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Abstract 

Many interspecifically territorial species interfere with each other reproductively, and in some 

cases, aggression toward heterospecifics may be an adaptive response to interspecific mate 

competition. This hypothesis was recently formalized in an agonistic character displacement 

(ACD) model which predicts that species should evolve to defend territories against 

heterospecific rivals above a threshold level of reproductive interference. To test this prediction, 

we parameterized the model with field estimates of reproductive interference for 32 sympatric 

damselfly populations and ran evolutionary simulations. Asymmetries in reproductive 

interference made the outcome inherently unpredictable in some cases, but 80% of the model’s 

stable outcomes matched levels of heterospecific aggression in the field, significantly exceeding 

chance expectations. In addition to bolstering the evidence for ACD, this paper introduces a new, 

predictive approach to testing character displacement theory that, if applied to other systems, 

could help resolve longstanding questions about the importance of character displacement 

processes in nature.  
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INTRODUCTION 

Character displacement theory classically pertains to two types of mutually negative interactions 

between coexisting species: exploitative competition arising from overlap between species in 

resource use (ecological character displacement [ECD]) and reproductive interference arising 

from incomplete mating isolation (reproductive character displacement [RCD]; Brown Jr. & 

Wilson 1956; Pfennig & Pfennig 2012). This theory has recently been expanded to include 

another common type of mutually negative species interaction: interspecific interference 

competition (Grether et al. 2009, 2013, 2017). While interference competition also occurs in 

plants and microbes, so far theory developed in this area has focused on animals, where 

interference competition usually takes the form of agonistic interactions, such as aggression, 

dominance and territoriality; hence this addition to character displacement theory is known as 

agonistic character displacement (ACD).  

Interference competition can be a costly interaction that species evolve to avoid 

(divergent ACD) or the product of evolved responses to interspecific competition for mates or 

other resources (convergent ACD). Although these two aspects of interference competition were 

studied separately for decades and not regarded as forms of character displacement (e.g., Lorenz 

1962; Cody 1969; Case & Gilpin 1974; Gill 1974; Diamond 1982; Hairston 1983; Nishikawa 

1987; Peiman & Robinson 2007), they have been unified in ACD models where the value of one 

continuous parameter – the level of resource overlap or mate competition – can determine 

whether the species diverge or converge in competitor recognition and the traits upon which 

competitor recognition is based (e.g., territorial song, coloration, pheromones; Grether et al. 

2009; Drury et al. 2015). Convergence in territorial signals (i.e., convergent ACD) can result in 
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interspecific territoriality, which is a form of resource partitioning that reduces interspecific 

exploitative competition (Cody 1969; Grether et al. 2009). 

Traditionally, character displacement is studied by documenting a geographic pattern of 

trait variation consistent with character displacement (e.g., divergence or convergence in 

sympatry) and then attempting to rule out alternative explanations for the pattern, such as chance, 

genetic drift, hybridization and species sorting, while also testing assumptions of the character 

displacement hypothesis (Schluter 2000; Pfennig & Pfennig 2012). This approach has been 

applied to several putative examples of both convergent and divergent ACD (Grether et al. 2009, 

2013), and some new case studies are particularly compelling (e.g., darters, Moran and Fuller 

2018a, 2018b; antbirds, Tobias and Seddon 2009, Kirschel et al. 2019; nightingales, Reif et al. 

2015; Souriau et al. 2018; singing mice, Pasch et al. 2017; damselflies, Anderson & Grether 

2010a, b; Drury & Grether 2014). However, while the traditional approach can provide strong 

evidence that character displacement has occurred in particular cases, it provides little 

information about its prevalence or predictability (Germain et al. 2018).  

