
Now Ψ0(x) is smooth unless (x, x) > 0. In that case we may assume that x =

√
mv1,

for some m > 0. Then for η ∈ A2(pq−(q−1))
c (D). We set φ = η ∧Ψ(x) and see

φ(hat) = η(hat) ∧Ψ0(a−1
t h−1

√
mv1),

wherein

a−1
t h−1

√
mv1 = cosh(t)

√
mv1 − sinh(t)

√
mvp+q.

Hence,(
a−1
t h−1

√
mv1

)
z0

= − sinh(t)
√
mvp+q and

(
a−1
t h−1

√
mv1

)
z⊥0

= cosh(t)
√
mv1. (4.5)

Thus, we have (see Lemma 4.1),

Ψ0(a−1
t h−1

√
mv1) =

2i(−1)q−1

22(q−1)

[ q−1∑
`=0

(
2πm sinh2(t)

)−`
Γ
(
`, 2πm sinh2(t)

)
·
∑
α,β

P 2q−2
α,β;2`

(
κ
√
m cosh(t)v1

)]
⊗ Ωq−1(α; β).
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4.1. The current equation

We conclude that the integrand of (4.4), i.e.,

η(hat) ∧Ψ0(a−1
t h−1

√
mv1) sinh(t)2q−1 cosh(t)2p−1

is bounded, in fact, vanishes, as t→ 0. Further, as η has compact support, the integral
is convergent.

For the local integrability of dcΨ(x) the reasoning is similar, but a bit more tedious.
Again, we may assume that x =

√
mv1, with m > 0. Further, note that we only need

to consider highest-degree terms.
Note dcΨ0(x) = −

∫∞
1
dcψ0(

√
sx)ds

s
, which can be evaluated similarly to Lemma 4.1.

By (A.1), dcψ consists of two parts. Both involve polynomials of degree 2q − 1 which
depend on the positive coordinates of x (note that there is no constant part). If by
(4.5), we set x = cosh(t)

√
mv1, only the polynomials which depend exclusively on the

first vector can contribute to dcΨ0(x). From their highest-degree terms, we get

2−(2q−1) cosh(t)2q−1mq− 1
2
√
s

2q−1
.

Also, in (A.1) there are linear homogeneous polynomials in the negative coordinates,
Qα′q ,α(q−1)

and Q′αq ,α′(q−1)
. From them, again by (4.5) we have contributions of

−
√
s
√
m sinh(t)

Hence, gathering the contributions of the non-vanishing highest-degree terms, we still
have the integral∫ ∞

1

sq−1e2πR(x,z0)ds = (2πR(x, z0))−q Γ(q, 2πR(x, z0))

= (2π sinh2(t))−q Γ(q, 2π sinh2(t)).

Thus, up to sign, for t → 0 the behaviour of dcΨ(a−1
t h−1

√
mv1) is dominated by terms

of the form

(−1)q−1π

22q−1
sinh(t) cosh(t)2q−1

(
sinh2(t)

)−q
Γ
(
q, 2π sinh2(t)

)
. (4.6)

In particular, it follows that the integrand in∫
A0

∫
H

η(hat) ∧
(
dcΨ(a−1

t h−1
√
mv1)

)
sinh(t)2q−1 cosh(t)2p−1 dh dt,

remains bounded as t→ 0, and hence the integral converges.

4.1.2. The current equation

Proof of Theorem 4.3. Let η ∈ A2(p−1)q
c (Γx\D), not necessarly closed. First note using

(ddcη) ∧Ψ0(x) = (dη) ∧ dcΨ0(x)− dc (dη ∧Ψ0(x)) and Stokes’ theorem∫
Γx\D

(ddcη) ∧Ψ0(x) = −
∫

Γx\D
(dη) ∧ dcΨ0(x) + lim

ε→0

∫
Γx\∂(D−Uε(x))

(dη) ∧ dcΨ0(x),
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4. A singular Schwartz form

where Uε, (ε > 0) denotes an open neighbourhood of the cycle D(x). Next we show
that the limit on the right hand side vanishes. We may again assume x =

√
mv1, with

m > 0 and use the HAK coordinates introduced in the proof of Proposition 4.5. Then
for ε > 0, an open neighborhood of D(v1) is defined by

Uε = D− (H × Aε) , (4.7)

with Aε = {at : t ≥ ε}. With the analog of the integral formula from (4.4), the limit can
be written as

C lim
ε→0

∫
Γv1\H

η(haε) ∧Ψ0(a−1
ε h−1

√
mv1) sinh(ε)2q−1 cosh(ε)2p−1 dh

for some constant C. Only the highest degree term of Ψ(a−1
t h−1

√
mv1) (see Lemma 4.1)

can contribute. Further, note that, since
(
a−1
t h−1

√
mv1

)
z⊥0

= cosh(t)
√
mv1 by (4.5), we

have P 2q−2
α,β;2q−2 (

√
m cosh(t)v1) 6= 0 only for α = β = (1, . . . , 1), thus, up to constants, the

highest degree term is given by(
m sinh2(t)

)−(q−1)
Γ
(
q − 1, 2πm sinh2(t)

)
(2
√
m cosh(t))2q−1.

Hence, comparing powers of sinh(t) we see that the integrand goes to zero for t = ε→ 0,
and the limit vanishes as claimed.

Now, since ddcΨ(x) = ϕKM(x), we have

−
∫

Γx\D
(dη) ∧ dcΨ0(x) =

∫
Γx\D

η ∧ ddcΨ0(x)−
∫

Γx\D
d
(
η ∧ dcΨ0(x)

)
=

∫
Γx\D

η ∧ ϕ0
KM(x) + lim

ε→0

∫
Γx\∂(D−Uε(x))

η ∧ dcΨ0(x),

again by applying Stokes’ theorem. Thus it remains to show that

lim
ε→0

∫
Γx\∂(D−Uε(x))

η ∧ dcΨ0(x) = (−i)q
∫
Z(x)

η.

We have to consider the limit of the same integral as in the proof of second part of
Proposition 4.5:

C lim
ε→0

∫
Γv1\H

η(haε) ∧ dcΨ0(a−εh
−1
√
mv1) cosh(ε)2p−1 sinh(ε)2q−1 dh, (4.8)

with a non-zero constant C, independent of η. With (4.6) we see that for both parts of
dcΨ0(x), the integral is bounded as t = ε→ 0. We have

C lim
ε→0

∫
H

η(haε) ∧
(
dcΨ0(a−εh

−1
√
mv1)

)
cosh(ε)2p−1 sinh(ε)2q−1 dh

= C̃

∫
H

η(h) dh,
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with a constant C̃ independent of η. By Kudla-Millson theory [see 25, Theorem 6.4], we
see that C̃ = (−i)q for η closed, see Theorem 3.1 3.

To summarize, we have showed that for all η ∈ A2(p−1)q
c (Γx\D),∫

Γx\D
(ddcη) ∧Ψ0(x) =

∫
Γx\D

η ∧ ϕ0
KM(x)− (−i)q

∫
Z(x)

η,

as claimed.

5. The singular theta lift

5.1. Weak Maass forms

We let L be an even Hermitian lattice with the Hermitian form (·, ·). Further, we denote
by L− the same OF module L but with the Hermitian form −(·, ·).

We denote the standard basis elements of C[L]/L] by eh (h ∈ L]/L) and introduce
the Hermitian pairing

〈 , 〉L : C[L]/L]× C[L]/L]→ C, by setting 〈eµ, eν〉L = δµ,ν (µ, ν ∈ L]/L).

Similar definitions are made for the lattice L−.
Recall there is a finite Weil representation of SL2(Z) on C[L]/L], which we denote by

ωL. It is most easily described through the action of the generators S =
(

0 −1
1 0

)
and

T = ( 1 1
0 1 ):

ωL(T )eh = e((h, h))eh, ωL(S)eh =
iq−p√
|L]/L|

∑
µ∈L]/L

e(−2(µ, h)R)eµ.

We denote by ω∨L ' ω̄L the dual representation. Note that ω∨L = ωL− . For k ∈ Z and
γ ∈ SL2(Z), define the weight k-slash operation on functions C[L]/L]→ C as

f |k,L γ = (cτ + d)−kωL(γ)−1f(γτ).

The slash-operation for the dual representation is defined similarly.
Following [6] and [12] we now define several spaces of modular forms.

Definition 5.1 ([see 6, Section 3]). For k ∈ Z, let Hk,L be the space of twice continuously
differentiable functions f : H→ C[L]/L], which satisfy

1. f |k,L (γ) = f for all γ ∈ SL2(Z).

