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Abstract
The use of no-reference image quality evaluation tools that produce MOS scores, like the VIQET tool which was released 
by the Video Quality Expert Group, raises the question of whether the produced MOS differences between images corre-
spond to noticeable differences in quality by the consumers. In this work, we attempted to approximate the minimum MOS 
difference that is required in order for people to be able to distinguish between a higher and a lower quality image under 
realistic conditions that are commonly encountered in the current consumer space. 91 people participated in a subjective just-
noticeable-differences study across three countries that used non-simulated image stimuli, produced and evaluated through 
crowd sourcing for the validation of the VIQET no-reference image quality tool. The image dataset consisted of 15 different 
scenes belonging to three different scene types, with a total of 210 different image pairs being used. After evaluating the 
quality of the collected data, a logistic regression analysis approach was employed in order to estimate the minimum MOS 
difference required between two images in order for a given percentage of people to be able to detect the higher quality image.

Keywords QoE · MOS difference · JND · Just noticeable difference · Image quality · VIQET

Introduction

For several decades, the media industry and the image 
quality research community have worked on develop-
ing and deploying no-reference image quality evaluation 
tools [10]. This challenging problem requires develop-
ing prediction models that algorithmically map photos to 
scores representative of human judgments of perceived 

image quality. A typical measure of perceived image qual-
ity is known as the Mean Opinion Score (MOS). MOS 
is obtained by asking observers to rate images for their 
quality on a particular scale (such as a scale from 1 to 5 
where 1 is bad and 5 is excellent). Image quality evalu-
ation tools hence serve to algorithmically predict image 
MOS that would otherwise have been obtained by asking 
a number of observers their opinion about the quality of 
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an image. An example of a no-reference tool for image 
quality prediction is the Video Quality Expert Group’s tool 
called VQEG Image Quality Evaluation Tool (VIQET) 
[18] which was released in March 2016 and open-sourced 
to the community.

A question that arises from using a tool like VIQET that 
produces MOS ratings is whether the MOS differences 
produced are noticeable to a consumer. For instance, on a 
five point MOS scale, an image that scores a MOS value 
of 5 is expected to be noticeably better in quality than 
one that scores a MOS value of 1. On the other hand, it is 
unclear whether an image that scores a MOS score of 3.8 
is noticeably better in quality than one that scores a MOS 
score of 3.6. Consequently, it is not yet clear which is the 
smallest MOS difference that is perceptible to users.

In this work, we present a subjective study that seeks 
to determine the smallest noticeable MOS difference on 
a set of images that are representative of consumer usage 
scenarios, i.e. using image examples that are commonly 
encountered in the current consumer space. Image qual-
ity expectation, and hence MOS, change over time as 
consumer expectations change. As a result, the minimum 
noticeable difference determined in this work may change 
over time. However, the main contribution of this work 
is the methodology and subjective study approach we 
have taken to answer the question of perceptible quality 
difference. We refer to our subjective study as a noticea-
ble-differences subjective study. The proposed approach 
is reminiscent of traditional just-noticeable-differences 
(JND) approaches [23, 30], but deviates from them in that 
it only uses non-simulated image stimuli, i.e. images that 
have not been artificially degraded or altered in any way.

Participants were presented with pairs of images and 
were asked to select the higher quality image. Regression 
analysis was then employed in order to map the success 
in selecting the higher quality image to the difference in 
MOS between two images, thus the minimum MOS differ-
ence in order for a given percentage of people to be able to 
detect the higher quality image was established. Further-
more, in order to take into consideration possible differ-
ences in quality perception due to cultural background and 
location, a cross-laboratory verification was conducted by 
using data gathered from three labs located in three differ-
ent countries (Belgium, UK, USA).

The rest of this paper is organized in five sections. 
“Background” section provides background information 
on the issue of just-noticeable-differences for image qual-
ity assessment and how it is approached in this work. The 
methodology followed is described in “Methodology” sec-
tion, while results are analyzed and evaluated in “Results” 
section, and discussed in “Discussion” section. Finally, 
conclusions are drawn in “Conclusion” section.

