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Abstract

This paper develops a shrinkage model for portfolio choice. It places a layer on a con-

ventional portfolio problem where the optimal portfolio is shrunk towards a reference

portfolio. The model can accommodate a wide range of portfolio problems with various

objectives and constraints, and its implementation is simple and straightforward. A

data-driven method to determine the shrinkage level is offered. A comprehensive com-

parative study suggests the proposed model substantially enhances the performance of

its underlying model and outperforms existing shrinkage models as well as the näıve

strategy. The näıve strategy serves better as the reference portfolio than the current

portfolio.
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1. Introduction

There has been a long debate on the effectiveness of optimal portfolios and their competitive

advantages against the näıve, equal-weight portfolio (a.k.a. 1/N rule). In their seminal

work, DeMiguel et al. (2009) test fourteen portfolio strategies on seven datasets and find

none of them consistently outperforms the näıve strategy. They further show that when

returns are i.i.d. normal, an unrealistically long sample period is required for the Markowitz

(1952) mean-variance portfolio to outperform the equal-weight portfolio. Although their

results are somewhat exaggerated (e.g., see discussions in Kirby and Ostdiek (2012) and

Kan et al. (2016)), the sheer number of citations of their paper reflects the impact it has

brought to academia and industry.1 Undoubtedly, there has been a backlash. Kirby and

Ostdiek (2012), using similar sets of data, find that a mean-variance strategy constrained to

invest only in risky assets outperforms the näıve strategy. Bessler et al. (2014) show that a

strategy based on the Black and Litterman (1992) framework outperforms the näıve strategy

when applied to a multi-asset dataset. Branger et al. (2019) develop a grouping strategy in

which portfolio optimization is performed on groups of equally weighted stocks, and show

that their strategy outperforms many existing strategies that aim to address estimation risks.

Han (2019) develops a shrinkage model that improves upon the shrinkage models of Kan and

Zhou (2007) and Tu and Zhou (2011) and finds that the proposed model outperforms the

existing shrinkage models as well as the näıve strategy.

The race between the näıve and optimal strategies essentially depends upon the pre-

dictability of input parameters, i.e., expected returns and covariance matrix. If both input

parameters are unknown, it would be reasonable to assume that all the assets have the

same expected return and variance. Alternatively, based on asset pricing models, the same

return-risk ratio could be assumed for all assets. Both assumptions lead to the equal-weight

portfolio as the optimal portfolio.2 If only the variances are known, the covariances of all

1Based on the Google Scholar search, their paper has been cited 2,383 times at the time of writing
(December 2019).

2Pflug et al. (2012) also show that the näıve portfolio is optimal when estimation errors are significant.
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asset pairs may be assumed to be equal, and so are the expected returns. This would lead

to the volatility timing strategy of Kirby and Ostdiek (2012). If the covariance matrix is

known, the expected returns could be assumed the same across assets, in which case, the

minimum-variance portfolio would be optimal. If all the input parameters are known, the

Markowitz (1952) mean-variance portfolio should be the choice. In reality, input parame-

ters will be estimated with errors, and a portfolio strategy that takes estimation errors into

account, e.g., a Bayesian method or robust optimization, would be preferred.

From this perspective, the remarkable performance of the näıve strategy merely reaffirms

the difficulty of reliable input parameter estimation. Even when the input parameters can

be predicted within a certain accuracy, the classical mean-variance strategy could result in

a ruinous allocation due to its high parameter sensitivity and error-maximizing property

(Michaud, 1989), and it is crucial to address estimation errors for successful utilization of

portfolio optimization.

There has been a considerable amount of effort dedicated to addressing input parameter

uncertainty and portfolio sensitivity. One pillar has been formed by the Bayesian approach:

e.g., Klein and Bawa (1976), Brown (1976, 1978), Jorion (1986), Black and Litterman (1992),

Pástor (2000), Pástor and Stambaugh (2000). For a review of Bayesian models, the reader

is referred to Avramov and Zhou (2010). More recently, the robust optimization that finds

an optimal portfolio under a worst-case scenario became popular: e.g., Goldfarb and Iyen-

gar (2003), Fabozzi et al. (2007), Ceria and Stubbs (2016). The shrinkage estimator, first

proposed by Kan and Zhou (2007), optimally combines two or more portfolios so that the

expected utility loss is minimized. This approach has been adopted later by Tu and Zhou

(2011), DeMiguel et al. (2015), Kan et al. (2016), and Han (2019), among others. Other

approaches include imposing weight constraints (Jagannathan and Ma, 2003) or using a

shrinkage method for parameter estimation (Ledoit and Wolf, 2004). Brandt et al. (2009)

skip input parameter estimation completely by specifying portfolio weights as a function of

firm characteristics.
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Although these models have shown some degree of success, they are also subject to

limitations. Above all, many models assume the knowledge of estimation error distribution,

altough its estimation can be as challenging as input parameter estimation. The distribution

of estimation errors is a crucial determinant of asset allocation in these models, and its

misspecification can result in poor portfolio performance.

Bayesian approaches typically assume that the covariance matrix is precisely known and

focus on the estimation error of the expected returns. While the covariance matrix can be

estimated more accurately, Kan and Zhou (2007) show that its estimation error can have

a nontrivial impact on asset allocation and portfolio performance when combined with the

estimation error of the expected returns. Furthermore, Bayesian updates are carried out at

the input parameter level, which is not necessarily optimal from a portfolio perspective.

In contrast, shrinkage estimators recognize the uncertainty of both input parameters and

find an optimal combination of multiple portfolios from a portfolio perspective by minimiz-

ing the expected utility loss (or equivalently, maximizing the expected out-of-sample utility).

Nevertheless, shrinkage estimators suffer from shrinkage parameter uncertainty: the optimal

shrinkage parameters (the coefficients on the portfolios) are functions of unknown input pa-

rameters and therefore inherit input parameter uncertainty (Han, 2019). The uncertainty of

the shrinkage parameters can lead to a nontrivial utility loss. Shrinkage estimators also lack

practicality. As they maximize the expected out-of-sample utility, the risk aversion param-

eter needs to be specified, which is not always straightforward, especially for institutional

investors. It is also difficult to incorporate constraints such as the short-sale constraint into

these models.

This paper proposes a new shrinkage method for portfolio choice, turnover minimiza-

tion. The main idea of the turnover minimization is to minimize the distance between an

optimal portfolio and a reference portfolio subject to return or risk constraints.3 In con-

trast to maximizing utility, this mitigates the error maximizing property of the classical

3Minimizing the distance from a reference portfolio usually leads to a lower turnover even when the
reference portfolio is not the currently held portfolio, hence the name – turnover minimization.
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mean-variance portfolio. This approach is also consistent with the decision-making process

of institutional investors: they often prefer to have a stable portfolio that meets their re-

turn/risk targets rather than a portfolio that maximizes return or minimizes risk. As detailed

in the next section, the turnover minimization has several advantages compared to existing

models that account for estimation errors: it does not require an explicit assumption of error

distribution and can be easily incorporated into conventional portfolio problems with any

type of constraints.

The turnover minimization is motivated by the observation that, while a classical opti-

mal portfolio tends to contain extreme weights, there often exists a near-optimal portfolio

with considerably more balanced weights. Consider a two-asset allocation problem with the

expected returns and the covariance matrix:

µ =

0.10

0.15

 , Σ =

0.16 0.15

0.15 0.25

 .
If we maximize the expected return while constraining the variance under 0.2, the optimal

portfolio becomes w∗ = [0.30 0.70]′ with the expected return of 0.135. Now if we only require

95% of the expected return of the optimal portfolio, i.e., µp = 0.95 ·0.135 = 0.128, and make

the portfolio as close to the equal-weight portfolio as possible, we obtain w∗ = [0.43 0.57]′.

That is, more balanced asset allocation can be achieved with a little sacrifice of optimality.

As it turns out, this property holds in a wide range of portfolio optimization problems.

Several versions of the turnover minimization are evaluated through a comprehensive

comparative study that involves various portfolio models. In particular, models that incor-

porate the equal-weight portfolio are chosen as a benchmark as well as classical portfolio

rules. With the desirable characteristics of the equal-weight portfolio such as low turnover

and no short positions, and its recent role as a benchmark in portfolio studies, it was no

surprise to witness the emergence of portfolio models incorporating it. Tu and Zhou (2011)

combine the equal-weight portfolio with an optimal portfolio so that the expected utility
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loss is minimized: Markowitz (1952) rule, Jorion (1986) rule, Kan and Zhou (2007) rule, and

MacKinlay and Pástor (2000) rule are considered for the optimal portfolio. Bessler et al.

(2014) derive the equilibrium return from the equal-weight portfolio in the Black-Litterman

framework. Branger et al. (2019) develop a strategy in which assets are grouped to form

equal-weight portfolios before fed into optimization. Besides these models, a new model

based on the work of Treynor and Black (1973) is also considered, in which the equal-weight

portfolio is used as a proxy for the market portfolio.

The empirical study suggests that minimum-turnover portfolios outperform their under-

lying portfolios and other benchmarks both before and after transaction costs. In particular,

the mean-variance and global minimum-variance portfolios with the short-sale constraint

perform superior when augmented with the turnover minimization. These results are robust

to datasets, test periods, and other variations.

The rest of the paper is organized as follows. Section 2 develops the turnover minimization

framework, where a method to calibrate the model is also proposed. Section 3 carries out

an empirical analysis, and Section 4 concludes. The implementation details of the test

models can be found in the appendix, and additional empirical results are provided in the

accompanying internet appendix (IA).

2. Turnover Minimization

The turnover minimization aims to minimize the distance from a reference portfolio, subject

to return/risk constraints. Roughly, the problem can be written in the form

min
w

(w − w0)
′(w − w0)

subject to return/risk constraints

and other constraints,

6



where w0 is the reference portfolio, which can be any known portfolio at the time of re-

balancing. This paper mainly considers the equal-weight portfolio, wew, and the current

portfolio, wt−, for the reference portfolio, but also discusses other possibilities. As illus-

trated later in this section, the return and risk constraints are not only given exogenously

but also determined endogenously to maximize portfolio performance.

The rationale behind the turnover minimization is at least twofold. First, minimizing

turnover mitigates the error maximizing property of the classical portfolio optimization and

yields a more robust portfolio. Second, investors are not necessarily return/risk optimizers:

they often prefer a more robust portfolio as long as it meets their return/risk targets.

The turnover minimization is formulated as a two-stage optimization problem: classical

portfolio optimization and turnover minimization. Consider the following return maximiza-

tion problem of N assets subject to a variance constraint:

max
w

w′µ

subject to w′Σw ≤ σ2
T

w ∈ D,

(1)

where µ ∈ RN and Σ ∈ RN×N are the mean and covariance matrix of N asset returns in

excess of the risk-free rate, w ∈ RN is the portfolio weights, σ2
T is a risk tolerance (target

variance), and D denotes the feasible set of w defined by other constraints such as the budget

constraint or short-sale constraint. Denoting the optimal portfolio that solves (1) by w∗, the

expected return of w∗ is given by µ∗p = w∗′µ. The minimum-turnover portfolio, wtm, is then
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obtained by solving the second stage problem:

wtm = argmin
w

(w − w0)
′(w − w0)

subject to w′Σw ≤ σ2
T

w ∈ D

w′µ ≥ (1− τ)µ∗p,

(2)

where τ > 0 denotes the proportion of the optimal value the investor is willing to sacrifice

in exchange for the gain in robustness.4 When τ = 0, the minimum-turnover portfolio is the

same as the optimal portfolio from the first stage, whereas when τ → ∞, it becomes the

reference portfolio unless other constraints are binding.

The turnover minimization is intuitive in that it first finds the optimal portfolio for the

underlying portfolio problem and then moves it towards the reference portfolio by tolerating

sub-optimality, while satisfying all the constraints imposed in the first stage. The turnover

minimization can be easily incorporated into any portfolio optimization problems such as

variance minimization or Sharpe ratio maximization. Below are some examples.

Variance Minimization-Turnover Minimization

σ2
P
∗

= min
w

w′Σw

subject to w ∈ D ⇒

wtm = argmin
w

(w − w0)
′(w − w0)

subject to w ∈ D

w′Σw ≤ (1 + τ)2σ2
P
∗

(3)

4This two-step approach is equivalent to adding a penalty term, λ(w−w0)′(w−w0) for some constant λ,
to the objective function in (1). It is a special case of the model of Olivares-Nadal and DeMiguel (2018) when
w0 is the current portfolio. It is also equivalent to DeMiguel et al. (2009)’s norm-constrained model if w0 is
the risk-free asset. However, in this formulation, λ can have any nonnegative value making its calibration
challenging. In contrast, τ will typically be chosen from [0, 1], allowing more efficient calibration.
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Sharpe Ratio Maximization-Turnover Minimization

SR∗ = max
w

w′µ√
w′Σw

subject to w ∈ D ⇒

wtm = argmin
w

(w − w0)
′(w − w0)

subject to w ∈ D
w′µ√
w′Σw

≥ (1− τ)SR∗

(4)

Utility Maximization-Turnover Minimization

U∗ = max
w

w′µ− γ

2
w′Σw

subject to w ∈ D ⇒

wtm = argmin
w

(w − w0)
′(w − w0)

subject to w ∈ D

w′µ− γ

2
w′Σw ≥ (1− τ)U∗

(5)

γ : risk aversion coefficient

If the first-stage problem can be formulated as a convex programming problem, the

second-stage problem also becomes a convex programming problem and can be solved effi-

ciently using a specialized software package, such as CVX, Gurobi, or MOSEK.