Here we pioneer a predictive approach to testing character displacement theory that is 

practical at the scale of small clades (e.g., genera). It involves developing a character 

displacement model based on the focal clade, simulating conditions at the time of secondary 

contact for multiple species pairs, and then comparing the model’s evolutionary predictions to 

outcomes observed in sympatry. As natural populations are subject to selection in other contexts, 

as well as genetic drift and gene flow, we would not expect any character displacement model to 

predict all outcomes precisely, but a useful model should outperform chance expectations. We 

apply this approach to rubyspot damselflies (Hetaerina spp.), a genus that has been inferred to 

exhibit divergent ACD in some cases (Anderson & Grether 2010a, b; Drury & Grether 2014) and 



 5 

convergent ACD in others (Drury et al. 2015). Essentially, we ask whether ACD theory can 

correctly predict which sympatric populations fall into which of these two categories. 

The hypothesized difference between divergent and convergent damselfly populations is 

the level of reproductive interference – more specifically, the extent of local mate competition 

between species caused by males attempting to mate with heterospecific females (Drury et al. 

2015). Although interspecies pairs break up prior to copulation, males can clasp and fly in 

tandem with heterospecific females, potentially resulting in interspecific mate competition within 

male territories (Drury et al. 2015). The ability of males to distinguish between conspecific and 

heterospecific females varies considerably among species pairs (Drury et al. 2015) but is not 

enhanced in sympatry compared to allopatry (Drury et al. 2019). Thus, current levels of 

reproductive interference are probably representative of the levels that occurred at the time of 

secondary contact. 

An ACD model based on the life history and behavior of this system predicted that 

sympatric populations would diverge in competitor recognition traits until interspecific 

territoriality is eliminated if the reduction d in a male’s mating success caused by sharing a 

territory with one heterospecific male is below a threshold, and to converge in the same traits 

until interspecific territoriality is established if d is above the threshold (Drury et al. 2015). 

Drury et al. (2015) carried out territory intrusion experiments on multiple sympatric populations 

and obtained results consistent with the model’s predictions: territory holders were more 

aggressive to heterospecific male intruders at sites where heterospecific males were more likely 

to attempt to mate with females of the territory holder’s species. Drury et al. (2015) were unable 

to test the model directly, however, because they did not have empirical estimates of d. 
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Furthermore, their model assumed that d and population density are symmetrical between 

sympatric species, and the consequences of relaxing these assumptions were unknown.  

Here we advance ACD theory by exploring the consequences of asymmetries between 

sympatric species in the cost of sharing space with heterospecifics. We further test whether ACD 

theory can predict how specific populations have evolved in response to each other. To this end, 

we modified the model of Drury et al. (2015) to allow for asymmetries in d and population 

density, obtained field estimates of these parameters for 16 pairs of sympatric Hetaerina 

populations, and then used the model to simulate secondary contact between populations with the 

observed values of d and population density, tracking their evolution for 9000 generations. The 

evolvable traits in the model include a male trait upon which competitor recognition is based (z) 

and two “neural” traits (µ and σ) that together govern the competitor recognition function 

(Grether et al. 2009). When males meet in the model, whether they respond aggressively to each 

other and fight over the territory depends on their respective values of these three traits. Over 

time, the fitness consequences of the interactions cause the traits to evolve. If the species’ traits 

evolve away from each other, reducing interspecific aggression, divergence results. If the 

species’ traits evolve toward each other, increasing interspecific aggression, convergence results. 

If chasing occurs (i.e., one species’ traits evolve toward the other’s and the other species’ traits 

evolve away), a stable outcome of divergence or convergence might eventually be reached, or 

the outcome might be unstable. We calculated the mean ratio of heterospecific/conspecific 

aggression over the last 1000 years of each evolutionary simulation and compared the model’s 

predictions to the observed mean levels of aggression of territory holders toward male intruders 

in the field.  
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To the best of our knowledge, this is the first time a character displacement model has 

been used to generate predictions for particular species pairs in the wild, and thus a milestone for 

ACD and character displacement research in general.  

 

MATERIALS AND METHODS 

Study populations 

Hetaerina is a genus of 38 species patchily distributed in river drainages on the Atlantic and 

Pacific slopes of the Americas (Garrison 1990). For this study, we collected data at 13 sites with 

two or more sympatric species; two sites in the U.S., five in Mexico, and six in Costa Rica (10 

different species; 13 different species pairs; Table S1). Fieldwork was conducted between March 

2006 and July 2017. 

