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Abstract

In this paper we consider unitary highest weight irreducible representations of the ‘Large’
N = 4 superconformal algebra Aγ in the Ramond sector as infinite-dimensional graded
modules of its zero mode subalgebra, su(2|2). We describe how representations of su(2|2)
may be classified using Young supertableaux, and use the decomposition of Aγ as an su(2|2)
module to discuss the states which contribute to the supersymmetric index I1, previously
proposed in the literature by Gukov, Martinec, Moore and Strominger.
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1 Introduction

In string theory, the string sweeps out a two-dimensional surface known as the string worldsheet
as it evolves. The fields of bosonic string theory are maps from the worldsheet to a spacetime
manifold, each field describing a different spacetime coordinate. When the worldsheet metric is
fixed, such a model is known as a non-linear σ-model and is described by a two-dimensional con-
formal field theory. It is remarkable that the introduction of fermions in string theory naturally
leads to the concept of supersymmetry, which in turn eliminates problematic tachyons from the
bosonic theory. One proceeds by introducing a fermionic partner for each bosonic string coor-
dinate, and imposes a supersymmetry on the worldsheet that transforms bosonic and fermionic
degrees of freedom into each other. This leads to a superstring theory which is consistent only
in 10 dimensions. In order to describe a physically more realistic theory, one may then insist
that the action for some of the fields is described by a supersymmetric σ-model, whose target
space geometry is external to the resulting spacetime. Interesting theories usually have more
than one type of worldsheet supersymmetry, in which case they are said to possess N -extended
supersymmetry. A classification of supersymmetric σ-models was provided in [AF81], where the
authors argued that N = 4 was the largest number of worldsheet supersymmetries one could
impose on a two-dimensional σ-model. In particular, they showed that N = 4 extended su-
persymmetry occurs when the target space is hyperkähler. In two complex dimensions, such a
space is either a 2-tori or a K3 surface. Such a compactification can be described by an N = 4
superconformal field theory, the state content of which is naturally described by representations
of N -extended superconformal algebras (SCAs).

This classification was extended in [SSTV88; STVS88] to consider string compactifications
given by σ-models on group spaces. When the group manifold is non-abelian, N = 4 was
shown remain the largest number of worldsheet supersymmetries that one can obtain. However,
the SCA describing the symmetries of such compactifications was shown to have a larger field
content than the previously known ‘small’ N = 4 SCA, and is hence known in the literature as
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the ‘large’ N = 4 SCA, also referred to as Aγ . A summary of the classification of the possible
N -extended SCAs and their representation theory is given in [RS76; STV88]. In this paper we
focus on the ‘large’ N = 4 SCA, also known in the literature as Aγ . More precisely, Aγ is a
one parameter family of superconformal algebras; the parameter γ is defined in terms of the
levels of the ̂su(2)+

k+
⊗ ̂su(2)−

k− ⊗ û(1) Kac-Moody subalgebra. This algebra has been considered
in the context of the AdS/CFT conjecture, where the CFT dual to Type II string theory on
AdS(3)×S3×S3×S1 is known to exhibit Aγ symmetry [GMMS04; GMMS05; EGGL17; BPS99;
Bag+17]. The Aγ SCA also provides a unifying viewpoint in the context of N = 4 Liouville
theory, as for two specific values of the Aγ central charge, corresponding to two different dilaton
background charges, the theory reduces to the Coulomb branch (‘short string’ sector) and the
Higgs branch (‘long string’ sector) of a string theory in an NS5-NS1 background [ES16; CHS91].

The zero mode subalgebra of Aγ in the Ramond sector is the finite superalgebra su(2|2) and
one can therefore view a representation of Aγ as an infinite-dimensional graded su(2|2) module,
the grading being given by the conformal weight. Here, we describe a process for determining
the su(2|2) content which appears at a given grade in an Aγ representation. We do this by
making use of Young supertableaux to describe the representations of su(2|2) [BB81; BMR82]
and the branching of su(2|2) to the even subalgebra su(2) ⊗ su(2) ⊗ u(1). Similar techniques
have been used in [HH03] in the context of four-point functions in N = 4 super Yang-Mills. Aγ
also contains the ‘small’ N = 4 SCA as a subalgebra [STV88; PT90a], and this smaller algebra
encodes some of the symmetries of Type II strings propagating on a K3 surface. It plays a
central role in revealing the Mathieu Moonshine phenomenon in this class of models. Indeed,
a supersymmetric index known as the elliptic genus, when calculated in a K3 sigma model in
terms of small N=4 characters, gives the dimension of a graded module of the sporadic group
Mathieu 24 [EOT11; Gan16]. It is therefore a natural question to ask whether the larger Aγ
algebra also exhibits some moonshine phenomenon, and the present paper should be viewed as
a preliminary to address this question.

The elliptic genus is not an index that would be helpful in identifying such a phenomenon
for theories with Aγ symmetry however, as this index is identically zero, even for short repre-
sentations of Aγ . Interestingly, another index may be used in such theories, namely the index
I1 introduced by Gukov, Martinec, Moore and Strominger [GMMS04], which in turn generalises
earlier indices appearing the literature [CFIV92; MMS99]. Unlike the elliptic genus which only
counts right moving ground states, the index I1 counts right moving states from throughout the
representations of Aγ . We will discuss this further in a later paper, but here we show how Young
supertableaux can be used to classify the su(2|2) representations in which states contributing to
I1 are contained.

The structure of this paper is the following: firstly we show that the zero mode algebra
of Aγ in the Ramond sector is described by the finite superalgebra su(2|2); next we describe
how certain representations of su(2|2) may be classified using Young supertableaux and how to
compute the branching relations of su(2|2) to the even (bosonic) subalgebra su(2)⊗ su(2)⊗u(1)
in terms of Young supertableaux; finally we use the branching of su(2|2) to su(2)⊗ su(2)⊗ u(1)
to describe how one may go about decomposing an Aγ module as a graded su(2|2) module and
furthermore we use this decomposition to study which representations of su(2|2) contribute to
the new index I1.

2 The zero mode subalgebra of Aγ in the Ramond sector

The ‘large’ N = 4 algebra known as Aγ [STVS88; STV88; Sch88; IKL88], is a superconformal
algebra which, besides the energy-momentum operator T (z) of conformal dimension 2, contains
four supercurrents Ga(z) of dimension 3

2 , seven operators of dimension 1 which form an ̂su(2)+
k+
⊗

̂su(2)−
k− ⊗ û(1) Kac-Moody superalgebra and four operators of dimension 1

2 [STV88]. The levels
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of the Kac-Moody subalgebras appear most naturally in the algebra in terms of the quantities
γ = k−/(k− + k+) and the central charge c = 6kγ(1 − γ). The commutation relations for the
algebra are presented in [PT90a], whose conventions we follow here. Unitary highest weight
representations of Aγ were studied in [GPTV89], with character formulae first given in [PT90a;
PT90b]; we reproduce the character formulae in appendix A for convenience, as well as briefly
discussing a few key points about the representation theory of Aγ .

In this section, we show that the zero mode subalgebra of Aγ in the Ramond sector is
described by the Lie superalgebra su(2|2). Note that in the case of the NS sector, the finite
(super) subalgebra is the sum of the finite superalgebra D(2|1;α) and a u(1) [STV88], where
α = γ

1−γ . Since we are interested in investigating the contributions to the index I1, which is
defined in the Ramond sector (see section 4.2), we will not consider the Neveu-Schwarz sector
further in this paper. However, Aγ is known to exhibit a spectral flow isomorphism [DST88]
which can be used to relate the NS and R sectors (and is used in section 4.3 to discuss orbits
of states under spectral flow) and the results from this paper can therefore be translated to the
NS sector by spectral flow.

2.1 From the Lie supergroup SU(2|2) to the Lie superalgebra su(2|2)

We avoid going into detail about the general structure of Lie supergroups and their associated
algebras as this is already well discussed in the literature, for example see [Cor89] whose notations
we use. Here, we show how to obtain first the ‘super’ Lie algebra associated to the supergroup
SU(2|2) and then the Lie superalgebra su(2|2) from this Lie algebra.

An element of the supergroup SU(2|2) is a (2/2)× (2/2) even square supermatrix with block
form

G =

(
A B

C D

)
, (2.1)

satisfying
G‡G = I2+2, SDetG = 1CBI , (2.2)

where ‡ denotes the super-adjoint [Cor89]. We use CBI to denote the complex Grassmann
superalgebra of dimension 2I generated by elements ωi for i ∈ {1, . . . , I} and denote the even
and odd parts of the superalgebra as CBI,0 and CBI,1 respectively. As a supermatrix, the 2× 2
block matrices A and D have their elements in CBI,0 and the 2 × 2 block matrices B and C
have their elements in CBI,1.