2.1. A Closer Look at the Turnover Minimization

The turnover minimization can be viewed as a shrinkage estimator as it shrinks the optimal

portfolio towards the reference portfolio. While it is generally impossible to obtain an ana-

lytic solution for a turnover minimization problem, the following special case provides insights

into the model and its connection to existing models. Consider the utility maximization-

turnover minimization problem, now with a new distance function, (w − w0)
′Σ(w − w0).

5

5This is for analytical tractability. With Σ, an asset with a larger variance will be penalized more severely
for the deviation from w0, whereas all assets are penalized equally in the original specification. Shrinking
volatile assets more severely makes sense because they are likely to have larger estimation errors. Also,
when the reference portfolio is the current portfolio, the quadratic term can be interpreted as the (scaled)
transaction cost: see Gârleanu and Pedersen (2013), Olivares-Nadal and DeMiguel (2018).
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The Lagrangian of the problem has the form

L =
1

2
(w − w0)

′Σ(w − w0)− λ
(
w′µ− γ

2
w′Σw − (1− τ)U∗

)
. (6)

From the first-order condition, ∂L
∂w

= 0, the minimum-turnover portfolio is given by (see

Appendix A for proof)

wtm =
1

1 + λγ
w0 +

λγ

1 + λγ
wmk, (7)

where wmk = 1
γ
Σ−1µ is the optimal portfolio from the first stage, i.e., the utility-maximizing

portfolio. The minimum-turnover portfolio is a linear combination of the optimal portfolio

and the reference portfolio. A portfolio of this form is equivalent to the shrinkage estimator

of Tu and Zhou (2011) when w0 := wew, and the shrinkage estimator of Kan and Zhou (2007)

when w0 is the global minimum variance portfolio. In this regard, the turnover minimization

can be considered a generalized shrinkage estimator that encompasses existing models. The

main difference, however, is that the turnover minimization does not make any particular

assumption for the estimation errors and can easily accommodate various types of objective

functions and constraints. This flexibility comes at a cost of analytical tractability, and τ

needs to be calibrated from data.6

When the constraint is binding, i.e., w′µ− γ
2
w′Σw = (1− τ)U∗, it can be shown that

λ =
1

γ

(√
U∗ − U0

τU∗
− 1

)
, (8)

and

wtm =

√
τU∗

U∗ − U0

w0 +

(
1−

√
τU∗

U∗ − U0

)
wmk, (9)

6While a closed form is always preferred, Han (2019) shows that, due to model parameter uncertainty,
the closed-form solutions offered by Kan and Zhou (2007) and Tu and Zhou (2011) are sub-optimal even
when all the assumptions are correct. He argues that the optimal shrinkage level should be higher than that
suggested by these models, and cannot be determined analytically.
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where U0 = w′0µ −
γ
2
w′0Σw0 is the utility of the reference portfolio. Note that the loading

on w0 is 0 when τ = 0 and increases with τ , and wtm converges to w0 when τ = 1− U0/U
∗.

Since U0 ≤ U∗, τ ≤ 1. Equation (9) can be rearranged as follows:

(wtm − w0) =

(
1−

√
τ

1− k

)
(wmk − w0), (10)

where k := U0/U
∗. The distance between wtm and w0, normalized by the distance between

wmk and w0, is given by

|wtm − w0|2
|wmk − w0|2

=
λγ

1 + λγ
= 1−

√
τ

1− k
, (11)

where |x|2 is the l2-norm. The equation shows that, for a given τ , the normalized distance de-

pends only on the relative utility U0/U
∗, and is independent of input parameters. Moreover,

when U0 is closer to U∗, the optimal portfolio shrinks towards w0 more rapidly.

Figure 1 shows the relationship between the distance to w0 and the tolerance τ for

different values of k. The vertical axis is the normalized distance, 1 −
√
τ/(1− k). The

figure suggests that, even when the utility of the reference portfolio is considerably lower

than that of the Markowitz portfolio, a robust portfolio (i.e., a portfolio close to w0) can be

obtained without any significant loss of utility. For instance, when U0 = 0.1U∗ (k = 0.1),

10% tolerance results in 33% reduction of the distance, whereas the reduction increases to

41% when U0 = 0.4U∗ (k = 0.4). Note that U∗ is a hypothetical maximum utility that can

be achieved in the absence of estimation errors. The actual utility of the Markowitz portfolio

will be significantly lower, and so is the utility loss caused by turnover minimization.

2.2. Optimal τ

The tolerance level τ determines the degree of shrinkage and the choice of τ is critical for

the performance of the minimum-turnover portfolio. While a closed-form formula for the

optimal τ does not exist in general, it can be obtained in some special cases. In particular, if
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(d) k = 0.7

Figure 1: Shrinkage by Turnover Minimization

This figure demonstrates the distance between the minimum-turnover portfolio, wtm, and the reference
portfolio, w0, as a function of τ . The curves are obtained from Equation (11). The distance is normalized
by |wmk − w0|2.
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the returns are i.i.d. normal, an optimal τ can be obtained in a closed-from for the problem

stated above.

Under the normality assumption, the maximum likelihood (ML) estimator is efficient,

and Equation (7) can be implemented using the maximum likelihood estimates of µ and Σ,

µ̂ and Σ̂:

wtm = aw0 + (1− a)ŵmk, (12)

where a := 1
1+λγ

and ŵmk := 1
γ
Σ̂−1µ̂. The optimal a can be determined so that the expected

out-of-sample utility of wtm is maximized. The optimal a is given by (see Appendix A for

proof)

a∗ =
π2

π1 + π2
, (13)

π1 = 2(U∗ − U0), (14)

π2 = 2(c1 − 1)U∗ +
c1
γ

N

T
, (15)

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
. (16)

From (8), the optimal τ has the form

τ ∗ = a∗2
(U∗ − U0)

U∗
. (17)

The above result reveals that the optimal τ depends only on four factors: the utilities

U∗ and U0, the number of assets N , and the size of the estimation window T . When the

number of assets increases or the estimation window size decreases, both a∗ and τ ∗ increases.

This result is expected since a greater estimation error (larger N or smaller T ) would require

higher tolerance for the portfolio to become robust. The optimal τ is inversely related to U0,

i.e., the closer U0 to U∗, the lower the required level of tolerance. In contrast, τ ∗ is not a
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monotonic function of U∗: τ ∗ is zero when U∗ = U0, increases with U∗ to a certain point and

converges to (1− 1/c1) as U∗ →∞. When the gap between U∗ and U0 starts to increase, it

is optimal to shrink more towards the reference portfolio, but when U∗ is significantly higher

than U0, the loss of utility dominates, and the optimal shrinkage level decreases.

Figure 2 illustrates the relationship between the optimal τ and the four variables. As

mentioned earlier, the optimal τ increases as T decreases, N increases, or U0 decreases, and

it increases and then decreases as U∗ increases.
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Figure 2: Optimal tolerance level, τ ∗

This figure illustrates the relationship between optimal τ and (a) the estimation window size T , (b) the
number of assets N , (c) the utility of the reference portfolio U0, and (d) the utility of the Markowitz
portfolio U∗. All graphs are obtained from Equation (17).
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2.3. Calibration of τ

For a general turnover minimization problem, τ needs to be determined numerically. The

following data-driven calibration method is proposed.

1. For the first ten months of the evaluation period, τ is set to 0.05.

2. When the month t > 10, τ is calibrated every month so that the Sharpe ratio during

1, . . . , t− 1 is maximized.7 The optimal τ is found via line search spanning the range

[0, 1] in its log space.

3. In the presence of transaction costs, the same procedure is repeated using the Sharpe

ratio net of transaction costs.

The first step is required only for the empirical study, as there is no data for calibration

at the beginning of the evaluation period. In practice, one may set a period in the past

so that τ can be calibrated from the first month of portfolio construction, and recalibrate

τ either by rolling the estimation window or by accumulating the sample as the portfolio

evolves. Another calibration method based on the last period return is also examined later

in Section 3.3.

2.4. Simulation Studies

2.4.1. Distance to the Reference Portfolio

As illustrated in Section 2.1, shrinking towards a reference portfolio does not necessarily

involve a considerable loss of optimality. This property is further investigated via simulation.

Using the sample moments of the four datasets D1, D2, D5, and D8 in Table 2 as the

true µ and Σ, the utility maximization-turnover minimization problem in (5) is solved for

different values of τ . The equal-weight portfolio is chosen for the reference portfolio. Figure 3

7The Sharpe ratio is used as the calibration criterion regardless of the objective function of the underlying
problem as the performance of a portfolio is evaluated by the Sharpe ratio.

15



displays the relationship between τ and the distance between the reference portfolio and the

minimum-turnover portfolio, normalized by the distance between the Markowitz portfolio

and the reference portfolio.

Remarkably, the distance to the equal-weight portfolio is reduced by more than half only

for 10% utility loss (τ = 0.1), even when the equal-weight portfolio’s utility is substantially

lower than that of the optimal portfolio.8 This result confirms that the turnover minimization

can yield a substantially more robust portfolio at the cost of a small fraction of optimality.

Again, it is worth emphasizing that the utility loss is being measured against the hypothetical

maximum utility, and the actual utility of wmk is likely to be considerably lower due to

estimation errors.

2.4.2. Expected Out-of-sample Utility

This section examines the expected out-of-sample utility of the minimum-turnover portfolio.

Using the sample moments from the datasets D1, D2, D5, and D8 as true moments, the

maximum likelihood estimates of the input parameters are randomly generated from

µ̂ ∼ N
(
µ,

Σ

T

)
, Σ̂ ∼ WN(T − 1,Σ)

1

T
, (18)

where T is the estimation window size, and N and WN respectively denote the normal

and the N -dimensional Wishart distributions. The minimum-turnover portfolio is then con-

structed from Equation (12) with the optimal τ defined in (17).9 This procedure is iterated

8The relative utility of the equal-weight portfolio can be measured by (1 − τ) on the x-axis, i.e., when
|wtm −w0|2 = 0: e.g., in D1, the utility of the equal-weight portfolio is about 12% of the optimal portfolio’s
utility.

9For the calculation of τ∗, U∗ and U0 are estimated from the input parameter estimates via the method
of Kan and Zhou (2007).
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(c) D5. Fama-French
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(d) D8. Momentum

Figure 3: Minimum-Turnover Portfolios

This figure demonstrates the relationship between the tolerance level τ and the distance from the minimum-
turnover portfolio to the equal-weight reference portfolio. The distance is normalized by |wmk − w0|2, i.e.,
the distance of the underlying optimal portfolio. The datasets are described in Table 2.
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10,000 times to obtain the expected out-of-sample utility10

EU = µp −
γ

2
σ2
p, (19)

µp = E[w′r] = E[w′µ], (20)

σ2
p = V [w′r] = E[w′Σw] + E[(w′µ)2]− E[w′µ]2, (21)

where the expectations are estimated from the sample averages.

Figure 4 compares the expected out-of-sample utility of the minimum-turnover portfo-

lio (TMKE) with those of the underlying Markowitz portfolio (MK), the reference portfolio

(EW), and the ex-post optimal portfolio (W*), for different estimation window sizes. The ef-

fectiveness of turnover minimization is evident. The minimum-turnover portfolio consistently

outperforms its underlying portfolio in all datasets, and the improvement is particularly sig-

nificant when T is small, i.e., when the estimation error is significant. Even when the utility

of EW is lower than that of MK, a higher utility is achieved by shrinking MK towards EW

via turnover minimization.

3. Empirical Analysis

This section evaluates the turnover minimization model against other portfolio models using

real market data. Section 3.1 and 3.2 respectively describe the models and datasets, and the

remainder of the section discusses empirical results.

3.1. Portfolio Models

The portfolio models are listed in Table 1. Their implementation details are provided in

Appendix B. W* is the ex-post mean-variance optimal portfolio obtained from the sample

moments during the evaluation period. It represents the performance of the Markowitz

10Following Kan and Wang (2016), the unconditional variance is used.
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Figure 4: Expected Out-of-sample Utility

This Figure displays the expected out-of-sample utilities of the minimum-turnover portfolio (TMKE), the
underlying Markowitz portfolio (MK), the reference equal-weight portfolio (EW), and the ex-post optimal
portfolio (W*). The horizontal axis represents the estimation window size.
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portfolio when no estimation error is present. EW is the equal-weight portfolio. Both W*

and EW are rebalanced back to their original weights every month.

The Markowitz mean-variance portfolio (MK), the global minimum-variance portfolio

(MV), and their short-sale constrained versions (MK+, MV+) are also tested. OC(+) and

VT are respectively the optimal constrained portfolio (with the short-sale constraint) and the

volatility timing strategy of Kirby and Ostdiek (2012). TZMK and TZKZ are the shrinkage

estimators of Tu and Zhou (2011), which respectively combine the Markowitz rule and the

Kan and Zhou rule with the 1/N rule. TB+ is an extension of the active portfolio model

of Treynor and Black (1973). In TB+, the equal-weight portfolio is employed in lieu of the

market portfolio, and active assets are identified by regressing their returns on the return

of the equal-weight portfolio. BL+ is an extension of the Black-Litterman model by Bessler

et al. (2014), in which the prior is derived from the equal-weight portfolio instead of the

market portfolio.

