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Abstract

The complexity of Colouring is fully understood for H-free graphs, but there are
still major complexity gaps if two induced subgraphs H1 and H2 are forbidden. Let H1

be the s-vertex cycle Cs and H2 be the t-vertex path Pt. We show that Colouring
is polynomial-time solvable for s = 4 and t ≤ 6, strengthening several known results.
Our main approach is to initiate a study into the boundedness of the clique-width of
atoms (graphs with no clique cutset) of a hereditary graph class. As a complementary
result we prove that Colouring is NP-complete for s = 4 and t ≥ 9, which is the first
hardness result on Colouring for (C4, Pt)-free graphs. Combining our new results
with known results leads to an almost complete dichotomy for Colouring restricted
to (Cs, Pt)-free graphs.

1 Introduction

Graph colouring has been a popular and extensively studied concept in computer science
and mathematics since its introduction as a map colouring problem more than 150 years
ago due to its many application areas crossing disciplinary boundaries and to its use as a
benchmark problem in research into computational hardness. The corresponding decision
problem, Colouring, is to decide, for a given graph G and integer k, if G admits a
k-colouring, that is, a mapping c : V (G) → {1, . . . , k} such that c(u) �= c(v) whenever
uv ∈ E(G). Unless P = NP, it is not possible to solve Colouring in polynomial time
for general graphs, not even if the number of colours is limited to 3 [45]. To get a better
understanding of the borderline between tractable and intractable instances ofColouring,
it is natural to restrict the input to some special graph class. Hereditary graph classes,
which are classes of graphs closed under vertex deletion, provide a unified framework for
a large collection of well-known graph classes. It is readily seen that a graph class is
hereditary if and only if it can be characterized by a unique set H of minimal forbidden
induced subgraphs. Graphs with no induced subgraph isomorphic to a graph in a set H
are called H-free.
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Over the years, the study of Colouring for hereditary graph classes has evolved
into a deep area of research in theoretical computer science and discrete mathematics
(see, for example, [8, 29, 38, 53]). One of the best-known results is the classical result
of Grötschel, Lovász, and Schrijver [31], who showed that Colouring is polynomial-time
solvable for perfect graphs. Faster, even linear-time, algorithms are known for subclasses of
perfect graphs, such as chordal graphs, bipartite graphs, interval graphs, and comparability
graphs; see for example [29]. All these classes are characterized by infinitely many minimal
forbidden induced subgraphs.

Král’, Kratochv́ıl, Tuza, and Woeginger [43] initiated a systematic study into the com-
putational complexity of Colouring restricted to hereditary graph classes characterized
by a finite number of minimal forbidden induced subgraphs. In particular they gave a
complete classification of the complexity of Colouring for the case where H consists of
a single graph H.

Theorem 1 ([43]). If H is an induced subgraph of P4 or of P1 + P3, then colouring
restricted to H-free graphs is polynomial-time solvable, otherwise it is NP-complete.

Theorem 1 led to two natural directions for further research:

1. Is it possible to obtain a dichotomy for Colouring on H-free graphs if the number
of colours k is fixed (that is, k no longer belongs to the input)?

2. Is it possible to obtain a dichotomy for Colouring on H-free graphs if H has size 2?

We briefly discuss known results for both directions below and refer to [26] for a detailed
survey. Let Cs and Pt denote the cycle on s vertices and path on t vertices, respectively. We
start with the first question. If k is fixed, then we denote the problem by k-Colouring.
It is known that for every k ≥ 3, the k-Colouring problem on H-free graphs is NP-
complete whenever H contains a cycle [22] or an induced claw [35, 44]. Therefore, only
the case when H is a disjoint union of paths remains. In particular, the situation where
H = Pt has been thoroughly studied. On the positive side, 3-Colouring on P7-free
graphs [5], 4-Colouring on P6-free graphs [11, 12] and k-Colouring on P5-free graphs
for any k ≥ 1 [33] are polynomial-time solvable. On the negative side, Huang [36] proved
NP-completeness for (k = 5, t = 6) and for (k = 4, t = 7). The case (k = 3, t ≥ 8) remains
open, although some partial results are known [13].

In this paper we focus on the second question, that is, we restrict the input of Colour-
ing to H-free graphs for H = {H1, H2}. For two graphs G and H, we write G + H =
(V (G) ∪ V (H), E(G) ∪ E(H)) for the disjoint union of two vertex-disjoint graphs G and
H, and rG for the disjoint union of r copies of G. As a starting point, Král’, Kratochv́ıl,
Tuza, and Woeginger [43] identified the following three main sources of NP-completeness:

• both H1 and H2 contain a claw;

• both H1 and H2 contain a cycle; and

• both H1 and H2 contain an induced subgraph from the set {4P1, 2P1 + P2, 2P2}.
They also showed additional NP-completeness results by mixing the three types. Since
then numerous papers [3, 9, 10, 17, 18, 20, 32, 34, 36, 40, 43, 46, 50, 51, 52, 56] have
been devoted to this problem, but despite all these efforts the complexity classification
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for Colouring on (H1, H2)-free graphs is still far from complete, and even dealing with
specific pairs (H1, H2) may require substantial work.

One of the “mixed” results obtained in [43] is that Colouring is NP-complete for
(Cs, H)-free graphs when s ≥ 5 and H ∈ {4P1, 2P1 + P2, 2P2}. This, together with the
well-known result that Colouring can be solved in linear time for P4-free graphs (see also
Theorem 1) implies the following dichotomy.

Theorem 2 ([43]). Let s ≥ 5 be a fixed integer. Then Colouring for (Cs, Pt)-free graphs
is polynomial-time solvable when t ≤ 4 and NP-complete when t ≥ 5.

Theorem 2 raises the natural question: what is the complexity of Colouring on
(Cs, Pt)-free graphs when s ∈ {3, 4}?

For s = 3, Huang, Johnson and Paulusma [37] proved that 4-Colouring, and thus
Colouring, is NP-complete for (C3, P22)-free graphs. A result of Brandstädt, Klembt and
Mahfud [7] implies that Colouring is polynomial-time solvable for (C3, P6)-free graphs.

For s = 4, it is only known that Colouring is polynomial-time solvable for (C4, P5)-
free graphs [50]. This is unless we fix the number of colours: for every k ≥ 1 and t ≥ 1, it is
known that k-Colouring is polynomial-time solvable for (Kr,r, Pt)-free graphs for every
s ≥ 1, and thus for (C4, Pt)-free graphs [28] (take r = 2). The underlying reason for this is
a result of Atminas, Lozin and Razgon [2], who proved that every Pt-free graph either has
small treewidth or contains a large biclique Ks,s as a subgraph. Then Ramsey arguments
can be used but only if the number of colours k is fixed. The result for s = 4 and fixed k
is in contrast to the result of [37] that for all k ≥ 4 and s ≥ 5, there exists a constant tsk
such that k-Colouring is NP-complete even for (C3, C5, . . . , Cs, Ptsk

)-free graphs.

Our Main Results

We show, in Section 4, that Colouring is polynomial-time solvable for (C4, P6)-free
graphs. The class of (C4, P6)-free graphs generalizes the classes of split graphs (or equiv-
alently, (C4, C5, 2P2)-free graphs) and pseudosplit graphs (or equivalently, (C4, 2P2)-free
graphs). The case of (C4, P6)-free graphs was explicitly mentioned as a natural case to con-
sider in [26]. Our result unifies several previous results on colouring (C4, Pt)-free graphs,
namely: the polynomial-time solvability of Colouring for (C4, P5)-free graphs [50]; the
polynomial-time solvability of k-Colouring for (C4, P6)-free graphs for every k ≥ 1 [28];
and the recent 3/2-approximation algorithm for Colouring for (C4, P6)-free graphs [24].
It also complements a recent result of Karthick and Maffray [41] who gave tight linear up-
per bounds of the chromatic number of a (C4, P6)-free graph in terms of its clique number
and maximum degree that strengthen a similar bound given in [24].

It was not previously known if there exists an integer t such that Colouring is NP-
complete for (C4, Pt)-free graphs. In Section 5 we complement our positive result of Sec-
tion 4 by giving an affirmative answer to this question: already the value t = 9 makes the
problem NP-complete.

Our Methodology

The general research goal of our paper is to increase, in a systematic way, our insights in
the computational hardness of Colouring by developing new techniques. In particular we
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aim to narrow the complexity gaps between the hard and easy cases. Clique-width is a well-
known width parameter and having bounded clique-width is often the underlying reason for
a large collection of NP-complete problems, including Colouring, to become polynomial-
time solvable on a special graph class; this follows from results of [14, 23, 42, 54, 55].
For this reason we want to use clique-width to solve Colouring for (C4, P6)-free graphs,
However, the class of (C4, P6)-free graphs has unbounded clique-width, as it contains the
class of split graphs, or equivalently, (C4, C5, 2P2)-free graphs, which may have arbitrarily
large clique-width [49].

To overcome this obstacle we first preprocess the (C4, P6)-free input graph. An atom
is a graph with no clique cutset. Clique cutsets were introduced by Dirac [21], who proved
that every chordal graph is either complete or has a clique cutset. Later, decomposition
into atoms became a very general tool for solving combinatorial problems on chordal graphs
and other hereditary graph classes, such as those that forbid some Truemper configura-
tion [4]. For instance, Colouring and also other problems, such as Independent Set
and Clique, are polynomial-time solvable on a hereditary graph class G if they are so on
the atoms of G [58]. Hence, we may restrict ourselves to the subclass of (C4, P6)-free atoms
in order to solve Colouring for (C4, P6)-free graphs.

Adler et al. [1] proved that (diamond, even-hole)-free atoms have unbounded clique-
with. However, so far, (un)boundedness of the cliquewidth of atoms in special graph
classes has not been well studied. It is known that a class of H-free graphs has bounded
clique-width if and only if H is an induced subgraph of P4 (see [19]). As a start of a more
systematic study, we show in Section 3 that the same result holds fo atoms: a class ofH-free
atoms has bounded clique-width if and only if H is an induced subgraph of P4. In contrast,
we observe that, although split graphs have unbounded clique-width [49], split atoms are
cliques [21] and thus have clique-width at most 2. Recall that split graphs are characterized
by three forbidden induced subgraphs. This yields the natural question whether one can
prove the same result for a graph class characterized by two forbidden induces subgraphs.
In this paper we give an affirmative answer to this question by showing that the class of
(C4, P6)-free atoms has bounded clique-width. As mentioned, this immediately yields a
polynomial-time algorithm for Colouring on (C4, P6)-free graphs,

In order to prove that (C4, P6)-free atoms have bounded clique-width, we further de-
velop the approach of [24] used to bound the chromatic number of (C4, P6)-free graphs as a
linear function of their maximum clique size and to obtain a 3/2-approximation algorithm
for Colouring for (C4, P6)-free graphs. The approach of [24] is based on a decomposition
theorem for (C4, P6)-free atoms. We derive a new variant of this decomposition theorem
for so-called strong atoms, which are atoms that contain no universal vertices and no pairs
of twin vertices. We use this decomposition to prove that (C4, P6)-free strong atoms have
bounded clique-width. To obtain this result we also apply a divide-and-conquer approach
for bounding the clique-width of a subclass of C4-free graphs. As another novel element of
our proof, we show a new bound on the clique-width for (general) graphs in terms of the
clique-width of recursively defined subgraphs induced by homogeneous triples and pairs of
sets. Our techniques may be of independent interest and can possibly be used to prove
polynomial-time solvability of Colouring on other graph classes.

Remark. The Independent Set problem is to decide if a given graph G has an in-
dependent set of at least k vertices for some given integer k. Brandstädt and Hoàng [6]
proved that Independent Set is polynomial-time solvable for (C4, P6)-free graphs. As
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mentioned, just as for Colouring, it suffices to consider only the atoms of a hereditary
graph class in order to solve Independent Set [58]. Brandstädt and Hoàng followed this
approach. Although we will use one of their structural results as lemmas, their method
does not yield a polynomial-time algorithm for Colouring on (C4, P6)-free graphs.

2 Preliminaries

Let G = (V,E) be a graph. For S ⊆ V , the subgraph induced by S, is denoted by
G[S] = (S, {uv | u, v ∈ S}). The complement of G is the graph G with vertex set V and
edge set {uv | uv /∈ E}. A clique K ⊆ V is a clique cutset if G −K has more connected
components than G. If G has no clique cutsets, then G is called an atom. The edge
subdivision of an edge uv ∈ E removes uv from G and replaces it by a new vertex w and
two new edges uw and wv.

