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An evaluation of a low-cost pole aerial photography (PAP) and 

structure from motion (SfM) approach for topographic surveying of 

small rivers 

To better understand fluvial forms and processes, geomorphologists have a need 

for high-resolution fluvial topographic surveys. Continuous data collection 

approaches such as airborne laser scanning (ALS), terrestrial laser scanning 

(TLS) and structure from motion (SfM) photogrammetry provide methods to 

collect such data sets. Comparisons of SfM and laser-based approaches for 

topographic surveys have demonstrated site-specific benefits and drawbacks. 

Survey preference is largely dependent on specific project requirements, 

indicating a need for examples of best practice for different applications. This 

study demonstrates how pole aerial photography (PAP) provides specific 

advantages for SfM data collection when mapping the topography of small river 

corridors. Digital elevation models (DEMs) were created using three different 

surveying approaches for a 100 m reach of Coledale Beck, a small upland stream 

in Cumbria, United Kingdom. This included (a) imagery collected from a 5 m 

telescopic pole processed using SfM photogrammetry, (b) imagery collected 

using an unmanned aircraft system (UAS), also processed using SfM 

photogrammetry, and (c) point cloud data collected using a TLS.  All three 

approaches produce DEMs of sufficient quality to enhance our understanding of 

fluvial forms and processes, with DEM/point cloud resolutions of 0.01 m for the 

close-range methods (TLS and PAP) and c. 0.02 m for the longer-range UAS 

method. Overall, TLS mean errors (0.123-0.135 m) are almost twice as large as 

the UAS and PAP (0.037-0.103 m) errors and the standard deviation is 

approximately 25% higher. However, results vary significantly for different 

surface cover types (i.e. vegetated, exposed and submerged surfaces), with TLS 

outperforming the other approaches for exposed gravel surfaces. Data acquisition 

rates for the PAP approach are approximately half those of the two other methods 

(430 m2/hour versus 845 and 730 m2/hour for PAP, TLS and UAS respectively). 

When equipment costs and ease of use are taken into consideration, the PAP 

approach provides an effective way of collecting topographic data from small 

rivers. 

Keywords: river survey, pole aerial photography; UAV (unmanned aerial 

vehicle); terrestrial laser scanner; bank morphology; 



 

 

1 Introduction 

1.1 Context 

To better understand fluvial forms and processes, geomorphologists have a need for 

high-resolution fluvial topographic surveys. Conventional high precision point-based 

observations, for example taken with differential global positioning system (dGPS) or a 

total-station, have low spatial coverage, which limits use of the data for spatially 

continuous mapping and modelling purposes (Young 2012). More continuous data 

collection approaches such as airborne LiDAR (ALS) and terrestrial laser scanning 

(TLS) are providing ways to collect higher resolution data sets over both larger areas 

and less accessible locations; however, their use in management contexts has significant 

limitations in terms of practicality, and crucially, cost (e.g. Bangen 2014). Over the last 

decade, structure from motion photogrammetry (SfM) has added a new method to the 

geomorphologist’s toolbox for topographic surveying (e.g. James and Robson 2012; 

Fonstad et al. 2013; Woodget and Austrums 2017). Data collection platforms for SfM 

can be airborne (e.g. unmanned aircraft systems (UAS)) or ground-based (e.g. 

telescopic poles) and the approach has been shown to be relatively simple and 

inexpensive compared to ALS or TLS surveys (Carrivick et al. 2016). 

An increasing number of studies compare SfM and laser-based approaches for 

topographic surveys. Repeatedly these studies demonstrat how neither of the approaches 

is best for all applications (no ‘one-size-fits-all’) and preference for their use is 

dependent on specific project requirements (e.g. Wilkinson et al. 2016, Mosbrucker et 

al. 2017) including considerations of time, expertise and funding. This means that there 

is a need for examples of best practice, comparing methods for different applications, 

and an understanding of the advantages and disadvantages of each, so that results from 

different survey platforms can be merged in single projects. In this study, we 



 

 

demonstrate how a camera on a (telescopic) pole, further referred to as pole aerial 

photograph (PAP), can significantly improve SfM data collection when the aim is to 

map the topography of small stream channels. This is tested through a comparison of 

topographic models obtained by three common survey techniques for a 100 m reach of 

Coledale Beck, a small upland stream in Cumbria, United Kingdom. The model results 

and development process from the PAP-SfM method are compared with those of the 

same model created by means of TLS and with those of SfM applied to photos obtained 

with a UAS. 

1.2 Tools for surveying fluvial topography: advocating SfM 

From the studies reviewing and evaluating the use of both SfM and laser-based 

approaches, TLS emerges as the most accurate, consistent, and reliable surveying tool 

(e.g. Heritage and Large 2009, Chandler and Buckley 2016, Wilkinson et al. 2016). TLS 

involves a ground-based laser scanner, which emits pulsed laser light and detects its 

reflected signal to create a dense point cloud, representing the surrounding topography. 

TLS is a close-range alternative to Airborne Laser Scanning (ALS), where laser point 

clouds are derived from an airborne platform such as an aeroplane, helicopter, or very 

recently a UAS (e.g. Brede et al. 2017). TLS are capable of providing high spatial 

resolution elevation measurements (100-10,000 points/m2; Bangen et al. 2014), with 

<0.001m precision and accuracy (e.g. Milan et al. 2007). However, reduced accuracies 

(0.1-0.3m) for bare earth surveying have been observed due to influences of 

surrounding vegetation (e.g. Bangen et al. 2014). Furthermore, the cost of purchase is 

high (c. £35,000 for a Leica Scanstation C10 and software, as used in this study) and 

specialist training is required to become familiar with both scanner and associated data 

processing software. 



 

 

SfM is a relatively new photogrammetric approach originating from the field of 

computer vision (Lowe 2004). SfM algorithms have significantly improved traditional 

photogrammetric techniques, allowing 3D models to be created from a series of 

overlapping, convergent digital photos without the need for georeferenced camera 

locations and orientations or a metric camera (Rosnell and Honkavaara 2012, Westoby 

et al. 2012, Fonstad et al. 2013, Woodget et al. 2015, Carravick et al. 2016, Agisoft 

LLC 2018). These overlapping photos can be acquired using a handheld camera or a 

camera mounted on an elevated structure or an airborne platform.  This means that SfM 

provides a flexible method, which can be adapted according to the requirements of a 

specific application, in terms of scale, temporal and spatial resolution, areal extent, 

features of interest (e.g. roofs, or riverbank overhangs) and viewing angle.  

SfM has a number of logistical advantages, which make it attractive for 

environmental research and management applications. For example, (a) it permits rapid 

data acquisition (Verhoeven 2011, Westoby et al. 2012, Michelleti et al. 2015), (b) 

hardware capital costs are low (requiring a single commercial camera or smartphone) 

(Frankl et al. 2015, Micheletti et al. 2015, Woodget et al. 2015), (c) it achieves relative 

precisions  of  approximately 1:1000 or better (i.e. cm-scale precision over viewing 

distances of 10’s of metres)  (James and Robson 2012), (d) it offers the opportunity to 

generate multiple model outputs (e.g. 3D point cloud, 3D mesh, Digital Elevation 

Model (DEM), orthophoto) (Kaiser et al. 2014, Woodget et al. 2015) and (e) it provides 

flexibility regarding scaling and georeferencing (Kaiser et al. 2014). Disadvantages of 

the approach are that data processing can be slow given a combination of large image 

volumes and limited computing capacity (Westoby et al. 2012, Javernick, Brasington 

and Caruso 2014). SfM also experiences difficulties in modelling homogenous surfaces 

(e.g. sand) where image texture is lacking (Cook 2017) and in dealing with occlusions 



 

 

(i.e. surface areas hidden from view by elevated elements in the landscape, such as 

boulders) (Micheletti et al. 2015). Furthermore, unlike ALS, dGPS and total station 

surveys, but in common with TLS, dense vegetation cover precludes ground surface 

modelling (James and Robson 2012, Javernick, Brasington and Caruso 2014, Micheletti 

et al. 2015, Woodget et al. 2015) and variation in light levels may reduce feature 

identification, restricting the opportunity of when good quality data can be acquired 

(Bemis et al. 2014, Micheletti, Chandler and Lane 2015). Additional concerns also exist 

about the ‘black box’ nature of the software (James et al. 2017) and the need for a 

certain level of skill and planning to acquire spatially consistent, high-quality data 

(Wilkinson et al. 2016).  This includes the implementation of ground control points or 

acquisition of highly accurate dGPS locations of photo centres, to enable accurate 

positioning of the resulting model in absolute space. 