Eight versions of the turnover minimization model are tested. TMKE(+) and TMK0(+)

are the turnover minimization incorporated with utility maximization (with the risk aversion

parameter γ = 3), and TMVE(+) and TMV0(+) are the turnover minimization incorporated

with variance minimization. The last letter indicates the reference portfolio: ‘E’ for the

equal-weight portfolio and ‘0’ for the current portfolio. ‘+’ denotes the short-sale constraint.

3.2. Data

The portfolio models are evaluated on the eleven datasets described in Table 2. These are

similar to the datasets used in DeMiguel et al. (2009) and Kirby and Ostdiek (2012), but

more comprehensive. In the table, the evaluation period refers to the out-of-sample period,

during which portfolios are rebalanced monthly.

The input parameters are estimated monthly from a rolling estimation window, T = 60,

120, or 240 months. The same evaluation period is used regardless of the estimation window

size so that the empirical results can be compared across window sizes. For instance, when
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Table 1: The Portfolio Models

This table lists the portfolio models considered in the empirical analysis. The ‘+’ in the abbreviation
denotes a model with the short-sale constraint (applied only to the risky assets). The details of the models
are described in Section 2 and Appendix B.

Abbreviation Description

W* Ex-post mean-variance optimal portfolio
EW Equal-weight portfolio

Classical models
MK, MK+ Markowitz (1952) mean-variance portfolio
MV, MV+ Global minimum-variance portfolio

Kirby and Ostdiek (2012)
OC, OC+ Optimal constrained portfolio: MK(+) without the risk-free asset
VT Volatility timing strategy

Tu and Zhou (2011)
TZMK Combination of MK and EW
TZKZ Combination of Kan and Zhou (2007) three-fund rule and EW

Incorporating the 1/N rule (in place of the market portfolio)
TB+ Treynor and Black (1973)
BL+ Black and Litterman (1992)

Turnover Minimization
TMKE(τ), TMKE(τ)+ Utility maximization-Turnover Minimization, w0 = wew

TMK0(τ), TMK0(τ)+ Utility maximization-Turnover Minimization, w0 = wt−
TMVE(τ), TMVE(τ)+ Variance minimization-Turnover Minimization, w0 = wew

TMV0(τ), TMV0(τ)+ Variance minimization-Turnover Minimization, w0 = wt−
τ : tolerance factor
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T = 240, the parameters are estimated using the sample in 1931.01-1950.12 in the first

month, and when T = 120, they are estimated using the sample in 1941.01-1950.12.

Table 2: The Datasets

This table lists the datasets used in the empirical analysis. The eight international indices in D1 are the gross
returns on large/mid-cap stocks from eight countries: Canada, France, Germany, Italy, Japan, Switzerland,
United Kingdom, and the USA. All the other datasets consist of US stocks. The 20 size-sort portfolios (D4,
8, 9, 10) are obtained from the corresponding 25 portfolios by removing the five largest portfolios. The 50
large-cap stocks are the 50 largest stocks as of 1970.01 that still exist at the end of 2018.12. The dataset
D1 is from the MSCI website (https://www.msci.com/end-of-day-data-country), D11 from the CRSP,
and all other datasets are from K. French website (http://mba.tuck.dartmouth.edu/pages/faculty/ken.
french/data_library.html).

Dataset Desciption N Evaluation Period

D1 8 International + World Indices 9 1990.01 - 2018.12
D2 10 Industry Portfolios + Market 11 1951.01 - 2018.12
D3 30 Industry Portfolios + Market 31 1951.01 - 2018.12
D4 20 FF Portfolios + Market 21 1951.01 - 2018.12
D5 10 Momentum Portfolios + Market 11 1951.01 - 2018.12
D6 10 Short-Term Reversal Portfolios + Market 11 1951.01 - 2018.12
D7 10 Long-Term Reversal Portfolios + Market 11 1951.01 - 2018.12
D8 20 Size/Momentum Portfolios + Market 21 1951.01 - 2018.12
D9 20 Size/Short-Term Reversal Portfolios + Market 21 1951.01 - 2018.12
D10 20 Size/Long-Term Reversal Portfolios + Market 21 1951.01 - 2018.12
D11 50 Large-cap Stocks in the US market 50 1990.01 - 2018.12

3.3. Empirical Results

3.3.1. Portfolio Construction and Evaluation

The input parameters are estimated every month during the evaluation period via the max-

imum likelihood estimator. These input parameters are used to rebalance the portfolios in

Table 1. The minimum-turnover portfolios are constructed using two calibrated τ ’s, τb and

τa, respectively for before and after transaction costs.

For the out-of-sample performance evaluation, the Sharpe ratio (SR), the certainty equiv-

alent (CE), the cumulative return (CR), the skewness (SK), and the turnover (TO) are
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employed. These are defined as follows:

SR =
r̄p
sp
, (22)

CE = r̄p −
γ

2
s2p, (23)

CR =
K∏
t=1

(1 + rp,t), (24)

SK =
1

K

K∑
t=1

(rp,t − r̄p)3, (25)

TO =
1

KN

K∑
t=1

N∑
i=1

|wi,t − wi,t−|, (26)

where r̄p and sp are respectively the mean and the standard deviation of the portfolio returns

rp,t over the evaluation period, K and N are the number of months in the evaluation period

and the number of assets, and wi,t− and wi,t are the weights of asset i immediately before and

after rebalancing at time t. Following Balduzzi and Lynch (1999) and Olivares-Nadal and

DeMiguel (2018), transaction costs are assumed to be 50 basis points for both buying and

selling risky assets and 0 for the risk-free asset. The actual transaction costs of institutional

investors are likely to be lower than this, and this assumption adversely affects the perfor-

mance of optimal strategies, which carry higher turnover than the näıve strategy. For the

statistical inference of the Sharpe ratio, the p-value for the Sharpe ratio difference between

an optimal portfolio and the equal-weight portfolio is calculated using the method of Ledoit

and Wolf (2008).

Since different portfolio models have different criteria and some portfolios are constrained

to invest only in the risky assets, comparing models on a level playing field is not trivial. To

mitigate the effects of these discrepancies, all the models are constrained to have the same

variance. Variance targeting can be accomplished by adjusting portfolio weights as follows:

w := w
σ̂p
σT
, (27)
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where σ̂2
p = w′Σ̂w is the ex-ante variance of the optimal portfolio, and σ2

T is the target

variance. For W*, the true covariance matrix is used in σ̂2
p instead of Σ̂. σ2

T is set to be the

variance of the equal-weight portfolio over the evaluation period. In order to ensure that the

performance is not driven by the variance constraint, the models are also evaluated under

the standard utility maximization objective.11

This section evaluates the portfolios mainly based on the results from the 120-month

estimation window, and the results from other estimation window sizes as well as those from

additional datasets are discussed in the robustness check in Section 3.4. These results are

reported in the internet appendix (IA). The findings from the 120-month estimation window

largely remain valid in other settings.

3.3.2. Performance of Turnover Minimization

Table 3 and 4 report the Sharpe ratios before and after transaction costs, and Table 5 and

6 report the turnovers, respectively under variance targeting and utility maximization. The

difference between the turnover minimization models and their underlying models are also

highlighted in Figure 5 and 6. The certainty equivalent, cumulative return, and skewness are

reported in the IA. The empirical results are consistent with the findings from the simulation

and reaffirm the effectiveness of turnover minimization.

Compared to their underlying models, the turnover minimization models incorporating

the equal-weight portfolio present a higher Sharpe ratio and lower turnover. The results from

variance targeting (Table 3) reveal that the average Sharpe ratio of TMKE and TMKE+

are respectively 0.250 and 0.174 before transaction costs and 0.187 and 0.161 after transac-

tion costs, whereas the corresponding values of MK and MK+ are 0.200 and 0.167 before

transaction costs and 0.039 and 0.149 after transaction costs. Similarly, the Sharpe ratios

of TMVE(+) are 0.201 (0.168) and 0.168 (0.158) respectively before and after transaction

11Exceptions are EW, MV(+), and VT. These portfolios are constructed without exploiting the mean
returns, whereas maximizing utility involves the mean returns as the adjustment formula is given by w :=

w
1

γ

µ̂p

σ̂2
p

, where µ̂p = w′µ̂, σ̂2
p = w′Σ̂w. In order to preserve their nature, these portfolios are not adjusted.
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Table 3: Sharpe Ratio under Variance Targeting

This table reports the Sharpe ratios of the portfolios in Table 1 under variance targeting. Input parameters
are estimated from a rolling window of size T = 120, and transaction costs are assumed to be 50 basis points
for risky assets and 0 for the risk-free asset. The columns represent the datasets described in Table 2. For
the turnover minimization models, τb (τa) denotes the τ calibrated without (with) transaction costs. The
Sharpe ratios statistically significantly higher than that of EW at 10% are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

W* 0.228 0.231 0.285 0.378 0.312 0.241 0.207 0.455 0.445 0.331 0.418 0.321
EW 0.083 0.156 0.146 0.149 0.123 0.134 0.148 0.142 0.138 0.157 0.172 0.141

MK 0.056 0.124 0.104 0.264* 0.283* 0.157 0.122 0.445* 0.385* 0.196 0.060 0.200
MK+ 0.100 0.152 0.151 0.182* 0.200* 0.161* 0.153 0.223* 0.195* 0.163 0.156 0.167
MV 0.128 0.189 0.169 0.237* 0.180* 0.167 0.185 0.232* 0.168 0.203 0.135 0.181
MV+ 0.114* 0.184 0.180 0.159 0.136 0.139 0.170* 0.162* 0.151 0.164 0.161 0.156
OC 0.115 0.149 0.129 0.282* 0.284* 0.177 0.147 0.441* 0.386* 0.205 0.080 0.218
OC+ 0.111 0.150 0.144 0.168 0.193* 0.152 0.159 0.200* 0.184* 0.160 0.144 0.161
VT 0.093* 0.171* 0.160* 0.158* 0.133* 0.137 0.152* 0.150* 0.140 0.161* 0.206* 0.151
TB+ 0.091 0.160 0.171 0.177* 0.191* 0.153* 0.155 0.222* 0.198* 0.161 0.136 0.165
BL+ 0.095 0.158 0.160 0.178* 0.195* 0.161* 0.157 0.216* 0.185* 0.167 0.143 0.165
TZMK 0.057 0.155 0.147 0.286* 0.289* 0.167 0.155 0.447* 0.387* 0.235* 0.191 0.229
TZKZ 0.077 0.180 0.168 0.289* 0.286* 0.181 0.170 0.445* 0.388* 0.250* 0.182 0.238

TMKE(τ∗b ) 0.131 0.182 0.185 0.298* 0.305* 0.182 0.162 0.479* 0.401* 0.237* 0.184 0.250
TMKE+(τ∗b ) 0.097 0.159 0.167 0.186* 0.201* 0.160* 0.161 0.225* 0.197* 0.170* 0.186 0.174
TMK0(τ∗b ) -0.042 0.083 -0.010 0.231* 0.265* 0.139 0.129 0.442* 0.368* 0.167 0.016 0.163
TMK0+(τ∗b ) 0.079 0.160 0.139 0.182* 0.196* 0.159* 0.151 0.221* 0.195* 0.159 0.178 0.166
TMVE(τ∗b ) 0.150* 0.202* 0.208* 0.254* 0.199* 0.173* 0.188 0.252* 0.172 0.232* 0.186 0.201
TMVE+(τ∗b ) 0.115* 0.195* 0.197* 0.170* 0.143* 0.146* 0.172* 0.170* 0.153 0.171* 0.213* 0.168
TMV0(τ∗b ) 0.121 0.180 0.154 0.234* 0.177* 0.156 0.187 0.228* 0.160 0.181 0.132 0.174
TMV0+(τ∗b ) 0.110* 0.178 0.191* 0.153 0.125 0.131 0.161 0.166* 0.146 0.154 0.181 0.154

After Transaction Cost

W* 0.206 0.205 0.244 0.330 0.287 0.220 0.189 0.417 0.399 0.297 0.391 0.290
EW 0.081 0.153 0.143 0.147 0.121 0.132 0.146 0.140 0.137 0.156 0.166 0.138

MK -0.083 -0.103 -0.134 0.092 0.169 0.028 -0.038 0.291* 0.216 0.026 -0.032 0.039
MK+ 0.088 0.133 0.130 0.159 0.188* 0.146 0.133 0.208* 0.182* 0.139 0.131 0.149
MV 0.085 0.114 0.056 0.143 0.129 0.113 0.126 0.130 0.074 0.113 0.068 0.105
MV+ 0.107 0.177 0.170 0.151 0.124 0.128 0.160 0.154 0.145 0.156 0.144 0.147
OC 0.021 -0.023 -0.078 0.123 0.194* 0.077 0.015 0.296* 0.239* 0.041 -0.010 0.081
OC+ 0.097 0.130 0.124 0.145 0.181* 0.132 0.141 0.184* 0.172* 0.138 0.121 0.142
VT 0.090* 0.168* 0.156* 0.156* 0.130* 0.135 0.150* 0.148* 0.138 0.159* 0.199* 0.148
TB+ 0.082 0.146 0.149 0.152 0.177* 0.134 0.141 0.209* 0.185* 0.136 0.108 0.147
BL+ 0.083 0.145 0.145 0.165 0.185* 0.151* 0.145 0.205* 0.172* 0.152 0.119 0.151
TZMK -0.046 -0.068 -0.072 0.151 0.187 0.064 0.046 0.304* 0.234* 0.119 0.166 0.099
TZKZ -0.009 -0.021 -0.040 0.160 0.187 0.092 0.078 0.306* 0.236* 0.145 0.139 0.116