The neighbourhood of a vertex v is denoted by N(v) = {u | uv ∈ E} and its degree by
d(v) = |N(v)|. For a set X ⊆ V , we write N(X) =

⋃
v∈X N(v) \X. For x ∈ V and S ⊆ V ,

we let NS(x) be the set of neighbours of x that are in S, that is, NS(x) = NG(x) ∩ S. A
subset D ⊆ V is a dominating set of G if every vertex not in D has a neighbour in D. A
vertex u is universal in G if it is adjacent to all other vertices, that is, {u} is a dominating
set of G.

For X,Y ⊆ V , we say that X is complete (resp. anti-complete) to Y if every vertex
in X is adjacent (resp. non-adjacent) to every vertex in Y . Let u, v ∈ V be two distinct
vertices. We say that a vertex x /∈ {u, v} distinguishes u and v if x is adjacent to exactly
one of u and v. A set H ⊆ V is a homogeneous set if no vertex in V \H can distinguish
two vertices in H. A homogeneous set H is proper if 1 < |H| < |V |. A graph is prime if
it contains no proper homogeneous set.

We say that u and v are (true) twins if u and v are adjacent and have the same set
of neighbours in V \ {u, v}. Note that the binary relation of being twins is an equivalence
relation on V , and so V can be partitioned into equivalence classes T1, . . . , Tr of twins. The
skeleton of G is the subgraph induced by a set of r vertices, one from each of T1, . . . , Tr.
A blow-up of G is a graph G′ obtained by replacing each vertex u ∈ V by a clique Ku of
size at least 1, such that two distinct cliques Ku and Kv are complete in G′ if u and v
are adjacent in G, and anti-complete otherwise. Since each equivalence class of twins is a
clique and any two equivalence classes are either complete or anti-complete, every graph
is a blow-up of its skeleton.

Let {H1, . . . , Hp} be a set of p graphs for some integer p ≥ 1. We say that G is
(H1, . . . , Hp)-free if G contains no induced subgraph isomorphic to Hi for some 1 ≤ i ≤ p.
If p = 1, we may write that G is H1-free instead. If V can be partitioned into a clique C
and an independent set I, then G is a split graph.

The clique-width of a graph G, denoted by cw(G), is the minimum number of labels
required to construct G using the following four operations:

• i(v): create a new graph consisting of a single vertex v with label i;

• G1 ⊕G2: take the disjoint union of two labelled graphs G1 and G2;

• ηi,j : join each vertex with label i to each vertex with label j (for i �= j);

• ρi→j : rename label i to j.
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Figure 1: Walls of height 2, 3, and 4, respectively [19].

A clique-width expression of G is an algebraic expression that describes how G can be
recursively constructed using these operations. An �-expression of G is a clique-width
expression using at most � distinct labels. For instance, η3,2(3(d)⊕ ρ3→2(ρ2→1(η3,2(3(c)⊕
η2,1(2(b)⊕1(a)))))) is a 3-expression for the path on vertices a, b, c, d in that order. A class
of graphs G has bounded clique-width if there is a constant c such that the clique-width of
every graph in G is at most c,and unbounded otherwise.

Clique-width is of fundamental importance in computer science, since every problem
expressible in monadic second-order logic using quantifiers over vertex subsets but not over
edge subsets becomes polynomial-time solvable for graphs of bounded clique-width [14].
Although this meta-theorem does not directly apply to Colouring, a result of Espelage,
Gurski andWanke [23] (see also [42, 55]) combined with the polynomial-time approximation
algorithm of Oum and Seymour [54] for finding an �-expression of a graph, showed that
Colouring can be added to the list of such problems.

Theorem 3 ([23, 54]). Colouring can be solved in polynomial time for graphs of bounded
clique-width.

3 Atoms and Clique-Width

Recall that a graph is an atom if it contains no clique cutset. It is a natural question
whether the clique-width of a graph class of unbounded clique-width becomes bounded
after restricting to the atoms of the class. For classes of H-free graphs we note that this
is not the case though. In order to explain this we need the notion of a wall; see Figure 1
for three examples (for a formal definition we refer to, for example, [16]). A k-subdivided
wall is a graph obtained from a wall after subdividing each edge exactly k times for some
constant k ≥ 0. The following lemma is well known.

Lemma 1 ([48]). For every constant k ≥ 0, the class of k-subdivided walls has unbounded
clique-width.

We also need the following lemma.

Lemma 2. For every constant k ≥ 0, every k-subdivided wall and every complement of a
k-subdivided wall is an atom.

Proof. Let k ≥ 0. Let W be a k-subdivided wall. As W is C3-free, a largest clique has
size 2. It is readily seen that W contains no set of at most two vertices that disconnect W .

Now consider the complement W of W . For contradiction, assume that W is not an
atom. Then W has a clique cutset K. Let A and B be two connected components of
W − K. If A and B both have at least two vertices a1, a2 and b1, b2, respectively, then
W [{a1, a2, b1, b2}] contains a C4, which is not possible. Hence, one of A,B, say A, only
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contains one vertex a. As the neighbourhood of a in W is a clique, the non-neighbourhood
of a in W is an independent set. However, no vertex in W has this property.

Recall that a class of H-free graphs has bounded clique-width if and only if H is an
induced subgraph of P4 (see [19]). We show that the same classification holds for H-free
atoms.

Proposition 1. Let H be a graph. The class of H-free atoms has bounded clique-width if
and only if H is an induced subgraph of P4.

Proof. If H is an induced subgraph of P4, then the class of H-free graphs, which contains
all H-free atoms, has clique-width at most 2 [15].

Now suppose that H is not an induced subgraph of P4. For every k ≥ 0, every k-
subdivided wall is an atom by Lemma 2. First suppose that H contains a cycle. Then the
class of k-subdivided walls is contained in the class of H-free atoms for some appropriate
value of k. Hence, the class of H-free atoms has unbounded clique-width due to Lemma 1.

Now suppose that H does not contain a cycle. Hence H is a forest. As H is not an
induced subgraph of P4, we find that H must contain an induced 3P1 or an induced 2P2.
Let G be the class of H-free atoms, and let G be the class that consists of the complements
of H-free atoms. As every wall is (C3, C4)-free, the complement of every wall is (3P1, 2P2)-
free. By Lemma 2, the complement of every wall is an atom as well. Hence, G contains
all complements of walls. It is well known that complementing all graphs in a class of
unbounded clique-width results in another class of unbounded clique-width [39]. Hence,
complements of walls have unbounded clique-width due to Lemma 1. This means that G,
and thus G, has unbounded clique-width.

In contrast to Proposition 1, we recall that there exist classes of (H1, H2, H3)-free
graphs of unbounded clique-width whose atoms have bounded clique-width. Namely, the
class of split graphs, or equivalently, the class of (C4, C5, 2P2)-free graphs, has unbounded
clique-width [49], whereas split atoms are cliques and thus have clique-width at most 2. In
the next section, we will prove that there exist even classes of (H1, H2)-free graphs with
this property by showing that the property holds even for the class of (C4, P6)-free graphs.

4 The Polynomial-Time Result

In this section, we will prove our main result.

Theorem 4. Colouring is polynomial-time solvable for (C4, P6)-free graphs.

The main ingredient for proving Theorem 4 is a new structural property of (C4, P6)-free
atoms, which asserts that (C4, P6)-free atoms have bounded clique-width. The following
result is due to Tarjan.

Theorem 5 ([58]). If Colouring is polynomial-time solvable on atoms in an hereditary
class G, then it is polynomial-time solvable on all graphs in G.

As the class of (C4, P6)-free graphs is hereditary, we can apply Theorem 5 and may
restrict ourselves to (C4, P6)-free atoms. Then, due to Theorem 3, it suffices to show the
following result in order to prove Theorem 4.
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Theorem 6. The class of (C4, P6)-free atoms has bounded clique-width. More precisely,
every (C4, P6)-free atom has clique-width at most 18.

Note that (C4, P6)-free atoms are an example of a class of (H1, H2)-free graphs of
unbounded clique-width, whose atoms have bounded clique-width.

The remainder of the section is organised as follows. In Section 4.1, we present the key
tools on clique-width that play an important role in the proof of Theorem 6. In Section 4.2,
we list structural properties around a 5-cycle in a (C4, P6)-free graph that are frequently
used in later proofs. We then present the proof of Theorem 6 in Section 4.3.

4.1 Key Tools for Clique-Width

Let G = (V,E) be a graph and H be a proper homogeneous set in G. Then V \ H is
partitioned into two subsets N and M where N is complete to H and M is anti-complete
to H. Let h ∈ H be an arbitrary vertex and Gh = G− (H \ {h}). We say that H and Gh

are factors of G with respect to H. Suppose that τ is an �1-expression for Gh using labels
1, . . . , �1 and σ is an �2-expression for H using labels 1, . . . , �2. Then substituting i(h) in τ
with ρ1→i . . . ρ�2→iσ results in an �-expression for G where � = max{�1, �2}. Moreover, all
vertices in H have the same label in this �-expression for G.

Lemma 3 ([15]). The clique-width of any graph G is the maximum clique-width of any
prime induced subgraph of G.

A bipartite graph is a chain graph if it is 2P2-free. A co-bipartite chain graph is the
complement of a bipartite chain graph. Let G be a (not necessarily bipartite) graph such
that V (G) is partitioned into two subsets A and B. We say that an �-expression for G is
nice if all vertices in A end up with the same label i and all vertices in B end up with the
same label j with i �= j. It is well-known that any co-bipartite chain graph whose vertex
set is partitioned into two cliques has a nice 4-expression (see Appendix A for a proof).

Lemma 4 (Folklore). There is a nice 4-expression for any co-bipartite chain graph.

We now use a divide-and-conquer approach to show that a special graph class has a
nice 4-expression. This plays a crucial role in our proof of the main theorem (Theorem 6).

Lemma 5. A C4-free graph G has a nice 4-expression if V (G) can be partitioned into two
(possibly empty) subsets A and B that satisfy the following conditions:

(i) G[A] is a clique;

(ii) G[B] is P4-free;

(iii) no vertex in A has two non-adjacent neighbours in B;

(iv) there is no induced P4 in G that starts with a vertex in A followed by three vertices
in B.

Proof. We use induction on |B|. If B contains at most one vertex, then G is a co-bipartite
chain graph and the lemma follows from Lemma 4. Assume that B contains at least two
vertices. Since G[B] is P4-free, either B or B is disconnected [57]. Suppose first that B is
disconnected. Then B can be partitioned into two nonempty subsets B1 and B2 that are
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B1B2

A1 \N(B2)A1 ∩N(B2)

A2

Figure 2: The case where B is disconnected. Shaded circles represent cliques. A thick line
between two sets represents that the two sets are complete; a thin line means that the edges
between the two sets are arbitrary, and no line means that the two sets are anti-complete.

anti-complete to each other. Let A1 = N(B1)∩A and A2 = A \A1. Then G[Ai ∪Bi], with
partition (Ai, Bi), satisfies conditions (i)–(iv) for i = 1, 2. Note also that, by (iii), A1 is
anti-complete to B2 and A2 is anti-complete to B1. By the inductive hypothesis there is a
nice 4-expression τi for G[Ai ∪ Bi] in which all vertices in Ai and Bi have labels 2 and 4,
respectively. Now ρ1→2(η1,2(τ1 ⊕ ρ2→1τ2)) is a nice 4-expression for G.

Suppose now that B is disconnected. This means that B can be partitioned into two
subsets B1 and B2 that are complete to each other. Since G is C4-free, either B1 or B2 is
a clique. Without loss generality, we may assume that B1 is a clique. Moreover, we choose
the partition (B1, B2) such that B1 is maximal, so B1 �= ∅. Then every vertex in B2 is not
adjacent to some vertex in B2, for otherwise we could have moved such a vertex to B1.
If B2 = ∅ then G is a co-bipartite chain graph and so the lemma follows from Lemma 4.
Therefore, we assume that B2 �= ∅. Let A1 = N(B1) ∩ A and A2 = A \ A1. Note that A2

is anti-complete to B1.
We claim that N(B2) ∩ A is complete to B1. Suppose, by contradiction, that a ∈

N(B2) ∩ A and b1 ∈ B1 are not adjacent. By definition, a has a neighbour b ∈ B2. Recall
that b is not adjacent to some vertex b′ ∈ B2. Now a, b, b1, b

′ induces either a P4 or a C4,
depending on whether a and b′ are adjacent. This contradicts (iv) or the C4-freeness of G.
This proves the claim. Since N(B2)∩A is complete to B1, we find that A2 is anti-complete
to B2 and N(B2) ∩A = N(B2) ∩A1 (see Figure 2).