1.3 Comparing tools for surveying fluvial topography 

One of the first comparative studies looking specifically at fluvial environments was 

undertaken by Fonstad et al. (2013). They compared UAS SfM and ALS results with 

dGPS validation or ‘ground truth’ points. Mean vertical differences from the ground 

truth data were 0.07 m for SfM and 0.51 m for ALS and the mean difference between 

ALS and SfM data was 0.27 m. The reliability of these results, however, were 

potentially affected by discrepancies in data acquisition dates and data resolution. 

Smaller differences between SfM and TLS data were found by Mosbrucker et al. (2017) 

who estimated that change detection for each survey type differed by about 10%, where 

the UAS imagery had been collected from 100–600 m above ground level. Mean 

absolute vertical accuracies varied, but ranged from 0.02 m to 0.15 m for TLS and up to 

0.37 m for the SfM data sets. They achieved significant improvements in elevation 

accuracy through improved camera and post-processing settings. Cook (2017) 



 

 

compared results from UAS SfM with TLS data from the Daan River in Taiwan; 

focusing particularly on the performance of different types of UAS. The best 

performing SfM data showed a 0.3 m RMS error compared to the TLS data. The 

dominant SfM survey altitude was approximately 70 m. Hamshaw et al. (2017) found a 

mean error between UAS and TLS of 0.11 m in early spring (‘leaf-off’) conditions from 

flying heights around 100 m and TLS ranges of 50-300 m. Although they made no 

explicit comparison with laser-based tools, Javernick, Brasington and Caruso (2014) 

achieved vertical surface errors as low as 0.10 m from a survey altitude of c. 700 m, for 

a first UAS SfM survey in a complex braided river environment. Bangen et al. (2014) 

did not make comparisons with SfM, but found ALS and TLS uncertainties of 0.27 m 

and 0.81 m respectively. The ALS sensor was flown at 1300 m. The consistent message 

that emerges from all these recent studies is, that no single method, SfM or laser-based, 

is optimal in every situation. Instead, researchers should be capable of applying the 

most appropriate technique (or a hybrid of techniques) for a given purpose. 

1.4 Pole aerial photography 

The growing popularity of SfM and developments in UAS technology is bringing 

greater range, stability, payload, automation, portability and affordability. However, 

whilst the practical operation of UAS has become significantly easier in recent years, 

flight and planning experience remains essential, as does knowledge of the legal and 

regulatory conditions within the country of operation (Cracknell 2017). For small scale, 

low-budget, rapid acquisition projects, such regulations can be prohibitive. A less 

commonly considered platform is the telescopic pole, which, with heights of 5 m or 

more, can provide a very effective means of data collection in many situations. Pole 

Aerial Photography (PAP), also referred to as Ground Photography (GP) (Glendell et al. 

2017), has been used for remote sensing applications in various forms, e.g. mapping of 



 

 

vegetation (Verschoren et al. 2017) and archaeological features (Verhoeven 2009). 

Utilising poles to create 3D models using SfM, has gained in popularity for 

documenting archaeological and heritage sites (Mathews and Jensen 2012, Ortiz et al. 

2013).  More recently, publications of geomorphological applications have started to 

appear. James et al. (2017) used a pole-mounted camera to collect images for measuring 

gully erosion, and Mathews and Jensen (2012) showed the strength of incorporating 

both ground and pole-based photography to provide multiple viewing angles and 

ranges, which increased coverage in an urban setting. The most comprehensive 

comparison of surveying tools including PAP has been published by Glendell et al. 

(2017), who assessed their suitability for erosion in upland peat soils, including gullies. 

Similar findings were reported by Castillo et al. (2015) and Koci et al. (2017) who 

successfully mapped a gully network, although their PAP findings were not compared 

with other tools. A summary of applications and results of PAP-based SfM further 

demonstrates the scarcity of studies that have employed this technique (Table 1).  

[TABLE 1] 

Observed advantages of the PAP platform include low cost, high mobility, ease 

of use (Verhoeven 2009) and higher diversity of viewing angles (Mathews and Jensen 

2012). Although much wider ranges can be can be covered from UAVs, the closer 

proximity of poles to the target, allow for creation of SfM models with much greater 

detail (Bemis et al. 2014; Westoby et al. 2012). The greater stability of the platform 

may also improve image quality. In certain environments an additional advantage of 

PAP compared to TLS is its potential to cover a greater area in a shorter period of time, 

but this will depend on local morphology and the viewing angle of the instruments.  

PAP clearly has a number of advantages compared to UAS and TLS data 

collection, though to date UAS have seen wider application in fluvial environments. 



 

 

However, in scenarios where river channels are narrow and have submerged beds, we 

hypothesise that pole-based data collection for SfM analysis will provide a more 

effective way of collecting topographic data, when measured in terms of time, cost, 

spatial resolution, accuracy and precision. To test this hypothesis, we compare 

topographic models for a 100 m reach of a small upland stream obtained from three 

different surveying approaches: 

1) SfM photogrammetry applied to RGB image data collected with a 

compact camera from a 5 m telescopic pole.  

2) SfM photogrammetry applied to RGB image data collected with a 

compact camera operated from UAS.  

3) TLS point clouds generated with a Leica ScanStation C10 from 8 scan 

station positions at high resolution (5 cm at 100 m range). 

The details of the different methods used are described in the following section. 

Meanings of acronyms and abbreviations used in the remainder of this article are 

defined in Table 2. 

[TABLE 2] 

 

2 Methods 

2.1 Site and field data collection methods 

Over a period of 3 days from 6-8 July 2013, data were collected from a 100 m reach of 

Coledale Beck, near Braithwaite in Cumbria, UK (Figure 1). Sky conditions were bright 

and sunny, with light winds. This study focusses on a 50 m subset of the data (Ordnance 

Survey 1:5,000 map Grid Reference NY 21291 22381; 205 m AOD). The river is a 



 

 

wandering 3-10 m wide, pool–riffle system and the site includes an exposed point bar 

and steep banks. A 13 m section of the right bank is undercut. Stream gravels are very 

coarse (D50 = 35 mm) with occasional large boulders up to 0.7 m.  Vegetation varies 

from the side slopes where acid grassland, dwarf shrub heath and bracken dominate, to 

the river floodplain which typically consists of bare gravel bars, grassy floodplain 

remnants with some isolated exposed peat. During the survey, flow was low and clear, 

with an average water depth of 0.14 m and a maximum water depth of 0.70 m.  

The stream was selected as a rigorous test of the different methods because it 

displayed: (i) considerable local relief variation (i.e. channel, banks, floodplain 

segments and adjoining hillslopes); (ii) highly variable surface cover types (ranging 

from very coarse gravel to bracken vegetation); (iii) included areas of obscured 

topography (undercut banks); and (iv) had areas of clear standing water. In addition, the 

scale of enquiry was appropriate to investigations of fluvial geomorphology and stream 

habitat surveys (Bangen et al., 2014). Figures 2 a to c give an impression of the 

diversity of geomorphology found at the field site. 