 

Field estimates of reproductive interference 

The cost (d) of sharing space with heterospecifics (see Introduction) cannot be measured directly 

because male Hetaerina do not usually share territories. We therefore used a Monte Carlo 

simulation to estimate what the reduction in a male’s mating success would be if heterospecific 

males shared territories. We assumed that clasping probabilities in sympatry can be used to 

simulate conditions at the time of secondary contact, because clasping probabilities do not differ 

between population in sympatry and allopatry, and most Hetaerina populations are strongly 

differentiated genetically (Drury et al. 2019). Nevertheless, clasping probabilities alone are 

insufficient for estimating d. In principle, sharing a territory with a heterospecific male could 

enhance a male’s mating success if interspecific tandem pairs usually break up close to the point 

of clasping. Other variables that affect d include the latencies with which males of the two 
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species clasp females, the probability of males following interspecific tandem pairs, the distances 

males transport heterospecific females before releasing them, and the probabilities of perched 

males clasping conspecific females at different distances. We therefore carried out field 

experiments to obtain sampling distributions for each of these variables, as described below. For 

clarity, we describe a single experimental trial of each type, but the sampling distributions were 

based on multiple trials (for sample sizes, see Table S2): 

(1) Clasping probabilities and latencies. Method: A live, tethered female was flown into the 

territory of a male, within 0.5 m of the male’s perch, for 5 seconds. We recorded whether the 

male clasped the female and, if so, the time from the start of the trial to when clasping occurred.  

(2) The probability of a male following an interspecific tandem pair and therefore being 

closer to the point of release, and more likely to re-clasp the female, than he would be if he 

remained perched. Method: A female was attached to a heterospecific male with transparent 

thread, the pair was tethered and flown through the territory of a male of the female’s species, 

and whether the territory holder followed the pair was recorded. 

(3) Heterospecific release distance. Method: A female was released from a wire and mesh 

cage at the end of a pole, directly below a perched heterospecific male. If the male clasped or 

attempted to clasp the female, we recorded the distance from the male’s initial perch to his last 

point of contact with the female.  

(4) The probability of a female being clasped by a conspecific male after being released by a 

heterospecific male at a given distance from the conspecific male’s perch. Method: Same as (1) 

except that females were also flown at distances of 1-2 m and 2-3 m from the perches of 

conspecific males. We fit an exponential decay function to the midpoints of the three zones (0.5, 
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1.5 and 2.5 m) to estimate the probability of a male clasping a conspecific female at any distance 

between 0.5 and 3 m (beyond 3 m, the probability of clasping is negligible). 

We prioritized obtaining population-specific clasping probabilities and carried out the other 

field experiments as the availability of females and time constraints permitted. We pooled data 

from experiment (2) across sites to obtain a single estimate of the probability of a male following 

an interspecific tandem pair (0.264, N = 155 trials). From experiments (3) and (4), we used 

population-specific estimates if we reached a sample size ≥ 20 for the population, species-

specific estimates if we reached a sample size ≥ 20 for the species, and pooled estimates across 

species and sites otherwise.  

In the Monte Carlo simulation (Fig. S1), a female arrives on a territory shared by two 

males and the empirical distributions of clasping probabilities and latencies are sampled to 

determine which male clasps her first. If the heterospecific male clasps her first, the conspecific 

male follows the pair with some probability and has a high probability of clasping the female 

when she is released. If the conspecific male does not follow the pair, the empirical distribution 

of heterospecific release distances is sampled, and the conspecific male re-clasps her with the 

empirically measured probability of clasping at that distance. Within 105 iterations, the 

simulation yields a stable estimate of Pij , the probability of a male of species i clasping a 

conspecific female if the territory is shared with one male of species j. We ran the simulation 10 

times for each pair of populations and used the mean values of Pij to calculate dij = (Pi – Pij)/Pi, 

where Pi is the empirically measured probability of a male of species i clasping a conspecific 

female in the absence of interference (Table S4). A d value of 0.5 would mean that sharing a 

territory with one heterospecific male reduces a male’s expected mating success by 50%. If the 

presence of a heterospecific male resulted in local mate enhancement instead of local mate 
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competition, d would be negative. For simulation code and sampling distributions, see 