2. There exists a constant C > 0 such that f(τ) = O(eCv) as v →∞.

3. ∆kf = 0.
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5. The singular theta lift

The elements of Hk,L are called harmonic weak Maass forms. Any such form f has a
decomposition f(τ) = f+(τ) + f−(τ) into a holomorphic and a non-holomorphic part,
where the Fourier expansion of the holomorphic part is

f+(τ) =
∑

h∈L]/L

∑
n∈Q

a+(h, n)e(nτ) eh,

whilst that of the non-holomorphic part is

f−(τ) =
∑

h∈L]/L

(
a−(h, 0)v1−k +

∑
n∈Q
n6=0

a−(h, n)Γ(1− k, 4πnv)e(nu)
)
eh.

We denote by P (f) the principal part of f , i.e. the Fourier polynomial

P (f)(τ) = P (f+)(τ) =
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)e(nτ)eh.

Note that Hk,L contains the spaces of weakly holomorphic modular forms M!
k,L and

holomorphic modular forms Mk,L, with Hk,L ⊃ M!
k,L ⊃ Mk,L.

The operator ξk affords an antilinear mapping given by

ξk : Hk,L −→ M!
2−k,L− , f(τ) 7−→ 2ivk

∂f(τ)

∂τ̄
= vk−2Lkf(τ).

Now, the space H+
k,L is defined as the inverse image of the cusp forms S2−k,L− . It follows

immediately from this definition that for f ∈ H+
k,L,

f(τ)− P (f)(τ) = O(e−Cv),

as v →∞ for some constant C > 0.
Further, by [6, Corollary 3.8], there are exact sequences

0 −→ M!
k,L −→ Hk,L

ξk−→ M!
2−k,L− −→ 0,

and

0 −→ M!
k,L −→ H+

k,L

ξk−→ S2−k,L− −→ 0.

Following Ehlen and Sankaran [12], we generalize this setup by introducing two further
spaces of modular forms, Amod

k,L− and A!
k,L− . For the former space, we use the following,

slightly modified definition from [3, Definition 3.2]:

Definition 5.2. Let Amod
k (ω∨L) = Amod

k,L− denote the space of C∞-functions f : H →
C[L]/L] satisfying

1. f |k,L− (γ) = f for all γ ∈ SL2(Z).

2. For all a, b ∈ Z≥0, there is an r ∈ Z such that ∂a

∂au
∂b

∂bv
f(τ) = O(vr) as v →∞.
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5.2. Regularized theta integral

3. If f =
∑

m∈Q c(m, v)e(mτ) denotes the Fourier expansion of f , then the integral∫ ∞
1

c(0, t)t−2−sdv,

has a meromorphic continuation to a half-plane Re(s) > −ε for some ε > 0. (The
integral converges for sufficiently large Re(s) � 0, since by 2., f is of polynomial
growth as v →∞.)

Definition 5.3 ([see 12, Definition 2.8]). Denote by A!
k(ω

∨
L) = A!

k,L− the space of C∞

functions f : H→ C[L]/L]∨ satisfying

1. f |k,L− (γ) = f for all γ ∈ SL2(Z).

2. There exists a constant C > 0 such that f(τ) = O(eCv) as v →∞.

3. Lk(f) ∈ Amod
k−2(ω∨L).

5.2. Regularized theta integral

In the following, we set κ = p+ q − 2 and k = −κ = −(p+ q) + 2.
For h ∈ L]/L we want to define for the Schwartz form ψ introduced in Section 3.3 the

theta function component θ(τ, z, ψ)h to obtain the vector-valued theta function

Θ(τ, z) := Θ(τ, z, ψ) := (θ(τ, z, ψ)h)h∈L]/L =
∑

h∈L]/L

θ(τ, z, ψ)heh.

There is a technicality. The form φ(λ, τ) = vψ0(
√
vλ)eπi(λ,λ)τ , see (3.1), does not give

rise for h = 0 (say) to a proper q-series upon summation over L since (λ, λ) ∈ Z but not
necessarily even. We therefore set (and analogously for ϕKM)

θ(τ, z, ψ)h =
∑
λ∈L+h

ψ(
√

2λ, τ, z), (τ ∈ H, z ∈ D)

and then the theta function Θ(τ, z) does transform like a vector-valued modular form of
type ρL for SL2(Z) with weight κ. We can view this procedure as first switching to the
Weil representation associated to the additive character t 7→ e(2t) before applying the
summation. Explicitly,

Θ(τ, z) = v
∑

h∈L]/L

∑
λ∈L+h

Pψ(
√

2vλ, z)e4πv(λz ,λz)+2πiτ(λ,λ)eh, (5.1)

where Pψ(x, z) ∈
[
P(V )⊗A•(D)

]G
is the polynomial part of ψ, see (3.6).

Following [2, 4, 6], for a weak harmonic Maass form f ∈ H+
k,L− , we consider the

regularized theta integral ∫ reg

SL2(Z)\H

〈
f(τ),Θ(τ, z)

〉
L
dµ.
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5. The singular theta lift

Due to the invariance under SL2(Z), the following regularization recipe (due to Harvey
and Moore [18]) can be used: For t ∈ R>0, denote by Ft the truncated fundamental
domain given by

Ft :=
{
τ = u+ iv; |τ | > 1,−1

2
< u < 1

2
, 0 < v ≤ t

}
,

and define

Φ(z, f, ψ) :=

∫ reg

F

〈
f,Θ(τ, z)

〉
L
dµ := CT

s=0

[
lim
t→∞

∫
Ft

〈
f,Θ(τ, z)

〉
L
v−s dµ

]
, (5.2)

where the notation CTs=0 denotes the constant term at s = 0 of the meromorphic
continuation of the limit.

More generally, we introduce a regularized pairing as follows. For f ∈ H+
k,L− and g

transforming as a modular form of weight κ under ωL set

(f, g)regL− = CT
s=0

[
lim
t→∞

∫
Ft
〈f, ḡ〉L v

−s dµ

]
. (5.3)

We say that the pairing exists if for sufficiently large Re(s) the limit t → ∞ defines
a holomorphic function in s for which a meromorphic continuation to some Re(s) < 0
exists, so that constant of the Laurent expansion around s = 0 can be evaluated.

5.3. Singularities and current equation

Let f be a harmonic weak Maass form with holomorphic Fourier coefficients a+(h, n),
h ∈ L]/L, n ∈ Q<0. We define a locally finite cycle D(f) on D by

D(f) :=
∑

h∈L]/L

∑
n∈Q<0

a+(h, n)D(n, h)

and denote by Z(f) the image of D(f) on X.

Proposition 5.4. The regularized lift Φ(z, f, ψ) converges to a smooth differential form
on D with singularities along the cycle D(f). In a small neighbourhood of w ∈ D, the
singularities are of type

−
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)
∑
λ∈L+h

(λ,λ)=−n
λ∈w⊥

Ψ0(
√

2λ, τ, z),

i.e., the difference of Φ(z, f, ψ) and this sum extends to a smooth form.

Proof. The argument closely follows [6, Sec. 5]. It suffices to consider the integral up to
smooth functions. Due to the rapid decay of the non-holomorphic part of f , the integral
converges for f− to a smooth form, and we only need to consider∑

h

lim
t→∞

∫ reg

Ft
f+
h (τ)θ(τ, z, ψ)hv

−s dµ.

22



5.3. Singularities and current equation

Also, since the integral over F1 is smooth, it suffices to consider the integral over v > 1:∑
h

lim
t→∞

∫ t

1

∫ 1
2

− 1
2

f+
h (τ)θ(τ, z, ψ)hv

−s−2du dv. (5.4)

Now, the integration over u picks out the constant term in the Fourier expansion of the
integrand, which in the notation of (5.1) is given by

v
∑
h

∑
λ∈L+h

a+(h,−(λ, λ))Pψ(
√

2vλ, z)e4πv(λz ,λz).

For (5.4) we therefore obtain∑
λ∈L]

a+(λ,−(λ, λ))

∫ ∞
1

Pψ(
√

2vλ, z)e4πv(λz ,λz)v−s−1dv. (5.5)

For a relatively compact open neighbourhood U ⊂ D, define the set

Sf (U, ε) =
{
λ ∈ L] ; a+

(
λ,−(λ, λ)

)
6= 0 and |(λz, λz)| < ε for some z ∈ U

}
.

By reduction theory, this set is finite, as f+ has only finitely many non-vanishing Fourier
coefficients in its principal part.

Using standard arguments, like in [6], one finds that in (5.5) the sum of all terms
with λ ∈ L] − Sf (U, ε) is majorized by a convergent sum,

∑
λ∈L] exp (−C(λ, λ)z) for

some C > 0, and hence converges. Further, in (5.5), the term with λ = 0 is given by
a+(0, 0)Pψ(0, z)

∫∞
1

1
vs+1dv, which falls out after regularization.

Finally, all that remains of (5.5) is the following finite sum, which dictates the singu-
larities in U : ∑

06=λ∈Sf (U,ε)

a+(λ,−(λ, λ))

∫ ∞
1

Pψ(
√

2vλ, z)e4πv(λz ,λz)v−s−1dv.