Background

In psychophysics, the JND is the smallest delta that a stim-
ulus needs to change before it is perceived by at least 50% 
of the subjects that are presented with the stimulus [12]. 
JND studies have found applications in various areas of 
psychophysics including sound perception such as music 
and speech [27], visual perception [2, 11], and haptics [8, 
12, 27]. In this work, we narrow the focus of our attention 
to visual perception, specifically the perception of image 
quality.

According to Wu et al. [23], JND models for visual 
perception can be divided into two categories based on 
the domain used for computing the JND threshold. These 
two JND categories are the subband-domain JND models 
and the pixel-wise JND models. For the subband-domain 
models, the image needs to be first transformed into a sub-
band domain, such as the DCT-domain [9, 21]. On the 
other hand, pixel-domain methods [13, 19, 24, 26, 29] are 
directly calculated on the spatial domain and thus are more 
convenient and less computationally complex. As a result, 
they have been used for a wide variety of applications such 
as visual quality assessment and enhancement [26].

Various JND models have been proposed in the litera-
ture. Yang et al. [25, 26] proposed the use of the overlap-
ping effect of luminance adaptation and spatial contrast 
masking in order to create a JND model, while Wu et al. 
[22] proposed a JND estimation model based on the free-
energy principle unified brain theory. Ahumada and Peter-
son [1] developed a well-cited DCT scheme for JND based 
on the spatial contrast sensitivity function (CSF). Many 
later works were based on this scheme in order to provide 
simpler or more advanced JND models [4, 17, 20, 28]. 
Peterson et al. [14] extended this scheme for color images, 
while Watson [20] improved it into the DCTune model 
by taking contrast masking into consideration. Hontsch 
and Karam [4] further modified the DCTune model by 
considering a foveal image region instead of only single 
pixels and used a locally adaptive perceptual quantization 
scheme based on a tractable perceptual distortion metric.

Methodology

Traditional image quality JND studies follow a design 
methodology that requires the generation of the image 
stimuli artificially. The traditional design, takes an origi-
nal reference image and introduces a particular adjustment 
to it (such as the introduction of noise or blur or com-
pression) at incrementally increasing levels of severity 
[3, 12]. The approach we propose here deviates from the 
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traditional JND study design in that it relies solely on non-
simulated image stimuli. The study utilizes only images 
produced by a multitude of consumer devices, namely 
phones, tablets, compact cameras, and digital single-lens 
reflex (DSLR) cameras. The reason behind this non-con-
ventional approach is that no-reference image quality eval-
uation research efforts have shifted focus to non-simulated 
image stimuli in order to better model the overall impact 
of a capture system on perception and human quality judg-
ment. Given the difficulty in simulating the joint impact of 
optics (lens and sensor) and post processing (typically a 
non-disclosed black box that varies widely between con-
sumer devices), our dataset of image stimuli for the notice-
able-difference study we describe in this work is a set of 
photographs of multiple scenes captured by a multitude 
of devices and hence exhibiting disparate image quality.

Environment and participants

Labs in Belgium (UGhent), United Kingdom (UWS), and 
the United States (Intel) were used for this study (Table 1). 
Participants were seated in an ergonomic chair in front of 
a desk with two monitors in front of them. A keyboard and 
mouse was used to make selections. The distance between 
the displays and participants was the standard three times 
the height of the display [5]. While the displays varied 
between labs, the two displays in each lab were identical. 
Intel and UGhent utilized two Samsung 28′′ UHD moni-
tors ( 3840 × 2160 ), model no. U28D590D, while two Sony 
Bravia 55′′ 4K TVs ( 3840 × 2160 ), model no. XD93, were 
used by UWS. The screens were calibrated according to Rec. 
ITU-R 709 [7] using an Atomos Spyder color calibration 
unit to sRGB gamut, D65 white point (6500K), 120 cd/m2 
brightness, and minimum black level. Furthermore, the color 
of the walls or curtains present in the test area was mid gray.