Proposition 2.1. The defining relations of the real ‘super’ Lie algebra of SU(M/N) are

g‡ + g = 0GLM/N (CBI), STr g = 0CBI . (2.3)

The proof of this is standard [Cor89].
The elements of the subblocks A and B are elements of CBI,0, hence we can split these

matrices into their real and imaginary Grassmann parts as A = Ar + iAi, where now Ar and
Ai are matrices whose matrix elements are elements of RBI,0. We will use equivalent notation
for the real and imaginary parts of B,C and D. The conditions of 2.1 are easily shown to
imply that Ar and Dr are antisymmetric, and Ai and Di are symmetric, with the traceless
condition, TrAi = TrDi. Furthermore, the ‘odd’ matrices B and C are required to satisfy
Bt
r = Ci, B

t
i = Cr. We can therefore write a general element g of the ‘super’ Lie algebra as

g =


iX1 X2 + iX3 Θ1 + iΘ2 Θ3 + iΘ4

−X2 + iX3 iX4 Θ5 + iΘ6 Θ7 + iΘ8

Θ2 + iΘ1 Θ6 + iΘ5 iX5 X6 + iX7

Θ4 + iΘ3 Θ8 + iΘ7 −X6 + iX7 iX1 + iX4 − iX5

 , (2.4)

where Xi ∈ RBI,0 and Θi ∈ RBI,1.
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The generators for the ‘super’ Lie algebra are therefore given as

M i = g|Xj=εφδi,j , Θj=0, N i = g|Xj=0, Θj=εφδi,j , (2.5)

where M and N refer to even and odd generators respectively, and εφ is the (even) identity
element of CBI . Note that the generatorsN i do not satisfy the condition given in proposition 2.1,
but the combination ΘiN i does indeed satisfy this condition for 1 ≤ i ≤ 8.

From the ‘super’ Lie algebra, we wish to construct the Lie superalgebra su(2|2).

Definition 2.2. We can now define the Lie superalgebra su(2|2). If we let

M i = εφm
i, N i = εφn

i, (2.6)

for M i, N i as in eq. (2.5), then the complex matrices mi, ni are the generators of a real Lie
superalgebra, su(2|2).

2.2 An su(2|2) basis satisfying the Aγ zero mode algebra

As described in section 2.1, su(2|2) is a real Lie superalgebra, with the even and basis ele-
ments given by the mi and ni of definition 2.2 respectively. That is, a general element of the
superalgebra can be written as

g =

7∑
i=1

αimi +

8∑
i=1

βini,

for real numbers αi, βi and square complex supertraceless matrices mi, ni.
The goal of this subsection will be to show that (the complexification of) this superalgebra

is isomorphic to the zero mode algebra of Aγ in the Ramond sector. We will argue this in two
ways, first by appealing to structure theorems of simple Lie superalgebras and the classification
of such algebras [Kac77]. We also construct the isomorphism explicitly, by changing basis in
su(2|2) such that the new basis satisfies the commutation relations of Aγ [PT90a]. Since we
therefore write elements of Aγ as four by four square matrices, that is we take our elements of
su(2|2) to be given by the fundamental representation, this clearly gives a representation of Aγ
and we will see that it is the representation with l+ = l− = 1

2 . In general, one could start with
a representation of su(2|2) other than the fundamental in order to construct a representation
of Aγ with l+, l− 6= 1

2 . For details on the representation theory of Aγ see [GPTV89; PT90a;
PT90b], or appendix A for a brief overview.

If we denote the zero mode algebra of Aγ in the Ramond sector as Aγ0, then we can immedi-
ately see that Aγ0 is the direct sum of the one dimensional abelian Lie (super)algebra generated
by the zero mode of the Virasoro subalgebra of Aγ , L0 – or the zero mode of the û(1) subalgebra
of Aγ , U0 which is linearly dependent with L0 – and a simple Lie superalgebra

Aγ0 = L⊕A, (2.7)

where we have denoted the abelian Lie algebra generated by L0 as L and the simple Lie su-
peralgebra as A. By a simple Lie superalgebra, we mean that A does not contain a Z2-graded
ideal. This simple Lie superalgebra A is a classical Type I complex superalgebra, which means
the representation of the even part of the algebra A0 on the odd part A1 – formed by letting
A0 act on A1 through the adjoint action – is the direct sum of two irreducible representations of
A0. This is clear by considering the commutation relations of Aγ , as A0 is the direct sum of the
two su(2) algebras, and the Qa and Ga zero modes of A1 both transform as four dimensional
irreducible representations of su(2)⊕ su(2). A is therefore a classical complex simple Lie super-
algebra of rank 2, the Cartan subalgebra being generated by T±3

0 . Considering the classification
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of simple superalgebras [Kac77], we see that there are four families of Type 1 superalgebras, the
families known as

A(r|s), r > s ≥ 0,

C(s), s ≥ 2,

A(r|r), r ≥ 1,

C(r), r ≥ 2.

If we consider the family members of rank 2, we find that A(1|0) has a 3 dimensional even
subalgebra, C(2) has a four dimensional even subalgebra, P (2) has an 8 dimensional even sub-
algebra and A(1|1) has a 6 dimensional subalgebra. On dimensional grounds we therefore see
that A must be isomorphic to A(1|1). A(1|1) has a real form given by the quotient of su(2|2)
by the one dimensional ideal generated by the identity I4 and hence Aγ0 is isomorphic to the
complexification of su(2|2) as claimed.

We now construct the isomorphism between the zero modes of Aγ and su(2|2) explicitly.
Since we are trying to construct a matrix representation of Aγ , writing the generators in terms
of the mi and ni of definition 2.2, we see that L and U have to be scalar multiples of the identity.
By definition, L acts on the highest weight state of the representation as multiplication by the
conformal dimension of the representation, h. Therefore we necessarily have L = h14. Similarly,
U acts on the highest weight state as multiplication by −iu, so U = −iu14.

In terms of the su(2|2) generators mi (using eq. (2.5) and definition 2.2), we can write the
identity as

14 = i(m1 +m4 +m5), (2.8)

and hence we find

L = hi(m1 +m4 +m5), U = u(m1 +m4 +m5). (2.9)

Identifying the remaining bosonic generators is also straightforward. Since we are construct-
ing a four-dimensional representation of Aγ (using four-dimensional matrices) and the smallest
non-trivial representation of su(2) is the fundamental two-dimensional representation, the two
orthogonal su(2)s must both be two-dimensional representations. Recalling that the even ele-
ments are represented only in blocks A and D in the sense of eq. (2.5), to ensure orthogonality
and without loss of generality we will assume that su(2)+ is represented in submatrix A and that
su(2)− is represented in submatrix D. As is well known, the two-dimensional representation of
su(2) can be constructed using the Pauli matrices as

T± = σ±, T 3 =
1

2
σ3, (2.10)

where σ± := 1
2(σ1 ± iσ2).

We can therefore represent su(2)± as

T+± =

(
T± 0

0 0

)
, T+3 =

(
T 3 0

0 0

)
,

T−± =

(
0 0

0 T±

)
, T−3 =

(
0 0

0 T 3

)
,

(2.11)

where T±, T 3 are as in eq. (2.10).
In terms of the su(2|2) generators, we therefore have

T++ =
1

2
(m2 − im3), T+− =

1

2
(m2 + im3), T+3 =

−i
2

(m1 −m4),

T−+ =
1

2
(m6 − im7), T−− =

1

2
(m6 + im7), T−3 =

−i
2

(m5),

(2.12)

With the bosonic generators identified, knowing that the fermionic generators have entries
only in submatrices B and C, we can deduce the form of the fermionic generators using the
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commutation relations of Aγ . The relations between T±3 and each of the Qa for a ∈ {±,±K}
can be used to reduce each of the Qa to only 2 degrees of freedom (DOF). Next, the various
relations between T±+ and the Qa, as well as T±− and the Qa can be used to show that there can
be only be a maximum of 2 DOF in total among all the Qa. Finally, the relations {Q+, Q−} =
{Q+K , Q−K} = −k

4I show that there is only a single DOF for all the Qa. Introducing σ±3 :=
1
2(σ3 ± 12), we find

Q+ =

(
0 −k

4q σ
+

qσ+ 0

)
, Q− =

(
0 −k

4q σ
−

qσ− 0

)
Q+K =

(
0 −k

4q σ
+3

qσ−3 0

)
, Q−K =

(
0 −k

4q σ
−3

qσ+3 0

)
,

in terms of the one remaining DOF which we have now called q.
Similarly, the relations between the two su(2)s and the Ga for a ∈ {±,±K} show that the

Ga are of the form

G+ =

(
0 h−c/24

g σ+

gσ+ 0

)
, G− =

(
0 h−c/24

g σ−

gσ− 0

)
,

G+K =

(
0 h−c/24

g σ+3

gσ−3 0

)
, G−K =

(
0 h−c/24

g σ−3

gσ+3 0

)
,

in terms of one DOF g.
Finally, the relations between the Qa and Gã can be used to show that the two DOF are

related as g = 2q
k (1

2 +iu) and that the representation of Aγ must satisfy the massless requirement
k(h− c

24) = u2 + 1
4 [GPTV89]. Note that since we are representing the two su(2)s as doublets,

we have l+ = l− = 1
2 . Following the notation of [PT90a], our four basis states are therefore

|Ω+〉 , G− |Ω+〉 , G−K |Ω+〉 and G−G−K |Ω+〉, where |Ω+〉 is the ‘highest weight state’. Since we
have a massless representation of Aγ , the other ‘highest weight state’ |Ω−〉 is given by G−K |Ω+〉.