Clearly, the integral has meromorphic continuation to the entire s-plane, and for s = 0
is equal to −Ψ0(

√
2λ, τ, z), cf. (4.1). Hence, the singularity for z ∈ U is dictated by

−
∑

λ∈Sf (U,ε)
λ6=0

a+(λ,−(λ, λ))Ψ0(
√

2λ, τ, z).

In particular, z is a singular point precisely if R(λ, z) = −(λz, λz) = 0 for some λ ∈
Sf (U, ε)− {0}.

The singular theta lift as a current Using the relationship between the singular theta
lift and the singular Schwartz form Ψ, already seen in the proof of Proposition 5.4, we
derive a current equation for Φ(f, ψ). The role of ϕKM in Theorem 4.3 is now played by

Λψ(f) := ddcΦ(z, f, ψ), (5.6)

where f ∈ H+
k,L− .
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5. The singular theta lift

Theorem 5.5. The singular theta lift Φ(z, f, ψ) and the lifting Λψ(f) satisfy the follow-
ing current equation on X:

ddc[Φ(f, ψ)] + (−i)qδZ(f) = [Λψ(f)].

Proof. This follows directly from Theorem 4.3. For x ∈ V , we have

ddc[Ψ0(x)] + (−i)qδΓ(x)\D(x) = [ϕ0
KM(x)]. (5.7)

As usual, denote the Fourier coefficients of f+ by a+(λ, n) for λ ∈ L], n ∈ Q. For
any relatively compact open neighbourhood U ⊂ D and any ε > 0, we consider the set
Sf (U, ε) from p. 23. Then, from the left hand side of (5.7), we get

ddc
∑

λ∈Sf (U,ε)
λ 6=0

a+(λ,−(λ, λ))
[
Ψ0(
√

2λ)
]

+ (−i)q
∑

λ∈Sf (U,ε)
λ 6=0

a+(λ,−(λ, λ))δZ(λ).

Now, by Proposition 5.4, and after taking the (locally finite) union over neighbourhoods
U containing singular points, we get the current associated to (the singular part of)
Φ(z, f, ψ) plus the delta current for the cycle Z(f):

ddc[Φ(f, ψ)] + (−i)qδZ(f).

(Note that, through Stokes’ theorem, the current is determined by the singular part.)
Repeating the same steps on the right hand side of (5.7), by using the identity

ddcΨ(x, τ, z) = ϕKM(x, τ, z) (see Proposition 4.2), we recover the current

[ddcΦ(f, ψ)] = [Λψ(f)],

as claimed.

5.4. Adjointness to the Kudla-Millson lift

We now show an adjointness result analogous to [6, Theorem 6.1, Theorem 6.2].
Denote by Θ(τ, z, ϕKM) the theta function for the Schwartz form ϕKM from Section 3

(see, [24, 25, 26]). By Proposition 3.3 it is a closed differential (q, q)-form (in z), which
has weight p + q as a modular form (in τ). The Kudla-Millson lift ΛKM is now defined
for any rapidly decreasing 2(p− 1)q-form η through the assignment

η 7−→ ΛKM(η) :=

∫
X

η ∧Θ(τ, z, ϕKM).

This map factors through the de Rham cohomology with compact supports on X. By
[26, Theorem 2] if η is closed, Λ(τ, η) is a holomorphic modular form.

To facilitate notation, we introduce a pairing {·, ·}′ between the spaces Mk,L− and H+
k,L

see [6, (3.15) on p. 62]. Let f ∈ H+
k,L with f+ =

∑
h,n a

+(h, n)e(nτ)eh and h ∈ Mk,L−

with q-expansion h =
∑

h,n b(h, n)e(nτ)eh. We set

{h, f}′ := (h, ξk(f))2−k,L −
∑

h∈L]/L

a+(h, 0)b(h, 0) =
∑

h∈L]/L

∑
n∈Q
n<0

a+(h, n)b(h,−n).
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5.4. Adjointness to the Kudla-Millson lift

Theorem 5.6. The lift Λψ has the following properties:

1. Let f ∈ H+
k,L−. Then

(Θ(·, z, ϕKM), ξk(f))2−k,L + a+(0, 0)ϕKM(0) = Λψ(f)

as differential forms on X. In particular, Λψ(f) extends to a smooth closed (q, q)-
form of moderate growth.

2. The Kudla-Millson lift ΛKM and Λψ are adjoint in the sense that

(η,Λψ(f))X = {ΛKM(η), f}′

for any f ∈ H+
k,L− and any rapidly decreasing closed 2(p− 1)q-form η.

We note that, in particular, if f ∈ M!
k,L− , we have Λψ(f) = a+(0, 0)ϕKM(0).

Corollary 5.7. For any rapidly decreasing closed 2(p − 1)q-form η and any f ∈ Hk,L,
we have

(η,Λψ(f))X =

∫
Z(f)

η.

Proof of the Theorem. 1. We have

L2−kΘ(τ, z, ϕKM) = Θ(τ, z, ddcψ),

since LϕKM(0) = ddcψ(0), Hence, we have

lim
t→∞

∫
Ft

〈
L2−kΘ(τ, z, ϕKM), f̄

〉
dµ =

∫ reg

F

〈
L2−kΘ(τ, z, ϕKM), f̄

〉
dµ

=

∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ,

and this quantity defines a smooth form on D−D(f), which extends smoothly to
D. With [6, Lemmas 6.6, 6.7] we get the following identity, valid outside D(f):

(Θ(z, ϕKM), ξk(f))2−k,L =

∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ+ a+(0, 0)ϕKM(0).

Now, the statement follows by showing that∫ reg

F

〈
Θ(τ, z, ddcψ), f̄

〉
dµ = ddc

∫ reg

F

〈
Θ(τ, z, ψ), f̄

〉
dµ. (5.8)

First, note that∫ reg

F

〈
Θ(τ, z, ψ), f̄

〉
dµ = lim

t→∞

∫
Ft

(〈
Θ(τ, z, ψ), f̄

〉
− a+(0, 0)v

)
dµ+ Ca+(0, 0),

(5.9)
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6. Comparison of the two Green forms

with a constant C, coming from the regularisation of the constant term. Arguing
along the same lines as in the proof of Proposition 5.4, we see that in the integrand,
the sum over λ ∈ L] − Sf (U, ε) (see p. 23) converges uniformly for any relatively
compact open neighbourhood U ⊂ D and any ε > 0. For the remaining terms,
with λ ∈ Sf (U, ε) the integrand decays exponentially.

Thus, switching the order of differentiation from the right hand side of (5.8) and
the limit from (5.9) is justified, which completes the proof.

2. The second statement follows from the first, the proof is exactly like the one of
[6, Theorem 6.3], which we briefly reproduce here. Denote by (·, ·)X the natu-
ral pairing between closed forms of complementary degree (where one is rapidly
decreasing and the other of moderate growth). We have

(η,Λψ(f))X =
(
η, (Θ(·, z, ϕKM), ξk(f))k,L

)
X

= ((η,Θ(·, z, ϕKM))X , ξk(f))k,L = {ΛKM(η), f} .

Note only that the order of integration can be switched by absolute convergence.

6. Comparison of the two Green forms

In this section, we compare the Green forms of Kudla type GK(m,w, h), for m ∈ Q,
h ∈ L]/L and w ∈ R>0, and those of Bruinier type GB(m,h) (see below). The aim is to
transfer some of the results of Ehlen and Sankaran from [12] to the present setting.

6.1. Green form of Bruinier type

We first introduce the Green form of Bruinier type.
The Hejhal Poincaré series (also known as Maass-Poincaré series) of weight k of index

(m,h), h ∈ L]/L, m ∈ Z is defined as (for τ ∈ H, s ∈ C with σ = Re(s) > 1)

Fm,h(τ, s) =
1

4Γ(2s)

∑
A∈Γ∞\SL2(Z)

Ms(4π|m|v)e2πimueh |k,L− A, (6.1)

where Ms(t) = t−
k
2M− k

2
,s− 1

2
(t), with the M-Whittaker function Mκ,µ(t). Note that our

definition of Fm,h(τ, s) differs from [4, Definition 1.8] by a factor of 1
2
.

Set s0 = 1 − k
2
. For fixed s = s0, the Poincaré series Fm,h(τ, s0) have principal part

qmeh and form a basis of H+
k,L− , [see 4, Proposition 1.12]. Note further that by [6, Remark

3.10] ξk(Fm,h(τ, s0)) is a holomorphic, cuspidal Poincaré series of index (−m,h).
We now introduce two Green forms hrough the regularised pairing (see p. 22) of

the Hejhal Poincaré series with Θ(τ, z). First, we define the Bruinier type Green form
GB(m,h) by setting

GB(m,h)(z) := (Fm,h(τ, s0),Θ(·, z))regL− , (6.2)
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6.2. The Kudla type Green form as a theta lift

i.e., the regularised theta lift of the weak Maass form Fm,h(τ, s0). By Theorem 5.5
GB(m,h) is thus a Green current for the cycle Z(m,h).