Note that G[(A1 ∩ N(B2)) ∪ B2], with the partition (A1 ∩ N(B2), B2) satisfies con-
ditions (i)–(iv). By the inductive hypothesis there is a nice 4-expression τ for G[(A1 ∩
N(B2))∪B2] in which all vertices in A∩N(B2) = A1∩N(B2) and B2 have labels 2 and 4,
respectively. As A1 and B1 are cliques and G is C4-free, we find that (A1 \N(B2), B1) is
a co-bipartite chain graph. It then follows from Lemma 4 that there is a nice 4-expression
ε for it in which all vertices in A1 \N(B2) and B1 have labels 1 and 3, respectively.

We now are going to use the adjacency between the different sets as displayed in Fig-
ure 2. We first deduce that

σ = ρ3→4(ρ1→2(η3,4(η2,3(η1,2(ε⊕ τ)))))

is a nice 4-expression for G − A2. Let δ be a 2-expression for A2 in which all vertices in
A2 have label 1. Then ρ1→2(η1,2(δ ⊕ σ)) is a nice 4-expression for G. This completes the
proof.

Let G = (V,E) be a graph and X, Y , and Z are three pairwise disjoint subsets of V .
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We say that (X,Y, Z) is a homogeneous triple if no vertex in V \(X∪Y ∪Z) can distinguish
any two vertices in X, Y or Z. A pair (X,Y ) of sets is a homogeneous pair if (X,Y, ∅) is
a homogeneous triple. If both X and Y are cliques, then (X,Y ) is a homogeneous pair of
cliques. Note that homogeneous sets are special cases of homogeneous pairs and triples.
An �-expression for a homogeneous triple (X,Y, Z) is nice if two vertices of X ∪ Y ∪ Z
have the same label if and only if they belong to the same set X, Y or Z. We establish a
new bound on the clique-width of a graph G in terms of the number of pairwise disjoint
homogenous pairs and triples of G.

Lemma 6. Let G be a graph. If V (G) can be partitioned into a subset V0, with |V0| ≥ 3, and
p homogeneous pairs and t homogeneous triples such that there is a nice 4-expression for
each homogeneous pair and a nice 6-expression for each homogeneous triple, then cw(G) ≤
|V0|+ 2p+ 3t.

Proof. We first construct the homogenous pairs and triples and the edges inside these pairs
and triples one by one using nice 4-expressions and nice 6-expressions, respectively. So we
need at most four different labels for each homogenous pair and at most six different labels
for each homogenous triple. As soon as we have constructed a homogenous pair (triple)
with its internal edges using a nice 4-expression (6-expression), we introduce a new label
for all vertices of each of its two (three) sets before considering the next homogenous pair
or triple. We can do so, because all vertices of each set in a homogeneous pair received
the same label by the definition of a nice �-expression for homogenous sets and triples.
Consequently, we may use the previous labels over and over again as auxiliary labels.
Afterwards, we can view each set in a homogeneous pair or triple as a single vertex, each
with its own unique label.

So far we used at most 2p + 3t + 6 different labels. By using the auxiliary labels as
unique labels for the sets of the last pair or triple and by considering pairs before triples,
we need in fact at most 2p + 3t + 3 distinct labels if t ≥ 1 and at most 2p + 2 labels if
t = 0. We now assign a unique label to each vertex in V0 after first using all the remaining
auxiliary labels.

So far we only constructed edges of G that are within a homogenous pair or triple. From
our labelling procedure and the definitions of homogenous pairs and triples it follows that
we can put in all the remaining edges of G using only join and disjoint union operations.
Hence, as |V0| ≥ 3, the total number of distinct labels is at most |V0|+ 2p+ 3t.

4.2 Structure around a 5-Cycle

Let G = (V,E) be a graph and H be an induced subgraph of G. We partition V \ V (H)
into subsets with respect to H as follows: for any X ⊆ V (H), we denote by S(X) the set
of vertices in V \ V (H) that have X as their neighbourhood among V (H), i.e.,

S(X) = {v ∈ V \ V (H) : NV (H)(v) = X}.

For 0 ≤ j ≤ |V (H)|, we denote by Sj the set of vertices in V \ V (H) that have exactly j
neighbours among V (H). Note that Sj =

⋃
X⊆V (H):|X|=j S(X). We say that a vertex in

Sj is a j-vertex. Let G be a (C4, P6)-free graph and C = 1, 2, 3, 4, 5 be an induced C5 in G.
We partition V \C with respect to C as above. All indices below are modulo 5. Since G is
C4-free, there is no vertex in V \C that is adjacent to vertices i and i+2 but not to vertex
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i + 1. In particular, S(1, 3), S4, etc. are empty. The following properties (P1)-(P9) of
S(X) were proved in [32] using the fact that G is (C4, P6)-free.

(P1) S5 ∪ S(i− 1, i, i+ 1) is a clique.

(P2) S(i) is complete to S(i+ 2) and anti-complete to S(i+ 1). Moreover, if neither S(i)
nor S(i+ 2) are empty then both sets are cliques.

(P3) S(i, i+1) is complete to S(i+1, i+2) and anti-complete to S(i+2, i+3). Moreover,
if neither S(i, i+ 1) nor S(i+ 1, i+ 2) are empty then both sets are cliques.

(P4) S(i− 1, i, i+ 1) is anti-complete to S(i+ 1, i+ 2, i+ 3).

(P5) S(i) is anti-complete to S(j, j+1) if j �= i+2. Moreover, if a vertex in S(i+2, i+3)
is not anti-complete to S(i) then it is universal in S(i+ 2, i+ 3).

(P6) S(i) is anti-complete to S(i+ 1, i+ 2, i+ 3).

(P7) S(i− 2, i+ 2) is anti-complete to S(i− 1, i, i+ 1).

(P8) Either S(i) or S(i+ 1, i+ 2) is empty. By symmetry, either S(i) or S(i− 1, i− 2) is
empty.

(P9) At least one of S(i− 1, i), S(i, i+ 1) and S(i+ 2, i− 2) is empty.

We now prove some further properties that are used in Lemma 10.

(P10) For each connected component A of S(i), each vertex in S(i−2, i−1, i)∪S(i, i+1, i+2)
is either complete or anti-complete to A.

Proof. It suffices to prove the property for i = 1. Suppose that some vertex t ∈
S(4, 5, 1)∪S(1, 2, 3) is neither complete nor anti-complete to a connected component
A of S(1). By symmetry, we may assume that t ∈ S(4, 5, 1). By the connectivity
of A, there exists an edge aa′ in A such that t is adjacent to a but not to a′. Then
a′, a, t, 4, 3, 2 induces a P6, a contradiction. �

(P11) No vertex in S5 can distinguish an edge between S(i) and S(i− 2, i+ 2).

Proof. It suffices to prove the property for i = 1. Let x ∈ S(1) and y ∈ S(3, 4) be
adjacent. If a vertex u is adjacent to exactly one of x and y, then either x, y, 3, u or
x, y, u, 1 induces a C4. �

(P12) If a vertex x ∈ S(i− 2, i+ 2) has a neighbour in S(i− 2, i− 1, i) ∪ S(i, i+ 1, i+ 2),
then x is complete to S5.
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Figure 3: The Petersen graph.

Proof. It suffices to prove the property for i = 1. Suppose that x is not adjacent
to some u ∈ S5. Since x has a neighbour s ∈ S(1, 2, 3) ∪ S(4, 5, 1), say S(1, 2, 3), it
follows that s, u, 4, x induces a C4. �

(P13) Each vertex in S(i−2, i+2) is anti-complete to either S(i−2, i−1, i) or S(i, i+1, i+2).

Proof. It suffices to prove the property for i = 1. Suppose that x ∈ S(3, 4) has a
neighbour s ∈ S(1, 2, 3) and t ∈ S(4, 5, 1). By (P4), s and t are not adjacent. Then
x, s, 1, t induces a C4. �

(P14) Each vertex in S(i − 1, i − 2, i + 2) and S(i + 1, i + 2, i − 2) is either complete or
anti-complete to each connected component of S(i− 2, i+ 2).

Proof. It suffices to prove the property for i = 1. Suppose that s ∈ S(2, 3, 4) ∪
S(3, 4, 5) distinguishes an edge xy in S(3, 4), say s is adjacent to x but not to y. By
symmetry, we may assume that s ∈ S(2, 3, 4). Then y, x, s, 2, 1, 5 induces a P6. �

(P15) If both S(i−1, i−2) and S(i+1, i+2) are not empty, then each vertex in S(i−1, i, i+1)
is either complete or anti-complete to S(i− 1, i− 2) ∪ S(i+ 1, i+ 2).

Proof. It suffices to prove the property for i = 1. Let x ∈ S(2, 3) and y ∈ S(4, 5) be
two arbitrary vertices. If s ∈ S(5, 1, 2) distinguishes x and y, say s is adjacent to x
but not to y, then 1, s, x, 3, 4, y induces a P6, since y is not adjacent to x by (P3). �

4.3 Proof of Theorem 6

In this section, we give a proof of Theorem 6, which states that (C4, P6)-free graphs have
clique-width at most 18.

A graph is chordal if it does not contain any induced cycle of length at least 4. The
following structure of (C4, P6)-free graphs discovered by Brandstädt and Hoàng [6] is of
particular importance in our proofs below.

Theorem 7 ([6]). Let G be a (C4, P6)-free atom. Then the following statements hold:
(i) every induced C5 is dominating; (ii) if G contains an induced C6 which is not domi-
nating, then G is the join of a blow-up of the Petersen graph (Figure 3) and a (possibly
empty) clique.
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Figure 4: Two special graphs F1 and F2.

We say that an atom is strong if it has no pair of twin vertices or universal vertices. Note
that a pair of twin vertices and a universal vertex in a graph give rise to two special kinds
of proper homogeneous sets such that one of the factors decomposed by these homogeneous
sets is a clique. Therefore, removing twin vertices and universal vertices does not change
the clique-width of the graph by Lemma 3. So, to prove Theorem 6 it suffices to prove the
theorem for strong atoms.

We follow the approach of [24]. In [24], the first and second author showed how to derive
a useful decomposition theorem for (C4, P6)-free atoms by eliminating a sequence F1, C6,
F2 and C5 (see Figure 4 for the graphs F1 and F2) of induced subgraphs and then employing
Dirac’s classical theorem [21] on chordal graphs. Here we adopt the same strategy and show
in Lemma 7–Lemma 10 below that if a (C4, P6)-free strong atom G contains an induced
C5 or C6, then it has clique-width at most 18. The remaining case is therefore that G is a
chordal atom, and so G is a clique by Dirac’s theorem [21]. Since cliques have clique-width
2, Theorem 6 follows. It turns out that we can easily prove Lemma 7 and Lemma 8 via
the framework formulated in Lemma 6 using the structure of the graphs discovered in [24].
The difficulty is, however, that we have to extend the structural analysis in [24] extensively
for Lemma 9 and Lemma 10 and provide new insights on bounding the clique-width of
certain special graphs using divide-and-conquer (see Lemma 5).

Lemma 7. If a (C4, P6)-free strong atom G contains an induced F1, then G has clique-
width at most 13.

Proof. Let G be a (C4, P6)-free strong atom that contains an induced subgraph H that
is isomorphic to F1 with V (H) = {1, 2, 3, 4, 5, x, y, z} where 1, 2, 3, 4, 5, 1 induces the un-
derlying 5-cycle C of F1 and x is adjacent to 3 and 4, y is adjacent to 2 and 3, z is
adjacent to 4 and 5, and x is adjacent to y and z, see Figure 4. We partition V (G) with
respect to C. We choose H such that |S2| maximized. Note that x ∈ S(3, 4), y ∈ S(2, 3)
and z ∈ S(4, 5). All indices below are modulo 5. Since G is an atom, it follows from
Theorem 7 that S0 = ∅. Moreover, it follows immediately from the (C4, P6)-freeness of G
that V (G) = C∪S1∪

⋃5
i=1 S(i, i+1)∪⋃5

i=1 S(i−1, i, i+1)∪S5. If S5 �= ∅, then G is a blow-
up of the graph F3 (see Figure 5) [24]. Since G contains no twin vertices, G is isomorphic
to F3 and so has clique-width at most 9. If S5 = ∅ then G has the structure prescribed in
Figure 6 [24]. Note that S(5, 1, 2)∪{1} is a homogeneous clique in G and so S(5, 1, 2) = ∅.
We partition S(3, 4) into two subsets X = {x ∈ S(3, 4) : x has a neighbour in S(4, 5, 1)}
and Y = S(3, 4) \ X. Note that Y is anti-complete to S(4, 5, 1). In addition, X is anti-
complete to S(1, 2, 3) since G is C4-free. It is routine to check that each of (X,S(4, 5, 1)),
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(Y, S(1, 2, 3)), (S(2, 3), S(3, 4, 5)) and (S(4, 5), S(2, 3, 4)) is a homogeneous pair of cliques
in G. Now V (G) is partitioned into a subset C of size 5 and four homogeneous pairs of
cliques. Since each pair of homogeneous cliques induces a co-bipartite chain graph and so
has a nice 4-expression by Lemma 4. So, cw(G) ≤ |V0|+ 2× 4 = 13 by Lemma 6.