[FIGURE 1] 

[FIGURE 2 a, b and c] 

The Pole Aerial Photography (PAP) was collected using a Samsung NV24HD 

10.2 megapixel consumer-grade digital RGB camera, mounted on a 5m steel and 

aluminium extension pole and operated using a JJC RM-E9 remote control. We took 

photos at approximately 5 m intervals along the channel, while walking along the edge 

of the riverbank in both upstream and downstream directions. The camera was directed 

towards the river and pointing obliquely downwards at an angle of c. 45.  This resulted 

in a total of 374 photos, with varying levels of overlap (PAP_HQ) and a footprint of 

approximately 8 × 6 m. We selected a sub set of 114 photos (PAP_LQ) to assess the 



 

 

impact of using a smaller number of input images on model quality. As shown in Figure 

3, the aim of the PAP approach was specifically to capture detail of the channel 

environment and as such covers about 10% of the total area covered by the other two 

surveys (UAS and TLS). 

[Figure 2] 

We acquired RGB images from a Draganflyer X6 UAS, using a Panasonic 

Lumix DMC-LX3 10.1 megapixel consumer-grade digital camera (UAS). The 

Draganflyer X6 is a lightweight (1 kg), manually controlled, rotary-winged UAS with a 

0.5 kg payload. A target flying altitude of c. 25–30 m above ground level was 

maintained, in combination with a focal length of 5 mm, which resulted in imagery with 

a pixel size of c. 0.01 m. The image size was 3648 pixels by 2736 pixels and each image 

footprint was approximately 25 m × 35 m. All images had c. 80% overlap, as confirmed 

during the manual suitability assessment of photos after data collection. We summarise 

the workflow of image acquisition, use of ground control and the subsequent SfM 

analysis steps below. Further details of each step are provided in Woodget et al. (2015). 

The TLS data (TLS) were collected using a Leica ScanStation C10. This is a 

green wavelength (532 nm) scanner, with a 300 m range, a 360° by 270° field of view 

and a scan speed of up to 50,000 points per second. We positioned six, tripod-mounted, 

Leica HDS targets at visible locations within the area of interest, ensuring that they 

covered the range of elevations present at the site. We obtained high-resolution laser 

scans (defined as 0.05 m resolution at 100 m range) from 8 scan station positions, 

chosen to ensure high angles of incidence and to reduce shadowing and obscuration. 

2.2 PAP and UAS image data processing 

We processed the images obtained from both the UAS and PAP approaches using 

Agisoft Photoscan Pro (v. 0.9.1.1714 for UAS and 1.0.0.1795 for PAP). Images affected 



 

 

by blur were removed prior to processing and comparable programme settings for both 

approaches were used where possible. Details on settings used for the UAS data can be 

found in Woodget et al. (2015). Details on the PAP analysis settings are attached as 

supplementary material. We optimised the image alignment following the input of GCP 

co-ordinates, and the software was used to export hyperspatial resolution orthophoto 

mosaics, DEMs and dense point clouds.  

James and Robson (2012) showed how appropriately reducing the number of 

images and refining match parameters can significantly decrease reconstruction time 

while keeping good results. A second point cloud was therefore created for a reduced 

number of PAP images (approximately one third of the original dataset, see Table 3) 

whilst maintaining sufficient overlap to ensure successful point matching.  

2.3 TLS data processing 

Initial processing of the dense TLS point cloud was undertaken using Leica Cyclone 9.0 

software (Leica Geosystems HDS, LLC). We removed two targets from the applied 

registration that produced the largest errors and used the known positions of the 

remaining targets and scan stations (acquired using dGPS) to georeference the merged 

scan to British National Grid. We performed a small amount of manual editing of the 

TLS point cloud to remove clearly erroneous data spikes (due to sensor saturation by 

sunlight) and clipped the dataset to match the extent of the UAS and PAP surveys.  

As the SfM approach tends to result in more smoothed point clouds compared to 

higher frequency point clouds produced by the TLS, two different approaches were 

employed to generate a DEM from the TLS point cloud data: (1) standard interpolation 

in CloudCompare based on the maximum value of point falling within a given cell size 

(TLS_MAX) and (2) a method developed in-house (TLS_AVG) (Austrums, 2014). Cell 

values in the TLS_MAX DEM were equal to the maximum value of the points making 



 

 

up that cell in combination with default CloudCompare interpolation. Cell values in the 

TLS_AVG DEM were equal to the average elevation value of points falling within each 

cell. A small amount of interpolation was performed to obtain elevation estimates for 

no-data cells in areas of sparse point density (i.e. cells that do not coincide with points 

in the point cloud). This was undertaken by assigning to empty cells with four or more 

neighbours the average cell value of these neighbouring cells. A total of 10 of these 

gap-filling iterations were performed. The TLS_AVG approach results in a smoother 

DEM, more similar to the DEM generated from the SfM point clouds. Further details of 

the resulting DEMs are provided in the Results section. 

2.4  Georeferencing and refraction correction 

To achieve optimal accuracies in this method comparison, all three datasets were 

georeferenced using the global coordinates of four permanent survey markers, obtained 

using a Leica GPS1200 dGPS and post-processed using RINEX data. We located the 

positions of TLS targets, ground control points (GCPs) and topographic survey 

locations relative to these permanent markers, using a Leica Builder 500 total station 

and a local coordinate system. We used GCPs to permit subsequent indirect 

georeferencing of the UAS and pole imagery: 25 GCPs to rectify the UAS data and 10 

for the PAP data. The GCPs consisted of 0.2 × 0.2 m black and white squares, which we 

positioned according to a uniform random pattern, representing the topographic 

variation across the site (Vericat et al.  2009). As the PAP survey was restricted to the 

river channel only, PAP GCPs were located only on the riverbank and riverbed, while 

still representing local topographic variation. 

SfM has been proven successful for mapping submerged as well as terrestrial 

topography (e.g. Woodget et al. 2015), while TLS is predominantly used above water, 

due to the limitations of light absorption by water. As the visibility of submerged 



 

 

topography is affected by refraction, a correction was applied to the submerged parts of 

the UAS and PAP models using the methods proposed for fluvial environments by 

Westaway, Lane and Hicks (2000, 2001) and first used in a SfM scenario by Woodget 

et al. (2015). Dietrich (2017) presents a more comprehensive approach to refraction 

correction for SfM point clouds; but given the complexity of this method and the fact 

that we did not expect the choice of method to have an influence on the comparative 

results, we applied the simpler approach of Woodget et al. (2015) to both the UAS and 

PAP datasets. We digitised the position of the water’s edge from the orthophoto at a 

scale of 1:50. Next, we extracted DEM elevation values at 0.25 m intervals along this 

edge and used these values to generate a TIN model representing the water surface. We 

subtracted the underlying DEM from this surface and multiplied the resulting depth 

values by 1.34 (the refractive index of clear water) to produce maps of refraction 

corrected water depth (h). Lastly, we obtained DEMs with refraction corrected 

submerged channel elevations by subtracting the difference in water depth between the 

non-corrected and corrected datasets from all original DEMs (UAS_RC and 

PAP_HQ_RC). 

2.5 Error and performance assessment 

The quality of the topographic data produced with each approach was assessed with a 

set of independent elevation data, collected using a total station, across both exposed 

and submerged channel and floodplain surfaces. These ground validation points (GVPs) 

included records of water depth to the nearest centimetre and consisted of 58 points 

located in exposed, but vegetated areas; 86 in exposed, non-vegetated areas; and 116 

points in submerged areas.  

Accuracy and precision have been seen to quickly deteriorate away from ground 



 

 

control points (e.g. Koci et al. 2017). For each validation measurement, distance to the 

nearest GCP was measured and this information was used to calculate separate accuracy 

assessments for data close to the GCPs (< 5 m) only. Three types of surface were 

mapped and used in subsequent accuracy assessments: Exposed (no vegetation), 

Submerged, and Exposed (vegetated). The map was created by manually outlining areas 

from the orthophoto at scale 1:50.  