Supporting Information. 
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ACD model with asymmetrical reproductive interference 

We used a mechanistic evolutionary model to predict levels of heterospecific aggression for 

sympatric populations with the observed field estimates of d. The model is individual-based 

(DeAngelis & Mooij 2005) and the loci and alleles underlying the evolvable traits are tracked 

explicitly (Okamoto & Grether 2013). We modeled diploid, sexually reproducing populations 

without overlapping generations, as in Hetaerina. The evolvable traits are the central location (µ) 

and width (σ) of the male competitor recognition function and the male trait (z) upon which 

competitor recognition is based (Okamoto & Grether 2013). Mutations occur with probability 

10–4 at each locus and new allelic values are drawn from a Gaussian distribution with a standard 

deviation of 10% of the mean initial allelic value (Okamoto & Grether 2013). 

On each simulated day during the breeding season (90 days), mature males that do not 

already occupy a territory enter a territory at random. If the territory is occupied by another male, 

three outcomes are possible: mutual recognition as competitors, one-sided recognition, and 

mutual non-recognition. Which outcome occurs is a stochastic function of the males’ respective 

values of z, µ and σ, according to probabilities exp(-(zi-µr)2/2σr2) and exp(-(zr-µi)2/2σi2), where 

subscripts r and i represent resident and intruder, respectively (Okamoto & Grether 2013). 

Mutual and one-sided recognition result in territorial fights, the outcome of which is determined 

by a probability function based on the males’ respective energy reserves for fighting (Okamoto 

& Grether 2013). The winner of the fight occupies the territory, the loser leaves, and both males 

suffer a reduction in energy reserves (energy reserves are replenished through foraging according 

to an empirical age-dependent function) (Okamoto & Grether 2013). If mutual non-recognition 

occurs, the males share the territory and suffer no loss in energy reserves. Once territory 

allocation is complete, the probability that a given male mates with a given female depends on: 
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whether they are conspecifics, whether he occupies a territory, and for territory holders, the 

number and species of any other males on the territory (e.g., the presence of one heterospecific 

male reduces a male’s probability of mating by d). Female mating rates, the proportion of 

females that mate with territory residents, as well as variables governing the underlying 

population dynamics are based on empirical data and equations in the appendices of Okamoto & 

Grether (2013). 

In Hetaerina, competitor recognition is based on male coloration but female mate 

recognition is not (Grether 1996; Drury & Grether 2014). Accordingly, the ACD model assumes 

that a female’s willingness to mate is based on traits other than z that vary among species (e.g., 

the size and shape of male claspers; Garrison 1990). Because female mate recognition occurs 

post-clasping in Hetaerina and is not based on the same male traits as male competitor 

recognition (Drury & Grether 2014), we did not include evolvable traits for female mate 

recognition in the model. If female pre-clasping mate recognition were evolvable (with females 

controlling whether they are clasped), then all populations would evolve toward zero 

reproductive interference and zero interspecific aggression (Okamoto & Grether 2013). Male 

mate recognition was also assumed not to evolve, based on evidence that reproductive 

interference does not affect the evolution of male mate recognition in Hetaerina (Drury et al. 

2019). 