1

2

34

5 u
yz

x

Figure 5: The graph F3.

1

2

34

5

S(3, 4)

S(2, 3)S(4, 5)

S(5, 1, 2)

S(1, 2, 3)S(4, 5, 1)

S(2, 3, 4)S(3, 4, 5)

Figure 6: The structure of G. A thick line between two sets represents that the two sets are
complete, and a thin line represents that the edges between the two sets can be arbitrary.
Two sets are anti-complete if there is no line between them.

Lemma 8. If a (C4, F1, P6)-free strong atom G contains an induced C6, then G has clique-
width at most 13.

Proof. Let C = 1, 2, 3, 4, 5, 6, 1 be an induced six-cycle of G. We partition V (G) with
respect to C. If C is not dominating, then it follows from Theorem 7 that G is the join of a
blow-up of the Petersen graph and a (possibly empty) clique. Since G has no twin vertices
or universal vertices, G is isomorphic to the Petersen graph and so G has clique-width at
most 10. In the following, we assume that C is dominating, i.e., S0 = ∅. It was shown in
[24] that G is a blow-up of a graph of order at most 13. Therefore, G has clique-width at
most 13.
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Lemma 9. If a (C4, C6, F1, P6)-free strong atom G contains an induced F2, then G has
clique-width at most 14.

Proof. Let G be a (C4, C6, F1, P6)-free strong atom that contains an induced subgraph H
that is isomorphic to F2 with V (H) = {1, 2, 3, 4, 5, t, x, y} such that 1, 2, 3, 4, 5, 1 induces the
underlying 5-cycle C, and t is adjacent to 5, 1 and 2, x is adjacent to 4, 5 and y is adjacent
to 2 and 3. Moreover, t is adjacent to both x and y, see Figure 4. We partition V (G)
with respect to C. We choose H such that C has |S2| maximized. Note that x ∈ S(4, 5),
y ∈ S(2, 3) and t ∈ S(5, 1, 2).

The overall strategy is to first decompose G into a subset V0 of constant size and
constant number of homogeneous pairs of sets, and then finish off the proof via Lemma 6
by showing that each homogeneous pair of sets has a nice 4-expression using Lemma 5.

We start with the decomposition. Since S(2, 3) and S(4, 5) are not empty, it follows
from (P8) that S1 = S(2) ∪ S(5). If both S(2) and S(5) are not empty, say u ∈ S(2)
and v ∈ S(5), then u, 2, 3, 4, 5, v induces either a P6 or a C6, depending on whether u
and v are adjacent. This shows that S1 = S(i) for some i ∈ {2, 5}. Now we argue that
S2 = S(2, 3)∪S(4, 5). If S(3, 4) contains a vertex z, then z is adjacent to x and y by (P3)
but not adjacent to t by (P7). This implies that t, x, z, y induces a C4, So, S(3, 4) = ∅. If
S(1, 2) contains a vertex z, then z is adjacent to y by (P3) and so 1, z, y, 3, 4, 5, 1 induces
a C6, a contradiction. This shows that S(1, 2) = ∅. By symmetry, S(5, 1) = ∅. Therefore,
S2 = S(2, 3) ∪ S(4, 5). The following properties among subsets of G were proved in [24].

(a) Each vertex in S(5, 1, 2) is either complete or anti-complete to S2.

(b) S(2, 3) and S(4, 5) are cliques.

(c) Each vertex in S(3, 4, 5)∪S(4, 5, 1) is either complete or anti-complete to S(4, 5). By
symmetry, each vertex in S(1, 2, 3) ∪ S(2, 3, 4) is either complete or anti-complete to
S(2, 3).

(d) S(4, 5) is anti-complete to S(2, 3, 4). By symmetry, S(2, 3) is anti-complete to S(3, 4, 5).

(e) S(1, 2, 3) is complete to S(5, 1, 2). By symmetry, S(5, 1, 2) is complete to S(4, 5, 1).

(f) S(4, 5) is complete to S(4, 5, 1). By symmetry, S(2, 3) is complete to S(1, 2, 3).

(g) S(1, 2, 3) is complete to S(2, 3, 4). By symmetry, S(3, 4, 5) is complete to S(4, 5, 1).

(h) S5 is complete to S2.

Recall that S1 = S(i) for some i ∈ {2, 5}. By symmetry, we may assume that S1 = S(5).
Note that S(5) is complete to S(4, 5, 1) by Theorem 7 and anti-complete to S(1, 2, 3) by
(P6). It follows from (P1), (P4), (P7), (e), (f) and (g) that S(i− 1, i, i+ 1) ∪ {i} is a
homogeneous clique in G and therefore S(i− 1, i, i+ 1) = ∅ for i = 2, 5. Similarly, S(4, 5)
is a homogeneous clique in G by (P7), (a)-(d), (f) and (h) and so S(4, 5) = {x}. Let
T = {t ∈ S(5, 1, 2) : t is complete to S2}.
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(1) S(5) is anti-complete to S(5, 1, 2) \ T .
Let u ∈ S(5) and t′ ∈ S(5, 1, 2) \ T . If u and t′ are adjacent, then u, t′, 2, 3, 4, x
induces either a P6 or a C6, depending on whether u and x are adjacent. �

By (1) and (d), (S(5, 1, 2) \ T ) ∪ {1} is a homogeneous set in G and so S(5, 1, 2) \ T = ∅.
In other words, S(5, 1, 2) is complete to S2. We now partition S(5) into X = {v ∈ S(5) :
v has a neighbour in S(2, 3)} and Y = S(5) \X.

(2) X is anti-complete to S(3, 4, 5).
Let v ∈ X and s ∈ S(3, 4, 5) be adjacent. By the definition of X, v has a neighbour
y′ ∈ S(2, 3). By (d), y′ is not adjacent to s and so v, y′, 3, s induces a C4. �

(3) X is complete to S(5, 1, 2).
Assume, by contradiction, that v ∈ X and t′ ∈ T are not adjacent. By the definition
of X, v has a neighbour y′ ∈ S(2, 3). Since t′ is adjacent to y′, it follows that v, 5, t′, y′

induces a C4. �

(4) X is anti-complete to Y .
Suppose that u ∈ X and v ∈ Y are adjacent. Let y′ ∈ S(2, 3) be a neighbour of u.
Note that x is adjacent to neither u nor v by (P5). But now x, 4, 3, y′, u, v induces
a P6. �

(5) X is complete to S5.
Suppose that v ∈ X and u ∈ S5 are not adjacent. Let y′ ∈ S(2, 3) be a neighbour of
v. By (h), y′ and u are adjacent. Then u, 5, v, y′ induces a C4. �

It follows from (P1)-(P7), (a)-(d), (f), (h) and (2)-(5) that (X,S(2, 3)) is a homogeneous
pair of sets in G.

(6) For each connected component A of Y , each vertex in S(5, 1, 2) ∪ S(3, 4, 5) is either
complete or anti-complete to A.
Let A be an arbitrary connected component of Y . Suppose that s ∈ S(5, 1, 2) ∪
S(3, 4, 5) distinguishes an edge aa′ in A, say s is adjacent to a but not adjacent to a′.
we may assume by symmetry that s ∈ S(5, 1, 2). Then a′, a, s, 2, 3, 4 induces a P6, a
contradiction. �

(7) Each connected component of Y has a neighbour in both S(5, 1, 2) and S(3, 4, 5).
Suppose that a connected component A of Y does not have a neighbour in one of
S(5, 1, 2) and S(3, 4, 5), say S(5, 1, 2). Then S5 ∪ S(3, 4, 5) ∪ {5} is a clique cutset of
G by (4). �

(8) Each connected component of Y is a clique.
Let A be an arbitrary connected component of Y . By (7), A has a neighbour s ∈
S(5, 1, 2) and r ∈ S(3, 4, 5). Note that s and r are not adjacent. Moreover, {s, r} is
complete to A by (6). Now (8) follows from the fact that G is C4-free. �

(9) Y is complete to S5.
Suppose, by contradiction, that v ∈ Y and u ∈ S5 are not adjacent. By (7), v has a
neighbour s ∈ S(5, 1, 2) and r ∈ S(3, 4, 5). Then v, s, u, r induces a C4. �
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It follows from (P1), (h), (5) and (9) that each vertex in S5 is a universal vertex in G
and so S5 = ∅. Let S′(3, 4, 5) = {s ∈ S(3, 4, 5) : s has a neighbour in Y } and S′′(3, 4, 5) =
S(3, 4, 5) \ S′(3, 4, 5). Note that S′′(3, 4, 5) is anti-complete to Y . We now show further
properties of Y and S′(3, 4, 5).

(10) S′(3, 4, 5) is complete to S(2, 3, 4).
Suppose, by contradiction, that r′ ∈ S′(3, 4, 5) is not adjacent to s ∈ S(2, 3, 4). By
the definition of S′(3, 4, 5), r has a neighbour v ∈ Y . Then v, r, 4, s, 2, 1 induces a P6,
a contradiction. �

(11) Each vertex in S(5, 1, 2) is either complete or anti-complete to Y .
Let t′ ∈ S(5, 1, 2) be an arbitrary vertex. Suppose that t′ has a neighbour u ∈ Y .
Let A be the connected component of Y containing u. Then t′ is complete to A by
(6). It remains to show that t′ is adjacent to each vertex u′ ∈ Y \A. By (7), u has a
neighbour s ∈ S(3, 4, 5). Note that C ′ = u, t,′ y, 3, s induces a C5. Moreover, x and s
are not adjacent for otherwise x, s, u, t′ induces a C4. This implies that x is adjacent
only to t′ on C ′. On the other hand, u′ is not adjacent to any of u, 3 and y. This
implies that u′ is adjacent to either s or t′ by Theorem 7. If u′ is not adjacent t′, then
u′ is adjacent to s. This implies that u′, s, 3, y, t′, x induces a P6 or C6, depending on
whether u′ and x are adjacent. Therefore, u′ is adjacent to t′. Since u′ is an arbitrary
vertex in Y \A, this proves (11). �

(12) S′(3, 4, 5) is anti-complete to x.
Suppose not. Let s ∈ S′(3, 4, 5) be adjacent to x. By definition, s has a neighbour
y′ ∈ Y . Note that x and y′ are not adjacent by (P5). By (6) and (7), y has a
neighbour t ∈ T = S(5, 1, 2). So, t is adjacent to x. But now s, y′, t, x induces a C4,
a contradiction. �

It follows from (P1)-(P7), (d), (2), (4), (10), (11) and (12) that (Y, S′(3, 4, 5)) is a
homogeneous pair of sets in G.