Since |Ω+〉 is the highest weight state, and furthermore an ŝu(2)− singlet, we require

T++ |Ω+〉 = T−+ |Ω+〉 = T−− |Ω+〉 = Ga |Ω+〉 = Qa |Ω+〉 = 0,

for a ∈ {+,+K}. This requires
|Ω+〉 = (1, 0, 0, 0)t . (2.13)

Similarly,
T++ |Ω−〉 = T+− |Ω−〉 = T−+ |Ω−〉 = G+ |Ω−〉 = G−K |Ω−〉 = 0,

and therefore
|Ω−〉 = G−K |Ω+〉 = (0, 0, 1, 0)t . (2.14)

Solving this equation, in terms of the matrix representation of G−K that we have constructed,
requires us to fix g = 1 and so our representation is now fully determined in terms of the
representation labels of Aγ .

The odd elements of Aγ (in the l± = 1
2 massless representation) can therefore be written in

terms of su(2|2) generators as

Q+ =
−q
2

(n6 − in5)− k

8q
(n3 − in4),

Q− =
−q
2

(n4 − in3)− k

8q
(n5 − in6),

Q+K =
q

2
(n8 − in7)− k

8q
(n1 − in2),

Q−K =
−q
2

(n2 + in1) +
k

8q
(n7 − in8),

G+ =
−1

2
(n6 − in5) + ĥ(n3 − in4),

G− =
−1

2
(n4 − in3) + ĥ(n5 − in6),

G+K =
1

2
(n8 − in7) + ĥ(n1 − in2),

G−K =
−1

2
(n2 − in1)− ĥ(n7 − in8),

(2.15)
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where
q =

k

1 + 2iu
, ĥ := (h− c

24
) =

1

k
(u2 +

1

4
). (2.16)

Hence these two algebras are isomorphic, as claimed.

3 Young supertableaux and a branching of su(M |N)

3.1 su(2|2) representations and supertableaux

In section 2.2 we saw that the zero mode algebra of Aγ in the Ramond sector is isomorphic to
the Lie superalgebra su(2|2). We can therefore study the decomposition of an Aγ module as
a infinite-dimensional graded su(2|2) module, where clearly each level of Aγ will be able to be
written in terms of su(2|2) representations. In this subsection we will therefore introduce the
representation theory of su(2|2) and show how su(2|2) representations can be identified with
Young supertableaux as first introduced by [BB81]. This will be seen to be very similar to the
way that representations of su(n) can be given by Young tableau. The representation theory of
basic Lie superalgebras has been well studied, as well as [BB81], see for example [Hur87; CK87;
GQS05].

We begin by considering the fundamental representation of the supergroup SU(2|2). We let
SU(2|2) act on the complex Grassmann space CB2,2

I using matrix multiplication. Following the
notation of [BB81] we denote the basis vectors of CB2,2

I as,

ξA =

(
φa
ψα

)
, (3.1)

where a,∈ {1, 2}, α ∈ {3, 4} run over the even and odd parts of the space. This fundamental
representation is therefore a 4-dimensional representation. These basis vectors then transform
under g ∈ SU(2|2) as,

ξA → ξ′A = gBAξB, (3.2)

where as usual, repeated indices are to be summed over. Clearly this can be expanded linearly
to all of CB2,2

I , such that a vector Ψ = ΨAξA transforms under g ∈ CB2,2
I as

Ψ→ Ψ′ = g · (ΨBξB),

= (−1)deg (B) deg (A−B)ΨBgABξA = gABΨBξA,
(3.3)

so we can think of the components transforming as

ΨA → Ψ′A = gABΨB. (3.4)

Clearly, since CB2,2
I is a complex vector space, the components ΨA can be taken to be com-

plex. However, it wil be useful for us to consider CB2,2
I as a CBI -supermodule, such that the

components ΨA can be taken to be arbitrary elements of CBI .
As explained in [BB81], there are actually two fundamental representations of SU(2|2) which

are known as Type I and Type II fundamental representations. In a Type I representation, we
let ξa = φa live in the even part of the Grassmann space, CB2,0

I and ξα = ψα live in the odd
part of the Grassmann space, CB0,2

I . In a Type II representation, we instead let ξa live in the
odd part of the Grassmann space and ξα live in the even part of the space. The representation
theory of Type I representations and Type II representations can be seen to be identical [BB81],
that is every Type I representation is a Type II representation with the grading reversed. If
we therefore consider tensor products of Type I or Type II representations exclusively then we
may choose to only consider representations of Type I. Here we will not need representations on
mixed tensors and so we will assume all our fundamental representations are of Type I.
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It will be convenient to associate Young tableaux to our representations as in the case for
SU(N), so we will associate to the (Type I) fundamental representation of SU(2|2) the single
box tableau . Similarly, one may define a conjugate fundamental representation where

g ∈ SU(2|2) is defined to act on the dual of CB2,2
I as

ξ⊥ → ξ′⊥ = g‡ξ⊥, (3.5)

for ξ⊥ ∈ CB2,2 ⊥
I . This is the same definition of the conjugate fundamental representation as

for SU(N), and following [Kin70] can be associated the single dotted Young tableau .
As in the case of SU(N), more representations can be constructed from tensor products of

the fundamental and conjugate fundamental representations. As before, we shall consider CB2,2
I

to be a supermodule, so we now want to define the tensor product on CB2,2
I as a supermodule.

Given a supercommutative superalgebra A, then every left A-supermodule V may be re-
garded as an A-superbimodule by letting

a · v ≡ (−1)|a||v|v · a, (3.6)

for all homogeneous elements a ∈ A, v ∈ V and extending linearly. In this manner we can think of
CB2,2

I as a superbimodule by defining the right action as above, since CBI is supercommutative.

Definition 3.1. The tensor product of two A-superbimodules V,W can now be defined as,

V ⊗W := F (V ×W )/E, (3.7)

where F (V ×W ) is the free module generated by the cartesian product of V and W , and E is
the submodule generated by the equivalence relations,

(v1, w1) + (v2, w1) ∼ (v1 + v2, w1),

(v1, w1) + (v1, w2) ∼ (v1, w1 + w2),

(v1 · a,w1) ∼ (v1, a · w1),

a · (v1, v2) ∼ (a · v1, v2),
(3.8)

for vi, wi ∈ V,W respectively and a ∈ A.
V ⊗W has a grading defined by,

(V ⊗W )i =
⊕

(j,k)|j+k=i (mod 2)

Vj ⊗Wk, (3.9)

and is therefore a left A-supermodule.

We can now define a representation of SU(2|2) on the tensor product CB2,2
I ⊗ CB2,2

I by
letting SU(2|2) act with the fundamental action on each of the factors of the tensor product.
Since each fundamental representation was 4-dimensional, this tensor product representation is
therefore a 16-dimensional representation. Consider ξ ⊗ ξ̃ ∈ CB2,2

I ⊗ CB2,2
I , then g ∈ SU(2|2)

acts as,
(ξ ⊗ ξ̃)→ (ξ ⊗ ξ̃)′ = (gξ ⊗ gξ̃). (3.10)

This action can then be extended linearly to arbitrary elements of CB2,2
I ⊗ CB2,2

I . We can use
the description of CB2,2

I as a CBI module to write ξ = ξAeA, where eA has εφ (the even CBI
identity) in the Ath position and 0 in all remaining positions. In this way, we can write the
action as being one on the tensor components as is common. Using definition 3.1 and eq. (3.3)
we can therefore expand (ξ ⊗ ξ̃) as,

(ξ ⊗ ξ̃) = (ξA
′
eA′ ⊗ ξ̃B

′
eB′) = ξA

′
ξ̃B
′
(eA′ ⊗ eB′), (3.11)

and similarly,
(ξ ⊗ ξ̃)′ = (gξ ⊗ gξ̃) = gA

′
A ξ

AgB
′

B ξ̃B(eA′ ⊗ eB′). (3.12)
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One may therefore consider the components of eq. (3.10) to transform as,

ξAξ̃B → (ξAξ̃B)′ = gAA′ξ
A′gBB′ ξ̃

B′ . (3.13)

Clearly, one can now define an action of g ∈ SU(2|2) on (CB2,2
I )⊗m ⊗ (CB2,2

I )⊥⊗n for arbitrary
m,n ∈ Z+ by applying g or g‡ to each factor as appropriate.