Further assessment of the performance of the three approaches was done by 

means of DEMs of Difference (DoD) calculations, which involves subtraction of two 

DEMs on a cell by cell basis. DoDs are commonly used to assess changes in topography 

over time. In our study however the DoDs are used to assess differences in topography 

as mapped by the different approaches. The DoD method, although very intuitive, does 

not always represents more complex topography very well (Lague, 2013), with errors 

occurring, where overhangs are present and in steep terrain where small lateral offsets 

can produce large vertical differences. 

Alternatively, a direct comparison of point clouds as produced by both TLS and 

SfM is generally seen as more robust means to assess differences between two surfaces. 

It can for example use a varying surface-normal. One of the most adaptive methods is 

the Multiscale Model to Model Cloud Comparison (M3C2) algorithm developed by 

Lague et al. (2013). The M3C2 algorithm finds the best fitting normal for each point in 

one point cloud and calculates the distance to another point clouds by implementing a 

cylinder between the two clouds and calculating the distance along it. We used 

CloudCompare (CloudCompare 2.10.2, 2019) to do the M3C2 calculations. All 

comparisons used core points with 10 cm spacing, a cylinder with a 43 cm diameter, 

and multiscale normals with radii from 0.4 m to 2 m with a step of 0.4 m. 



 

 

3 Results 

3.1 Residual errors and resolution 

A summary of the data collected with each survey approach is listed in Table 3. The 

overall mean absolute error (MAE, as used in Leica Cyclone) of the TLS data was 0.009 

m, and average error in the vertical dimension was 0.026 m. The resulting point cloud 

was exported from Cyclone as a PTS file comprising c. 165 million points with a file 

size of c. 9 GB. The TLS_MAX DEM, based on maximum point values per cell, has a 

resolution of 0.01 m. The in-house produced TLS_AVG DEM has a spatial resolution 

of 0.013 m. The pixel size of the latter approach was selected as a compromise between 

achieving the highest spatial resolution and minimising holes in the DEM in areas of 

sparser point density. In theory, the TLS_AVG DEM could include data interpolation 

over distances of up to 0.13 m, but in reality, interpolation rarely extended further than 

0.05 m and was not found to adversely affect subsequent analyses carried out on the 

data. 

Both HQ and LQ PAP DEMs and orthophotos had a resolution of 0.009 m. 

Residual errors (standard deviation) in the x and y directions ranged from 0.021 to 0.029 

m and z axis errors were precise to the cm scale (0.012 m) for both the HQ and LQ 

DEM. Residual errors (mean error) were generally very accurate (<0.002 m) for both 

datasets. In the areas of interest (channel near the GCPs) the PAP_HQ DEM appeared 

to have higher accuracy than PAP_LQ DEM when compared to the GVPs (see next 

section), therefore further analysis was conducted on the HQ-dataset. 

The UAS data accuracy, signified by the residual error (mean error), was 0.006 

and 0.007 m for the x and y directions respectively, and 0.022 m in the z direction. 

Precision of the data, signified by the residual error (standard deviation), remained well 

below 0.1 m. 



 

 

[TABLE 3] 

3.2 Validation 

The results for the comparison of each DEM to the ground validation data are shown in 

Table 4a. The results apply to the region where DEMs from all approaches overlap 

(Figure 3). When considering all GVPs for the whole site, UAS mean errors are lowest 

and PAP just out-performs TLS with slightly lower mean errors (e.g. TLS_AVG = 

0.123 m; PAP_HQ = 0.103 m; UAS = 0.049 m). The standard deviations are again 

lowest for UAS data, but highest for PAP data. When looking exclusively at the GVPs 

in exposed (non-vegetated) areas, the error ranges amongst platforms are smallest and 

the lowest mean error is actually achieved by the TLS_AVG (0.006 m). In this case 

both the TLS and UAS results have the highest standard deviations. Particularly for 

vegetated surfaces the UAS data performs better overall, with up to 100% lower mean 

errors (e.g. TLS_AVG = 0.295; PAP_HQ = 0.334; UAS = 0.177) and standard 

deviations (e.g. TLS_AVG = 0.254; PAP_HQ = 0.406; UAS = 0.191), compared to 

PAP and TLS. 

Validation limited to data points within 5 m of GCPs shows important variation 

in the results (Table 4b). The area concerned consisted of an 810 m2 subset of the data 

(Figure 3). The overall mean error for the PAP_HQ data improves considerably (0.085 

m from 0.103 m), as does the mean error for the exposed areas (0.013 m from 0.036 m). 

This indicates that the distribution/number of GCPs has an impact on the PAP data 

quality. A positive (0.235) significant (α < 0.01) correlation (n = 260) was found 

between mean error and distance from GCPs for the PAP_HQ DEM. 

The higher mean errors found for both TLS_AVG and TLS_MAX when 

considering the whole site were contrary to our expectations. Because of these results, in 

combination with observations from the DEM of difference visual displays (presented in 



 

 

section 3.3), we considered the possibility that an offset in the TLS data had occurred. To 

test this hypothesis, both the TLS DEMs and the UAS DEM were realigned with the 

PAP_HQ data, as the latter appeared to be the most accurate data set (0.036 m, assuming 

exposed, unvegetated control points were most reliable, according to experiences 

documented in the literature). Realignment was undertaken based on a set of manually 

identified tie points. The results of a comparison of the realigned data with the ground 

validation points are included in Table 4c (using GEOREF suffix). After realignment both 

the mean error and standard deviation of the TLS data increases by variable amounts. The 

same is observed for the UAS errors, apart from the exposed surfaces, where the UAS 

mean error is as low as 0.001 m. These findings imply that the realignment did not 

necessarily improve the results. Hence an alternative explanation may be that the poorer 

overall performance (i.e. at all GVPs) of TLS is a reflection of its weak performance in 

both submerged and vegetated areas, in contrast to its superior performance in exposed 

areas.  

[TABLE4] 

Figure 4 shows the spatial distribution of differences between the DEM values 

and the ground validation data for each approach. The largest positive and negative errors 

(>0.5 m) are typically found on the vegetated surfaces away from the river and along the 

river’s edge due to steep and overhanging banks and bank vegetation. 

[FIGURE 4] 

 

3.3 DEMs of difference and cloud comparisons 

Figure 5 shows the DEM of difference (DoD) between the TLS_AVG DEM and the 

UAS data. The majority of the data indicates that the TLS_AVG DEM sits above the 

UAS DEM, with large parts of the densely vegetated banks and hillslopes adjacent to 



 

 

the banks, showing greater than 0.05 m elevation difference. Along the exposed gravel 

bars the TLS DEM is typically 0.02-0.05 m higher than the UAS DEM. In contrast, the 

TLS DEM is lower than the UAS DEM along the edges of steep, overhanging banks 

and along other key breaks of slope in vegetated areas. 

The inset image in Figure 5 appears to show a shadow effect around larger 

boulders. Compared to the UAS DEM, the south-westerly sides show higher elevation 

in the TLS DEM and the north-easterly sides show lower elevation in the TLS DEM. As 

before, this suggests there is either an offset in the two datasets or it reflects the 

differential measurement capabilities of terrestrial oblique versus airborne sensor 

platforms. Figure 5 also shows that the DEM created from the Coledale Beck UAS data 

is affected by doming. Doming in the data is thought to occur due to the inaccurate 

correction of radial lens distortion within the SfM software and when image acquisition 

is predominantly at nadir (James and Robson 2014). The effect is particularly visible 

along the exposed gravel bars where, near the edges of the DoD, the TLS DEM appears 

to have much higher elevation values than the UAS DEM, compared to the centre. The 

spatial pattern of over and underestimation in vegetated and bank areas is similar when 

a DoD is created for the PAP_HQ  DEM and the TLS DEMs (for both TLS_AVG and 

TLS_MAX, but only TLS_AVG shown in Figure 7 and 8), however extremes of the 

model don’t display the same deformation due to doming. Some notable 

underestimation of TLS_AVG compared to PAP_HQ occurs at the western edge of the 

DoD and to a lesser extent on the eastern edge. This pattern does not show the image-

wide gradual change resulting from the doming effect, as highest differences seem to be 

much more restricted to the edge of the PAP model only, which is most likely due to the 

reduced number of photos covering these areas. Similar boundary issues were not found 



 

 

for the UAS data as this covered a considerably larger area. . The effect is also visible 

from the relatively high errors at the GVPs in these areas in Figure 4a. 