Let S′(5, 1, 2) = {s ∈ S(5, 1, 2) : s is complete to Y }. Then S(5, 1, 2)\S′(5, 1, 2) is anti-
complete to Y by (11). It follows from (3) that both S′(5, 1, 2) and S(5, 1, 2) \ S′(5, 1, 2)
are homogeneous cliques in G. So, |S(5, 1, 2)| ≤ 2. We now show that |S′′(3, 4, 5)| ≤ 1 and
|S(2, 3, 4)| ≤ 1. First, we note that if r ∈ S(3, 4, 5)∩N(x), then r is complete to S(2, 3, 4) for
otherwise any non-neighbour s ∈ S(2, 3, 4) of r would start an induced P6 = s, 3, r, x, t, 1.
By symmetry, each vertex in S(2, 3, 4) ∩ N(y) is complete to S(3, 4, 5). By (c), each
vertex in S(2, 3, 4)∩N(y) is also complete to S(2, 3). Thus, (S′′(3, 4, 5)∩N(x))∪ {4} and
(S(2, 3, 4)∩N(y))∪{3} are homogeneous cliques in G. So, S′′(3, 4, 5)∩N(x) = S(2, 3, 4)∩
N(y) = ∅. Namely, x and y are anti-complete to S′′(3, 4, 5) and S(2, 3, 4), respectively.
By (c), it follows that S(2, 3) is anti-complete to S(2, 3, 4). Secondly, S′′(3, 4, 5) and
S(2, 3, 4) are anti-complete to each other. If r ∈ S′′(3, 4, 5) and s ∈ S(2, 3, 4) are adjacent,
then x, 5, r, s, 2, y induces a P6 by (d) and the fact that x and y are not adjacent to r
and s, respectively. These two properties imply that each of S′′(3, 4, 5) and S(2, 3, 4) is a
homogeneous clique in G. Hence, |S′′(3, 4, 5)| ≤ 1 and |S(2, 3, 4)| ≤ 1. Now G is partitioned
into a subset V (C) ∪ S(5, 1, 2) ∪ S′′(3, 4, 5) ∪ S(2, 3, 4) ∪ {x} of size at most 10 and two
homogeneous pairs of sets (X,S(2, 3)) and (Y, S′(3, 4, 5)).
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We now show that each of G[X ∪S(2, 3)] and G[Y ∪S′(3, 4, 5)] has a nice 4-expression.
First, note that no vertex in S(1, 2) can have two non-adjacent neighbours in X since G is
C4-free. If there is an induced P4 = y′, x1, x2, x3 such that y′ ∈ S(2, 3) and xi ∈ X, then
x3, x2, x1, y

′, 3, 4 induces a P6 in G. Now if P = x1, x2, x3, x4 is an induced P4 in G[X], any
neighbour y1 of x1 is not adjacent to x3 and x4. But then P ∪{y1} contains such a labelled
P4 in G[X ∪ S(2, 3)]. Therefore, G[X ∪ S(2, 3)] with the partition (X,S(2, 3)) satisfies all
the conditions of Lemma 5 and so has a nice 4-expression. Finally, note that each vertex in
S(3, 4, 5) can have neighbours in at most one connected component of Y due to (7), (11)
and the fact that G is C4-free. It then follows from (6)-(8) that G[Y ∪S′(3, 4, 5)] with the
partition (Y, S′(3, 4, 5)) satisfies all the condition in Lemma 5 (where A = S′(3, 4, 5) and
B = Y ) and so has a nice 4-expression. By Lemma 6, it follows that cw(G) ≤ 10+2×2 = 14.
This completes our proof.

Lemma 10. If a (C4, C6, F1, F2, P6)-free strong atom G contains an induced C5, then G
has clique-width at most 18.

Proof. Let C = 1, 2, 3, 4, 5, 1 be an induced C5 of G. We partition V (G) \ C with respect
to C. We choose C such that

• |S5| is maximized, and

• |S3| is minimized subject to the above.

We first prove the following claim which makes use of the choice of C.

Claim 1. For each 1 ≤ i ≤ 5, S(i− 1, i, i+ 1) is complete to S(i, i+ 1, i+ 2).

Proof of Claim 1. By symmetry, it suffices to prove the claim for i = 1. Suppose
by contradiction that S(5, 1, 2) is not complete to S(1, 2, 3). Then there exist vertices
s ∈ S(5, 1, 2) and t ∈ S(1, 2, 3) that are not adjacent. Consider the induced 5-cycle
C ′ = C \ {1} ∪ {s}. Note that t is not a 3-vertex with respect to C ′. By the choice of
C, there must exist a vertex r ∈ V (G) that is a 3-vertex for C ′ but not for C. By the
definition of 3-vertices, it follows that r ∈ S(2, 3)∪S(4, 5) and r is adjacent to s. Similarly,
by considering the induced 5-cycle C ′′ = C \{2}∪{t} we conclude that there exist a vertex
q ∈ S(1, 5) ∪ S(3, 4) that is adjacent to t. Note that r is not adjacent to t for otherwise
r, t, 1, s induces a C4. By symmetry, q is not adjacent to s. If r ∈ S(2, 3), then 4, q, t, 1, s, r
induces a P6 if q ∈ S(3, 4) and 3, r, s, 5, q, t induces a C6 if q ∈ S(5, 1). This shows that
r ∈ S(4, 5). By symmetry, q ∈ S(3, 4). But now 5, 1, 2, 3, r, q induces a C6 since r and q
are adjacent by (P3). This contradicts the assumption that G is C6-free. �

Claim 2. If S(i) contains a vertex that is anti-complete to S(i− 2, i+2), then G contains
an induced F2.

Proof of Claim 2. By symmetry, we may assume that i = 1. First note that S(1) is anti-
complete to S1 \S(1) by (P2) and the C6-freeness of G. So, the neighbours of the vertices
in S(1) are in {1} ∪ S(3, 4) ∪ S(4, 5, 1) ∪ S(5, 1, 2) ∪ S(1, 2, 3) ∪ S5 by (P5) and (P6). Let
X ⊆ S(1) be the set of vertices that have a neighbour in S(3, 4), and S′(1) = S(1)\X. Note
that S′(1) �= ∅ due to our assumption. Let a ∈ S′(1) and A be the connected component
of S′(1) containing a. If A has a neighbour in both S(1, 2, 3) and S(4, 5, 1), it follows from
(P10) that G contains an induced F2. Therefore, we may assume that A is anti-complete
to S(4, 5, 1). This implies that N(A) ⊆ {1} ∪ S(5, 1, 2) ∪ S(1, 2, 3) ∪ S5 ∪ X. Note that
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S(5, 1, 2) is complete to S(1, 2, 3) by Claim 1. So, {1}∪S(1, 2, 3)∪S(5, 1, 2)∪S5 is a clique
by (P1). If x ∈ X distinguishes an edge aa′ of A, say x is adjacent to a but not to a′,
then a′, a, s, y, 4, 5 induces a P6, where y ∈ S(3, 4) is a neighbour of x. So, each vertex in
X is either complete or anti-complete to A. Recall that each vertex in S(1, 2, 3) is either
complete or anti-complete to A by (P10). Let X ′ and S′(1, 2, 3) be the set of vertices in
X and S(1, 2, 3) that are complete to A, respectively. If x′ ∈ X ′ and s′ ∈ S′

(1, 2, 3) are

not adjacent, let y ∈ S(3, 4) be a neighbour of x′. Then either s′, a, x′, y induces a C4

or s′, a, x′, y, 4, 5 induces a P6 depending on whether s′ and y are adjacent. So, X ′ and
S′(1, 2, 3) are complete. Suppose that X ′ contains two non-adjacent vertices x1 and x2.
Let yi ∈ S(3, 4) be a neighbour of xi for i = 1, 2. If y1 = y2, then y1, x1, 1, x2 induces a
C4. So, y1 �= y2. This means that x1 is not adjacent to y2 and x2 is not adjacent to y1.
By (P5), y1 is adjacent to y2 and so y1, x1, a, x2, y2 induces a C5 not dominating 2, which
contradicts Theorem 7. This shows that X ′ is a clique. We have proved that N(A) \ S5 is
a clique. Since G contains no clique cutset, A must have a pair of non-adjacent neighbours
u ∈ S5 and x ∈ X ′. By the definition of X ′, x has a neighbour y ∈ S(3, 4). Note that u
is not adjacent to y by (P11). We may choose a ∈ A to be a neighbour of u. But now
{1, 2, 3, 4, a, x, y, u} induces an F2 (where the underlying 5-cycle is 1, 2, 3, y, x). �

Claim 3. The set S(i) is anti-complete to S(i− 2, i− 1, i) ∪ S(i, i+ 1, i+ 2).

Proof of Claim 3. By symmetry, we assume that i = 1. Suppose, by contradiction, that
x ∈ S(1) is adjacent to some vertex s ∈ S(1, 2, 3)∪S(4, 5, 1). We may assume by symmetry
that s ∈ S(4, 5, 1). By Claim 2, x has a neighbour y ∈ S(3, 4). Note that C ′ = 1, x, y, 4, 5
induces a 5-cycle and s is complete to C ′. By the choice of C, there exists u ∈ S5 such that
u is not complete to C ′. By (P11), u is anti-complete to {x, y}. However, this contradicts
(P12). �

Claim 4. If S(i−2, i+2) �= ∅ and is anti-complete to S1, then each vertex in S(i−2, i+2)
has a neighbour in S(i− 2, i− 1, i) ∪ S(i, i+ 1, i+ 2), and S(i− 2, i+ 2) is a clique and it
is anti-complete to exactly one of S(i− 2, i− 1, i) and S(i, i+ 1, i+ 2).

Proof of Claim 4. By symmetry, assume that S(3, 4) �= ∅. It follows from (P3),(P9)
and the C6-freeness of G that S2 = S(3, 4) ∪ S(i, i + 1) for some i ∈ {5, 1}, and S(3, 4)
is anti-complete S2 \ S(3, 4). We first show that each vertex in S(3, 4) has a neighbour
in S(4, 5, 1) ∪ S(1, 2, 3). Let Y ⊆ S(3, 4) be the set of vertices that have a neighbour
in S(4, 5, 1) ∪ S(1, 2, 3), and S′(3, 4) = S(3, 4) \ Y . Suppose that the claim does not
hold, namely S′(3, 4) �= ∅. We shall show that G contains a clique cutset and this is a
contradiction. Let b ∈ S′(3, 4) and B be the connected component of S′(3, 4) containing
b. First, if y ∈ Y distinguishes an edge bb′ in B, say y is adjacent to b but not to b′, then
b′, b, y, s, 1, 2 or b′, b, y, s, 1, 5 induces a P6 where s ∈ S(1, 2, 3) ∪ S(4, 5, 1) is a neighbour
of y. So, any vertex Y is either complete or anti-complete to B. Let Y ′, S′(2, 3, 4) and
S′(3, 4, 5) be the subsets of Y , S(2, 3, 4) and S(3, 4, 5), respectively that are complete to
B. Note that N(B) = {3, 4} ∪ S′(2, 3, 4) ∪ S′(3, 4, 5) ∪ S5 ∪ Y ′ by (P7). If p ∈ S′(2, 3, 4)
is not adjacent to q ∈ S′(3, 4, 5), then p, b, q, 5, 1, 2, p induces a C6, a contradiction. This
shows that {3, 4} ∪ S′(2, 3, 4) ∪ S′(3, 4, 5) ∪ S5 is a clique by (P1).

Now let y1, y2 ∈ Y ′ be two arbitrary and distinct vertices. Suppose that y1 and y2 are
not adjacent. Let xi ∈ S(4, 5, 1) ∪ S(1, 2, 3) be a neighbour of yi for i = 1, 2. If x1 = x2,
then b, y1, x1, y2 induces a C4. So, x1 �= x2 and this implies that x1 (resp. x2) is not
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adjacent to y2 (resp. y1). If x1 and x2 are in S(4, 5, 1), then b, y1, x1, x2, y2 induces a
C5 not dominating 2, which contradicts Theorem 7; if x1 ∈ S(4, 5, 1) and x2 ∈ S(1, 2, 3),
then b, y1, x1, 1, x2, y2, b induces a C6, which contradicts our assumption. So, Y ′ is a clique.
Moreover, Y ′ is complete to S′(2, 3, 4)∪S′(3, 4, 5) by (P14) and to S5 by (P12). Therefore,
N(B) is a clique. This proves the first statement of the claim.

Let X2 = {y ∈ S(3, 4) : y has a neighbour in S(1, 2, 3)} and X5 = {y ∈ S(3, 4) :
y has a neighbour in S(4, 5, 1)}. The by (P13), X2 and X5 form a partition of S(3, 4),
and X2 is anti-complete to S(4, 5, 1) and X5 is anti-complete to S(1, 2, 3). If y ∈ X2

and z ∈ X5 are adjacent, let t2 ∈ S(1, 2, 3) and t5 ∈ S(4, 5, 1) be neighbours of y and z,
respectively. Then 5, t5, z, y, t2, 2 induces a P6, a contradiction. This shows that X2 and
X5 are anti-complete to each other. Suppose now that x ∈ X5 and y ∈ X2. Then x has
a neighbour t ∈ S(4, 5, 1) and y has a neighbour s ∈ S(1, 2, 3). Note also that x and y
are not adjacent. Now (C \ {5}) ∪ {x, y, s, t} induces a F2 (whose underlying 5-cycle is
y, s, 1, t, 4). Therefore, we may assume by symmetry that X5 = ∅. In other words, every
vertex in S(3, 4) has a neighbour in S(1, 2, 3). It remains to show that S(3, 4) is a clique.
Suppose that xs and x′s′ induce a 2P2 in the bipartite graph between S(1, 2, 3) and S(3, 4)
where x, x′ ∈ S(3, 4) and s, s′ ∈ S(1, 2, 3). Note that s and s′ are adjacent since S(1, 2, 3)
is a clique. Thus, x and x′ are not adjacent for otherwise x, s, s′, x′ induces a C4. Now
C ′ = s, x, 4, x′, s′ induces a 5-cycle. By (P12), {x, x′} is complete to S5 and this implies
that S5 is complete to C ′. Moreover, 3 is complete to C ′ and this contradicts the choice of
C. Now we can order the vertices in S(3, 4) as x1, . . . , xr such that

NS(1,2,3)(x1) ⊆ NS(1,2,3)(x2) . . . ⊆ NS(1,2,3)(xr).