The tensor product representation is not irreducible however [BB81], as may be seen by
considering a permutation operator,

P : V ⊗W →W ⊗ V,
v ⊗ w 7→ w ⊗ v,

(3.14)

for v ∈ V,w ∈ W . This can be seen to commute with the action of SU(2|2) on the tensor
product,

P (g(ξ ⊗ ξ̃)) = P (gξ ⊗ gξ̃) = (gξ̃ ⊗ gξ),= g(ξ̃ ⊗ ξ) = g(P (ξ ⊗ ξ̃)), (3.15)

and yet is not a multiple of the identity operator on CB2,2
I ⊗CB

2,2
I , and so by Schur’s lemma, the

tensor product is not irreducible. However, as for the case of SU(N), one can form irreducible
representations of SU(2|2) using suitably symmeterised and antisymmeterised tensor products
of CB2,2

I and (CB2,2
I )⊥, each of which may be associated to a supertableau as in fig. 1 (the dashed

diagonals are explained later in section 3.2). Note that since the Levi-Civita tensor is not an
invariant of SU(M |N), a tableau containing dotted boxes (that is a representation on tensors
containing covariant indices) may not be converted to a tableau containing only undotted boxes
[BB82].

Figure 1: A representation of SU(2|2) acting on tensors with both covariant and contravariant
indices.

Example 3.2. Let us consider the example of the symmetric tensor product on two copies of
CB2,2

I . This is described by the supertableau .

We denote the symmetric tensor product of ξ, ξ̃ ∈ CB2,2
I as Ξ. As in eqs. (3.11) and (3.12),

we can expand Ξ in terms of components as

Ξ = ξ ⊗ ξ̃ + ξ̃ ⊗ ξ = (ξAξ̃B + ξ̃AξB)(eA ⊗ eB),

= (ξAξ̃B + (−1)|A||B|ξB ξ̃A)(eA ⊗ eB).
(3.16)

We now see that the components of this tensor are symmetric unless both A and B take values
in the odd part of the space (i.e A = α,B = β as in eq. (3.1)), in which case the components
are antisymmetric. Using the usual convention of parentheses to denote symmetric indices, we
therefore have

Ξ(AB) = ξAξ̃B + (−1)|A||B|ξB ξ̃A. (3.17)

The dimension of the symmetric space is therefore the sum of the number of independent com-
ponents of Ξab, Ξaβ and Ξαβ . These have three, four and one independent components respec-
tively, since the first two are symmetric and the final one is antisymmetric, for a, b,∈ {1, 2}
and α, β ∈ {3, 4}, so Ξ(AB) has eight independent components and the symmetric space is
8-dimensional. 4
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It is now clear that, due to the Grassmann nature of the odd part of the space, whenever we
symmeterise two indices, the components behave as antisymmetric indices when both indices lie
in the odd part of the space. For this reason, [BB81] refer to the tensors as ‘symmeterised’ and
‘supersymmeterised’, to mean symmeterised on the even part of the space and antisymmeterised
on the odd part of the space. Similarly, when we antisymmeterise indices, the components behave
symmetrically when both indices lie in the odd part of the space; there is therefore no limit to
the length of a column for a supertableau.

Definition 3.3. It will be useful to define the horizontal and vertical eccentricity of a (totally
un-dotted) supertableau to be the number of boxes in the first row and first column respectively.
The supertableau show in fig. 2a has horizontal eccentricity m and vertical eccentricity n. Such
a tableau will be said to have eccentricity (m,n).

Definition 3.4. A (totally un-dotted) supertableau of eccentricity (m,n) containing N boxes
will be called maximally eccentric if N = m+n− 1, and non-maximally eccentric if N ≥ m+n.
The tableau in fig. 2a is therefore maximally eccentric, whereas the tableau shown in fig. 2b is
non-maximally eccentric.

m

n

(a) A supertableau of horizontal eccentricity m
and vertical eccentricity n

p

q

(b) A non-maximally eccentric supertableau of
eccentricity (p+ 2, q + 2).

Figure 2: Maximally and non-maximally eccentric tableaux.

Elements of the Lie supergroup SU(2|2) near the identity are given by,

G = exp (

7∑
i=1

Ximi +

8∑
j=1

Θjnj), (3.18)

where mi and ni are as in definition 2.2, and Xi,Θj are elements of RBI close to the identity.
The Lie superalgebra elements are therefore the linear terms appearing in the expansion of
the supergroup elements, and hence as for Lie groups and Lie algebras, a representation of
the Lie supergroup SU(2|2) gives a natural representation of the Lie superalgebra su(2|2) as
the linearised action of the supergroup. A more formal description of the connection between
tensor representations of supergroups and the associated superalgebras is discussed in the case
of GL(M |N) in [Fio11].

One can therefore use supertableaux to describe irreducible representations of su(M |N),
where the supertableaux describes the suitably symmeterised tensors on which su(M |N) acts as
the tensor product of fundamental and conjugate fundamental representations as necessary.

In section 2.2 we showed how the fundamental representation of su(2|2) was isomorphic to
the zero mode algebra of a massless representation of Aγ with l± = 1

2 in the Ramond sector.
Thanks to the results of this subsection, this can therefore be summarised as

Ch
Aγ ,R

0,l±= 1
2

= Ch
( )

qh +O(qh+1), (3.19)

where the character forAγ is defined as in eq. (A.4), Ch
( )

is to be understood as TrV (z
2T+3

0
+ z

2T−3
0

− ),

for V the fundamental representation of su(2|2) and T±3
0 the elements of the Cartan subalgebra

of the even subalgebra of su(2|2).
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3.2 Branching rules for su(2|2)

Having shown that the su(2|2) superalgebra is isomorphic to the Aγ zero mode algebra in
section 2.2, we know that the even subalgebra of su(2|2) is su(2)⊗ su(2)⊗ u(1). It is clear that
given a representation (Γ, V ) of an algebra g, with subalgebra h ⊂ g, then (Γ, V ) also provides a
representation of the subalgebra h. In general, this representation will be reducible, and so will
be given by the direct sum of several irreducible representations. This decomposition,

(Γ, V ) 7→
⊕
n

an(Γn, Vn), (3.20)

where (Γn, Vn) are irreducible representations of the subalgebra h and an are the multiplicities
at which they appear in the decomposition, is known as a branching rule for g to h. In this
subsection we will show how to calculate the branching of an irreducible representation of su(2|2)
into irreducible representations of the bosonic (even) subalgebra su(2|2)→ su(2)⊗ su(2)⊗ u(1)
using Young (super)tableaux [BB82].

The branching for su(M |N) 7→ su(M) ⊗ su(N) ⊗ u(1) works similarly to the branching
SU(M +N)→ SU(M)⊗ SU(N), which is described with an example in appendix B. We now
consider the superspace CBm,n

I to be the direct sum CBm
I,0 ⊕ CBn

I,1 as in eq. (3.1). The even
part of the space transforms under the su(M) and is a singlet under the su(N), while the odd
part of the space transforms under the su(N) and is a singlet under the su(M). Additionally,
the u(1) generator is embedded in su(M |N) as

u =

(
1
M 0

0 1
N

)
, (3.21)

such that is supertraceless. Therefore a vector in the even part of the space has u(1) charge 1
M ,

while a vector in the odd part of the space has charge 1
N . We can therefore branch a (totally

contravariant, using only un-dotted boxes) representation of su(M |N) in the same way as we
branch SU(M + N). However since supertableaux show supersymmeterisation of the tensor
space, we should reflect the su(N) tableau through its diagonal as indicated in fig. 1 in order to
show the correct symmeterisation for the odd part of the space, as described in section 3.1.

We now consider an example of branching an su(2|2) representation into a sum of su(2) ⊗
su(2)⊗ u(1) representations.

Example 3.5. Consider the representation

of su(2|2). In example B.1, we calculated the decomposition of this tableau for SU(M +N) (in
fact we assumed M = 3, N = 4, but on the level of the tableau the answer is valid for any M,N
as long as we did not simplify the tableau, which we did not), so now to calculate the branching
of su(2|2), we simply have to transpose the tableau in the second part of each product on the
right hand side and then simplify the resulting tableaux. This gives

7→
(

, 1
)

5
2

+
(

1,
)

5
2

+
(

, 1
)

5
2

+
(

,
)

5
2

+
(

, 1
)

5
2

+
(

, 1
)

5
2

+
(

1,
)

5
2

+
(

,
)

5
2

+
(

,
)

5
2

,

(3.22)

where we have labelled each representation of su(2)⊗ su(2) with the total u(1) charge. 4
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Branching supertableaux also gives us a way to see that we must allow supertableaux with
more than 4 rows for su(2|2).