Quantitative results of the DoD comparisons (Table 5) show mixed results, with 

the TLS data compared to the PAP_HQ data resulting in the greatest mean difference 

for exposed areas (>0.042 m), while UAS compared to the PAP HQ show the greatest 

mean difference for vegetated surfaces (0.140 m). The realigned image data compared 

to the original data gives the impression of an improved image overlay with less 

‘shading’ effects around the boulders (Figures 6 and 8). However, the quantitative 

assessment does not clearly confirm this, which could be the result of other mismatches 

being introduced elsewhere in the images due to the realignment, which further 

indicates that misalignment is not the cause of TLS underperformance. Highest standard 

deviations consistently occur  in the vegetated parts of all DoDs and overall the 

PAP_HQ data compares well with both the TLS and UAS. 

[FIGURE 5] 

[FIGURE 6] 

[FIGURE 7] 

[FIGURE 8] 

[TABLE 5] 

The results of the M3C2 cloud-to-cloud distance assessment for the exposed and 

vegetated areas are listed in Table 6. The results seem similar to the DoD assessments, 

with the greatest M3C2 distances found for TLS and PAP_HQ in exposed areas 

(0.061m) and for UAS and PAP HQ on vegetated surfaces (-0.104m). However, for the 

latter comparison the PAP_HQ cloud has the highest values, while in the DoD 

comparison the UAS surface is the highest. So, although the magnitude of differences 



 

 

found with both methods is quite similar, there are some considerable, though not 

obviously consistent, differences (indicated with thick cell borders).   

4 Discussion 

4.1 Accuracy comparison 

The comparison of DEM elevation values with the independent topographic validation 

data suggests that the accuracy and precision of the UAS and PAP DEMs are better than 

that of the TLS DEM throughout the study area (Table 4a). Overall TLS mean errors 

(0.123-0.135 m) are approximately 150% higher than the UAS error and 20% higher 

than the PAP errors (ranging from 0.031-0.103 m). The standard deviation is 

approximately 25% higher for PAP DEMs, but 45% lower for UAS DEMs. 

Considerable variations in error values occur when we differentiate the results by 

surface type. On exposed surfaces the lowest mean error (0.006 m) is achieved by the 

TLS_AVG. Figure 4c shows the spatial distribution of TLS DEM errors. This confirms 

that TLS over-predicts elevation particularly in the vegetated and submerged areas, but 

less so in the exposed areas, though more under-predictions are observed here as well. It 

also further visualises the TLS under-predictions taking place on the right riverbank 

near a section that was recorded as over-hanging, which may partly explain the negative 

errors.  Variation in error is very small between UAS and PAP results, but UAS clearly 

performs better under vegetated conditions.  

4.2 DoDs vs. M3C2 

The difference results obtained by the DoD and M3C2 comparison methods are mostly 

similar for the different surface types. However, a closer look at the distribution on of 

the greatest differences does show some variation between the two approaches. The 

M3C2 method shows consistently highest differences in the more densely vegetated 



 

 

southeast corners of the field site, though the effect is greatest for comparisons 

including the pole point cloud. This is therefore most likely a combination of the rough 

vegetation surface as well as the sparser coverage of photos from the pole approach in 

this area. The TLS and pole DoDs show specifically high differences along the river 

bank (Figure 7), due to the way these survey methods record the steep and overhanging 

bank edge, by averaging points from the top of the bank and those located on steep bank 

sides or under overhangs. The cloud-to-cloud method on the other hand shows the 

smallest distances in such locations for the TLS and pole comparison. Relatively large 

distances are instead found for the TLS and UAS comparison, where the UAS point 

cloud does not extend underneath the overhanging bank or cover the steep bank sides. 

As the steep/overhanging bank coincides with the boundary between the exposed and 

vegetated areas, its effect will be included equally in the distance estimates of both 

types of environments. 

Contrary to studies that look at topographic change over time, we merely used 

the DoDs to assess relative differences between the three survey methods and their 

spatial patterns. Both the DoDs and the cloud-to-cloud comparisons in this case provide 

specific insight in the performance of the three survey methods. For example, the DoDs 

give a better impression of the spatial extent bank overhangs, while the cloud-to-cloud 

comparisons allows confirmation of the actual form of such complex morphology. 

However, in the future more specifically targeted ground validation data will need to be 

collected for the validation of the full 3D morphological assessment. 

4.3 Surface types 

The poorer performance of TLS and mixed performance of PAP (PAP_LQ versus 

PAP_HQ), compared to the UAS approaches under vegetated conditions, is mostly due 

to the oblique viewing angle of the TLS and PAP platforms. This makes them more 



 

 

likely to sense the upper elevations of plants in areas with dense vegetation, compared 

to methods that have a viewing angle closer to nadir, like the UAS approach. 

Consequently, TLS is more likely to over-predict elevation under such conditions, as it 

produces a Digital Surface Model (DSM) rather than a Digital Terrain Model (DTM). In 

contrast, under-estimations are thought to have occurred where the oblique viewing 

angle allowed measurements to be taken underneath over hanging banks, while the 

independent validation data was taken from the top of the banks. In areas with little or 

no vegetation cover the TLS survey outperforms both other approaches. More 

continuous data was collected and the TLS DEM mean error is clearly lower than in 

other parts of the scene and even slightly better than those of the UAS and PAP DEMs. 

Similar findings of different systematic errors for different surface types have been 

reported for other SfM and TLS based studies (e.g. Hamshaw et al.  2017, Bangen et al.  

2014).  

Besides influencing the accuracy of the surveying results, vegetation can also 

influence site access. Dense riparian vegetation will hinder both the Pole-SfM and TLS 

data collection. On the one hand this means that the UAS approach will have an 

advantage where lower canopy vegetation impairs access. However, a pole/hand-held 

perspective can be used around higher canopy bank vegetation and therefore access 

channel stretches that will be very difficult to view from or navigate with a UAS 

(Hamshaw et al.  2017). 

 

4.4 Refraction 

The overestimation of the TLS elevations in the submerged parts of the DEM are likely 

to result from the oblique viewing angle of the scanner (with additional errors possibly 

resulting from full/partial absorption of laser light by the water and subsequent 



 

 

interpolation). This results in greater refraction angles in these areas, which results in 

over-prediction of the channel bed elevations. This effect is also observed in the UAS 

and PAP data. While the UAS and PAP submerged data were corrected for refraction, 

this process was not attempted for the TLS data. Some successful attempts at refraction 

correction for TLS data have been documented (e.g. Smith, Vericat and Gibbins 2012, 

Smith and Vericat 2014), but they were applied at a coarser resolution (Smith and 

Vericat 2014), and in this project time and software constraints prevented further 

correction attempts. In this study TLS does not produce any returns at water depths > c. 

0.3 m, which results in gaps in the DEM for large parts of the submerged stream 

channel. The UAS and PAP data does cover most of the submerged stream channel, but 

the refraction correction approaches have only been shown to work in clear water 

streams to depths of c. 0.7 m (Woodget et al., 2015). This corresponds with the 

maximum depths achieved with other surveying methods. 

There is some potential to make the refraction correction process more efficient 

and accurate in cases, where Near Infrared (NIR) photos can be collected 

simultaneously. Limited data collection with a Near Infrared sensitive camera during 

this project indicated that ‘water’s edge’ detection can be achieved more accurately and 

efficiently through automatic land/water classification of an orthophoto derived from 

and additional set of NIR photos. 