 

Evolutionary simulations 

We simulated secondary contact between species that initially were 0.1 standard deviation units 

apart in z and µ, with σ set to an initial value of 1 standard deviation unit. This initial divergence 

results in a heterospecific aggression (HA) ratio of approximately 0.8, meaning that the 
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probability of a male responding aggressively to a heterospecific male is about 80% of the 

probability of responding aggressively to a conspecific male. However, as shown previously, the 

initial level of divergence does not affect the final outcome (Drury et al. 2015). Secondary 

contact occurred after a 1000 generation allopatric burn-in period, during which the populations 

drifted somewhat in their mean values of z, µ and σ. The carrying capacities of the larger 

populations were fixed at 8000 and the carrying capacity of the smaller populations were 

adjusted to yield the relative population densities observed in the field (based on the number of 

individually marked males). Based on our repeated visits to the same sites in different years, the 

relative population densities appear to be stable. Field estimates of the reproductive interference 

parameter d were obtained as described above. 

For each population pair, we ran 10 replicate simulations of 104 generations. The mean 

trait values, population sizes and numbers of encounters and recognition events were recorded in 

each generation, and from those records, we calculated the HA ratio for each population in each 

generation (e.g., see Fig. S2). To generate predictions against which to compare the HA ratios 

observed in the field, and to evaluate the stability of the predictions, we calculated the harmonic 

mean and variance of the HA ratio over the last 1000 years of each simulation, and then 

calculated the mean variance and the variance and mean of the harmonic means across the 10 

replicates. 

By visually inspecting the trait plots (e.g., Fig. S2-S7), we classified the simulated 

evolutionary responses as “diverge” or “converge” and the outcome of the species interaction as 

“convergence”, “divergence”, or “chasing”. Chasing occurred when one population converged 

and the other population diverged. Replicate simulation runs were very consistent, so there was 

no difficulty in scoring the predicted evolutionary responses of the simulated populations. We 
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classified cases with an HA ratio variance across replicates of less than 0.02 as “stable” and 

cases with greater variability as “unstable”.  

 

Territorial aggression 

To test the model’s predictions, we measured territorial aggression in the field. We marked males 

individually, identified territory holders based on observations of site fidelity and defense, and 

presented them with live, flying, tethered male intruders, as in Anderson and Grether (2010a). 

Each territory holder was presented with conspecific and heterospecific intruders, with the 

presentation order balanced across males of each species at each site. Trials were 2-min long 

with an inter-trial interval of > 5 min. From audio recordings of the behaviors observed, we 

measured the proportion of time spent chasing and the rate of physical midair attacks. 

Damselflies are sensitive to time of day and weather conditions, and we aimed to test males 

when they were actively defending their territories. Cases in which a male did not chase either 

intruder were thus excluded from the analysis. Individual males were only retested if they failed 

to respond in a previous test. Population means, confidence intervals and sample sizes are shown 

in Table S3. We used population means to calculate HA ratios, defined as the mean level of 

aggression toward heterospecific males divided by the mean level of aggression toward 

conspecific males. For each pair of sympatric populations, we calculated one HA ratio based on 

physical attack rates and another based on chase durations for comparison with the ACD model’s 

predictions.  
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Data analysis 

The ACD model’s predicted HA ratios were strongly clustered around 0 and 1, and the observed 

HA ratios were also bimodal, and thus the data were not suitable for statistical methods that 

assume normality of residuals. We therefore used Spearman rank correlations to measure the 

strength of association between the predicted HA ratio and d and between the observed and 

predicted HA ratios (in all cases, N = 32 populations). To evaluate the model’s accuracy in 

predicting whether field populations have diverged or converged in competitor recognition, we 

dichotomized the HA ratios based on a threshold of 0.5 (i.e., where aggression toward 

heterospecific males is 50% as high as aggression toward conspecific males). To compute the 

probability of the results under the null hypothesis that observed and predicted outcomes are 

independent, we used Fisher’s exact test. 

To evaluate whether the observed or predicted HA ratios are correlated with patristic 

(phylogenetic) distance between species, we used a randomization approach that circumvents 

potential non-independence caused by the data structure (i.e., each pair of populations has two 

HA ratios but only one patristic distance). One population in each pair was dropped at random 

and the Spearman correlation coefficient (rs) was computed using the remaining 16 data points. 