A total of 91 participants completed the study: 36 partici-
pants (19 male, 17 female) at the United States lab (Intel), 
31 (27 male, 4 female) at the Belgium lab (UGhent), and 
24 (19 male, 5 female) at the United Kingdom lab (UWS). 
All participants had normal or corrected eyesight and did 
not report having any problem with their vision. In total, 65 
males and 26 females participated in the study, with their 

age varying between 20 and 59 years old. Participants from 
UGhent and UWS were mostly PhD students and research-
ers, while participants from Intel were employed in various 
sectors and were recruited through a third party. Further-
more, the average duration of each session across all partici-
pants was 26.88 (± 10.70) min. Details about the labs and the 
participants of this study are summarized in Table 1.

Images

The images used in this study were originally taken in an 
effort to develop VIQET, a no reference image quality tool 
[18]. These images were captured by taking photos of the 
same scenes with a wide range of cameras of various qual-
ity (phones, tablets, compact cameras, and DSLR cameras) 
and are part of the Consumer Content Resolution and Image 
Quality (CCRIQ) dataset [15], which is available from the 
Consumer Digital Video Library (CDVL) (http://www.
cdvl.org/). The CCRIQ dataset contains 18 different scenes, 
belonging to 5 topic categories, namely flat surfaces, land-
marks at night, landscapes with good lighting, portraits, and 
still lifes. Out of these 18 scenes, 15 individual scenes were 
selected for this study as follows: scenes were divided into 
three scene types, namely indoor, landscape, and night shots, 
and 5 scenes belonging to each scene type were selected for 
the experiments in this work.

A sample image from each selected scene is shown in 
Fig. 1a–o. For each of the individual scenes, fourteen image 
pairs were selected for Phase 1, totaling 210 photo pairs. 
Ten of these pairs were repeated as a measure of reliability. 
As these images had been part of previous research [18], 
each image had a MOS assigned via crowd sourcing [16] 
which represented end-user ratings of image quality on a 
five point scale. MOS is an ITU standard for measurement of 
subjective assessment [6]. Image pairs were chosen to ensure 
that within each scene, the MOS deltas between image pairs 
ranged from small to large ( �MOS ∈ [0.25, 0.95] ). An effort 
was also made to ensure that image pairs were distributed 
from low quality to high. For example if there was a 0.4 
MOS delta between an image pair of lower quality then there 
was another pair of images from the same scene that had a 
delta of roughly 0.4 MOS that was of higher quality. The 

Table 1  Labs participating in this study and participant demographics

M male, F female, SD standard deviation

Lab Country Institution Monitor (model) Participants

All (M/F) Avg. age (SD) Occupation

Intel USA ©Intel Corporation Samsung 28′′ UHD (U28D590D) 36 (19/17) 39.3 (11.9) Various sectors
UGhent Belgium Ghent University Samsung 28′′ UHD (U28D590D) 31 (27/4) 28.0 (7.0) Ph.D. students/researchers
UWS UK University of the 

West of Scotland
Sony Bravia 55′′ 4K (XD93) 24 (19/5) 30.0 (5.7) Ph.D. students/Researchers

http://www.cdvl.org/
http://www.cdvl.org/
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distribution of MOS deltas in the dataset in relation to the 
absolute MOS values of the images in each pair is shown 
in Fig. 2.

For Phase 2, 51 images from the ones used in Phase 1 
were selected for each lab as follows: For each lab, 3 indi-
vidual images were selected from each of the 15 scenes used 
in Phase 1, leading to a total of 45 images. Out of these 45 
images, 9 were selected as control images and were the same 
for all labs and 36 were unique to each lab. Furthermore, 6 
out of the 9 control images were repeated for each lab, lead-
ing to 15 control images that were similar for all the labs. 
Of the 15 control images, the unique 9 were designed to act 
as a measure of reliability across labs and the 6 repeats were 
designed to act as a measure of participant reliability. As a 
result, 15 control and 36 unique images were selected for 
each lab, leading to a total of 51 images for phase 2. Similar 
to Phase 1, an effort was made to span the range of MOS 
scores for the photos that were rated across all three labs.