When submerged topography is an essential component of the 3D model that 

needs to be produced, it is essential to collect data under clear sky conditions. Cloud 

cover creates diffuse lighting conditions which make it much more difficult/impossible 

to see/photograph through the water surface. Sun glint can affect visibility under sunny 

conditions, but it is a very localize effect which can be masked out, as long as further 



 

 

unobscured images from different viewing angels are available. TLS should not be 

affected by sky cover conditions. 

 

4.5 Geometry of ground control 

As the PAP SfM approach predominantly focusses on the stream topography (with a 

limited capture of adjacent areas), photos are taken along an approximately linear path 

in the landscape. GCPs were positioned along the stream in a similar linear fashion, 

which is not an optimal pattern (Woodget et al.  2015). Consequently, accuracy and 

precision quickly deteriorate away from the centre of the PAP SfM model. Reduced 

photo coverage and potentially a doming effect will also contribute to this result. 

Planning of the acquisition geometry is an important aspect of the SfM process and 

needs to be done well to obtain the best results emphasizing GCP quality over quantity 

(James and Robson, 2012, Javernick, Brasington and Caruso 2014, Stumpf et al.  2015). 

Castillo et al. (2015) for example, found a mean error of 0.069 m at the ground control 

points, mostly due to model deformations emanating from the linear geometry of the 

gully they observed and residual errors in camera calibration. Our data collection 

approach at Coledale Beck was similar to that suggested by Koci (2017) for dryland 

gullies and very similar resolution and vertical errors were observed. 

Using a Direct Georeferencing approach, as presented by Carbonneau and 

Dietrich (2017), however, GCPs may become unnecessary, while producing results 

without doming effects. At this point the results are not yet of survey grade quality, but 

higher-grade GPS, amongst other factors, are set to further improve these results. An 

important note made by the authors is however that SfM is photogrammetry and 

therefore requires traditional knowledge and essential analysis steps from this field such 



 

 

as accurate camera calibration. Their findings also confirmed earlier observations that 

SfM precision is inherently limited to a scale of 1:1000.  

4.6 Data interpolation/post processing 

The processes by which Leica Cyclone (TLS) and AgiSoft PhotoScan generate 3D point 

clouds (and DEMs) are significantly different and therefore complicates direct 

comparisons. The TLS software creates points at a position regardless of surrounding 

points, whereas PhotoScan interpolates between key features. This means that 

PhotoScan automatically reduces noise. Additional post processing of the TLS point 

cloud may be needed depending on the given application (for example point clouds can 

be classified by surface roughness and elevation statistics). This can be considered an 

advantage and a disadvantage depending on the application (time vs versatility vs 

expertise). TLS_MAX showed consistently larger residual and DoD errors (between 

10% and 50%) compared to TLS_AVG (e.g. 0.042 vs. 0.054 m error in exposed areas) 

for the TLS – PAP_HQ DoD (Table 5), which potentially explains the slightly larger 

errors found near the riverbanks in the DoDs (see close-ups in Figure 9), as the abrupt 

elevation changes at the river bank will be misrepresented more easily at the point cloud 

interpolation stage when maximum point values are used instead of average values. This 

highlights the importance of clear documentation of post processing techniques. 

[FIGURE 9] 

4.7 TLS performance 

Since TLS measurements are frequently used to validate topographic models derived 

from UAS imagery (e.g. Westoby et al. 2012), we initially expected higher whole scene 

accuracy and precision values from the TLS. However, results demonstrate better whole 

scene performance by the PAP-SfM and UAS-SfM tools. Visual evaluation of DoD 



 

 

results suggested that there may be a systematic offset in the TLS data. Manual 

realignment of both the TLS and UAS data did not however improve the comparison 

with GVPs for the TLS data and, despite apparent visual improvement in the DoD 

displays (Figures 6 and 8), the quantitative results did not notably improve. Results of 

the realignment for UAS data were ambiguous with lower GVP errors for exposed 

areas, but increased errors overall. The impact of vegetation and submerged channel bed 

topography are likely to have had a significant influence on TLS performance at this 

site. The small error ranges are overruled by natural variation in the data (e.g. due to 

presence/absence of vegetation). 

4.8 Application potential of PAP 

Considering the overall precision and accuracy, the UAS and PAP DEMs showed the 

best overall results for this particular site, which has heavy lower canopy vegetation 

covers. An additional advantage of the UAS and PAP DEM data is that they contain 

fewer gaps compared to the TLS data. However, where a view of the terrain is not 

impacted by vegetation or the presence of water, TLS still provides the most accurate 

and highest resolution DEMs. The main difference between the UAS and PAP 

approaches is the greater distance from which the target is photographed by UAS, 

which results in a significantly larger ground sampling distance (GSD) compared to the 

TLS and PAP method. Furthermore, these results need to be considered in the context 

of data acquisition time and cost. At the time of writing, TLS systems remain 

significantly more expensive to purchase (c. £35,000 for a Leica ScanStation C10 + 

software, Leica Geosystems Ltd 2018) than a UAS set-up equivalent to the one used 

here (< £1000 for a DJI F550 UAS including camera, DJI 2018). The PAP set-up is 

however only as costly as the camera you decide to use. In the current example, the 

collection of TLS data was most efficient (854 m2/hour), followed closely by the UAS 



 

 

approach. The PAP data collection was only half as efficient (430 m2/hour). As more 

sophisticated UAS models have come to market since this study was undertaken, higher 

cost efficiency can probably be achieved for the UAS approach, though this factor 

remains weather dependent. For short and narrow river reaches, PAP seems the most 

suitable topographic surveying approach; it however becomes impractical as reach 

lengths and channel sizes increase. To some extent, use of low-flying rotary winged 

UAS can overcome this constraint, as they will be able to cover longer reaches in a 

shorter time. Issues with overhanging vegetation will remain and line-of-sight will be 

far less for low-flying vehicles.  

Keeping in mind the variety of nadir and oblique images obtained from UAS 

and PAP platforms, a combination of both data sets was briefly considered as a possible 

way to further improve our results. However, several attempts of running the SfM 

analysis on the combined data sets did not produce credible results. Our attempts 

included implementation of multiple manual tie points to facilitate connections between 

the images representing different scales. We conclude from this attempt that combining 

two sets of multi-scale data to obtain better models results is certainly not a 

straightforward process that can simply be undertaken by average software users.  

4.9 Future prospects 

Observations by Smith and Vericat (2015) suggest that for detailed information 

requirements (e.g. soil erosion estimates) UAS observation ranges of around 10 m 

should be used. These are quite low flying elevations for a UAS, requiring an 

experienced pilot. In such situations a pole-based platform may be preferable. 

Following improvement in 3D point cloud analysis workflows, low range and diverse 

viewing angle approaches (such as a pole) will also have greater appeal as they have the 

potential to capture more complex topography, such as overhanging banks (Figure 10). 



 

 

With the rapid development of UAS technology the PAP approach may be less 

desirable due to the challenge of using a long pole in awkward terrain. Although UAS 

battery life, construction fragility and/or weight remain constraining factors. In addition 

to this it is in some situations simply impossible to legally collect image data using a 

UAS. For example, in the UK a UAS should not be flown within 150m of any 

congested area (Simic Milas, Cracknell and Warner 2018). This includes most urban 

environments, which therefore severely limits the use of UAS-s for data collection on 

urban rivers. Consequently, for certain application scenarios a simple pole-based 

solution forms an important part of a geomorphologist’s toolbox.  

Overall, the PAP approach can compete with the UAS and TLS approaches, if 

the focus is on in channel topography. This reflects a shorter platform to feature-of-

interest range (increasing resolution) and the inclusion of additional camera angles. This 

confirms the findings of Glendell et al.  (2017), who found the advantage of PAP for 

measuring peat in upland environments to be at the plot scale, including the mapping of 

gully erosion. Although specific topographic survey methods may result in greater 

spatial coverage (e.g. ALS), precision (e.g. total station), or resolution (e.g. TLS), the 

cost and legality of acquiring data with such methods may prohibit their use in many 

applications. While spatial extent, precision, and resolution all factor into overall survey 

quality, the effort, efficiency, and cost of collecting topographic data are nearly always 

necessary considerations (Bangen et al.  2014). 