Example 3.6. Clearly it is not possible to take the antisymmetric 5-fold representation of su(4)
– we cannot antisymmeterise more than four basis vectors without repetition. However, if we
branch the 5-fold antisymmetric representation for su(2|2), it is clear that we obtain the following
branching rule (note that the u(1) charge is clearly 5

2 for each representation, so the u(1) charge
is not shown in the following):

7→
(

1,
)

+
(

,
)

+
(

1,
)
. (3.23)

This is a valid representation with dimension 20. 4

Example 3.7. This branching rule also gives an easy way to show that the dimension of the
n-fold symmetric tensor representation of su(2|2) is 4n, agreeing with what we calculated in
example 3.2 by considering the tensor components directly.

n

7→ (

n

, 1) + (

n− 1

, ) + (

n− 2

, 1). (3.24)

The dimensions of the representations on the right hand side of this equation are n+ 1, 2n and
n− 1 respectively, showing the n-fold symmetric representation has dimension 4n. 4

It will also be useful for us to note that since we are interested specifically in su(2|2) and
its branching into su(2) ⊗ su(2), that representations described by tableaux with more than 2
rows of length strictly greater than 2, as shown in fig. 3, are zero representations. This is due
to the supersymmeterisation of the su(M |N) indices; if we branch the su(2|2) representation to
find the su(2) ⊗ su(2) content, one of the two representations of su(2) must be described by a
tableau with at least 3 rows which is clearly a zero representation of su(2).

p q

r

s

Figure 3: A zero representation of su(2|2)

4 Describing representations of Aγ using Young supertableaux

4.1 Decomposing a representation of Aγ

We have established in section 2.2 that the zero mode algebra of Aγ in the Ramond sector is
su(2|2), and that we can study the su(2)⊗ su(2) ⊗ u(1) content of an su(2|2) representation by

13



studying the branching of the supertableau describing the su(2|2) representation as described in
section 3.2. We can therefore now identify su(2|2) representations whose su(2) ⊗ su(2) content
matches representations of Aγ at a given level; the general method to do this is described in
example 4.2.

Example 4.1. We have already considered the case of a massless representation of Aγ with
l± = 1

2 in section 2.2, and in section 3.1 we identified the ground level of this Aγ representation
with the fundamental representation of su(2|2). Now that we have seen how to branch su(2|2)
supertableaux, we can branch the fundamental representation as

7→
(

, 1
)

1
+
(

1,
)

1
, (4.1)

and recognise the two su(2) doublets (one of su(2)+ and one of su(2)−) which appear at ground
level in Aγ as shown in fig. 4.

11

1

1

-1.0 -0.5 0.5 1.0
2 l+

-1.0

-0.5

0.5

1.0

2 l-

Figure 4: The ground level of a Ramond representation of Aγ with k+ = 3, k− = 2, l+ = 1
2 , l
− =

1
2 . One can clearly see the doublet of ŝu(2)+ in blue and the doublet of ŝu(2)− in fuchsia.

As noted at the end of section 3.1, we therefore have

Ch
Aγ ,R

0,k+=3,k−=2,l±= 1
2

= Ch
( )

qh +O(qh+1). (4.2)

4

Example 4.2. Similarly, we can consider the level 1 states of the same representation of Aγ
(k+ = 3, k− = 2, l+ = 1

2 , l
− = 1

2) shown in fig. 5.
To find the su(2|2) representations which contain the right su(2) ⊗ su(2) content we follow

the following method: We identify the largest multiplet of su(2)+, in this case the quadruplet
which is a singlet of su(2)−; We identify the smallest representation of su(2|2) which contains
this su(2)⊗ su(2) content, in this case the representation described by

;

We calculate the branching of this representation of su(2|2) (suppressing the u(1) charge),

7→
(

, 1
)

+
(

,
)

+
(

, 1
)

;
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3

9

3

3

9

3

1

3

3

1

9

9

1

3

3

-3 -2 -1 1 2 3
2 l+

-3

-2

-1

1

2

3

2 l-

Figure 5: Level 1 states of a Ramond representation of Aγ with k+ = 3, k− = 2, l+ = 1
2 , l
− = 1

2

We now identify the next largest multiplet of su(2)+, in this case one of the two remaining copies
of (

,
)
,

and find the smallest representation of su(2|2) which contains this but does not contain any
representations of su(2)⊗ su(2) already considered, namely

;

We now identify the next largest representation of su(2)+ and continue this process.
Using the method described above, one finds this representation of Aγ can be branched into

su(2|2) representations as

Ch
Aγ ,R

0,k+=3,k−=2,l±= 1
2

= Ch
( )

qh +

Ch
( )

+2 Ch

( )
+ Ch



 qh+1 +O(qh+2).

(4.3)

4

This process can easily be continued to higher levels of the Aγ representation. For the mass-
less representation with l± = 1

2 we have computed the decomposition of the Aγ representation
into su(2|2) representations up to the sixth excited level.

Proposition 4.3. The ground level of a unitary irreducible massless representation of Aγ de-
scribed by parameters k+, k− and quantum numbers l+, l− is described by a single represen-
tation of the superalgebra su(2|2), which is in turn described by a maximally eccentric Young
supertableau of eccentricity (2l+, 2l−).
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Proof. We have already showed in section 2.2 that su(2|2) satisfies the zero mode algebra of Aγ
and so it is clear the the ground level of an irreducible representation of Aγ can be given by
a representation of su(2|2). This representation of su(2|2) must be irreducible, since it is built
on the same highest weight state as the irreducible Aγ representation using the same operators.
If there existed multiple su(2|2) highest weight states at the ground level, then each one of
these su(2|2) highest weight states would furnish an entire Aγ representation, and hence the
original representation of Aγ would not be irreducible. We are therefore left only to show that
this irreducible representation is described by a maximally eccentric supertableau of eccentricity
(2l+, 2l−).

The generic massless Ramond representation of Aγ has 8 highest weight states of su(2)⊗su(2)
as shown in appendix A. We therefore have that the ground level of Aγ is given by

Ch
Aγ ,R

0,l+,l− =

(
χ+
l+
χ−
l−− 1

2

+ χ+
l+− 1

2

χ−
l− + 2χ+

l+− 1
2

χ−
l−−1

+ 2χ+
l+−1

χ−
l−− 1

2

+ χ+
l+−1

χ−
l−− 3

2

+ χ+
l+− 3

2

χ−
l−−1

)
qh +O(qh+1),

(4.4)

where

χ±l := χl(z±) =

l∑
n=−l

z2n
±

is the su(2)± character for a representation of dimension 2l + 1. We now want to calculate the
branching of

2l+

2l−

to check the su(2)⊗ su(2) content of this representation.

2l+

2l−
7→

 2l+ + 1

,

2l− − 1
+

 2l+

,

2l− − 1


+

 2l+ − 2

,

2l− − 1
+

 2l+ − 2

,

2l− − 3


+

 2l+ − 2

,

2l− − 1
+

 2l+ − 1

,

2l− − 2


+

 2l+ − 1

,

2l−
+

 2l+ − 3

,

2l− − 2
 ,

(4.5)

where we have suppressed the u(1) charges and simplified trivial columns of length 2 on the
right hand side.

The representation of su(2) described by

n
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is the (n+ 1)-dimensional representation with character

χn
2
(z),

and so by comparing eq. (4.4) and eq. (4.5) we see that the ground level of a massless represen-
tation of Aγ in the Ramond sector with su(2) charges l+ and l− is described by the supertableau

2l+

2l−

as claimed.

Similarly we can recognise the su(2|2) representation that describes the ground level of a
massive representation of Aγ in the Ramond sector. We first give a lemma on the branching of
non-maximally eccentric supertableau that will be useful for the massive case.

Lemma 4.4. Under branching into su(2)⊗ su(2) representations we have the following equiva-
lence:

2l+ − 2

2l− − 2

su(2)⊗su(2)

≡


2l+ − 1

2l−
+

2l+

2l− − 1

 . (4.6)

Proof. This is proved simply by branching both sides and checking that they agree.

Proposition 4.5. The ground level of a unitary irreducible massive representation of Aγ de-
scribed by parameters k+, k− and quantum numbers l+, l− is described by a single representation
of the superalgebra su(2|2), which is in turn described by a non-maximally eccentric Young su-
pertableau of eccentricity (2l+, 2l−), as shown in fig. 6.

2l+ − 2

2l− − 2

Figure 6: A supertableau which describes the ground level of a representation of Aγ with su(2)
quantum numbers l+, l−.