TMKE(τ∗a ) 0.080 0.133 0.122 0.207* 0.238* 0.139 0.148 0.376* 0.307* 0.154 0.158 0.187
TMKE+(τ∗a ) 0.087 0.154 0.152 0.169* 0.188* 0.147 0.146 0.210* 0.182* 0.159 0.176 0.161
TMK0(τ∗a ) -0.138 -0.083 -0.160 0.181 0.224* 0.117 0.028 0.341* 0.283* 0.123 -0.018 0.082
TMK0+(τ∗a ) 0.068 0.146 0.116 0.154 0.189* 0.150* 0.141 0.217* 0.189* 0.159 0.173 0.155
TMVE(τ∗a ) 0.122* 0.183* 0.180* 0.199* 0.160* 0.141 0.153 0.206* 0.134 0.190 0.179 0.168
TMVE+(τ∗a ) 0.109* 0.184* 0.186* 0.162* 0.137* 0.133 0.162* 0.158* 0.146 0.164 0.195* 0.158
TMV0(τ∗a ) 0.106 0.182 0.163 0.177 0.128 0.142 0.120 0.183 0.069 0.136 0.105 0.137
TMV0+(τ∗a ) 0.103 0.173 0.182* 0.136 0.113 0.139 0.160* 0.154 0.148 0.142 0.175 0.148
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Table 4: Sharpe Ratio under Utility Maximization

This table reports the Sharpe ratios of the portfolios in Table 1 under utility maximization. Input parameters
are estimated from a rolling window of size T = 120, and transaction costs are assumed to be 50 basis points
for risky assets and 0 for the risk-free asset. The columns represent the datasets described in Table 2. For
the turnover minimization models, τb (τa) denotes the τ calibrated without (with) transaction costs. The
Sharpe ratios statistically significantly higher than that of EW at 10% are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

W* 0.228 0.231 0.285 0.378 0.312 0.241 0.207 0.455 0.445 0.331 0.418 0.321
EW 0.094 0.162 0.150 0.154 0.130 0.140 0.157 0.148 0.143 0.164 0.186 0.148

MK 0.043 0.128 0.107 0.276* 0.277* 0.165 0.136 0.429* 0.390* 0.197 0.056 0.200
MK+ 0.055 0.154 0.149 0.167 0.181* 0.152 0.142 0.203* 0.178 0.145 0.136 0.151
MV 0.129 0.179 0.156 0.243* 0.182* 0.172 0.181 0.234* 0.180 0.206 0.136 0.182
MV+ 0.125* 0.174 0.170 0.165 0.143 0.146 0.175* 0.168* 0.157 0.168 0.167 0.160
OC 0.054 0.062 0.063 0.215 0.258* 0.123 0.075 0.388* 0.374* 0.150 0.016 0.162
OC+ 0.082 0.131 0.128 0.179* 0.203* 0.155 0.139 0.212* 0.204* 0.162 0.114 0.155
VT 0.103* 0.171* 0.161* 0.164* 0.141* 0.144 0.160* 0.157* 0.146 0.169* 0.215 0.157
TB+ 0.032 0.146 0.153 0.163 0.171 0.147 0.145 0.200* 0.181 0.142 0.117 0.145
BL+ 0.058 0.163 0.157 0.160 0.179 0.146 0.144 0.193 0.163 0.147 0.126 0.149
TZMK 0.059 0.158 0.144 0.284* 0.270* 0.180 0.167 0.416* 0.388* 0.219 0.201 0.226
TZKZ 0.065 0.174 0.164 0.290* 0.264* 0.190 0.182 0.411* 0.387* 0.236* 0.188 0.232

TMKE(τ∗b ) 0.105 0.181 0.177 0.296* 0.295* 0.195 0.188 0.467* 0.400* 0.209* 0.209* 0.247
TMKE+(τ∗b ) 0.092 0.182 0.190* 0.176 0.180* 0.159 0.154 0.206* 0.175* 0.171 0.190 0.170
TMK0(τ∗b ) 0.120 0.178 0.160 0.259* 0.250* 0.155 0.112 0.424* 0.374* 0.170 0.148 0.214
TMK0+(τ∗b ) 0.101 0.171 0.170 0.168 0.177* 0.152 0.174* 0.200* 0.174 0.158 0.195 0.167
TMVE(τ∗b ) 0.156* 0.197* 0.200* 0.259* 0.201* 0.182* 0.188 0.260* 0.199* 0.237* 0.198 0.207
TMVE+(τ∗b ) 0.125* 0.175 0.186* 0.177* 0.150* 0.150 0.178* 0.173* 0.160 0.176 0.214* 0.169
TMV0(τ∗b ) 0.124 0.173 0.172 0.241* 0.169 0.154 0.158 0.225* 0.180 0.191 0.137 0.175
TMV0+(τ∗b ) 0.121* 0.167 0.170 0.162 0.140 0.137 0.163 0.171* 0.152 0.148 0.190 0.156

After Transaction Cost

W* 0.196 0.188 0.214 0.283 0.265 0.210 0.181 0.366 0.346 0.267 0.364 0.262
EW 0.091 0.159 0.147 0.153 0.129 0.139 0.155 0.146 0.142 0.163 0.180 0.146

MK -0.140 -0.491 -0.861 -0.056 0.076 -0.022 -0.121 0.063 -0.021 -0.093 -0.123 -0.163
MK+ 0.040 0.130 0.124 0.143 0.165 0.135 0.120 0.186 0.163 0.118 0.106 0.130
MV 0.088 0.108 0.051 0.153 0.132 0.120 0.124 0.139 0.089 0.121 0.073 0.109
MV+ 0.118 0.167 0.160 0.159 0.132 0.136 0.165 0.161 0.153 0.161 0.149 0.151
OC -0.136 -0.501 -0.886 -0.117 0.061 -0.071 -0.186 0.040 -0.007 -0.141 -0.157 -0.191
OC+ 0.067 0.114 0.111 0.158 0.194* 0.139 0.119 0.199* 0.195* 0.138 0.095 0.139
VT 0.101* 0.168* 0.158* 0.162* 0.139* 0.142 0.159 0.156* 0.145 0.167* 0.208 0.155
TB+ 0.020 0.126 0.129 0.139 0.152 0.125 0.125 0.185 0.165 0.112 0.089 0.124
BL+ 0.045 0.148 0.139 0.145 0.168 0.135 0.130 0.182 0.150 0.132 0.099 0.134
TZMK -0.062 -0.215 -0.206 0.105 0.127 0.055 0.028 0.206 0.161 0.077 0.172 0.041
TZKZ -0.025 -0.112 -0.125 0.135 0.140 0.090 0.074 0.221 0.179 0.110 0.144 0.076

TMKE(τ∗a ) 0.088 0.155 0.146 0.201* 0.222* 0.149 0.154 0.340* 0.298* 0.173 0.201 0.193
TMKE+(τ∗a ) 0.090 0.159 0.156 0.154 0.164 0.140 0.153 0.187 0.162 0.164 0.182 0.156
TMK0(τ∗a ) 0.118* 0.141 0.149 0.101 0.175 0.097 0.119 0.224 0.230 0.105 0.130 0.144
TMK0+(τ∗a ) 0.101 0.170 0.163 0.138 0.164 0.137 0.162 0.193* 0.176* 0.148 0.189 0.158
TMVE(τ∗a ) 0.125* 0.171 0.179* 0.204* 0.166* 0.150 0.156 0.219* 0.143 0.197 0.195 0.173
TMVE+(τ∗a ) 0.119* 0.169 0.175 0.168* 0.146* 0.143 0.167* 0.163* 0.153 0.170 0.203* 0.161
TMV0(τ∗a ) 0.109 0.170 0.153 0.160 0.134 0.149 0.109 0.198 0.109 0.151 0.112 0.141
TMV0+(τ∗a ) 0.113 0.165 0.172 0.146 0.124 0.147 0.166 0.162 0.153 0.152 0.184 0.153
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costs, whereas the corresponding values of MV(+) are 0.181 (0.156) and 0.105 (0.147). The

improvement is consistent across datasets and more prominent after transaction costs, owing

to the significantly lower turnover of the minimum-turnover portfolios. There are only few

cases where the turnover minimization models are outperformed by their underlying models

before transaction costs, e.g., TMKE+ in D9 under utility maximization, and none of them

is outperformed after transaction costs.

All minimum-turnover portfolios shrunk towards the equal-weight portfolio, i.e., TMKE,

TMKE+, TMVE, and TMVE+, outperform EW in all datasets before transaction costs

under variance targeting.12 If only statistically significant cases are counted, they are re-

spectively 5, 6, 8, and 10. Among the other models, only VT outperforms EW in all datasets

(9 times statistically significant). The superior performance of the turnover minimization

is maintained even after the conservatively set transaction costs are applied. In particular,

the short-sale constrained models (TMKE+ and TMVE+) outperform EW in all datasets

after transaction costs (4 and 8 times statistically significant, respectively). VT also outper-

forms EW in all datasets after transaction costs but yields a lower Sharpe ratio compared

to TMKE+ or TMVE+.

The turnover minimization models continue to perform superior under utility maximiza-

tion, but the performances of TMKE and TMKE+ become less pronounced. In contrast,

TMVE and TMVE+ maintain a similar level of performance, outperforming EW in all

datasets both before and after transaction costs. The performance difference between vari-

ance targeting and utility maximization can be attributed to the fact that variance targeting

is less susceptible to the estimation error of the mean, as it shifts the portfolio to have the

target variance.

When short-sale is not allowed, the underlying portfolios are closer to EW, and the

benefit from turnover minimization becomes limited. Nevertheless, incorporating turnover

12The market portfolio (obtained from the K. French website), another potential benchmark, slightly
underperforms the EW of the 20 FF portfolios + Market, with the Sharpe ratio 0.142, cumulative return
6.968, certainty equivalent 0.333, and skewness -0.542.
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Figure 5: Sharpe Ratio under Variance Targeting

This figure compares the turnover minimization models with their underlying models under variance targeting
when T = 120. The vertical axis represents the Sharpe ratio difference from EW, and the horizontal axis
represents the datasets.
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minimization improves the performance of the underlying models consistently across datasets

and optimization criteria, and TMKE+ and TMVE+ are the best performing long-only

portfolios in terms of the mean Sharpe ratio, respectively under variance targeting and

utility maximization.

As evidenced by the superior performance of the short-sale constrained minimum-turnover

portfolios, it is often beneficial to constrain portfolio weights to reduce turnover and lever-

age. Besides, many financial institutions do not allow short positions in their portfolios. The

turnover minimization admits the flexibility of adding these constraints while accounting for

parameter uncertainty.
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Figure 6: Sharpe Ratio under Utility Maximization

This figure compares the turnover minimization models with their underlying models under utility maxi-
mizatoin when T = 120. The vertical axis represents the Sharpe ratio difference from EW, and the horizontal
axis represents the datasets.

As to the reference portfolio, the current portfolio appears to be an ineffective target.