6.2. The Kudla type Green form as a theta lift

Following [12, Section 2.4], we introduce truncated Poincaré series Pm,w,h with m ∈ Z,
w ∈ R>0 and h ∈ L]/L, of weight k = 2− (p+ q):

Pm,w,h(τ) =
1

2

∑
A∈Γ∞\SL2(Z)

[
σw(τ)q−meh

]
|k,L−A,

where σw(τ) =

{
1 if v ≥ w

0 if v < w.

Further, if m 6∈ 1
2
(h, h) + Z we set Pm,w,h = 0.

Proposition 6.1. The regularised pairing (Pm,w,h,Θ(·, z))regL− exists. On D \D(h,m), it
satisfies the identity

(Pm,w,h,Θ(·, z))regL− = −ΞK(m,w, h)− δm,0δh,0ψ(0) log(w).

The Kudla type Green form ΞK(m,w, h) can thus be expressed as a regularized theta
lifting. This also affords an (albeit discontinuous) extension of ΞK(m,w, h) to all D.

Proof. Assume that z /∈ D(m,h). We evaluate the regularized pairing by unfolding using
the modularity of Θ and see

(Pm,w,h,Θ(·, z))regL− = CT
s=0

lim
t→∞

∫
Ft−Fw

∑
λ∈L+h

(λ,λ)=m

q−mψ(
√

2vλ)v−sdµ

= CT
s=0

∫ ∞
w

∑
λ∈L+h

(λ,λ)=m

ψ0(
√

2vλ, z)v−s−1dv.

Now, for m 6= 0 this extends smoothly to the entire s-plane and for s = 0, we obtain

−
∑
λ∈L+h

(λ,λ)=m

Ψ0(
√

2vλ, z) = −ΞK(m,w, h).

Similarly, for m = 0 we obtain −ΞK(m,w, h) from the sum over λ 6= 0. The term for
λ = 0 contributes

ψ(0) CT
s=0

lim
t→∞

∫ t

w

v−s−1dv = −ψ(0) CT
s=0

lim
t→∞

1
s

(
t−s − w−s

)
= −ψ(0) log(w).
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6. Comparison of the two Green forms

6.3. The difference of the two Green forms as a modular form

Now, with the results of [12], we can show that the difference of GK(m, v) and GB(m)
is, essentially a modular form.

Lemma 6.2. The difference

(Pm,w,h,Θ(·, z))regL− − (Fm,h,Θ(·, z))regL−

extends to a smooth differential (q − 1, q − 1)-form on D.

Proof. Since the principal part of Fm,h is given by q−meh this is immediate from Propo-
sition 5.4 and Proposition 6.1.

We now assume p+ q > 2. Using [12, Theorem 1.1], we show the following:

Theorem 6.3. Assume p+ q > 2, and fix z ∈ D. The generating series

F (τ, z) = − log(v)ψ(0)e0 −
∑
m∈Q

(
ΞK(m, v)− GB(m)

)
(z) qm

is an element of A!
p+q,L. Furthermore, F satisfies Lp+q(F )(τ, z) = −Θ(τ, z) and is

orthogonal to cusp forms.

Proof. We observe that Θ(τ, z;ψ), as a function on H is contained in the space Amod
(p+q−2),L,

see Definition 5.2. Clearly by Proposition 6.1 the generating series above can be written
as ∑

m∈Q

∑
h∈L]/L

(Pm,v,h − Fm,h,Θh(·, z))regL− q
meh.

Since κ is an integer and satisfies κ = p+ q − 2 > 0, by [12, Theorem 1.1], this generat-
ing series, as a function on H, is the q-expansion of a modular form F in A!

p+q,L, which
satisfies Lp+q(F ) = −Θ, has trivial principal part and trivial cuspidal holomorphic pro-
jection, i.e. for every cusp form G in Sκ,L, the (regularised) Petersson product 〈F,G〉reg
vanishes.

Remark 6.4. We note that Theorem 6.3 also gives a different approach to the duality
statement Theorem 5.6. Namely, consider ddcF (τ) and take the Petersson inner product
with the holomorphic Poincare series ξk(Fm,h(τ, s0)) of index (−m,h). This vanishes and
computing the inner product explicitly (using the formulas for holomorphic projection)
one obtains Theorem 5.6. We leave the details to the reader.

We thank Stephan Ehlen for this comment.
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7. Poincaré series

In this section we introduce and study the form GBs (m,h) depending on a complex
parameter s and identify it with the Green form constructed by Oda-Tsuzuki [28].

Namely, for s ∈ C with Re(s) = σ > 1, we define

GBs (m,h)(z) := lim
t→∞

∫
Ft
〈Fm,h(τ, s),Θ(τ, z)〉L dµ

Similar to Section 2.2 in [4] it can be seen that the (regularized) integral converges for
σ sufficiently large and can be analytically continued to the region σ > 1 with s 6= s0.

Remark 7.1. We can also define GBs0(m,h)(z) for s = s0 as the constant term of the
Laurent expansion of GBs (m,h)(z) at s = s0. We note that GB(m,h), see (6.2) and
GBs0(m,h) are not quite identical; due to the different regularization procedures, they
differ by a smooth term. See [4, Proposition 2.11] for further details in the orthogonal
case.

To ease the comparison with the work of Oda-Tsuzuki, we use the identification of

differential forms on D with K-invariant functions on G with values in
∧•

p∗. In our

situation, this means to consider GBs (m,h) as a function on G with values in
∧q−1,q−1

p∗

by first setting ψ(x, g) := ψ(g−1x, z0) for g ∈ G and then defining

GBs (m,h)(g) := lim
t→∞

∫
Ft
〈Fm,h(τ, s),Θ(τ, g)〉L dµ.

It is then clear that GBs (m,h) is holomorphic in s in the convergent range.

7.1. An eigenvalue equation

Now, we show that the Green form GBs (m,h) satisfies an eigenvalue equation under the
action of the Casimir element for U(p, q) as the one in [28], Theorem 18 (iii) (with a
different normalization of the holomorphic parameter s). The overall strategy follows of
[4, Chapter 4.1] using results of Shintani [29] and additionally Hufler [20]. We denote
by CSL2 , CU(p,q) and CO(2p,2q) the respective Casimir elements of SL2(R), U(p, q) and
O(2p, 2q) in the universal enveloping algebra.

Let φ = φ(x, τ, z0) be a Schwartz form and κ the weight of φ(τ) under the Weil
representation. As φ satisfies condition (1.19) of [29] with m = 2κ, by [29, Lemma 1.4]
we have

ω(g′τ )CSL2 φ(x) = 4

[
v2

(
∂2

∂2u
+

∂2

∂2v

)
− κiv ∂

∂u

]
ω(gτ )φ(x)

= −4

[
∆κ − vκ

∂

∂v

]
ω(gτ )φ(x),

wherein g′τ =
(√

v u
√
v
−1

√
v
−1

)
. By a brief calculation we thus have

4∆κφ(x, τ) = κ(κ− 2)φ(x, τ)− v−
κ
2ω(g′τ )CSL2 φ(x).
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7. Poincaré series

Now, by [29, Lemma 1.5] we have with m = dimC(V ) = p+ q

CSL2 φ(x) =
[
CO(2p,2q) +m(m− 2)

]
φ(x).

We note that the operation of SL2(R) by the Weil representation commutes with CO(2p,2q).
Hence, we get

4∆κφ(x, τ) = [κ(κ− 2)−m(m− 2)]φ(x, τ)− CO(2p,2q) φ(x, τ).

Now, by a result of Hufler [see 20, Satz 6.10], who carries out the analogous computations
for the Schwartz form ϕ0,

CU(p,q) φ(x) = CO(2p,2q)φ(x)− 2

(
=

(
m∑
j=1

zj
∂

∂zj

))2

φ(x). (7.1)

Now set φ = ψ. The second term on the right hand side of (7.1) vanishes for ψ and with
κ = p+ q − 2 = m− 2, we get

4∆κψ = −4κψ − CU(p,q)ψ.

The following Lemma is an immediate consequence.

Lemma 7.2. The theta function Θ(τ, z), considered as a function on H, satisfies the
following differential equation:

4∆κΘ(τ, z0) =
[
−4κ− CU(p,q)

]
Θ(τ, z0).

Noting that the Poincaré series Fm,h is an eigenfunction of ∆k with eigenvalue κ2

4
+

κ
2

+ s(1− s) [see 4, p. 29], we have the following analogue of [4, Lemma 4.4], the proof
of which is quite similar:

Lemma 7.3. For the regularised pairing of Θ(τ, z) and the Maass Poincaré series Fm,h
of weight −κ, we have

(Fm,h,∆κΘ(·, z))regL− = (∆−κFh,m,Θ(·, z))regL− − κ (Fh,m,Θ(·, z)))regL−
=
(
κ2

4
− κ

2
+ s(1− s)

)
(Fh,m,Θ(·, z)))regL− .