Proof. The generic massive Ramond representation of Aγ has 16 highest weight states of su(2)⊗
su(2), as discussed in appendix A. We therefore have that the ground level of Aγ is given by

Ch
Aγ ,R

m,l+,l− =

(
χ+
l+
χ−
l−−1

+ 2χ+
l+− 1

2

χ−
l−− 1

2

+ 2χ+
l+− 1

2

χ−
l−− 3

2

+ χ+
l+−1

χ−
l− + 4χ+

l+−1
χ−
l−−1

+ χ+
l+−1

χ−
l−−2

+ 2χ+
l+− 3

2

χ−
l−− 1

2

+ 2χ+
l+− 3

2

χ−
l−− 3

2

+ χ+
l+−2

χ−
l−−1

)
qh +O(qh+1),

(4.7)
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Using lemma 4.4 and the branching of a maximally eccentric supertableau given in the proof
of proposition 4.3, it is simple to check that the su(2) ⊗ su(2) multiplets which appear in the
branching of the representation of su(2|2) shown in fig. 6 agree with eq. (4.7). We therefore see
that the ground level of a massive representation of Aγ in the Ramond sector with su(2) charges
l+ and l− is described by the supertableau

2l+ − 2

2l− − 2

.

4.2 The supersymmetric index I1 for Aγ

The technique of branching Young supertableaux gives a way to investigate the contributions to
a supersymmetric index for Aγ known as I1 which was introduced in [GMMS04], motivated by
the search for a holographic dual to type II string theory on AdS(3)× S3 × S3 × S1.

Definition 4.6. Since the massless Ramond characters ofAγ have an order one zero at z+ = −z−
one can form a non-zero index by taking a derivative. Given a theory D, with partition function
ZD, the left-index I1 is therefore defined as [GMMS04]

I1(D)(q, z+, z−, q̄, z̄) := −z̄+
∂

∂z̄−
ZDHR̃(q, z+, z−, q̄, z̄+, z̄−)

∣∣∣∣
z̄+=z̄−=z̄

,

= TrHR

(
−FR(−1)F qL0−c/24q̄L̄0−c̄/24z

2T+3
0

+ z
2T−3

0
− z̄2(T̄+3

0 +T̄−3
0 )

)
,

(4.8)

where FR := 2T̄−3
0 , (−1)F := e2πi(T−3

0 +T̄−3
0 ), and ZD

HR̃
denotes the restriction of the partition

function to the R̃ sector.

Since massive characters of Aγ have an order two zero at z+ = −z−, the index I1 is con-
structed so that only massless representations of Aγ can contribute on the right. Massless
characters can be shown to contribute to the index as [GMMS04]

−z+
d

dz−
Ch

Aγ(l+,l−),R̃
0

∣∣∣∣
z+=z−

= (−1)2l++1q
u2

k Θ−µ,k(ω, τ), (4.9)

where k = k+ + k− is the sum of the levels of the affine ŝu(2)’s, µ = 2(l+ + l−) − 1, z = e2πiω

and the odd level-k theta functions are given by

Θ±µ,k(τ, ω) := Θµ,k(τ, ω)−Θ−µ,k(τ, ω),

= q
µ2

4k

∑
n∈Z

qkn
2+nµ(z2kn+µ − z−2kn−µ).

(4.10)

Before commenting on the index I1 for Aγ , we note one more useful fact about the branching
of su(2|2) supertableaux.
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Proposition 4.7. The generic non-zero totally-contravariant representation of su(2|2) described
by a supertableau as shown below satisfies the following equivalence under branching into su(2)⊗
su(2) representations:

p q

r

s

su(2)⊗su(2)

≡

q

s

. (4.11)

Proof. Step 1: We argue that we have the branching equivalence for p > 2

p q

su(2)⊗su(2)

≡
p− 1 q

. (4.12)

To show this, we first calculate the branching of a supertableau of the type shown in eq. (4.12):

p q

7→

 p q

, 1

+

 p− 1 q + 1

,

†

+

 p q − 1

,

∗ +

 p− 2 q + 2

,

††

+

 p q − 2

,

∗∗ +

 p− 1 q

,

†

+

 p− 1 q

,

† +

 p− 1 q − 1

,

†∗

+

 p− 2 q + 1

,

†† +

 p− 2 q

,

†† ,

(4.13)

where we have not simplified trivial columns of two boxes on the right hand side. The repre-
sentations indicated by ∗ appear only for q ≥ 1 and the representation indicated by ∗∗ appear
only for q ≥ 2. Similarly, the representations indicated by † only appear for p ≥ 1 and the rep-
resentations indicated by †† appear only for p ≥ 2. Therefore all representations appear when
p ≥ 2, q ≥ 2. Since the block of columns of length two may be trivially cancelled for su(2), we
will get an equivalent set of representations of su(2)⊗ su(2) on both sides of eq. (4.12) if p > 2.

Note that if a supertableau contains the branching component (T1, T2) then the transposed
supertableau T t contains the component (T2, T1). This follows immediately from the symmetric
nature of the factors appearing in the branching SU(M +N)→ SU(M)⊗ SU(N) as noted in
appendix B. We therefore immediately get the following equivalence for r > 2 as a corollary to
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the previous equivalence:

r

s

su(2)⊗su(2)

≡

r − 1

s

. (4.14)

Step 2: We argue that the equivalence

p q

s

su(2)⊗su(2)

≡

p− 1 q

s

. (4.15)

for p > 1 follows easily from eq. (4.12). This is done by noting that the column of length s must
be moved to the right hand factor of su(2) and transposed, otherwise the left hand factor of su(2)
will have a column of length > 3 and hence will be a zero representation. Clearly the result of
moving this column over to the right hand factor, taking the appropriate tensor products where
necessary, does not affect the p dependence of the branching. It is therefore clear that after
cancelling trivial columns of length two, the branching of the two sides of eq. (4.15) agree as
long as we have p > 1.

Step 3: This previous step can trivially be extended to give the branching equivalence

p q

r

s

su(2)⊗su(2)

≡

p− 1 q

r

s

, (4.16)

for p > 1 using the same argument as for the previous step, except for now we must clearly take
the two columns of lengths r+s and s to the right hand side, again taking tensor products where
necessary. Again, this will not affect the p dependence of the branching and so after cancelling
trivial columns of length two, the branching of the two sides of eq. (4.16) agree as long as we
have p > 1.

Step 4: Finally, we use the argument from the end of step 1 to obtain the equivalence

p q

r

s

su(2)⊗su(2)

≡

p q

r − 1

s

, (4.17)
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for r > 1.
Using Step 3 p times and Step 4 r times we now obtain

p q

r

s

su(2)⊗su(2)

≡

q

s

, (4.18)

as required.

We can now finally calculate the index I1 for all totally covariant supertableaux as appear
in our decompositions of Aγ representations.

Proposition 4.8.

I1


m

n

 = (−1)n
(
z−m−n+1 − zm+n−1

)
. (4.19)

Proof. In the proof of proposition 4.3 we calculated the branching of a maximally extremal
supertableau into su(2)⊗ su(2) representations and checked that the su(2) characters contained
in this branching agree with the su(2) characters that appear in a massless representation of Aγ
at the ground level as given in eq. (4.4). We therefore have

Ch


m

n

 =χ+
m
2
χ−n−1

2

+ χ+
m−1

2

χ−n
2

+ 2χ+
m−1

2

χ−n
2
−1

+ 2χ+
m
2
−1χ

−
n−1
2

+ χ+
m
2
−1χ

−
n−3
2

+ χ+
m−3

2

χ−n
2
−1.

(4.20)

In this sense, we think of the supertableaux as describing the representation content of Aγ in
the Ramond sector. Recall that the contribution to the index of a representation of Aγ is given
by

I1

(
ChAγ ,R

)
:= −z+

∂

∂z−
ChAγ ,R̃

∣∣∣∣
z−=z+≡z

, (4.21)

therefore to calculate the index we need to flow to the R̃ sector, that is to consider the super-
character rather than the character of the representation of su(2|2),

SCh


m

n

(z+, z−) := Ch


m

n

(z+,−z−). (4.22)
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By some straightforward algebra one then obtains,

SCh


m

n

(z+, z−) =
(
χ 1

2
(z+)− χ 1

2
(z−)

)
(

(−1)n−1χm−1
2

(z+)χn−1
2

(z−) + (−1)nχm
2
−1(z+)χn

2
−1(z−)

)
.