This was repeated 104 times, and the resulting mean rs was compared to Spearman correlation 

critical values for N = 16. Patristic distances were obtained from the phylogeny of Drury et al. 

(2019). 
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RESULTS 

Model predictions 

We found considerable variation in the level of reproductive interference between populations 

but no cases of local mate enhancement or facilitation (sensu Bruno et al. 2003). The d estimates 

ranged from 0 to 0.502 (mean = 0.194, sd = 0.134, N = 32; Table S4). The ACD model predicted 

divergence when the d parameter of both populations was less than 0.23, convergence when the 

d parameter of both populations was 0.23 or higher, and chasing when the d parameters of the 

two populations fell on different sides of this threshold (Fig. 1; Table S4; for examples of each 

outcome, see Fig. S2-S7). Asymmetries in population size influenced rates of divergence and 

convergence (e.g., Fig. S2-S5) and the stability of the chasing outcomes (cf. Fig. S6 and S7). All 

22 populations with predicted outcomes of divergence or convergence, and three of the ten 

populations with chasing as the predicted outcome, had stable HA ratio predictions (Fig. 2). In 

one of the chasing cases, different replicates predicted alternative stable HA ratios (Fig. 2). 

Across populations, the predicted mean HA ratio was strongly positively correlated with d (Fig. 

3; rs = 0.76, P < 0.0001, N = 32). 

  

Comparing aggression in the wild to model predictions 

Observed and predicted HA ratios were strongly positively correlated across populations (Fig. 4, 

Table S5; observed attack rate ratio, rs = 0.60, N = 32, P = 0.0003; observed chase duration ratio, 

rs = 0.65, N = 32, P < 0.0001). The model correctly predicted the categorical outcome for 24 of 

the 32 populations (Fisher’s exact test, P = 0.0028) and 20 of the 25 population with stable 

predictions (P = 0.0036; Table 1).  
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Among the populations with stable but incorrect predictions, four had high observed HA 

ratios but were predicted to have low HA ratios, and one population with a low observed HA 

ratio was predicted to have a high HA ratio (Table 1). The latter population has a d estimate just 

above the model’s divergence/convergence threshold (0.23). If the true level of reproductive 

interference was slightly lower, the predicted outcome would be chasing. Thus, the only clear 

exceptions to the model’s predictions are cases where HA in the field is higher than predicted. 

Neither observed nor predicted HA ratios were correlated with patristic distance between 

species (predicted HA ratio, mean rs = 0.06, N = 16, P = 0.82; observed attack rate ratio, mean rs 

= 0.32, N = 16, P = 0.22; observed chase duration ratio, mean rs = 0.16, N = 16, P = 0.55). 

 

DISCUSSION 

Many interspecifically territorial species also interfere with each other reproductively (see Table 

S1 in Drury et al. 2015), and the hypothesis that aggression toward heterospecifics is an evolved 

response to interspecific mate competition has been proposed multiple times (e.g., Baker, 1991; 

Payne, 1980; Reichert & Gerhardt, 2014; Sedlacek, Cikanova, & Fuchs, 2006). This hypothesis 

was formalized in an ACD model that predicts the level of reproductive interference at which 

species should converge in competitor recognition and defend interspecific territories (Drury et 

al. 2015). To test the model, we obtained field estimates of reproductive interference for 32 

sympatric damselfly populations and ran model simulations with those estimates. In seven cases, 

asymmetries in reproductive interference made the outcome inherently unpredictable, which is 

an interesting and seldom-considered predicament in evolutionary biology (Blount et al. 2018). 

Nevertheless, 80% of the model’s stable predictions matched levels of heterospecific aggression 

(HA) observed in the field. In addition to bolstering the evidence that ACD is a predictable 
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phenomenon, this paper introduces a new, predictive approach to testing character displacement 

theory that, if applied to other systems, could help resolve longstanding questions about the 

importance of character displacement processes in nature (Pfennig & Pfennig 2012; Stuart & 

Losos 2013; Germain et al. 2018). 