Procedures

A software application was designed to automate the ses-
sions and guide participants through the entire study. There 
were two phases to this study which all participants com-
pleted. Phase 1 was designed to measure how large of a dif-
ference in image quality there needed to be for participants 
to determine the image of higher quality. To this end, par-
ticipants were asked to select the image they considered as 
having the higher quality between two given images. Phase 
2 was designed to ensure that participant ratings of images 
was not significantly different from previous research. In 
that phase, participants were asked to rate each given image 
according to its quality. To avoid any misunderstanding or 
different interpretation of what high quality means, partici-
pants were instructed that overall image quality refers to 
how good the picture looks, taking into consideration the 
entire aspects of the picture (color, crispness, detail). Fur-
thermore, they were asked to keep in mind that they were not 
rating whether they like the content, whether they like the 
people in the picture, or whether they like the composition 
of the picture. Apart from the actual experiment session, 
each phase included a short practice session to ensure par-
ticipants understood the task. The practice session for each 
phase consisted of the same task as the actual experiment, 
but using only five pairs of sample images and five sample 
images for Phase 1 and 2 respectively.

Phase 1 was designed to present a full screen view of a 
photo on each monitor. The images were of the same scene 
but were taken with different cameras to ensure photo quality 
variation, so images were not the exact same frame. Partici-
pants selected the image on the left or right display by hitting 
the corresponding left or right arrow followed by “Enter” 
on the keyboard. When a participant made a selection, the 

Fig. 1  Sample images from each scene. a AutumnMtn, b beach toys, 
c bridge, d building, e build. corner, f evac. plan, g flowers, h fruit, i 
Ghent, j green tree, k Levi, l mirror ball, m parking, n pipes, o tree 
lake

Fig. 2  Distribution of delta MOS values in relation to the absolute 
MOS values of the images in each pair
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software automatically changed to the next image pair and 
continued until all 220 image pairs had been selected. Photo 
pairs were presented in a random order although the soft-
ware was designed to never present the same scene more 
than three times in a row. The software also randomized the 
images between the two displays. The same 220 image pairs 
were presented to all 91 users.

Phase 2 began with a practice session which started auto-
matically when Phase 1 ended. Phase 2 presented a single 
full screen image on the left display and a five point rat-
ings scale (5 = excellent, 4 = good, 3 = fair, 2 = poor, 1 
= bad) on the right display. Participants were asked to rate 
the “image quality” on the left display. When a participant 
made a selection, the software automatically moved on to 
the next image until all 51 images were rated. Images were 
presented in a random order.

Phase 2 was critical because if the images were rated sig-
nificantly different from the original MOS ratings collected 
through a crowd sourcing study then the deltas that were 
used to select image pairs, as described above, would not 
be accurate.

Results

In order to extract meaningful and safe conclusions, the data 
obtained in this study were first evaluated in terms of the 
recorded MOS, agreements between different labs, screen 
selection, and scene type.

Evaluation of captured data in terms of MOS

The goal of this study is to estimate a function p = f (�MOS) , 
where p is the probability of selecting an image with higher 
MOS for the task: “select a better quality image between two 
given images”, and �MOS is the difference of MOS of the two 
compared images. The proposed model is built based on the 
MOS collected through crowd sourcing [16]. Therefore, we 
have to ensure that MOS collected in the laboratory study 
correlate well with the MOS collected by the crowd source 
experiment. As a result, in order to establish the quality of 
the captured data, the MOS values recorded for each image 
at the second phase of the experiment by each lab were 

compared to the MOS values received for the same images 
through crowd sourcing.