TMK0(+) and TMV0(+) perform considerably weaker than their equal-weight counterparts,

TMKE(+) and TMVE(+). These models usually underperform their underlying models
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Table 5: Turnover under Variance Targeting

This table reports the turnover of the portfolio models in Table 1 under variance targeting when T = 120.
Turnover is defined by the formula in (26). The columns represent the datasets described in Table 2. For
the turnover minimization models, τb (τa) denotes the τ calibrated without (with) transaction costs.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

W* 0.022 0.019 0.012 0.023 0.020 0.017 0.014 0.018 0.023 0.016 0.004 0.017
EW 0.003 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.001

MK 0.128 0.178 0.097 0.109 0.111 0.124 0.149 0.107 0.111 0.104 0.033 0.114
MK+ 0.013 0.016 0.007 0.011 0.010 0.012 0.016 0.008 0.007 0.012 0.005 0.011
MV 0.047 0.068 0.051 0.062 0.050 0.051 0.058 0.068 0.063 0.058 0.021 0.054
MV+ 0.007 0.006 0.003 0.004 0.010 0.009 0.008 0.004 0.003 0.004 0.004 0.006
OC 0.093 0.137 0.085 0.101 0.086 0.097 0.125 0.101 0.098 0.100 0.031 0.096
OC+ 0.015 0.016 0.006 0.011 0.011 0.016 0.014 0.008 0.006 0.011 0.004 0.011
VT 0.003 0.002 0.001 0.001 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.002
TB+ 0.009 0.012 0.007 0.012 0.012 0.015 0.011 0.007 0.007 0.013 0.005 0.010
BL+ 0.012 0.010 0.005 0.007 0.008 0.008 0.010 0.005 0.007 0.007 0.004 0.008
TZMK 0.099 0.167 0.079 0.082 0.097 0.095 0.094 0.098 0.099 0.066 0.004 0.089
TZKZ 0.085 0.157 0.080 0.079 0.094 0.082 0.082 0.095 0.099 0.062 0.009 0.084

TMKE(τ∗b ) 0.060 0.149 0.061 0.060 0.064 0.066 0.099 0.075 0.067 0.055 0.003 0.069
TMKE+(τ∗b ) 0.011 0.017 0.007 0.011 0.009 0.012 0.012 0.007 0.006 0.007 0.002 0.009
TMK0(τ∗b ) 0.068 0.160 0.076 0.064 0.048 0.058 0.095 0.061 0.058 0.052 0.008 0.068
TMK0+(τ∗b ) 0.005 0.009 0.005 0.011 0.007 0.012 0.004 0.004 0.002 0.004 0.001 0.006
TMVE(τ∗b ) 0.049 0.016 0.010 0.038 0.053 0.046 0.054 0.052 0.063 0.033 0.004 0.038
TMVE+(τ∗b ) 0.009 0.007 0.004 0.005 0.004 0.011 0.009 0.006 0.004 0.004 0.002 0.006
TMV0(τ∗b ) 0.027 0.022 0.012 0.054 0.046 0.017 0.039 0.036 0.049 0.050 0.006 0.033
TMV0+(τ∗b ) 0.006 0.004 0.003 0.003 0.005 0.003 0.005 0.003 0.002 0.002 0.001 0.003

TMKE(τ∗a ) 0.024 0.014 0.004 0.035 0.051 0.045 0.023 0.058 0.049 0.040 0.002 0.032
TMKE+(τ∗a ) 0.010 0.010 0.005 0.008 0.009 0.010 0.006 0.007 0.006 0.003 0.002 0.007
TMK0(τ∗a ) 0.059 0.158 0.068 0.030 0.031 0.026 0.053 0.041 0.035 0.030 0.008 0.049
TMK0+(τ∗a ) 0.005 0.005 0.002 0.003 0.003 0.003 0.002 0.002 0.002 0.001 0.001 0.003
TMVE(τ∗a ) 0.026 0.008 0.005 0.015 0.023 0.016 0.037 0.026 0.005 0.019 0.004 0.017
TMVE+(τ∗a ) 0.011 0.008 0.004 0.004 0.005 0.004 0.007 0.004 0.005 0.004 0.002 0.005
TMV0(τ∗a ) 0.009 0.006 0.006 0.015 0.023 0.013 0.022 0.031 0.020 0.025 0.006 0.016
TMV0+(τ∗a ) 0.004 0.004 0.002 0.002 0.002 0.002 0.003 0.002 0.001 0.002 0.001 0.002
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Table 6: Turnover under Utility Maximization

This table reports the turnover of the portfolio models in Table 1 under utility maximization when T = 120.
Turnover is defined by the formula in (26). The columns represent the datasets described in Table 2. For
the turnover minimization models, τb (τa) denotes the τ calibrated without (with) transaction costs.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

W* 0.055 0.061 0.044 0.114 0.088 0.046 0.032 0.126 0.138 0.068 0.030 0.073
EW 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

MK 0.439 3.922 4.338 1.022 0.805 0.630 0.824 1.537 1.556 0.759 0.397 1.475
MK+ 0.024 0.047 0.021 0.021 0.026 0.027 0.034 0.018 0.014 0.023 0.017 0.025
MV 0.034 0.043 0.024 0.032 0.035 0.037 0.040 0.032 0.033 0.028 0.011 0.032
MV+ 0.006 0.004 0.002 0.003 0.008 0.008 0.007 0.003 0.002 0.003 0.002 0.004
OC 0.401 3.597 4.210 0.847 0.741 0.535 0.630 1.348 1.407 0.689 0.359 1.342
OC+ 0.016 0.015 0.006 0.010 0.009 0.014 0.017 0.007 0.005 0.012 0.004 0.011
VT 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
TB+ 0.018 0.038 0.021 0.022 0.032 0.032 0.028 0.016 0.014 0.024 0.014 0.024
BL+ 0.014 0.022 0.011 0.010 0.013 0.014 0.017 0.009 0.009 0.010 0.010 0.013
TZMK 0.139 0.636 0.236 0.236 0.315 0.200 0.208 0.448 0.422 0.130 0.004 0.270
TZKZ 0.097 0.421 0.144 0.176 0.227 0.145 0.155 0.337 0.311 0.095 0.008 0.192

TMKE(τ∗b ) 0.012 0.012 0.007 0.245 0.272 0.160 0.036 0.511 0.358 0.008 0.001 0.147
TMKE+(τ∗b ) 0.002 0.006 0.003 0.021 0.019 0.022 0.003 0.014 0.011 0.004 0.001 0.010
TMK0(τ∗b ) 0.012 0.030 0.014 0.799 0.405 0.448 0.031 1.418 0.582 0.014 0.003 0.341
TMK0+(τ∗b ) 0.002 0.004 0.002 0.019 0.018 0.022 0.002 0.015 0.005 0.002 0.001 0.008
TMVE(τ∗b ) 0.042 0.021 0.006 0.020 0.031 0.040 0.035 0.023 0.032 0.017 0.003 0.024
TMVE+(τ∗b ) 0.008 0.006 0.002 0.004 0.003 0.008 0.009 0.004 0.003 0.003 0.002 0.005
TMV0(τ∗b ) 0.019 0.012 0.004 0.028 0.026 0.011 0.023 0.015 0.024 0.022 0.005 0.017
TMV0+(τ∗b ) 0.005 0.002 0.001 0.002 0.005 0.003 0.003 0.002 0.001 0.001 0.001 0.002

TMKE(τ∗a ) 0.008 0.002 0.001 0.061 0.124 0.082 0.004 0.163 0.141 0.004 0.001 0.054
TMKE+(τ∗a ) 0.002 0.004 0.002 0.011 0.018 0.017 0.003 0.014 0.010 0.001 0.001 0.008
TMK0(τ∗a ) 0.003 0.003 0.003 0.179 0.168 0.132 0.012 0.330 0.283 0.008 0.003 0.102
TMK0+(τ∗a ) 0.002 0.002 0.001 0.014 0.011 0.012 0.001 0.008 0.003 0.000 0.001 0.005
TMVE(τ∗a ) 0.021 0.006 0.004 0.009 0.015 0.015 0.032 0.014 0.003 0.011 0.003 0.012
TMVE+(τ∗a ) 0.011 0.006 0.002 0.003 0.004 0.005 0.005 0.003 0.003 0.003 0.002 0.004
TMV0(τ∗a ) 0.006 0.004 0.003 0.009 0.014 0.009 0.015 0.013 0.010 0.012 0.005 0.009
TMV0+(τ∗a ) 0.004 0.002 0.001 0.001 0.001 0.001 0.002 0.001 0.000 0.001 0.001 0.001
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before transaction costs and perform marginally better only after transaction costs. A similar

observation has been made by Han (2019), who analytically shows that the equal-weight

portfolio is a more effective shrinkage target.

The calibration of τ proves to be effective. In the presence of transaction costs, high

turnover is harmful and a higher degree of tolerance is desired. The calibration results

reported in Table 7 are in line with this statement: the tolerance levels calibrated under

transaction costs (τa) are greater than those calibrated without transaction costs (τb), and

result in substantially lower turnover as reported in Table 5 and 6. Consequently, the

minimum-turnover portfolios from τb perform better before transaction costs, and those

from τa perform better after transaction costs.

3.3.3. Performance of the Other Models

Among the other models, Tu and Zhou (2011) shrinkage estimators, TZMK and TZKZ,

perform comparably to TMKE before transaction costs. Their average Sharpe ratios be-

fore transaction costs are 0.229 and 0.238 under variance targeting and 0.226 and 0.232

under utility maximization, whereas the corresponding values of TMKE are 0.250 and 0.226.

Between the two, TZKZ appears to perform better than TZMK. Nevertheless, their per-

formance is significantly deteriorated once transaction costs are taken into account due to

high turnover. While TZMK and TZKZ successfully enhance the Sharpe ratio and reduce

turnover in comparison to the Markowitz model, they still suffer from costly portfolio re-

balancing and underperform EW after transaction costs in the majority of the datasets.

This result further emphasizes the importance of the ability to incorporate constraints in

shrinkage models.

Among the strategies that incorporate the 1/N rule, the variant of the Black-Litterman

model (BL+) performs best in terms of the mean Sharpe ratio when transaction costs are

taken into account. Nevertheless, it hardly outperforms EW statistically significantly, and

is generally outperformed by the turnover minimization models.
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Table 7: Calibration of τ

This table reports the mean of the calibrated τ ’s for each turnover minimization model when T = 120. τ̄b (τ̄a)
denotes the mean of the τ ’s calibrated without (with) transaction costs over the sample period. Transaction
costs are assumed to be 50 basis points for risky assets and 0 for the risk-free asset.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Variance Targeting

TMKE τ̄∗b 0.574 0.615 0.647 0.340 0.162 0.223 0.392 0.152 0.241 0.363 0.954
τ̄∗a 0.814 0.978 0.989 0.612 0.290 0.517 0.890 0.336 0.420 0.636 0.955

TMKE+ τ̄∗b 0.335 0.717 0.103 0.021 0.034 0.001 0.290 0.020 0.040 0.230 0.808
τ̄∗a 0.473 0.904 0.518 0.102 0.050 0.070 0.589 0.040 0.059 0.366 0.821

TMK0 τ̄∗b 0.614 0.191 0.691 0.347 0.319 0.407 0.448 0.135 0.277 0.465 0.954
τ̄∗a 0.826 0.233 0.987 0.698 0.415 0.579 0.737 0.423 0.484 0.737 0.954

TMK0+ τ̄∗b 0.304 0.056 0.264 0.015 0.034 0.009 0.403 0.021 0.069 0.287 0.804
τ̄∗a 0.335 0.067 0.641 0.186 0.056 0.127 0.436 0.045 0.080 0.463 0.805

TMVE τ̄∗b 0.082 0.448 0.293 0.116 0.042 0.108 0.004 0.036 0.143 0.078 0.790
τ̄∗a 0.125 0.977 0.417 0.279 0.108 0.288 0.108 0.148 0.817 0.210 0.814

TMVE+ τ̄∗b 0.008 0.087 0.046 0.081 0.049 0.042 0.008 0.040 0.143 0.065 0.355
τ̄∗a 0.011 0.638 0.053 0.093 0.069 0.108 0.018 0.061 0.167 0.079 0.375

TMV0 τ̄∗b 0.074 0.592 0.440 0.123 0.052 0.116 0.026 0.037 0.133 0.078 0.659
τ̄∗a 0.106 0.974 0.586 0.475 0.219 0.173 0.213 0.103 0.718 0.341 0.670

TMV0+ τ̄∗b 0.009 0.317 0.063 0.165 0.080 0.057 0.030 0.121 0.111 0.168 0.273
τ̄∗a 0.012 0.414 0.112 0.208 0.118 0.064 0.038 0.143 0.118 0.202 0.273

Utility Maximization

TMKE τ̄∗b 0.696 0.490 0.616 0.341 0.162 0.243 0.391 0.185 0.265 0.433 0.957
τ̄∗a 0.844 0.977 0.990 0.672 0.358 0.448 0.867 0.480 0.513 0.741 0.963

TMKE+ τ̄∗b 0.715 0.128 0.210 0.034 0.047 0.084 0.405 0.027 0.044 0.471 0.837
τ̄∗a 0.745 0.404 0.545 0.255 0.073 0.186 0.557 0.040 0.076 0.614 0.845

TMK0 τ̄∗b 0.702 0.331 0.574 0.339 0.271 0.409 0.430 0.111 0.290 0.497 0.954
τ̄∗a 0.860 0.985 0.987 0.763 0.498 0.584 0.793 0.593 0.605 0.772 0.958

TMK0+ τ̄∗b 0.658 0.084 0.158 0.029 0.032 0.058 0.346 0.022 0.135 0.443 0.828
τ̄∗a 0.670 0.357 0.472 0.248 0.071 0.195 0.437 0.051 0.159 0.620 0.831

TMVE τ̄∗b 0.088 0.335 0.267 0.114 0.052 0.077 0.007 0.042 0.150 0.083 0.816
τ̄∗a 0.150 0.460 0.387 0.272 0.130 0.260 0.153 0.147 0.776 0.215 0.850

TMVE+ τ̄∗b 0.008 0.184 0.044 0.079 0.044 0.038 0.009 0.053 0.113 0.085 0.386
τ̄∗a 0.014 0.207 0.049 0.089 0.060 0.086 0.021 0.080 0.126 0.096 0.394

TMV0 τ̄∗b 0.084 0.557 0.566 0.114 0.098 0.103 0.077 0.047 0.103 0.093 0.709
τ̄∗a 0.117 0.650 0.715 0.454 0.208 0.141 0.243 0.099 0.543 0.305 0.720

TMV0+ τ̄∗b 0.009 0.332 0.263 0.151 0.067 0.046 0.048 0.113 0.108 0.184 0.289
τ̄∗a 0.012 0.338 0.275 0.191 0.114 0.055 0.062 0.134 0.107 0.184 0.290
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Another model that is worth noting is the volatility timing (VT) of Kirby and Ostdiek

(2012). Although it outperforms EW only marginally (the average Sharpe ratios of VT

and EW before (after) transaction costs are respectively 0.151 (0.148) and 0.141 (0.138)

under variance targeting, and 0.157 (0.155) and 0.148 (0.146) under utility maximization),

the difference is statistically significant in nine datasets after transaction costs under vari-

ance targeting. This is because the portfolio weights of VT are entirely determined by the

cross-sectional variation of the variances of the asset returns, which are stable over time.