The traditional process-of-elimination approach to studying character displacement 

remains the best way to determine whether an observed geographic pattern is likely to have been 

caused by a character displacement process (Schluter 2000), but eliminating all alternative 

explanations can be daunting (Dayan & Simberloff 2005). Another well-known problem is that 

character displacement processes need not leave an extant pattern of trait variation (Grant 1972; 

Lemmon et al. 2004; Goldberg & Lande 2006; Germain et al. 2018). Hence, the absence of a 

geographic pattern cannot be taken as evidence that character displacement has not occurred. 

Germain et al. (2018) proposed an alternative approach to studying ECD that involves measuring 

the strength of resource competition between populations in sympatry versus allopatry and does 

not require measuring shifts in specific traits. Their approach is likely to reveal cases of character 

displacement that would otherwise be missed, and could provide information on the prevalence 

of character displacement in a clade. However, the occurrence of character displacement is still 

inferred from an observed pattern, as opposed to character displacement theory being used to 

predict where particular patterns should be found. 

The predictive approach to studying character displacement exemplified by the current 

study fills an important gap between the scale of traditional studies of individual species pairs 

and large phylogenetic comparative studies. In large comparative studies, species pairs that 

deviate from the overall trends might illustrate genuine, alternative evolutionary outcomes, but 

instead tend to be regarded merely as outliers. For example, a phylogenetically robust pattern of 
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song convergence in ovenbirds (Furnariidae) has been attributed to convergent ACD caused by 

resource competition (Tobias et al. 2014), but within this large clade (>300 species), there might 

also be cases of song divergence caused by RCD or divergent ACD. Without a basis for 

predicting convergence in some species pairs and divergence in others, emphasizing the overall 

trends is logical and necessary – it would be impractical to measure resource competition and 

reproductive interference in every species pair. We have shown that this is practical, however, at 

an intermediate taxonomic scale, with character displacement theory making different 

predictions for different species pairs. 

In the four cases where our model’s predictions clearly were not upheld, HA was higher 

than predicted. A plausible explanation for this apparent directional bias is that high HA is the 

ancestral state for sympatric Hetaerina populations and low HA, when observed, is a derived 

state. This explanation is consistent with previously documented patterns of divergence in male 

wing coloration and competitor recognition in sympatry compared to allopatry in species pairs 

with low reproductive interference (Anderson & Grether 2010a, b). Why some sympatric 

populations with low reproductive divergence have not diverged from each other remains to be 

determined. Possible reasons include evolutionary time lag (if secondary contact occurred 

recently) and gene flow from allopatry swamping selection in sympatry, although most 

Hetaerina populations are strongly differentiated genetically (see Appendix of Drury et al. 

2019). 

Our results also highlight the importance of explicit demography in predictive studies of 

character displacement. Two factors affect net levels of reproductive interference in our model: 

the cost of sharing space with heterospecific males (d) and relative population density. The 

population with lower density experiences more frequent interspecific encounters per capita and 
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thus is under stronger selection to converge or diverge, depending on whether d is on the 

convergence or divergence side of the threshold. Conversely, smaller populations may respond 

less to selection because beneficial mutations arise less frequently and are more readily lost to 

genetic drift and demographic stochasticity. Evidence for these opposing effects of population 

size were detected in our simulations (Fig. S2-S7), but how these factors play out to affect the 

evolutionary dynamics in nature merits further study. 

While we confirm that interspecific aggression in rubyspot damselflies can largely be 

explained as an evolved response to reproductive interference, why does reproductive 

interference itself persist? For that matter, why is reproductive interference so common in 

animals generally (Gröning & Hochkirch 2008; Grether et al. 2017; Shuker & Burdfield-Steel 

2017)? An explanation that applies to many taxa in which males initiate mating is that the costs 

of missed mating opportunities are higher, for males, than the costs of attempting to mate with 

heterospecific females (Parker & Partridge 1998; Ord et al. 2011; Takakura et al. 2015). If the 

females of different species are too similar phenotypically for males to profitably distinguish 

between them during secondary contact, this can result in an evolutionary dilemma or “catch-22” 

in which reproductive interference persists because male mate recognition cannot evolve until 

female phenotypes diverge further, and vice versa (Drury et al. 2019). The evidence for this in 

rubyspot damselflies is that species differences in female coloration are strongly predictive of 

reproductive interference (Drury et al. 2015) and sympatric populations are no more 

reproductively isolated, behaviorally, than allopatric populations (Drury et al. 2019). 