Recall that x1 has a neighbour t ∈ S(1, 2, 3) and thus t is complete to S(3, 4). This implies
that S(3, 4) is a clique since G is C4-free. �

We now consider two cases.
Case 1. S1 = ∅. By Claim 4 and (P12), S5 is complete to S2 and so each vertex in
S5 is a universal vertex in G by (P1). Therefore, S5 = ∅. Recall that S(i − 1, i, i + 1)
and S(i, i + 1, i + 2) are complete for each 1 ≤ i ≤ 5 by Claim 1. Suppose first that
S2 = ∅. Then S(i− 1, i, i+ 1) ∪ {i} is a homogeneous clique in G by (P1) and (P4). So,
S(i− 1, i, i+ 1) = ∅. Now G is the 5-cycle and has clique-width at most 4.

Suppose now that S2 �= ∅, say S(3, 4) �= ∅. By Claim 4, we may assume that S(3, 4)
is anti-complete to S(4, 5, 1), each vertex in S(3, 4) has a neighbour in S(1, 2, 3), and
(S(3, 4), S(1, 2, 3)) is a co-bipartite chain graph. Let x′ ∈ S(3, 4) and s′ ∈ S(1, 2, 3) be a
neighbour of x′. If S(1, 5) contains a vertex y, then either 2, s′, x′, 4, 5, y induces a P6 or
C ∪ {x′, y, s′} induces a subgraph isomorphic to F2, depending on whether s′ and y are
adjacent. This shows that S(1, 5) = ∅. In addition, S(2, 3) = S(4, 5) = ∅ by (P3) and the
C6-freeness of G. So, S2 = S(3, 4)∪S(1, 2). Suppose that x ∈ S(3, 4) and t ∈ S(3, 4, 5) are
not adjacent. Let s ∈ S(1, 2, 3) be a neighbour of x. Then C ∪{x, s, t} induces a subgraph
isomorphic to F2 (where the underlying 5-cycle is x, s, 1, 5, 4). This shows that S(3, 4) is
complete to S(3, 4, 5).

Note that S(1, 2) may not be empty. If S(1, 2) �= ∅, then it is anti-complete to S(4, 5, 1)
by (P15) and the fact that S(4, 5, 1) is anti-complete to S(3, 4). It then follows from
Claim 4 that each vertex in S(1, 2) has a neighbour in S(2, 3, 4), and (S(1, 2), S(2, 3, 4))
is a co-bipartite chain graph. In addition, the above argument for S(3, 4) works sym-
metrically for S(1, 2). In particular, S(1, 2) is complete to S(5, 1, 2). This implies that
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S(i− 1, i, i+ 1) ∪ {i} for each i = 1, 4, 5 is a homogeneous clique in G by (P4) and (P7).
Therefore, S(i − 1, i, i + 1) = ∅ for i = 1, 4, 5. Let S′(2, 3, 4) be the set of vertices in
S(2, 3, 4) that are complete to S(3, 4) and S′′(2, 3, 4) = S(2, 3, 4) \ S(2, 3, 4). Similarly, if
S(1, 2) �= ∅, let S′(1, 2, 3) be the set of vertices in S(1, 2, 3) that are complete to S(1, 2) and
S′′(1, 2, 3) = S(1, 2, 3)\S′(1, 2, 3). In case that S(1, 2) = ∅, we define S′(1, 2, 3) = S(1, 2, 3)
and S′′(1, 2, 3) = ∅. By (P14) and the way we define S′(1, 2, 3) and S′′(1, 2, 3), it follows
that S′′(2, 3, 4) and S′′(1, 2, 3) are anti-complete to S(3, 4) and S(1, 2), respectively. Let
x ∈ S(3, 4). If s ∈ S′′(2, 3, 4) is adjacent to some y ∈ S(1, 2), then x, 3, s, y, 1, 5 induces
a P6. So, S′′(2, 3, 4) is anti-complete to S(1, 2). By symmetry, S′′(1, 2, 3) is anti-complete
to S(3, 4) (note that this is vacuously true if S(1, 2) = ∅ since we define S′′(1, 2, 3) = ∅).
This implies that S′′(2, 3, 4) and S′′(1, 2, 3) are homogeneous cliques in G and so both have
size at most 1. Furthermore, (S′(2, 3, 4), S(1, 2)) and (S′(1, 2, 3), S(3, 4)) are homogeneous
pairs of cliques in G. Now V (G) is partitioned into a subset C ∪ S′′(2, 3, 4) ∪ S′′(1, 2, 3) of
size at most 7 and two homogeneous pairs of cliques each of which has a nice 4-expression
by Lemma 4. Therefore, cw(G) ≤ 7 + 2 × 2 = 11 by Lemma 6. This completes the proof
of Case 1.

Case 2. S1 �= ∅. By symmetry, we assume that S(4) �= ∅. It follows from Claim 2 and
Claim 3 that each vertex in S(4) has a neighbour in S(1, 2) and S(4) is anti-complete
to S(2, 3, 4) ∪ S(4, 5, 1). In particular, S(1, 2) contains a vertex that has a neighbour in
S(4). By (P5), this vertex is universal in S(1, 2) and so S(1, 2) is connected. Note that
S1 = S(4) by (P2), (P8) and the C6-freeness of G, and S2 = S(1, 2) ∪ S(i, i + 1) for
some i = 3, 4 by (P3), (P9) and the C6-freeness of G. By symmetry, we can assume that
S2 = S(1, 2) ∪ S(3, 4). Moreover, S(i − 1, i, i + 1) is complete to S(i, i + 1, i + 2) for each
1 ≤ i ≤ 5 by Claim 1. If some vertex x ∈ S(3, 4) has a neighbour s ∈ S(4, 5, 1), then s is
complete to S(1, 2) by (P15). Let v ∈ S(4) and y ∈ S(1, 2) be a neighbour of v. Then
4, v, y, s induces a C4. This shows that S(3, 4) is anti-complete to S(4, 5, 1). Recall that
S(3, 4) is anti-complete to S(4) by (P5). Thus, it follows from Claim 4 that each vertex
in S(3, 4) has a neighbour in S(1, 2, 3) and (S(3, 4), S(1, 2, 3)) is a co-bipartite chain graph
if S(3, 4) �= ∅.

Let S′(3, 4, 5) be the set of vertices in S(3, 4, 5) that are complete to S(3, 4) and
S′′(3, 4, 5) = S(3, 4, 5) \ S′(3, 4, 5). Then S′′(3, 4, 5) is anti-complete to S(3, 4) by the fact
that S(3, 4) is a clique and (P14). Then S′(3, 4, 5) ∪ {4} and S′′(3, 4, 5) are homogeneous
cliques in G by (P1), (P4), (P7) and Theorem 7. So, S′(3, 4, 5) = ∅ and |S′′(3, 4, 5)| ≤ 1.
This implies that |S(3, 4, 5)| ≤ 1.

(1) S(1, 2, 3) is complete to S(1, 2). By symmetry S(5, 1, 2) is complete to S(1, 2).
Let s ∈ S(1, 2, 3). Note that there is an edge yz between S(4) and S(1, 2) where
y ∈ S(1, 2) and z ∈ S(4). We note that s and y are adjacent for otherwise 1, y, z, 4, 3, s
induces a C6. On the other hand, since S(1, 2) is connected, it follows from Claim 3
s is complete to S(1, 2). �

By (1), S(5, 1, 2)∪ {1} is a homogeneous clique in G and so S(5, 1, 2) = ∅. Recall that
S(3, 4) is a clique if it is not empty and so no vertex in S(2, 3, 4)∪S(3, 4, 5) can distinguish
two vertices in S(3, 4) by (P14). It then follows from (P1), (P3), (P5), (P6), (P7) and
(1) that (S(1, 2, 3), S(3, 4)) is a homogeneous pair of cliques in G (if S(3, 4) = ∅ this means
that S(1, 2, 3) is a homogeneous clique).
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(2) Each vertex in S(1, 2) is anti-complete to either S(4) or S(2, 3, 4) ∪ S(4, 5, 1).
Suppose that d ∈ S(1, 2) has a neighbour v ∈ S(4) and s ∈ S(2, 3, 4) ∪ S(4, 5, 1). By
Claim 3, v and s are not adjacent. But now 4, v, d, s induces a C4, a contradiction. �

We let X = {v ∈ S(1, 2) : v has a neighbour in S(4)}. We let Y = {v ∈ S(1, 2) :
v has a neighbour in S(2, 3, 4) ∪ S(4, 5, 1)}, and Z = S(1, 2) \ (X ∪ Y ). By (2), X, Y and
Z form a partition of S(1, 2). Note that X is anti-complete to S(2, 3, 4) ∪ S(4, 5, 1), Y is
anti-complete to S(4) and Z is anti-complete to S(2, 3, 4)∪S(4, 5, 1)∪S(4). By (P5), each
vertex in X is universal in S(1, 2). By (P12), Y is complete to S5. Suppose that y ∈ Y is
not adjacent to z ∈ Z. Let s ∈ S(2, 3, 4)∪S(4, 5, 1) be a neighbour of y. By symmetry, we
assume that s ∈ S(2, 3, 4). Recall that S(4) contains a vertex, say v. Then z, 1, y, s, 4, v
induces a P6. This shows that Y is complete to Z. Suppose that Y contains a vertex y′

that has a neighbour s ∈ S(4, 5, 1) and a vertex y′′ that has a neighbour t ∈ S(2, 3, 4).
Then s (resp. t) is not adjacent to y′′ (resp. y′) by (P13). Then C ∪ {s, t, y′, y′′} contains
an induced P6 or an induced F2, depending on whether y′ and y′′ are adjacent. Thus,
either each vertex in Y is anti-complete to S(4, 5, 1) and has a neighbour in S(2, 3, 4) or
each vertex in Y is anti-complete to S(2, 3, 4) and has a neighbour in S(4, 5, 1). Then Y is
a clique by a similar argument in Claim 4 asserting that there is a vertex in S(2, 3, 4) or
S(4, 5, 1) that is complete to Y .

Recall that S(3, 4) is anti-complete to S(4, 5, 1). Let R ⊆ S(2, 3, 4) be the set of vertices
that are complete to S(3, 4) and T = S(2, 3, 4)\R. By (P10), T is anti-complete to S(3, 4).
If Y is anti-complete to S(2, 3, 4), then R∪{3} and T are homogeneous cliques in G. Hence,
|S(2, 3, 4)| ≤ 1. Moreover, (Y, S(4, 5, 1)) is a homogeneous pair of cliques in G by (1). If
Y is anti-complete to S(4, 5, 1), then S(4, 5, 1) ∪ {5} is a homogeneous clique in G and so
S(4, 5, 1) = ∅. If S(3, 4) = ∅, then (Y, S(2, 3, 4)) is a homogeneous pair of cliques in G.
Otherwise let d ∈ S(3, 4). We claim that T is anti-complete to Y . Suppose by contradiction
that y ∈ Y and t ∈ T are adjacent. Then d and t are not adjacent by the definition of
T . Note that S(4) contain a vertex z and z has a neighbour x ∈ X ⊆ S(1, 2). Note that
x and y are adjacent and y is not adjacent to z and t is not adjacent to x by (2). But
now d, 3, t, y, x, z induces a P6. So, T is anti-complete to Y . This implies that (Y,R) is a
homogeneous pair of cliques in G, and T is a homogeneous clique in G and so |T | ≤ 1. In
either case, Y ∪ S(2, 3, 4) ∪ S(4, 5, 1) is partitioned into a subset of size at most 1 and a
homogeneous pair of cliques in G.

We next deal with S5 ∪S(4)∪X ∪Z. Let S′′
5 = {u ∈ S5 : u has a non-neighbour in X}

and S′
5 = S5 \ S′′

5 . Then S′
5 is complete to X.

(3) Each vertex in Z has a neighbour in S′′
5 .