The stable cross-sectional variation leads to a stable VT portfolio and consequently a small

standard deviation of the Sharpe ratio difference between VT and EW. Therefore, even a

marginal outperformance becomes statistically significant. With the superior performance

of the volatility timing, it could be that using VT as the shrinkage target enhances the

performance of the turnover minimization. This conjecture is examined in Section 3.3.6.

All in all, the turnover minimization with the equal-weight reference portfolio performs

superior in comparison to the other strategies. The unconstrained models (TMKE and

TMVE) perform best before transaction costs, while the short-sale constrained counterparts

(TMKE+ and TMVE+) perform better when subject to transaction costs. The results from

certainty equivalents (reported in the IA) are qualitatively similar to those from Sharpe ratios

and reaffirm the superiority of the turnover minimization models. The turnover minimiza-

tion allows us to enjoy the benefits of the shrinkage estimator without sacrificing modeling

flexibility.

3.3.4. Comparison with the Other Models

To examine whether the turnover minimization models significantly outperform the other

models, Table 8 computes the p-value of the Sharpe ratio difference between TMKE and an

alternative model. TMKE is chosen among the turnover minimization models as it has the

highest mean Sharpe ratio.

The table reveals that TMKE significantly outperforms EW, MK, MK+, MV+, OC+,
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VT, TB+, and BL+ in at least five datasets before transaction costs, and MK, MV, OC,

TZMK, and TZKZ after transaction costs. TMKE performs particularly well in datasets

D4, D5, D8, D9, and D10. Notably, a large Sharpe ratio difference does not always imply a

significant difference.

3.3.5. Alternative Calibration Method

DeMiguel et al. (2009) develop portfolio models that generalize norm constraints and cali-

brate them using two methods; cross-validation and last period return maximization. The

latter leads to superior portfolio performance in their study and is examined as an alternative

method to calibrate τ . The procedure is simple: choose τ that maximizes the last period

return. The results are reported in Table 9.

The new calibration method improves portfolio performance in certain datasets, D2 and

D3 in particular, and the minimum-turnover portfolios statistically significantly outperform

EW in more datasets before transaction costs. However, it yields lower average Sharpe

ratios and there is no discernible improvement across all datasets. Moreover, maximizing

the last period return accompanies high turnover, and the portfolios perform significantly

worse after accounting for transaction costs compared to those using the calibration method

in Section 2.3. Although DeMiguel et al. (2009) do not take transaction costs into account,

they also recognize that maximizing the last period return involves higher turnover.

3.3.6. Alternative Reference Portfolio

The volatility timing portfolio (VT) marginally but consistently outperforms the equal-

weight portfolio. Hence, it may serve better as the reference portfolio than the equal-weight

portfolio. This section tests the turnover minimization using VT as the reference portfolio.

Table 10 reports the Sharpe ratios of these models under variance targeting. The turnover

minimization models incorporating VT are denoted by TMKVT(+) when the underlying

strategy is utility maximization, and TMVVT(+) when it is variance minimization.
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Table 8: Sharp ratio difference between TMKE and an alternative model

This table reports the Sharpe ratio difference between TMKE and a model and its p-value (in parentheses).
A positive value means TMKE has a larger Share ratio. p-values below 0.1 are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

EW 0.048 0.026 0.039 0.149* 0.181* 0.048 0.014 0.337* 0.262* 0.080* 0.012 0.109
(0.334) (0.488) (0.254) (0.001) (0.000) (0.245) (0.670) (0.000) (0.000) (0.031) (0.683)

MK 0.075 0.058* 0.082* 0.034* 0.021 0.025 0.040 0.033* 0.016 0.041* 0.125 0.050
(0.123) (0.070) (0.056) (0.084) (0.141) (0.127) (0.110) (0.009) (0.340) (0.035) (0.181)

MK+ 0.031 0.030 0.035 0.116* 0.105* 0.021 0.009 0.256* 0.205* 0.075* 0.028 0.083
(0.508) (0.357) (0.270) (0.002) (0.010) (0.551) (0.754) (0.000) (0.001) (0.026) (0.531)

MV 0.003 -0.007 0.017 0.061* 0.124* 0.015 -0.023 0.247* 0.233* 0.034 0.049 0.069
(0.954) (0.835) (0.694) (0.092) (0.006) (0.705) (0.443) (0.000) (0.000) (0.326) (0.452)

MV+ 0.017 -0.002 0.005 0.139* 0.169* 0.043 -0.008 0.317* 0.249* 0.074* 0.023 0.093
(0.741) (0.951) (0.877) (0.001) (0.001) (0.303) (0.804) (0.000) (0.000) (0.052) (0.613)

OC 0.016 0.033 0.056 0.016 0.021 0.005 0.015 0.037* 0.014 0.033 0.104 0.032
(0.763) (0.331) (0.158) (0.465) (0.386) (0.863) (0.526) (0.018) (0.531) (0.131) (0.263)

OC+ 0.020 0.032 0.041 0.130* 0.111* 0.030 0.004 0.279* 0.217* 0.077* 0.040 0.089
(0.687) (0.336) (0.208) (0.002) (0.011) (0.423) (0.909) (0.000) (0.000) (0.028) (0.373)

VT 0.038 0.011 0.025 0.140* 0.172* 0.045 0.010 0.328* 0.260* 0.076* -0.022 0.099
(0.444) (0.769) (0.441) (0.002) (0.001) (0.260) (0.743) (0.000) (0.000) (0.043) (0.502)

TB+ 0.041 0.022 0.015 0.121* 0.113* 0.029 0.007 0.256* 0.202* 0.076* 0.048 0.085
(0.393) (0.525) (0.661) (0.002) (0.007) (0.432) (0.825) (0.000) (0.000) (0.027) (0.240)

BL+ 0.036 0.025 0.025 0.120* 0.110* 0.021 0.005 0.263* 0.216* 0.071* 0.041 0.085
(0.440) (0.454) (0.420) (0.003) (0.009) (0.555) (0.859) (0.000) (0.000) (0.038) (0.281)

TZMK 0.074* 0.027 0.038 0.012 0.015 0.015 0.007 0.031* 0.013 0.002 -0.007 0.021
(0.076) (0.279) (0.191) (0.591) (0.424) (0.465) (0.757) (0.026) (0.446) (0.897) (0.845)

TZKZ 0.054 0.002 0.017 0.009 0.019 0.001 -0.008 0.034* 0.012 -0.012 0.002 0.012
(0.206) (0.927) (0.558) (0.676) (0.304) (0.952) (0.726) (0.036) (0.459) (0.523) (0.953)

After Transaction Cost

EW -0.001 -0.020 -0.021 0.060 0.117* 0.006 0.002 0.236* 0.170* -0.001 -0.008 0.049
(0.948) (0.200) (0.137) (0.119) (0.012) (0.858) (0.909) (0.000) (0.002) (0.969) (0.785)

MK 0.163* 0.236* 0.255* 0.115* 0.069* 0.111* 0.185* 0.085* 0.091* 0.129* 0.190* 0.148
(0.006) (0.000) (0.000) (0.001) (0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.043)

MK+ -0.008 -0.001 -0.008 0.048 0.050 -0.007 0.015 0.168* 0.124* 0.015 0.027 0.039
(0.716) (0.975) (0.732) (0.128) (0.188) (0.835) (0.329) (0.001) (0.016) (0.582) (0.535)

MV -0.005 0.018 0.065* 0.064* 0.109* 0.025 0.022 0.246* 0.232* 0.041 0.089 0.083
(0.878) (0.582) (0.090) (0.063) (0.014) (0.553) (0.392) (0.000) (0.000) (0.233) (0.149)

MV+ -0.027 -0.044 -0.048 0.056 0.114* 0.011 -0.012 0.222* 0.161* -0.002 0.014 0.040
(0.260) (0.080) (0.052) (0.114) (0.014) (0.771) (0.426) (0.000) (0.004) (0.960) (0.737)

OC 0.058 0.156* 0.200* 0.084* 0.044* 0.061* 0.133* 0.080* 0.068* 0.114* 0.167* 0.106
(0.116) (0.001) (0.000) (0.009) (0.090) (0.094) (0.000) (0.001) (0.009) (0.000) (0.062)

OC+ -0.017 0.002 -0.003 0.062* 0.057 0.007 0.007 0.192* 0.134* 0.016 0.037 0.045
(0.455) (0.912) (0.906) (0.081) (0.164) (0.834) (0.670) (0.000) (0.008) (0.590) (0.426)

VT -0.010 -0.035 -0.035 0.051 0.108* 0.004 -0.002 0.228* 0.168* -0.005 -0.041 0.039
(0.555) (0.082) (0.052) (0.159) (0.016) (0.918) (0.873) (0.000) (0.002) (0.867) (0.136)

TB+ -0.002 -0.014 -0.027 0.055* 0.061 0.005 0.007 0.167* 0.122* 0.018 0.049 0.040
(0.919) (0.448) (0.274) (0.088) (0.135) (0.893) (0.637) (0.001) (0.014) (0.522) (0.257)

BL+ -0.004 -0.012 -0.023 0.042 0.053 -0.012 0.003 0.171* 0.135* 0.002 0.039 0.036
(0.820) (0.545) (0.280) (0.177) (0.164) (0.701) (0.813) (0.000) (0.009) (0.943) (0.316)

TZMK 0.125* 0.200* 0.194* 0.056* 0.051* 0.075* 0.102* 0.072* 0.073* 0.035* -0.008 0.089
(0.000) (0.000) (0.000) (0.020) (0.020) (0.005) (0.000) (0.000) (0.001) (0.072) (0.832)

TZKZ 0.088* 0.154* 0.162* 0.047* 0.051* 0.047* 0.070* 0.070* 0.070* 0.009 0.019 0.072
(0.027) (0.000) (0.001) (0.041) (0.012) (0.032) (0.002) (0.001) (0.001) (0.643) (0.665)
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Table 9: Sharpe Ratio under Variance Targeting: Last Period Return Maximization

This table reports the Sharpe ratios of the turnover minimization models when τ is calibrated so that the
last period return is maximized. Input parameters are estimated from a rolling window of size T = 120, and
transaction costs are assumed to be 50 basis points for risky assets and 0 for the risk-free asset. The Sharpe
ratios statistically significantly higher than that of EW at 10% are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

TMKE(τ∗b ) 0.141* 0.207* 0.219* 0.263* 0.257* 0.163 0.180 0.419* 0.337* 0.188 0.138 0.228
TMKE+(τ∗b ) 0.078 0.167 0.188* 0.172* 0.180* 0.149* 0.159* 0.202* 0.173* 0.162 0.193 0.166
TMK0(τ∗b ) 0.006 0.110 0.081 0.270* 0.256* 0.163 0.108 0.431* 0.329* 0.182 0.065 0.182
TMK0+(τ∗b ) 0.109 0.148 0.141 0.181* 0.193* 0.156* 0.143 0.224* 0.196* 0.164 0.159 0.165
TMVE(τ∗b ) 0.099 0.214* 0.216* 0.217* 0.201* 0.175* 0.200* 0.272* 0.175* 0.215* 0.206 0.199
TMVE+(τ∗b ) 0.093 0.194* 0.200* 0.171* 0.139* 0.139 0.164* 0.164* 0.159* 0.169* 0.214* 0.164
TMV0(τ∗b ) 0.128* 0.188 0.162 0.234* 0.189* 0.163* 0.186* 0.231* 0.170 0.210* 0.133 0.181
TMV0+(τ∗b ) 0.114* 0.183* 0.178* 0.158 0.134* 0.138 0.167* 0.162* 0.153* 0.165 0.159 0.156

After Transaction Cost

TMKE(τ∗a ) -0.325 -0.594 -0.611 -0.392 -0.204 -0.336 -0.451 -0.294 -0.330 -0.508 -0.164 -0.383
TMKE+(τ∗a ) -0.011 0.080 0.094 0.074 0.086 0.055 0.065 0.111 0.082 0.061 0.075 0.070
TMK0(τ∗a ) -0.165 -0.103 -0.232 0.066 0.116 -0.020 -0.040 0.309* 0.092 0.045 -0.009 0.005
TMK0+(τ∗a ) 0.100 0.136 0.128 0.165* 0.188* 0.147* 0.132 0.215* 0.191* 0.152 0.144 0.154
TMVE(τ∗a ) -0.207 -0.112 -0.236 -0.343 -0.158 -0.159 -0.188 -0.265 -0.285 -0.303 -0.052 -0.210
TMVE+(τ∗a ) 0.019 0.100 0.085 0.071 0.056 0.056 0.074 0.064 0.053 0.067 0.110 0.069
TMV0(τ∗a ) 0.098 0.136 0.096 0.166 0.147 0.129 0.141 0.152 0.103 0.134 0.086 0.126
TMV0+(τ∗a ) 0.108* 0.177 0.171* 0.153 0.128 0.131 0.161* 0.156* 0.149 0.160 0.146 0.149
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TMKVT(+) perform comparably to TMKE(+) in most datasets before transaction costs.