Our results for rubyspot damselflies are significant because they show that agonistic 

character displacement theory can be used to make non-trivial, population-specific predictions 

about the evolution of interspecific aggression based only on field estimates of reproductive 
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interference and population densities. We anticipate that applying the same approach to other 

tractable organisms, including species that compete for common resources (e.g., food, nesting 

sites), will help shift the study of character displacement from its traditional focus on whether 

character displacement has occurred in specific cases to a more predictive science. 
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Figure 1 Predicted outcomes of secondary contact between Hetaerina species with the observed 

levels of reproductive interference. See figures S2-S7 for examples of each type of outcome.  
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Figure 2  Relationship between variation in the mean heterospecific aggression ratio across 

replicates and temporal variation in the same ratio within replicates over the last 1ky of the ACD 

model simulations. In general, parameter combinations that led to different outcomes in different 

replicates also showed high variability within replicates. The upper left point is an exception: one 

population showed low variability within replicates but high variability across replicates. All 

cases with high variability across replicates are those in which chasing occurred due to an 

asymmetry in reproductive interference that crosses the divergence-convergence boundary (see 

Figure 1). On a log scale (right panel), it is evident that the cases in which divergence occurred 

showed the lowest variability, which makes sense because once the species are outside each 

other’s recognition range, small shifts in the trait values do not affect heterospecific aggression. 

The convergence cases showed much lower variability than the majority of cases in which 

chasing occurred, but it is understandable that convergent populations are more variable than 
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divergent populations because when the species have similar trait values, small shifts in the trait 

values can have large effects on heterospecific recognition.  

 
 

 

 

 

Figure 3 Relationship between field estimates of reproductive interference (d) and the ratio of 

heterospecific to conspecific aggression predicted by the ACD model. Predictions for all 32 

populations are shown in A, but some of the predicted values are unstable. In B, seven cases with 

unstable predicted values are excluded. 
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Figure 4 Relationship between observed and predicted heterospecific aggression ratios. In panels 

A and B, the observed heterospecific aggression ratio is based on the rates of physical attacks. In 

panels C and D, the observed heterospecific aggression ratio is based on the proportion of time 

territory holders chased intruders. Panels A and C include all populations; panels B and D 

exclude populations with unstable predictions. Inset photo of male H. americana by Neil Losin. 
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Table 1. Summary of predicted and observed outcomes. Heterospecific aggression ratios < 0.5 
are categorized as “low” and those ≥ 0.5 are categorized as “high”. Unstable predictions are 
displayed in parentheses. See Table S1 for species names and site locations, and Table S5 for the 
numerical values used to generate this table. 

 
 

Site 
code 

Predicted 
heterospecific 

aggression ratio 
of sp1 

Predicted 
heterospecific 

aggression ratio 
of sp2 

Observed 
heterospecific 

aggression ratio 
of sp1 

Observed 
heterospecific 

aggression ratio 
of sp2 

Species for 
which predicted 

and observed 
outcomes match 

BC high high high high both 
CT high high high high both 
CV low low low low both 
ES (low) (low) high high neither 

GO1 low low high low sp2 
GO2 low low low low both 
GO3 low low low high sp1 
LH (high) (low) high high sp1 
OT low low low low both 
PA low low low low both 

PA1 low (low) low low both 
PA2 low low low low both 
PX high high high high both 
RB high high high low sp1 
RS (high) high high high both 
RT high (high) high high both 
SL low low high high neither 

 