Let Z ′ = {z ∈ Z : z has a neighbour in S′′
5} and Z ′′ = Z \ Z ′. Suppose that Z ′′

contains a vertex a and let A be the connected component of Z ′′ containing a. Thus,
N(A) ⊆ {1, 2} ∪ X ∪ Y ∪ S(1, 2, 3) ∪ S′

5 ∪ Z ′. Recall that Y is complete to S5 and
so {1, 2} ∪X ∪ Y ∪ S(1, 2, 3) ∪ S′

5 is a clique by (1). Moreover, Y is complete to Z
and so Z ′ is complete to {1, 2} ∪ X ∪ Y ∪ S(1, 2, 3). We now show that N(A) is a
clique. First, each vertex in Z ′ is either complete or anti-complete A. Suppose not.
Let z′ ∈ Z ′ distinguish an edge aa′ in A, say z′ is adjacent to a but not to a′. Let
u ∈ S′′

5 be a neighbour of z′ and x ∈ X be a non-neighbour of u. Then x has a
neighbour v ∈ S(4). By (P11), u is not adjacent to v. So, a′, a, z′, u, 4, v induces
a P6. Second, let u ∈ S′

5 and z′ ∈ Z ′ be in N(A). We may choose a ∈ A to be a
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neighbour of u. By the definition of Z ′, z′ has a neighbour u′′ ∈ S′′
5 . Moreover, u′′

is not adjacent to a by the definition of Z ′′. Thus, u and z′ must be adjacent for
otherwise a, z′, u′′, u induces a C4. This shows that Z

′ and S′
5 are complete. Thirdly,

let z1, z2 ∈ N(A) ∩ Z ′. Suppose that z1 and z2 are not adjacent. Let ui ∈ S′′
5 be a

neighbour of zi and xi ∈ X be a non-neighbour of ui. By the definition of X, xi has
a neighbour vi ∈ S(4). By (P11), ui is not adjacent to vi. Note that u1 �= u2 for
otherwise a, z1, u1, z2 induces a C4. This means that u1 (resp. u2) is not adjacent to
z2 (resp. z1). Now z2, a, z1, u1, 4, v1 induces a P6. This shows that N(A) is a clique
and so a clique cutset of G. Since G has no clique cutsets, Z ′′ = ∅. �

(4) Z is complete to S′
5.

Let z ∈ Z be an arbitrary vertex. Then z has a neighbour u ∈ S′′
5 which has a

non-neighbour x ∈ X. If u′ ∈ S′
5 is not adjacent to z, then u, u′, x, z induces a C4. �

Since S′
5 is complete to X and each vertex in S(4) has a neighbour in X, S′

5 is complete
to S(4) by (P11). So, (4) implies that each vertex in S′

5 is a universal vertex in G (note
that if S(3, 4) �= ∅ then it is also complete to S5). Therefore, S

′
5 = ∅ and S5 = S′′

5 . We have
shown that each vertex in S5 has a non-neighbour inX and each vertex in Z has a neighbour
in S5. We proceed with partitioning X, S′′

5 and Z into subsets so that we can decompose
G into homogeneous pairs of sets. Let X0 = {x ∈ X : x is anti-complete to S′′

5} and
X1 = X \X0. We then partition S′′

5 into two subsets S′′′
5 = {u ∈ S′′

5 : u is complete to X1}
and R = S′′

5 \ S′′′
5 . Let Z ′ = N(R) ∩ Z and Z ′′ = Z \ Z ′.

(5) N(X0) ∩ S(4) is anti-complete to X1.
Suppose not. Let v ∈ S(4) ∩ N(X0) have a neighbour x1 ∈ X1. Let x0 ∈ X0 be a
neighbour of v. By the definition of X1, x1 has a neighbour u ∈ S′′

5 . Note that u is
not adjacent to x0 and so not adjacent to v by (P11). But now x1, v, 4, u induces
a C4, a contradiction. �

Recall that X is a clique. Therefore, S(4)\N(X0) and S(4)∩N(X0) are anti-complete
by (5) and the facts that G is C4-free and each vertex in S(4) has a neighbour in X. In
addition, S(4) ∩ N(X0) is anti-complete to S′′

5 by (P11). Therefore, (X0, N(X0) ∩ S(4))
is a homogeneous pair of sets in G.

(6) No vertex in S′′
5 can have two non-adjacent neighbours in Z.

Let u ∈ S′′
5 have two non-adjacent neighbours z1 and z2 in Z. Then u has a non-

neighbour x ∈ X. Recall that x is universal in S(1, 2) and so complete to {z1, z2}.
Now u, z1, x, z2 induces a C4. �

(7) Z ′ and Z ′′ are complete.
Suppose not. Let z′ ∈ Z ′ and z′′ ∈ Z ′′ be non-adjacent. By the definition of Z ′, z′

has a neighbour r ∈ R ⊆ S′′
5 . Let u ∈ S′′′

5 be a neighbour of z′′. By the definition of
R, r is not adjacent to some vertex x1 ∈ X1. Since X is complete to Z, x1 is adjacent
to z′ and z′′. Moreover, x1 is adjacent to u by the definition of X1. By (6), u is not
adjacent to z′. But now x1, z

′, r, u induces a C4. �

(8) Z ′ is complete to S′′′
5 .

Suppose not. Let z′ ∈ Z ′ and u ∈ S′′′
5 be non-adjacent. By the definition of Z ′,
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z′ has a neighbour r ∈ R, and r is not adjacent to some vertex x1 ∈ X1. Since X
is complete to Z, x1 is adjacent to z′. Moreover, u is adjacent to x1 and r. So,
u, r, z′, x1 induces a C4, a contradiction. �

Since each vertex in S(4)\N(X0) has a neighbour in X1, S
′′′
5 is complete to S(4)\N(X0)

by (P11). It follows from (7) and (8) that (S′′′
5 , Z ′′) is a homogeneous pair of sets in

G. Moreover, (R,X1 ∪ Z ′, S(4) \ N(X0)) is a homogeneous triple in G by the structural
properties we have proved so far. Therefore, V (G) is partitioned into a subset V0 consisting
of vertices in C ∪ S(3, 4, 5) and at most one vertex in Y ∪ S(2, 3, 4) ∪ S(4, 5, 1) (and so
of size at most 7), four homogeneous pairs of sets (S(1, 2, 3), S(3, 4)), one contained in
Y ∪ S(2, 3, 4) ∪ S(4, 5, 1), (X0, N(X0) ∩ S(4)) and (S′′′

5 , Z ′′), and a homogeneous triple
R ∪ (X1 ∪ Z ′) ∪ (S(4) \N(X0)).

We now show that each of the four homogenous pairs and the homogenous triple has
a nice 4-expression and 6-expression, respectively. First of all, (S(1, 2, 3), S(3, 4)) and the
homogeneous pair of sets contained in Y ∪ S(2, 3, 4) ∪ S(4, 5, 1) are homogeneous pairs of
cliques and so have a nice 4-expression by Lemma 4.

Recall that each vertex in Z has a neighbour in S′′
5 . Suppose that P = u, z1, z2, z3 is

an induced P4 where u ∈ S′′
5 and z1, z2, z3 ∈ Z. Then u has a non-neighbour x ∈ X, and x

ha a neighbour v ∈ S(4). By (P11), u and v are not adjacent. Now v, 4, P induces a P6.
Suppose now that P = z1z2z3z4 be an induced P4 in Z. Then z1 has a neighbour u ∈ S′′

5

which has a non-neighbour x ∈ X. By (6), u is not adjacent to z3 or z4. Now P ∪ {u}
contains such a labeled P4. Therefore, G[S′′

5 ∪ Z] with the partition (S′′
5 , Z) satisfies all

the conditions in Lemma 5 and so has a nice 4-expression. Since G[S′′′
5 ∪Z ′′] is an induced

subgraph of G[S′′
5 ∪ Z], it follows that G[S′′′

5 ∪ Z ′′] has a nice 4-expression.

(9) Z ′ is a clique.
Suppose that z1, z2 ∈ Z ′ are not adjacent. Then zi has a neighbour ri ∈ R for i = 1, 2.
By (6), r1 �= r2 and r1 (resp. r2) is not adjacent to z2 (resp. z1). Recall that r1 has
a non-neighbour x ∈ X1. Since x is adjacent to z1 and z2, x is not adjacent to r2.
Now by the definition of X1, x has a neighbour u ∈ S′′

5 . Then u is adjacent to zi for
otherwise x, zi, ri, u induces a C4 for i = 1, 2. This, however, contradicts (6). �

Claim 5. G[S5 ∪ (X ∪ Z ′) ∪ S(4)] has a nice 6-expression.

Proof of Claim 5. Let X ′ = X∪Z ′. By (9), (S5, X
′) is a co-bipartite chain graph. Thus,

we can order the vertices in S5 as u1, . . . , ur and the vertices in X ′ as x1, . . . , xs such that
NX′(ui) = {x1, . . . , xj} for some 0 ≤ j ≤ s and NX′(u1) ⊆ NX′(u1) ⊆ . . . ⊆ NX′(ur). Let
U0 be the set of vertices in S5 that are anti-complete to X ′. Let U1 be the set of vertices in
S5 \U0 that have the smallest neighbourhood in X ′, and U2 be the set of vertices in S5 \U0

that have the second smallest neighbourhood in X ′, and so on. Then S5 is partitioned
into U0, U1, . . . , Uq where q+1 is the number of different neighbourhoods of vertices in S5.
Let X1 = NX′(U1) and Xi = NX′(Ui) \ NX′(Ui−1) for 2 ≤ i ≤ q. Let Xq+1 be the set of
vertices in X ′ that are anti-complete to S5. Note that X1, . . . Xq, Xq+1 partition X ′. Let
Mi = N(Xi)∩S(4) for each 1 ≤ i ≤ q+1. Since S(4) is anti-complete to Z, some Mi may
be empty. Since each vertex in S(4) has a neighbour in X, S(4) = M1 ∪ . . . ∪Mq+1. We
say that G[Xj ∪Mj ] is a piece for each 1 ≤ i ≤ q + 1. Note that any vertex in Mj has a
neighbour in Xj ∩X since Z is anti-complete to S(4).
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(i) U0 is anti-complete to X ′ ∪ S(4).
By the definition of U0, U0 is anti-complete to X ′. Since any vertex in S(4) has a
neighbour in X, U0 is anti-complete to S(4) by (P11). �

(ii) For 1 ≤ i ≤ q, Ui is complete to Xj ∪Mj for 1 ≤ j ≤ i.
Let u ∈ Ui and 1 ≤ j ≤ i. Then u is complete to Xj by the definition of Xj . If Mj is
empty, then the proof is complete. So, we assume that Mj �= ∅. For each v ∈ Mj , v
has a neighbour in Xj ∩X. Since u is complete to Xj , u is adjacent to v by (P11).
This completes the proof. �

(iii) For each 1 ≤ i ≤ q, Ui is anti-complete to Xj ∪Mj for i < j ≤ q + 1.
Let u ∈ Ui and let j be such that i < j ≤ q + 1. Then u is anti-complete to Xj by
the definition of Xj . If Mj is empty, then the proof is complete. So, we assume that
Mj �= ∅. For each v ∈ Mj , v has a neighbour in Xj ∩X. Since u is anti-complete to
Xj , u is not adjacent to v by (P11). �

(iv) For 1 ≤ i, j ≤ q + 1 with i �= j, Mi ∩Mj = ∅.
Suppose that i < j and v ∈ Mi ∩ Mj . Then v has a neighbour xi ∈ Xi and a
neighbour xj ∈ Xj . Let ui ∈ Ui. By (ii), ui is adjacent to v, and by (iii) ui is not
adjacent to v. This is a contradiction. �

(v) For 1 ≤ i, j ≤ q + 1 with i �= j, Mi and Mj are anti-complete.
Suppose that vi ∈ Mi and vj ∈ Mj are adjacent. Then vi has a neighbour xi ∈ Xi

and vj has a neighbour xj ∈ Xj . By (iv), vi is not adjacent to xj and vj is not
adjacent to xi . Then vi, xi, xj , vj induces a C4. �

Since no vertex in S(1, 2) can have two non-adjacent neighbours in S(4), each piece
G[Xi∪Mi] with the partition (Xi,Mi) satisfies all the conditions in Lemma 5 and so there
is a nice 4-expression τi for it where all vertices in Xi have label 2 and all vertices in
Mi have label 4. For 0 ≤ i ≤ q, let εi be a 2-expression for Ui in which all vertices in
Ui have label 5. We now construct a nice 6-expression for G[S5 ∪ (X ∪ Z ′) ∪ S(4)]. Let
σ1 = ρ5→6(η5,4(η5,2(ε1 ⊕ τ1))). For each 2 ≤ i ≤ q, let

σi = ρ5→6(η5,6(η5,4(η5,2(εi ⊕ ρ1→2(η1,2(σi−1 ⊕ ρ2→1(τi))))))).

Then σ = η5,6(ε0 ⊕ (ρ1→2(η1,2(σq ⊕ ρ2→1(τq+1))))) is a nice 6-expression for G[S5 ∪ (X ∪
Z ′) ∪ S(4)] (the correctness of the construction follows from (i)-(v)). This completes the
proof of the claim. �

Since (X0, N(X0) ∩ S(4)) and R ∪ (X1 ∪ Z ′) ∪ (S(4) \ N(X0)) induce subgraphs of
G[S5 ∪ (X ∪ Z ′) ∪ S(4)], the pair has a nice 4-expression and the triple has a nice 6-
expression. by Claim 5. Finally, cw(G) ≤ |V0|+ 2× 4 + 3 = 18. This completes our proof
of the lemma.