However, they tend to bear lower transaction costs and outperform TMKE(+) after trans-

action costs. More importantly, they statistically significantly outperform EW in more

datasets. TMVVT(+) also perform slightly better than TMVE(+), but the difference is

marginal.

Overall, VT appears to serve better as the reference portfolio than EW, but the evidence

is weak. One point to consider in choosing between EW and VT is that the performance of

VT depends on the accuracy of variance estimation, whereas EW is immune to estimation

errors.

Table 10: Sharpe Ratio under Variance Targeting: Alternative w0

This table reports the Sharpe ratios of the turnover minimization models incorporating VT. TMKVT(+)
and TMVVT(+) respectively denote TMK and TMV with VT as the reference portfolio. Input parameters
are estimated from a rolling window of size T = 120, and transaction costs are assumed to be 50 basis points
for risky assets and 0 for the risk-free asset. The Sharpe ratios statistically significantly higher than that of
EW at 10% are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

TMKVT(τ∗b ) 0.123 0.178 0.171 0.293* 0.305* 0.182 0.163 0.478* 0.400* 0.240* 0.202 0.249
TMKVT+(τ∗b ) 0.098 0.175* 0.173* 0.185* 0.201* 0.160* 0.167* 0.225* 0.196* 0.171* 0.212* 0.178
TMVVT(τ∗b ) 0.153* 0.200* 0.205* 0.255* 0.197* 0.174* 0.187 0.252* 0.173 0.231* 0.191 0.202
TMVVT+(τ∗b ) 0.120* 0.194* 0.197* 0.170* 0.142* 0.145* 0.172* 0.170* 0.153 0.171* 0.216* 0.168

After Transaction Cost

TMKVT(τ∗a ) 0.095 0.144 0.133 0.210* 0.238* 0.140 0.146 0.375* 0.308* 0.153 0.193 0.194
TMKVT+(τ∗a ) 0.087 0.159 0.157* 0.167* 0.188* 0.146 0.147 0.210* 0.182* 0.160* 0.202* 0.164
TMVVT(τ∗a ) 0.122* 0.182* 0.180* 0.200* 0.160* 0.138 0.154 0.207* 0.137 0.191 0.182 0.168
TMVVT+(τ∗a ) 0.115* 0.184* 0.185* 0.162* 0.136* 0.136 0.161* 0.158* 0.145 0.163 0.206* 0.159

3.4. Robustness Check

Comprehensive robustness tests further extend the empirical study and verify its findings.

Firstly, the effect of the estimation window size is examined by estimating input parameters

from T = 60 and 240. The empirical analysis is also extended by adding ten additional

datasets. These datasets are the same as those in Table 2 but exclude the market portfolio.

The turnover minimization strategy is also compared with recently developed strategies.
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Finally, the robustness of the findings over time is investigated by evaluating sub-period

performance.

3.4.1. Effects of Estimation Window Size

The turnover minimization remains superior across different estimation windows. With the

smaller estimation window (T = 60), optimal strategies tend to perform poorer, especially

after transaction costs. This is because a smaller sample size leads to larger estimation errors

and higher turnover. Notwithstanding, the turnover minimization successfully calibrates τ

and maintains superior performance distancing itself further from the underlying model.

The comparison of the performances from T = 120 and T = 240 suggests that increasing

the estimation window size does not necessarily reduce estimation errors: many optimal

strategies indeed perform poorer when T = 240. This signifies that using a parametric

approach for the estimation error can be potentially dangerous. For instance, TZMK and

TZKZ assume that the estimation errors are reduced when T increases, and assign more

weight to the optimal portfolio while reducing the weight on the equal-weight portfolio.

However, if this assumption does not hold true, these models will overweight the optimal

portfolio and perform poorly. In contrast, the turnover minimization chooses the shrink-

age level nonparametrically from the observed data and is robust to the violation of the

assumptions.

3.4.2. Alternative Datasets

The results from the alternative datasets that exclude the market portfolio are qualitatively

similar to those presented in Section 3.3.2. The ranking of the portfolios remains largely un-

changed, and the turnover minimization models continue to perform superior. One difference

is that the portfolios involving high turnover perform better in the alternative datasets when

subject to transaction costs. This is because the exclusion of the market portfolio reduces

the feasible set size and mitigates leverage and turnover as the market portfolio cannot be
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sold short to buy other assets.

3.4.3. Comparison with More Models

Brandt et al. (2009) employs a no-trade region and find it helps reduce turnover and trans-

action costs. The turnover minimization models are compared with their underlying models

equipped with a no-trade region. Table 11 reports the Sharpe ratios of the underlying models

with a no-trade region defined by the hypersphere radius k = 0.05 or 0.15.13 The models

that significantly underperform the corresponding turnover minimization model are marked

by *.

The results show that the no-trade region improves the performance of the underlying

models, but they still underperform the turnover minimization models. The reason for the

unsatisfactory performance of the no-trade region strategy can be attributed to the fact

that it uses the current portfolio as the reference portfolio. If the first portfolio is poorly

chosen, the subsequent portfolios can also perform poorly as they are shrunk towards the

current portfolio. As reported earlier, the turnover minimization models that use the current

portfolio also suffer the same problem and perform unsatisfactorily.

The turnover minimization models are also compared to the grouping strategy of Branger

et al. (2019). Table 3 in Branger et al. (2019) provides the performance of the grouping

strategy in multiple datasets, of which three overlap with those in this paper: 10 industry,

30 industry, and 25 Fama-French. Although the sample periods in their study are not exactly

the same as those in this paper, the performances of EW and MK are similar. Therefore,

comparing the models based on their relative performance to EW is expected to provide a

reasonably accurate assessment.14

Table 12 compares the Sharpe ratios of the turnover minimization models with those of

the grouping strategy. The relative Sharpe ratios (rSR) suggest that the grouping strat-

13The radius k = 0.10 and 0.20 were also tested and the results were similar.
14It would be better to evaluate the turnover minimization during the same periods, but the out-of-sample

periods in Branger et al. (2019) are not clear defined.
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Table 11: Underlying Models with No-Trade Region

This table reports the Sharpe ratios of the underlying models equipped with the no-trade region strategy
(Brandt et al., 2009). Two no-trade region sizes are considered: hypersphere radius k = 0.05 and 0.15. The
models that significantly underperform their turnover minimization version at 10% are marked by *.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 Mean

Before Transaction Cost

k = 0.05

MK 0.059 0.124* 0.105* 0.260* 0.280* 0.155* 0.119* 0.446* 0.379 0.199* 0.072 0.200
MK+ 0.102 0.146* 0.141* 0.178* 0.192* 0.158 0.147* 0.220* 0.197 0.164 0.178 0.166
MV 0.128 0.186 0.165* 0.230 0.171* 0.165 0.183 0.222* 0.165 0.198* 0.148 0.178
MV+ 0.114 0.181 0.180* 0.155 0.133 0.137 0.169 0.159 0.149 0.162 0.197 0.158

k = 0.15

MK 0.046* 0.123* 0.100* 0.255* 0.273* 0.153* 0.115* 0.447* 0.363* 0.200* 0.036* 0.192
MK+ 0.083 0.154 0.152 0.175 0.188 0.155 0.144* 0.211 0.183 0.159 0.177 0.162
MV 0.126 0.185 0.165* 0.216* 0.162* 0.162 0.185 0.202* 0.159 0.193* 0.131 0.171
MV+ 0.118 0.170* 0.170 0.150 0.132 0.136 0.168 0.158 0.148 0.170 0.166 0.153

TMKE(τ∗b ) 0.131 0.182 0.185 0.298 0.305 0.182 0.162 0.479 0.401 0.237 0.184 0.250
TMKE+(τ∗b ) 0.097 0.159 0.167 0.186 0.201 0.160 0.161 0.225 0.197 0.170 0.186 0.174
TMVE(τ∗b ) 0.150 0.202 0.208 0.254 0.199 0.173 0.188 0.252 0.172 0.232 0.186 0.201
TMVE+(τ∗b ) 0.115 0.195 0.197 0.170 0.143 0.146 0.172 0.170 0.153 0.171 0.213 0.168

After Transaction Cost

k = 0.05

MK -0.049* -0.069* -0.079* 0.137* 0.194* 0.058* -0.009* 0.333* 0.253* 0.079* 0.035 0.080
MK+ 0.098 0.139 0.137 0.169 0.187 0.152 0.138 0.216* 0.192* 0.155 0.177 0.160
MV 0.103 0.136* 0.095* 0.173 0.140 0.134 0.145 0.157* 0.109 0.145* 0.128 0.133
MV+ 0.112 0.178 0.178 0.153 0.129 0.134 0.166 0.156 0.148 0.160 0.196 0.155

k = 0.15

MK -0.031* -0.029* -0.030* 0.182 0.218 0.092* 0.023* 0.376 0.280 0.131 0.022* 0.112
MK+ 0.082 0.152 0.152 0.173 0.187 0.153 0.141 0.211 0.182 0.157 0.177 0.160
MV 0.112 0.154 0.124* 0.185 0.144 0.144 0.163 0.164 0.128 0.166 0.126 0.146
MV+ 0.117 0.169 0.170 0.149 0.131 0.135 0.167 0.157 0.148 0.169 0.166 0.153

TMKE(τ∗a ) 0.080 0.133 0.122 0.207 0.238 0.139 0.148 0.376 0.307 0.154 0.158 0.187
TMKE+(τ∗a ) 0.087 0.154 0.152 0.169 0.188 0.147 0.146 0.210 0.182 0.159 0.176 0.161
TMVE(τ∗a ) 0.122 0.183 0.180 0.199 0.160 0.141 0.153 0.206 0.134 0.190 0.179 0.168
TMVE+(τ∗a ) 0.109 0.184 0.186 0.162 0.137 0.133 0.162 0.158 0.146 0.164 0.195 0.158
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egy slightly outperforms the utility maximization-turnover minimization models (TMKE,

TMKE+), but is outperformed by the variance minimization-turnover minimization mod-

els (TMVE, TMVE+). Table 3 of Branger et al. (2019) also reports the performances of

alternative models, e.g., Li (2015), Chen and Yuan (2016). These models underperform

the grouping strategy and are expected to underperform the turnover minimization as well.

Although the comparison is rather crude, it still suggests that the turnover minimization

performs at least as good as latest models.

Table 12: Comparison with the Grouping Strategy

This table compares the Sharpe ratios of the turnover minimization models with those of the grouping
strategy (Branger et al., 2019). The rSR columns report the Sharpe ratios divided by the Sharpe ratio of
EW.

10 Industry 30 Industry 25 FF

SR rSR SR rSR SR rSR

Branger et al. (2019)

EW 0.165 0.153 0.161
Grouping 0.197 1.194 0.196 1.281 0.176 1.093

This paper

EW 0.158 0.147 0.151
TMKE(τ∗b ) 0.161 1.019 0.163 1.109 0.313 2.073
TMKE+(τ∗b ) 0.161 1.019 0.166 1.129 0.188 1.245
TMVE(τ∗b ) 0.195 1.234 0.209 1.422 0.258 1.709
TMVE+(τ∗b ) 0.196 1.241 0.198 1.347 0.168 1.113

3.4.4. Sub-period Performance

Figure 7 portrays the sub-period performance of the turnover minimization models. Each

sub-period is ten-year-long and five-year apart from each other except for the last sub-period,

which is shorter due to the size of the whole sample period. The datasets D1 and D11 are

omitted as their sample periods are shorter. The y-axis is the percentage of the sub-periods

in which a strategy outperforms EW (outperformance ratio). The solid line represents a

turnover minimization model, and the dotted line represents its underlying model.

In line with the findings in Section 3.3.2, the turnover minimization models generally

outperform EW as well as their underlying models in the sub-periods. They outperform EW
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in more than half of the sub-periods in most datasets. In particular, TMVE and TMVE+

exhibit robust performance across sub-periods and datasets. Overall, the sub-period analysis

confirms the robustness of the findings in Section 3.3.2.

4. Concluding Remarks

This paper develops a new shrinkage portfolio estimator, turnover minimization. It places

an additional layer on a conventional portfolio problem, in which the optimal portfolio found

in the original problem is shrunk towards a reference portfolio. Unlike existing shrinkage

models, the proposed model does not assume the distribution of estimation errors but deter-

mines the optimal shrinkage level from observed data. This nonparametric approach makes

the model better suited to the real-world data whose distribution is unknown and difficult to

estimate. Another advantage of the model is that it can be easily tailored to accommodate

a wide range of portfolio problems with various objectives and constraints. This flexibility

is particularly beneficial to practitioners who often encounter various constraints imposed

by internal policy or regulation. The implementation is straightforward, while the gain from

the added layer is substantial.

The proposed model is evaluated against various benchmarks, including well-known clas-

sical models and existing shrinkage models. The simulation and empirical studies reveal that

minimum-turnover portfolios outperform their underlying portfolios and other benchmarks.