(4.23)

The index I1 as defined in eq. (4.21) is evaluated at z+ = z− and clearly we have(
χ 1

2
(z+)− χ 1

2
(z−)

)∣∣∣
z+=z−

= 0. Therefore we need only consider the term where the differential
∂
∂z−

is applied to this zero. We therefore have

I1


m

n

 = (−1)n+1
(
z−1 − z

) (
χm

2
−1(z)χn

2
−1(z)− χm−1

2
(z)χn−1

2
(z)
)
. (4.24)

We now use the identity

χl(z) =
z−2l − z2(l+1)

1− z2
, (4.25)

to show that (
χm

2
−1(z)χn

2
−1(z)− χm−1

2
(z)χn−1

2
(z)
)

= −χm+n
2
−1(z). (4.26)

Substituting this into eq. (4.24) we finally obtain

I1


m

n

 = (−1)n
(
z−1 − z

)
χm+n

2
−1(z),

= (−1)n
(
z−m−n+1 − zm+n−1

)
.

(4.27)

We now have the immediate corollary due to lemma 4.4.

Corollary 4.9.

I1



m

n


= 0. (4.28)

Proof. Since the index at a given level of Aγ is dependent only on the su(2)⊗ su(2) information,
we simply use the branching of the supertableau in lemma 4.4 to obtain

I1


m

n

 = I1


m+ 2

n+ 1

+ I1


m+ 1

n+ 2

 ,

= (−1)n+1
(
z−m−n−2 − zm+n+2

)
+ (−1)n

(
z−m−n−2 − zm+n+2

)
,

= 0.

(4.29)
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We also have the following corollary due to proposition 4.7.

Corollary 4.10.

I1



p q

r

s


= 0, (4.30)

which follows immediately from corollary 4.9 and proposition 4.7.
Finally, since they give zero representations, we clearly have

I1



p q

r

s


= 0, (4.31)

as well as
I1(T ) = 0, (4.32)

for any tableau larger than those already considered.
Since they are the only supertableaux with non-zero index, we now see that the only contri-

butions to I1 from representations of Aγ come from these maximally eccentric representations
of the zero mode subalgebra su(2|2). The index I1 is therefore counting the maximally ec-
centric representations of su(2|2) which appear in the decomposition of an Aγ module as an
infinite-dimensional graded su(2|2) module.

4.3 Spectral flow orbits

Recall that the index I1 counts only right-moving massless Ramond representations of Aγ and
specifically that the index applied to such representations gives an odd level-k theta function as
in eq. (4.9). Unlike the elliptic genus for N = 2 or N = 4 theories, which counted right moving
massless representations simply by their Witten index, the index I1 is a function of q (more
precisely of q̄, since the index is applied to the partition function as in definition 4.6 rather than
just characters of Aγ), and hence receives contributions from states throughout the massless
representation. We can understand the nature of these states by considering their charges.
By definition 4.6, the power of z in eq. (4.9) is the charge of the state under 2(T+3

0 + T−3
0 ).

Equation (4.9) then tells us that the states counted by I1 have

2(T+3
0 + T−3

0 ) = ±µ (mod2k), (4.33)

where µ = 2(l+ = l−) − 1, the Witten index of the underlying representation of Ãγ (see Ap-
pendix A). Similarly, the power of q in eq. (4.9) tells us the charge of the states under L0 − c

24 .
We therefore have

L0 −
c

24
=
u2

k
+

1

k

(
T+3

0 + T−3
0

)2
. (4.34)
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When applied to the hws, we recognise eq. (4.34) as the condition for the representation to be
massless. The states counted by I1 therefore satisfy the massless condition in terms of their own
charges. In particular, this means that the operator Q−K0 G−K0 annihilates all states counted
by the index, as can be seen by considering the norm of the state Q−K0 G−K0 |χ〉, for a state |χ〉
which extremises

(
T+3

0 + T−3
0

)2 at any level.
As noted by [Sau05], the conditions given in eqs. (4.33) and (4.34) are invariant under the

‘symmetric’ spectral flow automorphism of [DST88], under which we have

L2n,2n
0 = L0 − 2n(T+3

0 + T−3
0 ) + kn2,

T+3;2n,2n
0 = T+3

0 − nk+, T−3;2n,2n
0 = T−3

0 − nk−,
(4.35)

as well as shifts in the other generators which are unimportant for what follows. We therefore
realise that each state counted by I1 can be thought of as the image under symmetric spectral
flow (for some n) of the states counted at the ground level, namely |Ω+〉 , G−K |Ω+〉 ≡ |Ω−〉 , and
the two states whose su(2)± charges are the negatives of |Ω+〉 and |Ω−〉, which we’ll call |−Ω+〉
and |−Ω−〉 respectively. These are the states shown in fig. 4 for the massless representation of
Aγ with k+ = 3, k− = 2, and l± = 1

2 , as these are the only ground states in this representation.
By considering the su(2) ⊗ su(2) content of the maximally and non-maximally eccentric

tableaux as discussed in section 4.1, it is clear that those states which satisfy the massless
condition of eq. (4.34) and hence are annihilated by Q−K0 G−K0 , must lie in su(2|2) representations
described by maximally eccentric tableaux. Since they are the only representations of su(2|2)
with non-vanishing index, this confirms the result that the only states counted by I1 are the
‘massless’ states satisfying eq. (4.34).

We can now use the fact that the states counted by I1 are the spectral flow orbits of the
ground states |±Ω+〉 , |±Ω−〉 to identify all the su(2|2) representations which contribute to the
index of a representation of Aγ with su(2) charges l+ and l−. By proposition 4.3, the ground
states are contained in a maximally eccentric su(2|2) representation of eccentricity (2l+, 2l−).
Under the symmetric spectral flow given by eq. (4.35) with n < 0, the state |−Ω−〉 flows to
an su(2|2) highest weight state at level nµ + kn2 with charges −l+ + 1

2 − nk
+ and −l− − nk−

under su(2)+ and su(2)− respectively. Since the massless condition is preserved under spectral
flow, and such massless states must lie in representations of su(2|2) described by maximally
eccentric tableau, by eq. (4.23) this is the highest weight state for an su(2|2) representation with
eccentricity (−2l+ + 1− 2nk+,−2l−+ 1− 2nk−). Similarly, under symmetric spectral flow with
n < 0, the state |Ω+〉 flows to an su(2|2) highest weight state at level −nµ + kn2 with charges
l+ − nk+ and l− − 1

2 − nk
− under su(2)+ and su(2)− respectively. This is the highest weight

state for an su(2|2) representation with eccentricity (2l+ − 2nk+, 2l− − 2nk−). These su(2|2)
representations, which contain the spectral flow orbits of the states |Ω+〉 and |−Ω−〉 as highest
weight states, are therefore the only su(2|2) representations which contribute to the index I1.

5 Conclusion

In this paper we have shown that the zero mode subalgebra of the ‘Large’ N = 4 superconformal
algebra Aγ in the Ramond sector is the finite superalgebra su(2|2) (section 2) and we described
the process for decomposing a Ramond representation of Aγ as an infinite-dimensional graded
module of this zero mode subalgebra; this process is described in section 4.

As an application of this technique, we use this decomposition to develop our understanding
of the states counted by a supersymmetric index for Aγ , I1 introduced in [GMMS04]. This index
generalises the elliptic genus of N = 2 and small N = 4 theories, to theories with Aγ symmetry.
Since the elliptic genus of N = 4 theories admits a moonshine – connecting small N = 4
theories to the representation theory of the sporadic group M24 – the index I1 is a natural place
for a potential Aγ moonshine to appear. By considering the branching of su(2|2) to the even
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subalgebra su(2) ⊗ su(2), we find that the only representations of su(2|2) which contribute to
the index are described by the maximally eccentric Young supertableaux (definition 3.3). These
supertableaux are shown to be those which describe the ground states of massless representations
of Aγ in proposition 4.3. Since the u(1) charge of a representation of su(2|2) is given by the
number of boxes in the Young supertableau describing the representation, we see that the highest
weight states of these representations of su(2|2) are those for which the sum of the su(2) charges
is maximal for the given u(1) charge. This corresponds to the fact that the charges of all the
states counted by I1 satisfy the massless condition for Aγ [PT90a], as can be seen from the
theta function in 4.9, which describes the contribution to I1 of a massless representation of Aγ
[GMMS04]. Furthermore, using the spectral flow isomorphism of [DST88], we have been able to
identify all the maximally eccentric representations of su(2|2) which appear in the decomposition
of Aγ as a graded su(2|2) module in section 4.3.

Since the zero mode subalgebra of the small N = 4 algebra in the Ramond sector is described
by su(2|1) [STV88], one could also use the techniques of this paper to study representations of
the small N = 4 algebra. It seems unlikely that one could learn much about the elliptic genus of
such theories however, as the right moving N = 4 representations which contribute to this index
do so only through their ground states (by their Witten index), which will always be described
by a single representation of su(2|1) and hence by a single Young supertableau.