By combining the two Lemmas we get

Theorem 7.4. Recall κ = p + q − 2. The Green form GBs (h,m) is an eigenfunction of
the Casimir operator CU(p,q), with

CU(p,q)GBs (m,h) =
(
(2s− 1)2 − (κ+ 1)2

)
GBs (m,h). (7.2)

Proof. Due to locally uniform convergence of the regularized lift and all partial deriva-
tives, we have

CU(p,q) (Fm,h(·, s),Θ(·, z))regL− =
(
Fm,h(·, s),CU(p,q)Θ(·, z)

)reg
L−

= −4 (Fm,h(·, s), (∆κΘ)(·, z))regL− − 4k (Fm,h(·, s),Θ(·, z))regL− ,

by Lemma 7.2. The statement then follows by Lemma 7.3.
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7.2. Unfolding against the Poincaré series

7.2. Unfolding against the Poincaré series

In this section, we calculate GB(m,h)(z0) by unfolding the theta integral against the
Poincaré series Fm,h(τ, s). To facilitate notation we write

Pψ
2`(λ) :=

2i(−1)q−1

22(q−1)

∑
α,β

P 2q−2
α,β;2`(λ)⊗ Ωq−1(α; β) (7.3)

for the homogeneous component of degree 2` of the polynomial part Pψ(λ) of the
Schwartz form ψ.

Theorem 7.5. We have

GBs (m,h) =
(2π|m|)s−

k
2

2Γ(2s)

×
∑
λ∈h+L

(λ,λ)=m

q−1∑
`=0

Pψ
2`(λ)

Γ(s− k
2

+ `)(
2π
(
λz⊥0 , λz⊥0

))s− k2 +`
2F1

(
s− k

2
+ `, s+ k

2
; 2s;

|m|(
λz⊥0 , λz⊥0

)).
Here 2F1 denotes the standard Gaussian hypergeometric function.

Proof. From the definition of Fm,h (6.1), and using the unitarity of ρL and the transfor-
mation property of Θ(τ) we have

GBs (m,h)

=
1

4Γ(2s)

∫ reg

F
〈

∑
A∈Γ∞\SL2(Z)

Ms(4π|m|=(Aτ))e2πimRe(Aτ)j(A, τ)−keh, ρL(A)Θ(τ, z0)〉L− dµ

=
1

4Γ(2s)

∫ reg

F

∑
A∈Γ∞\SL2(Z)

Ms(4π|m|=(Aτ))e2πimRe(Aτ)θh(Aτ, z0) dµ.

Now, arguing exactly as in [4, p.55f], the unfolding (justified by absolute convergence
for σ > 1 + p

2
+ q

2
) is allowed, and we obtain

GBs (m,h) =
2

4Γ(2s)

∫ ∞
v=0

∫ 1

u=0

Ms(4π|m|v)e2πimuθh(τ, z0)v−2 du dv.

Inserting the Fourier expansion of θh(τ, z) and integrating over u one sees

(4π|m|)−
k
2

2Γ(2s)

∫ ∞
v=0

∑
λ∈h+L

(λ,λ)=−m

M− k
2
,s− 1

2
(4π|m|v)e4π(λz0 ,λz0)v−2π(λ,λ)vv−

k
2
−1

q−1∑
`=0

v`Pψ
2`(
√

2λ)

=
(4π|m|)−

k
2

2Γ(2s)

∑
λ∈h+L

(λ,λ)=−m

q−1∑
`=0

2`Pψ
2`(λ)

∫ ∞
v=0

v−
k
2

+`−1M− k
2
,s− 1

2
(4π|m|v)e−2πv(λ,λ)z0dv.
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7. Poincaré series

The integrals are Laplace transforms, which can be evaluated as usual [see 13, p. 215].
We get for each integral

(4π|m|)s(
4π
(
λz⊥0 , λz⊥0

))s− k2 +`
Γ
(
s− k

2
+ `
)

2F1

(
s− k

2
+ `, s+ k

2
; 2s;

|m|(
λz⊥0 , λz⊥0

)),
and the result follows.

We denote the individual summands for GBs (h,m) in Theorem 7.5 by φs(λ), that is,

φs(λ) :=
(2π|m|)s−

k
2

2Γ(2s)

q−1∑
`=0

Pψ
2`(λ)

Γ(s− k
2

+ `)(
2π
(
λz⊥0 , λz⊥0

))s− k2 +`
2F1

(
s− k

2
+ `, s+ k

2
; 2s; |m|(

λ
z⊥0
,λ
z⊥0

)).
Proposition 7.6. Assume m > 0. Let H be the stabilizer of λ in G. Then

(i)

φs(λ) ∈ C∞
(

(G−HK)/K;
∧(q−1),(q−1)

p∗
)

(ii) φs(λ) is holomorphic in s.

(iii) Let λ =
√
mv1 and consider g = at = exp(tX1p+q) as in the proof of Proposi-

tion 4.5. Then there exists a non-zero constant C such that

lim
t→0

t2(q−1)φs(λ, at) = CΩq−1(1, 1).

(iv) With the hypothesis as in (iv) we have

φs(λ, at) = O(e−(2Re(s)+p+q)t))

as t→∞.

Proof. (i) and (ii) are clear. Now assume λ =
√
mv1 and take g = at = exp(tX1p+q).

Then a−1
t λz⊥0 = cosh(t)

√
mv1, and we calculate

φs(λ, at) =
1

2Γ(2s)

q−1∑
`=0

Pψ
2`(
√
mv1)

×
Γ(s− k

2
+ `)

(2πm)` (cosh t)2s−k+2` 2F1

(
s− k

2
+ `, s+ k

2
; 2s;

1

cosh2 t

)
=

1

2Γ(2s)

q−1∑
`=0

Pψ
2`(v1)

Γ(s− k
2

+ `)

(2π)` (cosh t)2s−k 2F1

(
s− k

2
+ `, s+ k

2
; 2s;

1

cosh2 t

)
=

1

2Γ(2s)

q−1∑
`=0

Pψ
2`(v1)

Γ(s− k
2

+ `)

(2π)` (cosh t)2s−k

(
sinh t

cosh t

)−2`

2F1

(
s+ k

2
− `, s− k

2
; 2s;

1

cosh2 t

)
.
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Here we used 2F1(a, b; c, z) = (1−z)c−a−b2F1(c−a, b−a; c, z). Then (iii) follows from the
second line of the previous equation, while (iv) from the third line, properties of Pψ

2`(v1)
and 2F1(s+ k

2
− (q − 1), s− k

2
; 2s; 1) = Γ(2s)Γ(q − 1)/Γ(s− k

2
+ q − 1)Γ(s+ k

2
).

Oda and Tsuzuki in [28], Theorem 18, show that the properties (i)-(iv) in Theorem 7.6
together with the Casimir equation uniquely determine the function. Using Theorem 7.4
we conclude

Corollary 7.7. The Green forms GBs (m,h) agree (up to a constant) with the (global)
Green forms constructed by Oda and Tsuzuki in [28].

Remark 7.8. Similarly one can evaluate the regularized pairing of Θ(τ, z) with the
non-holomorphic Eisenstein series

Eh(τ, s) =
∑

A∈Γ∞\SL2(Z)

vseh |k,L− A,

corresponding to GBs (0, h). After unfolding, and integration one has

(Eh(·, s),Θ(·, z))regL− |z=z0= 2

q−1∑
`=0

Γ(s+ `)

(2π)s+`

∑
λ∈L+h
(λ,λ)=0

(λz0 , λz0)
−s−`Pψ

2`(λ).

This expression can be written in terms of Eisenstein series for the discriminant kernel
G(L) in U(V ). After setting

ζh,λ(s) :=
∑
a∈O×F
aλ∈L+h

NF/Q(a)−s, P (L) = {λ ∈ L]; λ primitive, (λ, λ) = 0},

where F is the underlying imaginary quadratic field, one obtains

2

q−1∑
`=0

Γ(s+ `)∣∣O×F ∣∣(2π)s+`

∑
λ∈G(L)\P (L)

ζh,λ(s) Pψ
2`(λ)

∑
γ∈G(L)λ\G(L)

(λγz0 , λ)−s−`.

A. Calculations in the Fock model

In this section, we prove the main properties of the Schwartz functions from section 3.
We use the polynomial Fock model for the Weil representation, the setup of which is
reviewed in section B. We use the intertwining map ι : S(V ) −→ P(C2(p+q)) between the
Schrödinger model and the space of complex polynomials in 2(p+ q) variables, on which
the action of the Weil representation ω is given by the Fock model. Note that ι(ϕ0) = 1.
Further main properties of the intertwining operator are summarized in Lemma B.3.