They are characterized by low turnover owing to the way they are shrunk and demonstrate

superior performance after transaction costs are taken into account. While unconstrained

minimum-turnover portfolios perform superior without transaction costs, they are outper-

formed by their short-sale constrained counterparts when subject to transaction costs. This

highlights the importance of the ability to incorporate constraints in shrinkage models. An-

other important finding is that the equal-weight portfolio serves better as the shrinkage

target compared to the current portfolio. The effectiveness of the turnover minimization is
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Figure 7: Sub-Period Performance

This figure demonstrates the sub-period performance of the turnover minimization models when T = 120.
The y-axis is the percentage of the sub-periods in which EW underperforms. The solid line represents a
turnover minimization model, and the dotted line represents its underlying model. There are 13 sub-periods
(ten-year-long and five-year apart from each other).
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reaffirmed through a comprehensive robustness check.

A. Proofs

Proof of Equation (7)

The Lagrangian of the problem has the form

L =
1

2
(w − w0)

′Σ(w − w0)− λ
(
w′µ− γ

2
w′Σw − (1− τ)U∗

)
, (A.1)

and the first-order condition is given by

∂L
∂w

= Σw − Σw0 − λµ+ λγΣw = 0. (A.2)

Solving the first-order condition for w, the optimal portfolio is given by

wtm =
1

1 + λγ
w0 +

λ

1 + λγ
Σ−1µ =

1

1 + λγ
w0 +

λγ

1 + λγ
wmk. (A.3)

Proof of Equation (8)

When the constraint is binding, we have

w′µ− γ

2
w′Σw = (1− τ)U∗. (A.4)

By substituting wtm in (A.3) for w and solving for λ, we obtain

λ =
1

γ

(√
U∗ − U0

τU∗
− 1

)
, (A.5)

where U0 = w′0µ−
γ
2
w′0Σw0 is the utility of the reference portfolio.
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Proof of Equation (17)

The optimal a can be obtained by maximizing the expected out-of-sample utility of the

portfolio wtm with respect to a:

max
a
E[U(a)] = max

a
E
[
w′tmµ−

γ

2
w′tmΣwtm

]
. (A.6)

Using wtm = aw0 + (1− a)ŵmk,

E[U(a)] = aw′0µ+ (1− a)E[ŵmk]
′µ− γ

2
a2w′0Σw0

− γ

2
(1− a)2E[ŵ′mkΣŵmk]− γa(1− a)E[ŵmk]

′Σw0.

(A.7)

The first-order condition, ∂E[U(a)]
∂a

= 0, yields the optimal a of the form

a∗ =
1

γ

w′0µ− E[ŵmk]
′µ+ γE[ŵ′mkΣŵmk]− γE[ŵmk]

′Σw0

w′0Σw0 + E[ŵ′mkΣŵmk]− 2E[ŵmk]′Σw0

. (A.8)

When the asset returns are i.i.d. normal, µ̂ and Σ̂ are independent of each other and

µ̂ ∼ N

(
µ,

Σ

K

)
, Σ̂ ∼ WN(T − 1,Σ)

1

T
. (A.9)

It follows that (see Kan and Zhou (2007) and the references therein):

E[ŵmk] =
1

γ
Σ−1µ, (A.10)

E[ŵ′mkΣŵmk] =
c1
γ2

(
N

K
+ 2γU∗

)
. (A.11)
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where c1 = (T−2)(T−N−2)
(T−N−1)(T−N−4) . Combining (A.8) with (A.10) and (A.11), we have

a∗ =
π2

π1 + π2
, (A.12)

π1 = 2(U∗ − U0), (A.13)

π2 = 2(c1 − 1)U∗ +
c1
γ

N

T
, (A.14)

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
, (A.15)

and from Equation (A.5)

τ ∗ = a∗2
(U∗ − U0)

U∗
. (A.16)

B. Implementation of the Models

This section describes the implementation details of the models in Table 1. For the full

details of each model, the reader is referred to the original papers.

Under variance targeting, a portfolio, w, is adjusted as follows to meet the variance

target, σ2
T :

w := w
σT√
w′Σ̂w

. (B.1)

B.1. Ex-post Optimal Portfolio, W*

The ex-post optimal portfolio maximizes the utility using the true µ and Σ:

w∗ =
1

γ
Σ−1µ. (B.2)

When w∗ is adjusted to meet the variance target, the true covariance matrix Σ is used instead

of its estimate, Σ̂. W* is rebalanced back to the optimal portfolio every month.
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B.2. Equal-Weight Portfolio, EW

The equal-weight portfolio allocates the wealth equally to the risky assets:

wew =
1

N
1N , (B.3)

where 1N is an N -dimensional vector of ones. EW is rebalanced monthly.

B.3. Markowitz (1952) Mean-Variance Portfolio, MK(+)

The mean-variance portfolio can be obtained from the formulas below.

• Unconstrained Utility Maximization (MK)

wmk =
1

γ
Σ̂−1µ̂. (B.4)

• Short-sale Constrained Utility Maximization (MK+)

wmk+ = argmax
w

w′µ̂− γ

2
w′Σ̂w

subject to wi ≥ 0, i = 1, . . . , N.

(B.5)

B.4. Global Minimum-Variance Portfolio, MV(+)

The global minimum-variance portfolio can be obtained from the formulas below.

• Unconstrained Variance Minimization (MV)

wmv =
Σ̂−11N

1′N Σ̂−11N
. (B.6)
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• Short-sale Constrained Variance Minimization (MV+)

wmv+ = argmin
w

w′Σ̂w

subject to w′1N = 1

wi ≥ 0, i = 1, . . . , N.

(B.7)

B.5. Optimal Constrained Portfolio (Kirby and Ostdiek, 2012),

OC(+)

Kirby and Ostdiek (2012) show that a mean-variance portfolio constrained to invest only

in the risky assets and have the same expected return as the näıve portfolio outperforms

the näıve portfolio. The same strategy is considered here, but to be consistent with other

strategies, the variance is constrained to meet the target rather than the expected return.

The OC portfolio under variance targeting can be obtained from

woc = argmax
w

w′µ̂

subject to w′1N = 1

w′Σ̂w ≤ σ2
T .

(B.8)

As OC invests only in the risky assets, the variance constraint is imposed during optimization.

Other OC optimization problems are similarly defined.

B.6. Volatility Timing (Kirby and Ostdiek, 2012), VT

Kirby and Ostdiek (2012) also introduce portfolio strategies based on volatility. One of their

volatility-based strategies that utilizes only the variance is considered. The portfolio from

the volatility timing strategy is determined by the formula

wvt,i =
(1/σ̂2

i )
m∑N

i=1 (1/σ̂2
i )
m , i = 1, . . . , N, (B.9)
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where m is a tuning parameter which determines the aggressiveness of the weight adjustment

in response to changes in the volatility of the asset, and σ̂2
i is the sample variance of the i-th

asset return. In the empirical analysis, m is set to 1.

B.7. Black and Litterman (1992) Model, BL+

Black and Litterman (1992) introduce a Bayesian asset allocation model where subjective

investor views can be incorporated in the market portfolio. Their framework is adopted by

Bessler et al. (2014), who use the näıve portfolio as a proxy for the market portfolio and the

sample mean as investor views. The implementation procedure is as follows.

The equilibrium return implied by the equal-weight portfolio is given by

µ̄ = γΣµew, (B.10)

where γ is the risk aversion parameter. The equilibrium return is assumed to be an unbiased

estimate of the true mean:

µ̄ = µ+ η, η ∼ N(0, Σ̄), (B.11)

where Σ̄ = κΣ̂ for some constant κ. The investor view is defined as the sample mean, µ̂, and

is assumed to be an unbiased estimator of µ:

µ̂ = µ+ ε, ε ∼ N(0,Ω). (B.12)

Ω represents the uncertainty of the view and is assumed to be of the form κdiag(Σ̂), where

diag(Σ̂) is a diagonal matrix derived from Σ̂. From (B.11) and (B.12), the mean and covari-

ance matrix of the asset returns can be estimated via the generalized least squares and are
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given by:

µ̃ = µ̄+ Σ̄(Σ̄ + Ω)−1(µ̂− µ̄), (B.13)

Σ̃ = Σ̂ + Σ̄− Σ̄(Σ̄ + Ω)−1Σ̄. (B.14)

γ and κ are respectively set to 3 and 0.1. The Black-Litterman optimal portfolio is obtained

by solving the constrained mean-variance problem in (B.5) with the mean and covariance

estimates defined above.

B.8. Treynor and Black (1973) Model, TB+

Treynor and Black (1973) develop an active portfolio strategy for an optimal allocation

between active assets (assets with abnormal excess returns) and the market portfolio. We

adopt their model and use the näıve portfolio as a proxy for the market portfolio.

The “active assets” are first identified by regressing asset returns on the näıve portfolio

returns:

rit = αi + βirew,t + eit, t = 1, . . . , T, (B.15)

where rit and rew,t are respectively the returns of asset i and the näıve portfolio at time t

in excess of the risk-free rate. The assets with a significant αi at 5% are identified as active

assets. The regression is carried out and active assets are identified every month.

The optimal portfolio from the active assets and the equal-weight portfolio can be ob-

tained by solving the usual mean-variance problem with the equal-weight portfolio added in

the asset pool. Treynor and Black (1973) provide a closed-form solution for an unconstrained

problem, but it needs to be solved numerically when subject to the short-sale constraint:

wtb+ = argmax
w

w′µ̂− γ

2
w′Σ̂w

subject to wi +
1

M
wM+1 ≥ 0, i = 1, . . . ,M,

(B.16)
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where M denotes the number of active assets, and µ̂ ∈ RM+1 and Σ̂ ∈ R(M+1)×(M+1) are the

input parameter estimates of the M active assets and the equal-weight portfolio ((M + 1)-th

asset). Note that since the (M + 1)-th asset is the equal-weight portfolio, the short-sale

constraint has a different form.

B.9. Tu and Zhou (2011) Models, TZMK and TZKZ

Tu and Zhou (2011) develop a shrinkage portfolio model that combines an optimal portfolio

with the näıve portfolio. They specifically consider an optimal mix of the näıve portfolio with

the Markowitz (1952) rule, Jorion (1986) rule, Kan and Zhou (2007) rule, and MacKinlay

and Pástor (2000) rule. In this paper, the Markowitz (1952) rule and Kan and Zhou (2007)

rule are considered.

• MK+EW (TZMK)

The Tu and Zhou (2011) portfolio that combines the equal-weight portfolio with the

Markowitz portfolio is given by

wtzmk = âwmk + (1− â)wew, (B.17)

where

â =
π2

π1 + π2
, (B.18)

π1 = w′ewΣ̂wew −
2

γ
w′ewµ̂+

1

γ2
θ̃2, (B.19)

π2 =
1

γ2
(c1 − 1)θ̃2 +

c1
γ2
N

T
(B.20)

c1 =
(T − 2)(T −N − 2)

(T −N − 1)(T −N − 4)
, (B.21)

where θ̃2 is an estimate of θ = µΣ−1µ. Tu and Zhou (2011) suggest to use the estimator
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of Kan and Zhou (2007):

θ̃2 =
(T −N − 2)θ̂2 −N

T
+

2(θ̂2)N/2(1 + θ̂2)−(T−2)/2

TBθ̂2/(1+θ̂2)(N/2, (T −N)/2)
, (B.22)

where θ̂2 = µ̂′Σ̂−1µ̂, and Bx(a, b) =
∫ x
0
ya−1(1−y)b−1dy is an incomplete beta function.

• KZ+EW (TZKZ)

The Tu and Zhou (2011) portfolio that combines the equal-weight portfolio with the

Kan and Zhou (2007) three-fund rule is given by

wtzkz = âwkz + (1− â)wew, (B.23)

where wkz is the Kan-Zhou rule defined below, and

â =
π1 − π13

π1 − 2π13 + π3
, (B.24)

π13 =
1

γ2
θ̃2 − 1

γ
w′ewµ̂+

1

γc1
(η̂w′ewµ̂+ (1− η̂)µ̂gw

′
ew1N)

− 1

γ2c1

(
η̂µ̂′Σ̃−1µ̂+ (1− η̂)µ̂gµ̂

′Σ̃−11N

)
, (B.25)

π3 =
1

γ2
θ̃2 − 1

γ2c1

(
θ̃2 − N

T
η̂

)
. (B.26)

π1 is as defined above, and η̂ and µ̂g are as given below.

• Kan and Zhou (2007) Three-Fund Rule

The three-fund rule of Kan and Zhou (2007) is given by

wkz = âwmk + b̂w̃mv, (B.27)
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where w̃mv = 1
γ
Σ̂−11N , and

â =
1

c1
η̂, b̂ =

1

c1
(1− η̂), η̂ =

φ̃2

φ̃2 +N/T
. (B.28)

φ̃2 is given by

φ̃2 =
(T −N − 1)φ̂2 − (N − 1)

T
+

2(φ̃2)(N−1)/2(1 + φ̃2)−(T−2)/2

TBφ̃2/(1+φ̃2)((N − 1)/2, (T −N + 1)/2)
, (B.29)

where

φ̂2 = (µ̂− µ̂g1N)′ Σ̂−1 (µ̂− µ̂g1N) , µ̂g =
µ̂′Σ̂−11N

1′N Σ̂−11N
. (B.30)
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