A The representation theory of Aγ

We present here the characters for the ‘large’ N = 4 algebra, Aγ first discovered in [STVS88]
with the character formulae first appearing in [PT90a; PT90b]. This algebra contains the energy-
momentum operator T (z) of conformal dimension 2, four supercurrents Ga(z) of dimension 3

2 ,

as well as seven operators of dimension 1 forming an ̂su(2)+
k+
⊗ ̂su(2)−

k− ⊗ û(1) Kac-Moody
subalgebra and four operators of dimension 1

2 .
In the Ramond sector, the charges of the algebra must satisfy a unitarity bound given by

khΩR ≥
(
l+ΩR + l−ΩR

)
+ u2

ΩR
+
k+k−

4
, (A.1)

where hΩR is the conformal weight of the highest weight state |ΩR〉, l±ΩR are the su(2)± charges

of |ΩR〉, and |ΩR〉 has charge −iu under the zero mode of the û(1). This bound comes from
considering the norm of the stateQ−K0 G−K0 |ΩR〉. Representations of Aγ are known as massless or
‘short’ when this bound is saturated and massive or ‘long’ otherwise. When the massless bound
is saturated, the generic sixteen su(2) × su(2) hws which exist in the massive representation
[PT90a] and which are shown in fig. 7a are reduced to eight su(2)× su(2) hws shown in fig. 7b.
As can clearly be seen, there is no state with both the maximal ŝu(2)+ charge and maximal
ŝu(2)− charge. We therefore build the representation on the state |Ω+〉 which is the state with
greatest ŝu(2)+ charge and the top of its ŝu(2)− multiplet.

As shown in [GS88], one can decouple the free fermionic fields as well as the bosonic û(1)
current from the rest of the algebra, leaving a non-linear algebra known in the literature as Ãγ
containing an energy-momentum tensor T̃ (z), four fields G̃a(z) which have weight 3

2 under the
new energy-momentum tensor T̃ (z) and six fields T̃±i(z) which have weight 1 under T̃ (z). The
central charge c̃ of T̃ (z) is given by

c̃ = c− 3, (A.2)

and the weight 1 fields T̃±i(z) form an ̂su(2)+

k̃+
× ̂su(2)−

k̃−
Kac-Moody subalgebra, where the

levels are given by
k̃± = k± − 1. (A.3)
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(a) The sixteen su(2)× su(2) Ramond hws in a
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Figure 7: The su(2) × su(2) hws of a Ramond representation of Aγ for massive compared to
massless representations.

We define the characters of a unitary highest weight module V (c, h, l+, l−) of Aγ as [PT90a],

χAγ ,{NS,R}(k+, k−, h, l+, l−; q, z+, z−) := TrV (c,h,l+,l−)(q
L0−c/24z

2T+3
0

+ z
2T−3

0
− ), (A.4)

where as usual we have q = e2πiτ and now we have two further variables corresponding to the
two ̂su(2)±

k± charges defined as z± = e2πiω± for ω± ∈ C. Note that we have suppressed a possible
dependence on the U0 charge (this corresponds to setting the variable χ = 1 in [PT90a] equation
2.17). These character formulae for unitary highest weight representations of Aγ are most easily
computed using this relation between Aγ and Ãγ [PT90a; PT90b], where the character formulae
for the two algebras are then related as

ChAγ ,I(h, lI±) = ChAQU ,I ×ChÃγ ,I(h, l̃I±), (A.5)

where I ∈ {NS,R} and AQU is the algebra of the four fermions and the û(1) generator that
were removed from Aγ to obtain Ãγ . We have [PT90a] l̃NS± = lNS± and l̃R± = lR± − 1

2 due to the
fermionic zero modes in AQUR. The quantum numbers in eq. (A.5) are therefore equal for the
NS sector, but differ by 1

2 for the R sector. Here, we give only the characters for the Ramond
sector, as the Neveu-Schwarz characters can be obtained from the Ramond ones by spectral flow
[DST88; PT90a; PT90b]. The character of AQU is then given by

ChAQU ,R(u; q, z±) = qu
2/k+1/8FR(q, z±)

∞∏
n=1

(1− qn)−1(1 + z−1
+ z−1
− )(z+ + z−), (A.6)

where

FR(q, z±) :=
∏
n∈N

(1 + z+z−q
n)(1 + z+z

−1
− qn)(1 + z−1

+ z−q
n)(1 + z−1

+ z−1
− qn). (A.7)

Character formulae for irreducible representations of Ãγ [PT90b] are then given by

Ch
Ãγ ,R
Massive(k̃

±, l̃±, h; q, z±) = qh−c/24+1/8FR(q, z±)B+−(q, z±)(z−1
+ + z−1

− )

× (1 + z−1
+ z−1
− )

∞∏
n=1

(1− qn)−1
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−

×
∑

ε+,ε−∈{±1}

ε+ε−z
2ε+(l̃++nk̃+)
+ z

2ε−(l̃−+mk̃−)
− ,

(A.8)
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Ch
Ãγ ,R
Massless(k̃

±, l̃±; q, z±) = qh−c/24+1/8FR(q, z±)B+−(q, z±)(z−1
+ + z−1

− )

× (1 + z−1
+ z−1
− )

∞∏
n=1

(1− qn)−1
∞∑

m,n=−∞
qn

2k̃++m2k̃−+2nl̃++2ml̃−

×
∑

ε+,ε−∈{±1}

ε+ε−z
2ε+(l̃++nk̃+)
+ z

2ε−(l̃−+mk̃−)
− (z

−ε+
+ q−n + z

−ε−
− q−m)−1,

(A.9)

where

B+−(q, z±) :=
∞∏
n=1

∏
z∈{z+,z−}

(
(1− z2qn)(1− z−2qn−1)

)−1
(1− qn)−2, (A.10)

and FR is as defined in eq. (A.7).
The characters for Aγ are then given by multiplying the above expressions by eq. (A.6)

depending on the relevant sector. As noted above, the NS characters can be obtained from the
R ones if required.

B Branching SU(M +N)→ SU(M)⊗ SU(N)

The method for computing the branching of SU(M |N) → SU(M) ⊗ SU(N) ⊗ U(1) follows
closely to that of the branching SU(M +N)→ SU(M)⊗SU(N). Here, we describe the process
for calculating the branching of a representation of SU(M+N)→ SU(M)⊗SU(N) as in [IN66].
Given an irreducible representation of SU(M), (Γ1, V1) described by a Young Tableau T1 and an
irreducible representation of SU(N), (Γ2, V2) described by a second Young tableau T2, then the
representation (Γ1⊗Γ2, V1⊗V2) of dimension dim(V1) dim(V2) appears in the decomposition of
an irreducible representation, (Ω,W ) with multiplicity equal to the multiplicity of (Ω,W ) in the
decomposition of the tensor product of T1 and T2 now treated as representations of SU(M+N).
This is demonstrated in the following example.

Example B.1. Consider the representation of SU(3) described by

which has dimension 8, and the representation of SU(4) described by

which has dimension 10. We want to check whether the 40-dimensional representation of SU(3)⊗
SU(4) described by (

,

)
appears in the decomposition of the 882-dimensional representation of SU(7) described by

.

We therefore want to calculate the Clebsch-Gordan decomposition of

× ,
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where now the tableaux are understood to refer to representations of SU(7). As is well known,
this decomposition can easily be found using the Littlewood-Richardson rule. In this example
this gives the result,

× = + + + ,

112 × 28 = 1008 + 882 + 756 + 490,
(B.1)

where the dimension of each representation is shown underneath the corresponding tableau.
From this calculation we conclude that the representation(

,

)
of SU(3)×SU(4) appears with multiplicity 1 in the decomposition of the SU(7) representation

.

To fully calculate the branching from SU(7) to SU(3)× SU(4), we therefore need to check
which other representations of SU(3)× SU(4) contain the representation

of SU(7) in their Clebsch-Gordan decomposition (when treated as tableaux of SU(7)). Note
that since we treat the tableaux of both SU(3) and SU(4) a tableaux of SU(7), then on the level
of the tableaux the decomposition must be symmetric with respect to the factors, as the tensor
product is symmetric. However after appropriately symmeterising the tableaux, one must still
simplify the tableau such that no columns are of length greater than N for a tableau of SU(N).
The full decomposition is then

7→

(
, 1

)
+

(
1,

)

+

(
,

)
+

(
,

)

+

(
,

)
+

(
,

)
+

(
,

)
+

(
,

)
+

(
,

)
+

(
,

)

+

(
,

)
+

(
,

)
,

(B.2)

where 1 denotes the singlet representation – the empty tableau. In terms of the dimensions of
the various representations this is

882 7→ 15 + 60 + 24 + 60 + 60 + 135 + 100 + 120 + 48 + 60 + 80 + 120, (B.3)

where the order of the representations has been kept the same as the tableaux in the previous
equation. 4
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