[FIGURE 10] 

5 Conclusion 

This study demonstrates that for mapping channel topography of small rivers, a 

surveying approach using PAP in combination with SfM, produces results comparable 

with UAS and TLS surveying tools. The different approaches all produce results of 



 

 

sufficient quality to enhance understanding of fluvial forms and processes, with 

DEM/point cloud resolutions around 0.01 m for the close-range methods (TLS and 

PAP) and 0.02 m for the longer range UAS method. Residual errors of the topographic 

models show that the highest accuracy and precision was achieved by collecting an 

extensive set of photos, using pole aerial photography (PAP_HQ) in combination with 

SfM data analysis, producing errors between 0.103 and 0.036 m. Important additional 

advantages of this method are the high resolution (compared to UAS) and its better 

ability to model submerged environments (compared to TLS). Perhaps most importantly 

for professional DEM requirements, it is an extremely cost-effective and easy to use 

approach. The only downside is the relatively low data collection efficiency, however 

the difference is not excessive and can easily be mitigated with additional field time or 

staff resource, as equipment is inexpensive, and limited specialist skills are required 

(during the data collection stage). Accuracy assessment (via total station) resulted in the 

expected sub-centimetre precision in the exposed areas for the TLS approach (e.g. 

Westoby et al. 2012), but results deteriorated in more complex submerged and 

vegetated environments, while PAP errors were overall slightly lower compared to 

other methods. With better resolution, lightweight cameras, as well as lighter weight 

poles becoming available, the PAP approach provides a quick and easy survey solution, 

which meets the increasing demand for very/ultra-high resolution image data. Unless 

catchment scale coverage is needed (e.g. Smith and Vericat, 2015) the pole aerial 

photography should be seriously considered as a useful method for obtaining 

topographic models from small streams. It provides a quick, low cost method, which 

can be integrated easily in to fluvial geomorphological reach-based assessment and 

stream habitat surveys. UAS and TLS approaches are more suitable where direct access 

to the area of interest is not possible or too dangerous. Therefore, knowing the relative 



 

 

merits of these various approaches and the respective errors remains important when 

selecting an appropriate survey method. 
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8 Tables 

Table 1. Overview of results from SfM studies using pole/handheld image data 

collection techniques, including, where known, standard deviation (SD) and root mean 

square error (RMSE) as measures of accuracy. 

 

Platform Height (m) Target/Application Accuracy (m) Source 

Handheld Eye-level? Cliff face SD: 0.013–0.070  
RMSE 0.036  

James and Robson 2012 

Handheld Eye-level? Geoscience applications SD (z): 0.100 (no 
vegetation) DEM-TLS 

Westoby et al. 2012 

https://doi.org/10.1007/s10661-017-6004-5
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https://doi.org/10.1130/GES01342.1
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Handheld Eye-level? Geology Unknown Bemis et al. 2014 

Handheld Eye-level? Flash flood magnitude SD: 0.420 - 0.126  
RMSE: 0.135 - 0.489  

Smith et al. 2014 

Handheld Eye-level? Gully morphology SD: 0.011 - 0.190  
RMSE (z): 0.148-0.155  

Frankl et al. 2015 

Handheld Eye-level? Riverbank (and alluvial 
fan) 

Best median error: 0.0032 
Best RMSE: .0168 

Micheletti, Chandler and Lane 
2015 

Handheld Eye-level? Bank erosion SD: 0.040 - 0.042  
RMSE: 0.048 - 0.048  

Prosdocimi et al. 2015 

Pole 6 Gully morphology Ground control point error 
0.069  

Castillo et al. 2017 

Pole 5 Plot scale erosion features RMSE 0.011 – 0.291  Glendell et al. 2017 

Handheld 1.5 Gully morphology RMSE 0.030 – 0.039  Koci et al. 2017 

 

Table 2. Abbreviations and acronyms commonly used in this paper. 

 

Acronym/ 

abbreviation 

Description Acronym/ 

abbreviation 

Description 

ALS Airborne Laser 

Scanner 

PAP_LQ DEM from Low Quality Pole 

Aerial Photography data set 

(114 photos) 

DEM Digital Elevation 

Model 

PAP_HQ_RC DEM from High Quality Pole 

Aerial Photography data 

corrected for refraction 

DoD DEM of Difference RGB RGB colour model 

dGPS (differential) Global 

Positioning System 

SfM Structure from Motion 

GEOREF Suffix used for 

manually realigned 

DEMs 

TLS Terrestrial Laser Scanner 

GCPs Ground Control Points TLS_MAX DEM from Terrestrial Laser 

Scanner point cloud with 

standard (CloudCompare) 

interpolation, based on 

maximum point value. 

GVPs Ground Validation 

Points 

TLS_AVG DEM from Terrestrial Laser 

Scanner point cloud with 

custom interpolation, based 

on average point value 

M3C2 Multiscale Model to 

Model Cloud 

Comparison 

UAS Unmanned Aerial 

System/drone 



 

 

PAP Pole Aerial 

Photography 

UAS_RC DEM from UAS data, 

corrected for refraction 

PAP_HQ DEM from High 

Quality Pole Aerial 

Photography data set 

(374 photos) 

  

 

 

Table 3: Overview of the data collected with each survey approach (Missing cell values 

(-) are either due to the information not being relevant for a specific approach or 

because information was not collected). 

  
TLS_AV

G 

TLS_M

AX 
PAP_HQ PAP_LQ UAS 

Survey date  
7-8 July 

2013 

7-8 July 

2013 

8 July 

2013 

8 July 

2013 

6 July 

2013 

Survey duration (approx. no. hours)  9 9 2 2 6 

Average camera height/range (m)  - - 5 5 29 

Spatial coverage (m2)  7690 7690 859 859 4382 

Coverage efficiency (m2/hour)  854 854 430 430 730 

Exposed areas - All (% of total 

coverage) 
 - - 82 82 91 

Submerged areas (% of total 

coverage) 
 - - 18 18 9 

Exposed areas - All (% of total 

coverage) - vegetated 
 - - 64 64 - 

Number of GCPs used  - - 10 10 25 

Number of validation points 

exposed areas - vegetated 
 58 58 58 58 58 

Number of validation points 

exposed areas - non- vegetated 
 86 86 86 86 86 

Number of validation points 

collected in submerged areas 
 116 116 116 116 116 

Spatial Resolution (DEM) (m)  0.013 0.01 0.009 0.009 0.020 

Spatial Resolution (Orthophoto) (m)  - - 0.002 0.002 0.010 

Number of photos collected  - - 400 400 88 

Number of photos used  - - 374 114 64 

Residual error (Mean)  x 0.009 0.009 -0.001 -0.0004 0.006 

 y 0.009 0.009 -0.002 -0.0001 -0.007 

 z 0.026 0.026 0.001 0.0002 0.022 

Residual error (SD) x - - 0.021 0.024 0.062 

 y - - 0.029 0.029 0.043 

 z - - 0.010 0.012 0.037 

 



 

 

 

Table 4a. Comparison of DEM results from each surveying method with all ground 

validation data (GVPs). A gradual greyscale scheme is used to emphasize variation in 

the observed errors. 

 

Table 4b. Comparison of DEM results from each surveying method with ground 

validation data, using GVPs at <5 m from GCPs only. A gradual greyscale scheme is 

used to emphasize the variation in the observed errors. 