We abbreviate the variables in the Fock model for U(p, q) × U(1, 1) by z′′α = z′′α1,
z′α = z′α2, z′µ = z′µ1 and z′′µ = z′′µ2. We then have (see Lemma B.3):

D =
1

22q

(
−i√
2π

)q∏
µ

p∑
α=1

z′′α ⊗ A′αµ and D̄ =
1

22q

(
−i√
2π

)q∏
µ

p∑
β=1

z′β ⊗ A′′βµ.
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A. Calculations in the Fock model

By applying this to 1⊗ 1 = ι(ϕ0 ⊗ 1), we see that ϕKM is given by

ϕKM =
(−1)q

23qπ2q

∑
α1,...,αq
β1,...,βq

z′′α1
· · · z′′αqz

′
β1
· · · z′βq ⊗ Ωq(α1, . . . , αq; β1, . . . , βq),

while the form ψ is given by

ψ =
2i

23(q−1)π2(q−1)

∑
α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1).

A.1. Proof of Proposition 3.2

We first verify that ψ has the correct transformation behavior under the operation of
k′ ' so2(R).

Lemma A.1. Under the operation of k′, the form ψ has weight p+ q − 2. That is,

ω
(

0 1
−1 0

)
ψ = i(p+ q − 2)ψ.

Proof. We use the formula for the operation of the generators of k′ through the Weil
representation from Lemma B.2 on p. 42, setting r = s = 1:

ω(w1 ◦ w1 + iw1 ◦ w1i) = 2i

[
p∑

α=1

z′′α
∂

∂z′′α
−

p+q∑
µ′=p+1

z′µ′
∂

∂z′µ′

]
+ i(p− q)

and ω(w2 ◦ w2 − iw2 ◦ w2i) = 2i

[
p∑

α′=1

z′α′
∂

∂z′α′
−

p+q∑
µ=p+1

z′′µ
∂

∂z′′µ

]
+ i(p− q).

Note that, since ΦW (iw ◦w) = 0, this is actually the same as ω(w1 ◦w1) and ω(w2 ◦w2),
respectively.

As su(W ) ' sl2(R), we are mainly interested in the behaviour of ψ under the operation
of
(

0 1
−1 0

)
(while of course, ( i 0

0 i ) generates the center). We have

ω
(

0 1
−1 0

)
= ω

(
1
2

(w1 ◦ w1 + w2 ◦ w2)
)

= i

[
p∑

α=1

z′′α
∂

∂z′′α
+

p∑
α′=1

z′α′
∂

∂z′α′
−

p+q∑
µ′=p+1

z′µ′
∂

∂z′µ′
−

p+q∑
µ=p+1

z′′µ
∂

∂z′′µ

]
+ i(p− q).

Bearing in mind that ψ doesn’t depend on z′µ′ and z′′µ the claim now follows from

p∑
α=1

z′′α
∂

∂z′′α
ψ =

p∑
α′=1

z′α′
∂

∂z′α′
ψ = (q − 1)ψ,

which is easily checked.
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A.1. Proof of Proposition 3.2

Lemma A.2. The Schwartz form ψ is invariant under the operation of k.

Proof. We need to show Z(ψ) = 0 for all Z ∈ k. Using the explicit formula for ψ given
above (and ignoring constants), this means, using that Z acts as a derivation,

0 =
∑

α1,...,αq−1

β1,...,βq−1

ω(Z)
(
z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1

)
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

+
∑

α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1
⊗ Z. (Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)) .

Now let Z = Z ′αβ ∈ Hom(V ′+, V
′

+). Then the Weil representation action gives

ω(Z ′αβ)
(
z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1

)
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

= −
q−1∑
j=1

z′′αz
′′
α1
· · · ẑ′′αj · · · z

′′
αq−1

z′β1 · · · z
′
βq−1
⊗ Ωq−1(α1, . . . , β, . . . , αq−1; β1, . . . , βq−1)

+

q−1∑
j=1

z′′α1
· · · z′′αq−1

z′βz
′
β1
· · · ẑ′βj · · · z

′
βq−1
⊗ Ωq−1(α1, . . . , αq−1; β1, . . . , α, . . . , βq−1).

Now k ' Hom(V ′+, V
′

+) acts on p+ ' Hom(V−, V+) by composition. We obtain

Z ′αβ.Z
′
αjµ

= −δβαjZ ′αµ,
and hence for the dual action we see

Z ′αβ.ξ
′
αjµ

= δααjξ
′
βµ.

In the same way we see
Z ′αβ.ξ

′′
βjµ

= −δββjξ′′αµ.
This gives

z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1
⊗ Z ′αβ.Ωq−1(α1, . . . , αq−1; β1, . . . , βq−1)

=

q−1∑
j=1

z′′α1
· · · z′′α · · · z′′αq−1

z′β1 · · · z
′
βq−1

Ωq−1(α1, . . . , β, . . . αq−1; β1, . . . , βq−1)

= −
q−1∑
j=1

z′′α1
· · · z′′αq−1

z′α′1 · · · z
′
β · · · z′α′q−1

Ωq−1(α1, . . . , αq−1; β1, . . . , α, . . . βq−1).

Combining all this shows Z ′αβψ = 0, as desired.
We now consider the action of Z ′µν ∈ Hom(V ′−, V

′
−). The Weil representation action

on ψ clearly vanishes. Now the action on p+ is given by Z ′µν .Z
′
αµ′ = δµµ′Z

′
αν and hence

Z ′µνξ
′
αjµ′

= −δνµ′ξ′αjµ and Z ′µνξ
′′
βjµ′

= δµµ′ξ
′′
βjν
.

From this it is easy to see that

Z ′µνΩq−1(α1, . . . , αq−1; β1, . . . , βq−1) = 0.

for all α, β.
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A. Calculations in the Fock model

A.2. Proof of Theorem 3.3

Recall

d =
1

2

(
∂ + ∂̄

)
, dc =

(
∂ − ∂̄

)
4πi

, ddc = − 1

4πi
∂∂̄.

In the Fock model, the differential operators ∂, ∂̄ are given by (see Lemmas B.1, B.2)

∂ =
∑
α,µ

[
1

4π
z′′αz

′
µ − 4π

∂2

∂z′α∂z
′′
µ

]
⊗ A′αµ, ∂̄ =

∑
β,ν

[
1

4π
z′βz

′′
ν − 4π

∂2

∂z′′β∂z
′
ν

]
⊗ A′′βν .

For the lowering operator L = − i
2
ω(w1 ◦ w2 + iw1 ◦ w2i), we have

L = −4π
∑
γ

∂2

∂z′′γ∂z
′
γ

+
1

4π

∑
µ

z′′µz
′
µ.

For simplicity we drop all constants and consider

ϕ′KM =
∑

α1,...,αq
β1,...,βq

z′′α1
· · · z′′αqz

′
β1
· · · z′βq ⊗ ξ

′
α1p+1 ∧ · · · ξ′αqp+q ∧ ξ

′′
β1p+1 ∧ · · · ∧ ξ′′βqp+q,

ψ′ =
∑

α1,...,αq−1

β1,...,βq−1

z′′α1
· · · z′′αq−1

z′β1 · · · z
′
βq−1

⊗
q∑
j=1

ξ′α1p+1 ∧ · · · ∧ ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ∧ ξ̂′′·p+j ∧ · · · ∧ ξ′′βq−1p+q

.

Then the claim is equivalent to

Lϕ′KM = (−1)q−14π∂∂̄ψ′,

which we show by a direct calculation of both sides. We have

Lϕ′KM =
1

4π

(∑
µ

z′′µz
′
µ

)
ϕ′KM

− 4π
∑
α,β

q∑
j,k=1

δαjβkz
′′
α1
· · · ẑ′′αj · · · z

′′
αq−1

z′β1 · · · ẑ
′
βk
· · · z′βq−1

⊗ ξ′α1p+1 ∧ · · · ∧ ξ′αjp+j ∧ · · · ξ
′
αqp+q ∧ ξ

′′
β1p+1 ∧ · · · ∧ ξ′′βkp+k ∧ · · · ∧ ξ

′′
βqp+q.
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A.3. The auxiliary form dcψ

On the other hand,

∂∂̄ψ′ =
1

16π2

∑
α,β,µ,ν

(
z′′αz

′
βz
′
νz
′′
µ ⊗ ξ′αν ∧ ξ′′βµ

)
ψ′

−
∑

α1,...,αq−1

β1,...,βq−1

α,β,µ

z′′α1
· · · z′′αq−1

∂

∂z′α

(
z′βz

′
β1
· · · z′βq−1

)

⊗ ξ′αµ ∧ ξ′′βµ ∧
q∑
j=1

ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

.

For the first term, it is easy to see that only the terms µ = ν contribute and one obtains

(−1)q−1 1

16π2

(∑
µ

z′′µz
′
µ

)
ϕ′KM .