We are now ready to prove our main theorem.

Proof of Theorem 6. Let G be a (C4, P6)-free atom. Let G′ be the graph obtained from
G by removing twin vertices and universal vertices. It follows from Lemma 7–Lemma 10
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that if G′ contains an induced C5 or C6, then G′ has clique-width at most 18. Therefore,
we can assume that G′ is also (C5, C6)-free and therefore G′ is chordal. It then follows
from a well-known result of Dirac [21] that G′ is a clique whose clique-width is 2. Finally,
cw(G) = cw(G′) by Lemma 3 and this completes the proof.

5 The Hardness Result

In this section, we prove that Colouring is NP-complete on the class of (C4, 3P3, P3 +
P6, 2P5, P9)-free graphs. A graph is a split graph if its vertex set can be partitioned into
two disjoint sets C and I such that C is a clique and I is an independent set. The pair
(C, I) is called a split partition of G. A split graph is complete if it has a complete split
partition, that is, a partition (C, I) such that C and I are complete to each other. It is
straightforward to check that a complete split graph is P4-free. A list assignment of a graph
G = (V,E) is a function L that prescribes, for each u ∈ V , a finite list L(u) ⊆ {1, 2, . . . }
of colours for u. The size of a list assignment L is the maximum list size |L(u)| over all
vertices u ∈ V . A colouring c respects L if c(u) ∈ L(u) for all u ∈ V . The List Colouring
problem is to decide whether a given graph G has a colouring c that respects a given list
assignment L.

For our hardness reduction we need the following result.

Lemma 11 ([27]). List Colouring is NP-complete even for complete split graphs with
a list assignment of size at most 3.

We are now ready to prove our theorem. In its proof we construct a C4-free graph G′

that is neither (sP2 + P8)-free nor (sP2 + P4 + P5)-free for any s ≥ 0. Hence, a different
construction is needed for tightening our hardness result (if possible).

Theorem 8. Colouring is NP-complete for (C4, 3P3, P3 + P6, 2P5, P9)-free graphs.

Proof. We reduce from List Colouring on complete split graphs with a list assignment
of size at most 3. This problem is NP-complete due to Lemma 11. Let G be a complete
split graph with a list assignment L of size at most 3. From (G,L) we construct an instance
(G′, k) of Colouring as follows. First, let k ≤ 3|V (G)| be the size of the union of all lists
L(u). Let (C, I) be a complete split partition of V (G). We say that the vertices of C and
I are of c-type and i-type, respectively. Let G′ be the graph of size O(|V (G)|k) obtained
from G by adding the following sets of vertices and edges (see Figure 7 for an illustration):

• Take a clique X on k vertices x1, . . . , xk. We say that these vertices are of x-type.

• For each u ∈ V (G), introduce a clique Yu of size k− |L(u)| such that every vertex of
Yu is adjacent to u and also to every xi with i ∈ L(u) (so, each vertex in every Yu is
adjacent to exactly one vertex of V (G), namely vertex u). We say that the vertices
in every Yu are of y-type.

We now prove two claims that together with NP-membership of Colouring imply the
theorem.

Claim 1. The graph G has a colouring that respects L if and only if G′ has a k-colouring.
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X |X| = k
x1

x2

x3

x4

Yu |Yu| = k − |L(u)|. . .

G u

L(u) = {2, 3}
. . . . . .

Figure 7: Illustration of the NP-hardness construction for k = 4.

Proof of Claim 1. First suppose that G has a colouring c that respects L. We give
each xi colour i. Consider a clique Yu. By construction, every vertex in every Yu can
only be assigned a colour from {1, . . . , k} \ L(u). As |Yu| = k − |L(u)| and Yu is a clique,
we need all of these colours. As every vertex in Yu has u as its only neighbour in G and
c(u) belongs to L, this is possible. Hence, we can extend c to a k-colouring c′ of G′. Now
suppose that G′ has a k-colouring c′. As X is a clique, we may assume without loss of
generality that c′(xi) = i for i = 1, . . . , k. Then c colours the vertices of each Yu with
colours from {1, . . . , k} \L(u). As Yu is a clique of size k− |L(u)|, all these colours appear
as a colour of a vertex in Yu. This means that u must get a colour from L(u). Hence
the restriction of c′ to G yields a colouring c that respects L. This completes the proof
of Claim 1. �

Claim 2. The graph G′ is (C4, 3P3, P3 + P6, 2P5, P9)-free.

Proof of Claim 2. We first prove that G′ is C4-free. For contradiction, suppose that
G′ contains an induced C4 on vertices a1, a2, a3, a4 in that order. Then at least one of
a1, a2, a3, a4, say a1, is of y-type, since the y-type vertices separate K from G, and both
K and G are C4-free. If a2 and a4 both belong to X ∪ Yu or both {u} ∪ Yu, then they are
adjacent, which is not possible. Hence, one of them, say a2, belongs to X and the other
one, a4, is equal to u. This is not possible either, as in that case a3 must be of y-type and
any two y-type neighbours of a u-type vertex are adjacent. We conclude that G′ is C4-free.

We now prove that G′ is 3P3-free. For contradiction, suppose that G′ contains an
induced 3P3. At most one of the three connected components of the induced 3P3 can
contain an x-type vertex. Then the other two connected components contain no x-type
vertex. As the y-type neighbours of an y-type vertex form a clique together with their
neighbour of G, both these other connected components contain at least two vertices from
G. Then all these vertices must be of i-type, as c-type vertices are adjacent to every
other vertex of G. However, i-type vertices form an independent set and only share c-type
vertices as common neighbours, a contradiction. We conclude that G′ is 3P3-free.

We now prove that G′ is (P3 + P6)-free. For contradiction, suppose that G′ contains
an induced P3 + P6. Let F1 be the P3-component and F2 be the P6-component. Suppose
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F1 contains an x-type vertex. Then F2 contains no x-type vertex. As every {u} ∪ Yu is
a clique and i-type vertices form an independent set, F2 must contain at least one c-type
vertex. As c-type vertices are adjacent to all i-type vertices and all other c-type vertices,
F2 contains at most three vertices from G which form a subpath of F2. As F2 contains six
vertices and every {u} ∪ Yu is a clique, this is not possible. Hence F1 contains no x-type
vertex. As every {u} ∪ Yu is a clique, this means that F1 contains at least two adjacent
vertices of G. As i-type vertices form an independent set, one of these vertices is of c-type.
This means that F2 contains no vertices of G. This is not possible as the x-type and y-type
vertices induce a P5-free graph. We conclude that G′ is (P3 + P6)-free.

We now prove that G′ is 2P5-free. For contradiction, suppose that G′ contains an
induced 2P5 with connected components F1 and F2. At most one of F1, F2 may contain
an x-type vertex. Hence we may assume that F2 contains no x-vertex. This means that F2

must be of the form y− i− c− i− y. As a consequence, F1 only contains vertices of x-type
or y-type. This is not possible as those vertices induce a P5-free subgraph. We conclude
that G′ is 2P5-free.

Finally we prove that G′ is P9-free. Let P be a maximal induced path of G′. First
suppose that P contains at least two i-type vertices. Then P contains a subpath of the
form i− c− i or i− y− x− x− y− i. We can extend i− c− i to at most an 8-vertex path,
which is of the form y−i−c−i−y−x−x−y, but we cannot extend i−y−x−x−y−i any
further. Now suppose that P contains exactly one i-type vertex. If P contains no c-type
vertex, then P is a 5-vertex path of the form i−y−k−k−y. Otherwise P contains exactly
one c-type vertex. In that case P is a 7-vertex path of the form y − c− i− y − x− x− y
or y − x− x− y − c− i− y. Now suppose that P has no i-type vertex. If P has no c-type
vertex either, then P is of the form y−x−y or y−x−x−y, so P has at most five vertices.
If P has exactly one c-type vertex, then P is a 5-vertex path of the form c− y− k− k− y.
Otherwise, P has exactly two c-type vertices. In that case P is a 7-vertex path of the form
y − c− c− y − k − k − y. We conclude that G′ is P9-free. �

The result now follows from Claim 1 and Claim 2.

6 Conclusions

We proved that Colouring restricted to (C4, Pt)-free graphs is polynomial-time solvable
for t ≤ 6 and NP-complete for t ≥ 9. Combined with the aforementioned known results
from [7, 37, 43], we can replace Theorem 2 by the following almost complete dichotomy for
Colouring restricted to (Cs, Pt)-free graphs.

Theorem 9. Let s ≥ 3 and t ≥ 1 be two fixed integers. Then Colouring for (Cs, Pt)-free
graphs is polynomial-time solvable if s = 3, t ≤ 6, or s = 4, t ≤ 6, or s ≥ 5, t ≤ 4, and
NP-complete if s = 3, t ≥ 22, or s = 4, t ≥ 9, or s ≥ 5, t ≥ 5.

We proved that, in contrast to (C4, P6)-free graphs, (C4, P6)-free atoms have bounded
clique-width. As we also showed that the classification of boundedness of clique-width of
H-free graphs and H-free atoms coincides, this result was not expected beforehand. As
such, we believe that a systematic study in the applicability of this technique, together with
the other techniques developed in our paper, can be used to prove further polynomial-time
results forColouring. For future work we aim to complete the classification of Theorem 9.
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The natural candidate class for a polynomial-time result of Colouring is the class
of (C4, P7)-free graphs. However, this may require significant efforts for the following
reason. Lozin and Malyshev [46] determined the complexity of Colouring for H-free
graphs for every finite set of graphs H consisting only of 4-vertex graphs except when H
is {K1,3, 4P1}, {K1,3, 2P1 + P2}, {K1,3, 2P1 + P2, 4P1} or {C4, 4P1}. Solving any of these
open cases would be considered as a major advancement in the area. Since (C4, 4P1)-
free graphs are (C4, P7)-free, polynomial-time solvability of Colouring on (C4, P7)-free
graphs implies polynomial-time solvability for Colouring on (C4, 4P1)-free graphs. As a
first step, we aim to apply the techniques of this paper to (C4, 4P1)-free graphs.

The class of (C3, P7)-free graphs is also a natural class to consider. Interestingly, every
(C3, P7)-free graph is 5-colourable. This follows from a result of Gravier, Hoàng and
Maffray [30] who proved that for any two integers r, t ≥ 1, every (Kr, Pt)-free graph can be
coloured with at most (t−2)r−2 colours. On the other hand, 3-Colouring is polynomial-
time solvable for P7-free graphs [5]. Hence, in order to solve Colouring for (C3, P7)-free
graphs we may instead consider 4-Colouring for (C3, P7)-free graphs. This problem also
seems highly nontrivial.
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A The Proof of Lemma 4

Here is a proof for Lemma 4, which we restate below.

Lemma 4 [Folklore]. There is a nice 4-expression for any co-bipartite chain graph.

Proof. Let G = (A
B,E) be a co-bipartite chain graph where A and B are cliques. Since
G is a co-bipartite chain graph, we can order the vertices in A as a0, a1, . . . , as and the
vertices in B as b1, . . . , bt such that for each 0 ≤ i ≤ s, NB(ai) = {b1, . . . , bj} for some
0 ≤ j ≤ t (j = 0 means that NB(ai) = ∅) and NB(a0) ⊆ NB(a1) ⊆ . . . ⊆ NB(at). Note
that two vertices in A are twins in G if and only if they have the same neighbours in B.
It follows from Lemma 3 that twin vertices do not change the clique-width. Neither do
they change the niceness of the clique-width expression. Therefore, we may assume that
for each 0 ≤ j ≤ t there is at most one ai with NB(ai) = {b1, . . . , bj}. Moreover, we can
assume that for each 0 ≤ j ≤ t there is exactly one ai with NB(ai) = {b1, . . . , bj} for
otherwise G would be an induced subgraph of this graph. In other words, s = t + 1 and
NB(ai) = {b1, . . . , bi} for each 0 ≤ i ≤ t. Let τ1 = ρ3→4(ρ1→2(η1,3(1(a1) ⊕ 3(b1)))). For
each 2 ≤ i ≤ t, note that

τi = ρ1→2(η1,4(ρ3→4(η3,4(η1,2((1(ai)⊕ 3(bi))⊕ τi−1)))))

is a nice 4-expression for G[{a1, . . . , ai, b1, . . . , bi}]. Now τ = ρ1→2(η1,2(1(a0)⊕τt)) is a nice
4-expression for G.
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