 

 

 

 

 

 All GVPs        

 Whole site Exposed (no vegetation) Submerged Vegetated 

 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

PAP_HQ 0.103 0.275 0.036 0.053 0.091 0.211 0.334 0.406 

PAP_HQ_RC 0.082 0.280 0.041 0.070 0.047 0.216 0.334 0.406 

PAP_LQ 0.037 0.189 0.049 0.070 0.057 0.184 0.187 0.281 

TLS_AVG 0.123 0.214 0.006 0.107 0.123 0.195 0.295 0.254 

TLS_MAX 0.135 0.223 0.017 0.128 0.129 0.198 0.323 0.255 

UAS 0.049 0.148 0.038 0.107 0.050 0.095 0.177 0.191 

UAS_RC 0.031 0.147 0.038 0.106 0.008 0.091 0.179 0.187 

         

         

Legend: (m)  0.00 0.10 0.20 0.30 0.40   

 GVPs <5 m from GCP        

 Whole site Exposed (no vegetation) Submerged Vegetated 

 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

PAP_HQ 0.085 0.180 0.013 0.028 0.082 0.104 0.283 0.297 

PAP_HQ_RC 0.066 0.180 0.013 0.028 0.038 0.095 0.283 0.297 

PAP_LQ 0.066 0.160 0.020 0.035 0.075 0.122 0.256 0.254 

TLS_AVG 0.145 0.235 0.010 0.074 0.163 0.250 0.367 0.229 

TLS_MAX 0.154 0.239 0.016 0.077 0.165 0.253 0.394 0.221 

UAS 0.051 0.143 0.042 0.045 0.061 0.114 0.208 0.179 

UAS_RC 0.029 0.142 0.042 0.046 0.011 0.111 0.208 0.178 

         

         

Legend: (m)  0.00 0.10 0.20 0.30 0.40   



 

 

Table 4c. Comparison of realigned DEM results from each surveying method with 

ground validation data, using all GVPs and GVPs at <5 m from GCPs only. A gradual 

greyscale scheme is used to emphasize the variation in the observed errors. 

 

 

Table 5. DoD summary results (mean and standard deviation in metres) for selected 

combinations of DEMs. A gradual greyscale scheme is used to emphasize the variation 

in the observed errors. 

 

 All GVPs        

 Whole site Exposed (no vegetation) Submerged Vegetated 

 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

Mean 
Error SD 

PAP_HQ 0.103 0.275 0.036 0.053 0.091 0.211 0.334 0.406 

PAP_HQ_RC 0.082 0.280 0.041 0.070 0.047 0.216 0.334 0.406 

PAP_LQ 0.037 0.189 0.049 0.070 0.057 0.184 0.187 0.281 

TLS_AVG_GEOREF 0.133 0.228 0.038 0.191 0.120 0.197 0.298 0.247 

TLS_MAX_GEOREF 0.156 0.263 0.073 0.293 0.129 0.203 0.330 0.247 

UAS_GEOREF 0.078 0.240 0.001 0.261 0.062 0.189 0.223 0.237 

         

 

GVPs <5 m 
from GCP        

PAP_HQ 0.085 0.180 0.013 0.028 0.082 0.104 0.283 0.297 

PAP_HQ_RC 0.066 0.180 0.013 0.028 0.038 0.095 0.283 0.297 

PAP_LQ 0.066 0.160 0.020 0.035 0.075 0.122 0.256 0.254 

TLS_AVG_GEOREF 0.147 0.230 0.018 0.082 0.162 0.249 0.364 0.212 

TLS_MAX_GEOREF 0.161 0.248 0.046 0.184 0.163 0.248 0.375 0.212 

UAS_GEOREF 0.073 0.222 0.045 0.081 0.090 0.248 0.260 0.211 

         

         

Legend: (m)  0.00 0.10 0.20 0.30 0.40   

Exposed (no 
vegetation) 

PAP_HQ UAS UAS_GEOREF TLS_AVG_GEOREF 

Mean SD Mean SD Mean SD Mean SD 

PAP_LQ -0.018 0.074       

UAS -0.002 0.121       

TLS_AVG 0.042 0.138 0.042 0.133 0.041 0.200   

TLS_AVG_GEOREF 0.061 0.141 0.059 0.140 0.046 0.142   

TLS_MAX 0.054 0.157 0.054 0.139 0.028 0.197   

TLS_MAX_GEOREF 0.075 0.170 0.073 0.156 0.059 0.144 0.014 0.060 

         

Submerged PAP_HQ UAS UAS_GEOREF TLS_AVG_GEOREF 



 

 

 

 

Table 6. Result of M3C2 cloud comparison tool (mean and standard deviation in 

metres) for selected combinations of point clouds. A gradual greyscale scheme is used 

to emphasize the variation in the observed errors. Cells with thick outlines contain a 

result that is notably different from the equivalent DoD result. 

 

     

Exposed (no 
vegetation) 

PAP_HQ UAS 

Mean SD Mean SD 

UAS -0.007 0.140   

TLS 0.061 0.223 -0.007 0.153 

   

UAS Vegetated PAP_HQ 

  Mean SD Mean SD 

UAS -0.104 0.119   

TLS 0.018 0.213 0.094 0.125 

     

  Mean SD Mean SD Mean SD Mean SD 

PAP_LQ -0.027 0.116       

UAS 0.030 0.172       

TLS_AVG 0.024 0.186 0.053 0.086 0.059 0.119   

TLS_AVG_GEOREF 0.030 0.191 0.042 0.109 0.048 0.093   

TLS_MAX 0.030 0.189 0.060 0.091 0.067 0.133   

TLS_MAX_GEOREF 0.038 0.199 0.049 0.113 0.056 0.102 0.008 0.042 

         

Vegetated PAP_HQ UAS UAS_GEOREF TLS_AVG_GEOREF 

  Mean SD Mean SD Mean SD Mean SD 

PAP_LQ 0.015 0.141       

UAS 0.140 0.285       

TLS_AVG -0.049 0.289 0.088 0.166 0.029 0.210   

TLS_AVG_GEOREF -0.014 0.245 0.127 0.187 0.067 0.166   

TLS_MAX -0.011 0.290 0.128 0.173 0.069 0.206   

TLS_MAX_GEOREF 0.023 0.250 0.167 0.213 0.107 0.168 0.040 0.085 

         

         

Legend (m): -0.300 -0.200 -0.100 0.000 0.100 0.200 0.300 0.400 



 

 

9 Figures 

 

 

 

Figure 1: Location map of the Coledale Beck study site in Cumbria, UK. Grid reference 

NY 21291 22381. (Background map: © Crown Copyright and Database Right (2018). 

Ordnance Survey (Digimap Licence)) 

 



 

 

 

   

Figure 2 Photographic impressions of the geomorphological diversity of the field sites; 

(a) oblique perspective from ground level; (b+c) pole camera perspective. 



 

 

 

Figure 3: Extent of DEM models created from pole aerial photography (PAP), from 

images taken from a UAS and using a terrestrial laser scanner (TLS), including location 

of ground validation points (GVPs) and delineation of surface types. 



 

 

 

Figure 4: Distribution of error at ground validation points for the PAP_HQ (a), UAS (b) 

and TLS_AVG (c) DEMs. 

 

 



 

 

 

Figure 5: DoD between TLS_AVG and UAS (orange-red: overestimated, light blue-

blue: underestimated and yellow: < 0.05 m difference). Inset shows shadow effect 

around larger boulders and orthophoto segment of the same area for reference. 



 

 

 

Figure 6: DoD between TLS_AVG_GEOREF and UAS_GEOREF.  



 

 

 

Figure 7: DoD between TLS_AVG and PAP_HQ.  



 

 

 

Figure 8: DoD between TLS_AVG_GEOREF and PAP_HQ. 



 

 

 

Figure 9: Close-ups of DoD between TLS_MAX and PAP_HQ (a) and between 

TLS_AVG and PAP_HQ (b). 



 

 

 

Figure 10: PAP_HQ model close-up illustrating a capacity to capture overhanging bank 

features. See Figures 2 and 3 for exact feature location. Orange line represents a 6.5 m 

section along the right riverbank. Arrow indicates flow direction. 

 

 