For the second, only terms µ = p+ j contribute and one obtains

(−1)q
∑

α1,...,αq−1

β1,...,βq−1

α0,β0

z′′α1
· · · z′′αq−1

q−1∑
k=0

δα0βkz
′
β0
z′β1 · · · ẑβk · · · z

′
βq−1

⊗
q∑
j=1

ξ′α1p+1 ∧ · · · ∧ ξ′α0p+j
· · · ∧ ξ′αq−1p+q

∧ ξ′′β1p+1 ∧ · · · ∧ ξ′′β0p+j ∧ · · · ∧ ξ
′′
βq−1p+q

.

Now comparing the formulas for Lϕ′KM and ∂∂̄ψ′ gives the claim.

A.3. The auxiliary form dcψ

We now give a more explicit description of dcψ. We have

1

4π
∂ψ =

i

23(q−1)π2(q−1)

1

2π

∑
α,β
γ,µ

z′′γz
′
µz
′′
αz
′
β ⊗ ξ′γµ ∧ Ωq−1(α; β)

=
i

23q−2π2q−1

∑
γ,α1,...,αq−1

β1,...,βq−1

z′′γz
′′
α1
· · · z′′αq−1

z′β

q∑
j=1

(−1)j−1z′p+j

⊗ ξ′α1p+1 ∧ · · · ξ′γp+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

.

Similarly,

1

4π
∂̄ψ =

i

23q−2π2q−1

∑
α1,...,αq−1

γ,β1,...,βq−1

z′′αz
′
γz
′
β1
· · · z′βq−1

q∑
j=1

(−1)q+jz′′p+j

⊗ ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ′′γp+j · · · ∧ ξ′′βq−1p+q

.
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B. The Fock model for unitary dual pairs

Now, ψ′ is the difference of these two terms.
Finally, we want give an explicit form of dcψ in the Schrödinger model. (Note that
Dµϕ0 = 2z̄µϕ0.) We have

dcψ(x) =
1

23q−1π2q−1

[∑
α,β
γ

DαDγD̄βϕ0(x)⊗Q′α,γ;β(x)−
∑
α,β
γ

DαD̄γD̄βϕ0(x)⊗Q′′α;β,γ(x)

]
.

(A.1)
Here Q′α,γ;β(x) and Q′′α;β,γ(x) are given by

Q′α,γ;β(x)

=

q∑
j=1

(−1)j−1zp+j ⊗ ξ′α1p+1 ∧ · · · ξ′γp+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ̂′′·p+j · · · ∧ ξ′′βq−1p+q

Q′′α;β,γ(x)

=

q∑
j=1

(−1)q+j z̄p+j ⊗ ξ′α1p+1 ∧ · · · ξ̂′·p+j · · · ∧ ξ′αq−1p+q
∧ ξ′′β1p+1 ∧ · · · ξ′′γp+j · · · ∧ ξ′′βq−1p+q

.

B. The Fock model for unitary dual pairs

We review the Fock model of the Weil representation for the dual pair U(p, q)×U(r, s).
We follow [1, 26, 24], see also [16].

B.1. The Fock model for the symplectic group

Let (W, 〈·, ·〉) be a non-degenerate real symplectic space of dimension 2N and let J be
a positive definite complex structure on W , i.e., the bilinear form given by 〈w1, Jw2〉 is
positive definite. Let e1, . . . , eN ; f1, . . . , fN be a standard symplectic basis of W so that
Jej = fj and Jfj = −ej. We decompose

W⊗ C = W′ ⊕W′′

into the +i and −i eigenspaces under J . Then w′j = ej − fji and w′′j = ej + fji form a

(symplectic) basis for W′ and W′′ respectively with
〈
w′j, w

′′
k

〉
= 2iδjk.

We identify Sym•(W′′) with the polynomial functions P(CN) = C[z1, . . . , zN ] on W′
via zj(w

′′
k) =

〈
w′j, w

′′
k

〉
= 2iδjk. For λ ∈ C∗, we define an action ρλ of W on P(CN) by

ρλ(w
′′
j ) = zj and ρλ(w

′
j) = 2iλ

∂

∂zj
,

which induces an action of the associated quantum algebra Wλ. We identify Sym2(W)
with sp(W) via

(x ◦ y)(z) = 〈x, z〉y + 〈y, z〉x.
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B.2. Unitary dual pairs

Then the action ωλ of sp(W)⊗ C on P(CN) is given by

ωλ(x ◦ y) =
1

2λ
(ρλ(x)ρλ(y) + ρλ(y)ρλ(x)) . (B.1)

This is the Fock model of the Weil representation with central character λ.

B.2. Unitary dual pairs

Let (V, (·, ·)) be a complex vector space of dimension m = p + q with a non-degenerate
Hermitian form (·, ·) of signature (p, q). Recall that we assume that (·, ·) is C-linear
in the second and C-antilinear in the first variable. We pick standard orthogonal basis
elements vα (α = 1, . . . , p) and vµ (µ = p + 1, . . . ,m) of length 1 and −1 respectively.
We let θ be the Cartan involution with respect to this chosen basis of V and obtain a
decomposition V = V+ ⊕ V−. Let G = U(V ) ' U(p, q) and let g0 = u(V ) ' u(p, q). We
write g = g0 ⊗ C for the complexification of g0, viewed as a right C vector space.

We let (W, 〈, 〉) be a complex vector space with a non-degenerate skew-Hermitian form
〈, 〉 of signature (r, s), again C-linear in the second and C-antilinear in the first variable.
We pick an “orthogonal” basis wa (a = 1, . . . , r) and wu (u = r + 1, . . . , r + s) such
that 〈wa, wa〉 = i and 〈wu, wu〉 = −i. We obtain a decomposition W = W+ ⊕ W−.
We let J0 be a positive define complex structure with respect to this decomposition
of W ; that is, J0 acts by multiplication with −i on W+ and with i on W−. We let
G′ = U(W ) ' U(r, s) and let g′0 = u(W ) ' u(r, s). The two factors of the maximal
compact subgroup K ′ ' U(r)×U(s) of G′ act on the subspaces W+ and W− respectively.
We let WC = W ⊗R C be the complexification of W , which we again view as a right
C-vectorspace. We write g′ = g′0⊗C. Then the +i-eigenspace W ′ and the −i eigenspace
W ′′ of J0 are spanned by

w′a := wa + iwai w′u := wu − iwui,
w′′a := wa − iwai w′′u := wu + iwui.

Similarly as for V , we define the R-linear surjective map by

φW (w ◦ w̃)(x) = 〈w, x〉w̃ + 〈w̃, x〉w.

Note that we have φW (iw ◦ w̃) = φW (w ◦ −iw̃). As for V , we will drop φW and just
write w ◦ w̃ ∈ u(W ). In the standard decomposition

g′ = k′ ⊕ p′+ ⊕ p′−

we have

k′ = spanC{wa ◦ wb + iwa ◦ wbi} ⊕ spanC{wu ◦ wv + iwu ◦ wvi},
p′+ = spanC{wa ◦ wu − iwa ◦ wui},
p′− = spanC{wa ◦ wu + iwa ◦ wui}.
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B. The Fock model for unitary dual pairs

Note that for r = s = n, W is the split skew-Hermitian space of dimension 2n, and
we obtain a (symplectic) basis ej := wj + wn+j, fj := −i(wj − wn+j) of W . (Note that
〈ej, fj〉 = 2). Then the positive definite almost complex structure is the usual one given
by J0ej = fj and J0fj = −ej. For n = 1, we have su(W ) ' sl2(R), and the isomorphism
is realized by switching to the symplectic basis above. Then for k′ we see

1
2
(w1 ◦ w1 + w2 ◦ w2) =

(
0 1
−1 0

)
and 1

2
(w1 ◦ w1 − w2 ◦ w2) = ( i 0

0 i ) .

Note that φW (iw ◦ w) = 0. Furthermore,

L : = 1
2

(
1 −i
−i −1

)
= −i

2
[w1 ◦ w2 + iw1 ◦ w2i] ∈ p′−,

R : = 1
2

(
1 i
i −1

)
= i

2
[w1 ◦ w2 − iw1 ◦ w2i] ∈ p′+

give rise to the classical Maass lowering and raising operators for SL2.

Pairing up We define W = V ⊗C W , which we consider as a real vector space of
dimension 2(r + s)m. We define a symplectic form on W by

〈〈v ⊗ w, ṽ ⊗ w̃〉〉 = Re(v, ṽ)〈w, w̃〉.

We note that vα⊗wa, vµ⊗wa, vα⊗wu, vµ⊗wu and vα⊗−iwa, vµ⊗ iwa, vα⊗ iwu,vµ⊗
−iwu span Langrangian subspaces and give rise to a symplectic basis of W. (Note that
〈〈vα⊗wa, vα⊗−iwa〉〉 = 1). Now J = θ⊗J0 defines a positive definite complex structure
on W. We let WC = W ⊗R C be the complexification of W, which again we view as a
right C-vector space, and we extend 〈〈 , 〉〉 C-linearly. Then for the +i-eigenspace W′
and the −i eigenspace W′′ of J , we have

W′ = spanC{vα ⊗ w′a, vµ ⊗ w′′a, vα ⊗ w′u, vµ ⊗ w′′u},
W′′ = spanC{vα ⊗ w′′a, vµ ⊗ w′a, vα ⊗ w′′u, vµ ⊗ w′u}.

Note 〈〈vα⊗w′a, vα⊗w′′a〉〉 = 2i. In the Fock model, sp(W) acts on Sym•(W′′), which we
identify Sym•(W′′) with P(C(r+s)m) as follows. We denote the variables in P(C(r+s)m)
by z′′αa corresponding to vα ⊗ w′′a, z

′
µa corresponding to vµ ⊗ w′a, z

′
αu corresponding to

vα ⊗ w′′u, and z′′µu corresponding to vµ ⊗ w′u. Thus we have

ρλ(vα ⊗ w′a) = 2iλ ∂
∂z′′αa

, ρλ(vα ⊗ w′u) = 2iλ ∂
∂z′αu

,

ρλ(vα ⊗ w′′a) = z′′αa, ρλ(vα ⊗ w′′u) = z′αu,

ρλ(vµ ⊗ w′′a) = 2iλ ∂
∂z′µa

, ρλ(vµ ⊗ w′′u) = 2iλ ∂
∂z′′µu

,

ρλ(vµ ⊗ w′a) = z′µa, ρλ(vµ ⊗ w′u) = z′′µu.

Weil representation We naturally have u(V ) × u(W ) ⊂ sp(V ⊗W ), and one easily
checks that the inclusions j1 : u(V ) → sp(V ⊗W ) ' Sym2

R(V ⊗W ) and j2 : u(W ) →
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B.2. Unitary dual pairs

sp(V ⊗W ) ' Sym2
R(V ⊗W ) are given by

j1(v ∧ ṽ) =
r∑

a=1

[
(v ⊗ iwa) ◦ (ṽ ⊗ wa)− (v ⊗ wa) ◦ (ṽ ⊗ iwa)

]
−

r+s∑
u=r+1

[
(v ⊗ iwu) ◦ (ṽ ⊗ wu)− (v ⊗ wu) ◦ (ṽ ⊗ iwu)

]
and

j2(w ◦ w̃) =

p∑
α=1

[
(vα ⊗ w) ◦ (vα ⊗ w̃) + (ivα ⊗ w) ◦ (ivα ⊗ w̃)

]
−

p+q∑
µ=p+1

[
(vµ ⊗ w) ◦ (vµ ⊗ w̃) + (ivµ ⊗ w) ◦ (ivµ ⊗ w̃)

]
.

with v, ṽ ∈ V and w, w̃ ∈ W . From this, we see

j1 ((v ∧ ṽ) + (iv ∧ ṽ)i) =
1

i

r∑
a=1

[v ⊗ w′a] ◦ [ṽ ⊗ w′′a]−
1

i

r+s∑
u=r+1

[v ⊗ w′′u] ◦ [ṽ ⊗ w′u],

j1 ((v ∧ ṽ)− (iv ∧ ṽ)i) = −1

i

r∑
a=1

[v ⊗ w′′a] ◦ [ṽ ⊗ w′a] +
1

i

r+s∑
u=r+1

[v ⊗ w′u] ◦ [ṽ ⊗ w′′u]

and

j2(w ◦ w̃ ± (iw ◦ w̃)i) =

p∑
α=1

[vα ⊗ (w ± iwi)] ◦ [vα ⊗ (w̃ ∓ iw̃i)]

−
p+q∑

µ=p+1

[vµ ⊗ (w ± iwi)] ◦ [vµ ⊗ (w̃ ∓ iw̃i)].

With this we obtain the formulas for the Weil representation (see p. 39).

Lemma B.1. For the action of g ' u(p, q)(C) on P(C2mn), we have the following:

(i) The elements Z ′αβ, Z ′′αβ and Z ′µν, Z ′′µν in k act by

ωλ(Z
′
αβ) = −ωλ(Z ′′βα) = −

r∑
a=1

z′′αa
∂

∂z′′βa
+

r+s∑
u=r+1

z′βu
∂

∂z′αu
− r − s

2
δαβ,

ωλ(Z
′
µν) = −ωλ(Z ′′νµ) = −

r∑
a=1

z′νa
∂

∂z′µa
+

r+s∑
u=r+1

z′′µu
∂

∂z′′νu
− r − s

2
δµν .
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B. The Fock model for unitary dual pairs

(ii) The elements Z ′αµ of p+ and Z ′′αµ of p− act by

ωλ(Z
′
αµ) = − 1

2iλ

r∑
a=1

z′′αaz
′
µa + 2iλ

r+s∑
u=r+1

∂2

∂z′αu∂z
′′
µu

,

ωλ(Z
′′
αµ) = 2iλ

r∑
a=1

∂2

∂z′′αa∂z
′
µa

− 1

2iλ

r+s∑
u=r+1

z′αuz
′′
µu.

Lemma B.2. For the action of g′ ' u(r, s)(C) on P(C2mn), we have the following:

(i) For k′ we have

ωλ(wa ◦ wb + iwa ◦ wbi) = 2i

[
p∑

α=1

z′′αb
∂

∂z′′αa
−

p+q∑
µ=p+1

z′µa
∂

∂z′µb

]
+ i(p− q)δab,

ωλ(wu ◦ wv + iwu ◦ wvi) = 2i

[
p∑

α=1

z′αu
∂

∂z′αv
−

p+q∑
µ=p+1

z′′µv
∂

∂z′′µu

]
+ i(p− q)δuv.

(ii) For p′± we have

ωλ(wa ◦ wu − iwa ◦ wui) =
1

λ

p∑
α=1

z′′αaz
′
αu + 4λ

p+q∑
µ=p+1

∂2

∂z′µa∂z
′′
µu

,

ωλ(wa ◦ wu + iwa ◦ wui) = −4λ

p∑
α=1

∂2

∂z′′αa∂z
′
αu

− 1

λ

p+q∑
µ=p+1

z′µaz
′′
µu.

Intertwining We now give the intertwiner of the Fock model for λ = 2πi with the
Schrödinger model in the case when r = s = n. In that case, the Schrödinger model is
given by the space of Schwartz functions S(V n) on V n.

The K ′-finite vectors form the polynomial Fock space S(V n) ⊂ S(V n) which consists
of functions on V n of the form p(z)ϕ0(z), where p(z) is a polynomial function on V n and
ϕ0(z) is the standard Gaussian on V n. Here we use complex coordinates z = (z1, . . . , zn)
with zi = t(z1i, . . . , zmi) in V relative to the basis {vα, vµ}. The Weil representation
action of sp(V ⊗W ) now arises by the following action of the quantum algebra Wλ:

ω(vα ⊗ w′′j ) =
√

2πi

(
z̄αj −

1

π

∂

∂zαj

)
, ω(vα ⊗ w′n+j) =

√
2πi

(
z̄αj +

1

π

∂

∂zαj

)
,

ω(vα ⊗ w′′n+j) =
√

2πi

(
zαj −

1

π

∂

∂z̄αj

)
, ω(vα ⊗ w′j) =

√
2πi

(
zαj +

1

π

∂

∂z̄αj

)
,

ω(vµ ⊗ w′n+j) = −
√

2πi

(
z̄µj −

1

π

∂

∂zµj

)
, ω(vµ ⊗ w′′j ) = −

√
2πi

(
z̄µj +

1

π

∂

∂zµj

)
,

ω(vµ ⊗ w′j) = −
√

2πi

(
zµj −

1

π

∂

∂z̄µj

)
, ω(vµ ⊗ w′′n+j) = −

√
2πi

(
zµj +

1

π

∂

∂z̄µj

)
.
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Here 1 ≤ j ≤ n. We then have a unique Wλ-intertwining operator ι : S(V n)→ P(C2nm)
satisfying ι(ϕ0) = 1, and we have

Lemma B.3. The intertwining operator between the Schrödinger and the Fock model
satisfies

ι

(
z̄αj −

1

π

∂

∂zαj

)
ι−1 = −i 1√

2π
z′′αj, ι

(
z̄αj +

1

π

∂

∂zαj

)
ι−1 = 2

√
2i

∂

∂z′αn+j

,

ι

(
zαj −

1

π

∂

∂z̄αj

)
ι−1 = −i 1√

2π
z′αn+j, ι

(
zαj +

1

π

∂

∂z̄αj

)
ι−1 = 2

√
2i

∂

∂z′′αj
,

ι

(
z̄µj −

1

π

∂

∂zµj

)
ι−1 = i

1√
2π
z′′µn+j, ι

(
z̄µj +

1

π

∂

∂zµj

)
ι−1 = −2

√
2i

∂

∂z′µj
,

ι

(
zµj −

1

π

∂

∂z̄µj

)
ι−1 = i

1√
2π
z′µj, ι

(
zµj +

1

π

∂

∂z̄µj

)
ι−1 = −2

√
2i

∂

∂z′′µn+j

.
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