To evaluate their similarity, the Pearson’s corre-
lation coefficient (PCC) was computed, indicating a 
strong ( PCCUGhent = 0.8938 ) or very strong correlation 
( PCCIntel = 0.9632 , PCCUWS = 0.9276 ) between the crowd 
sourced MOS and this studies MOS for each of the labs, as 
well as a very strong correlation for the ratings across all 
labs ( PCCall = 0.9111 ), as shown in Table 2. Four one-way 
analyses of variance (ANOVAs), each between this studies 
MOS per image and the crowd sourced MOS per image, for 
each of the labs, as well as for all the labs together, showed 
that there is no statistically significant difference ( p > 0.09 
in all cases) between the ratings (detailed results in Table 2). 
Furthermore, the PCC between each subject’s MOS ratings 
and the crowd sourced MOS is shown in Fig. 3, indicating a 
subject-wise strong correlation.

Linear fitting of the crowd sourced MOS into the MOS 
received through this study also showed that there is a good 
relationship between the ratings, as shown in Table 2 and 
in Fig. 4. The results from the linear fitting are provided 
in Table 2 in the form of the resulting linear equations 
and the R 2 , while plots for both the data and the resulting 
equations are shown in Fig. 4 for each lab separately and 
in Fig. 5 for all the labs. It must be noted that while the 

Table 2  Relationship between 
the MOS received for each 
image through this study (y) and 
through crowd sourcing (x)

CI, 95% confidence interval; � , slope parameter; � , intercept parameter

Lab PCC ANOVA p Linear fit CI� CI� R2

Intel 0.9632 0.9037 y = 0.9975x − 0.0190 ± 0.0722 ± 0.2246 0.9277
UGhent 0.8938 0.0917 y = 1.1008x − 0.6665 ± 0.1416 ± 0.4357 0.7989
UWS 0.9276 0.7165 y = 1.0316x − 0.0243 ± 0.1065 ± 0.3314 0.8605
All 0.9111 0.3680 y = 1.0451x − 0.2429 ± 0.0682 ± 0.2113 0.4379

Fig. 3  Pearson’s correlation coefficient between the MOS ratings of 
each subject and the crowd sourced ratings
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ratings received from UGhent are lower on average than 
the other two groups, there still exists a good relationship 
between the MOS from UGhent and the crowd sourced 

data [ PCC = 0.8938 , no statistically significant difference 
( p = 0.0917 ), R2 = 0.7989].

Apart from the relation of the acquired MOS ratings 
from each lab to the MOS ratings from the crowd sourcing 
experiments, it is important to establish whether the range 
of the MOS values of the images in a pair affect the ability 
of the users to detect the higher quality one. To this end, 
the percentage of the participants that successfully detected 
the higher quality image from each pair was computed and 
plotted in Fig. 6 against the MOS ratings of the images in 
the pair. From this figure, it is evident that high success rates 
are almost evenly spread across all ranges of MOS values, 
thus no relation between the range of the MOS ratings and 
the ability of the users to select the higher quality image can 
be established. An interesting observation is that most of 
the cases of low or medium success rates refer to pairs with 
MOS ratings above 2.5. Nevertheless, the vast majority of 
pairs with MOS ratings above 2.5 had success rates above 
0.60. This shows that while some users had some difficulty 
when comparing images with high MOS values, the major-
ity of the users were able to detect the higher quality image 
regardless of the range of the MOS values.

Evaluation of captured data in terms of consistency 
across labs

The positioning of the higher quality image across the two 
screens for each similar pair of images differed between 

Fig. 4  The MOS received through this study compared to crowd 
sourced MOS ratings, along with their linear fitting, for each lab par-
ticipating in the study

Fig. 5  The MOS received through this study compared to crowd 
sourced MOS ratings, along with their linear fitting, for all the labs 
participating in the study

Fig. 6  The percentage of participants that successfully selected the 
higher quality image among a pair of images, in relation to the MOS 
rating of each image
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participants, i.e. for the same pair of images, some partici-
pants would have the higher quality image reside on the left 
screen, while others would have the higher quality image 
reside on the right screen. For each pair of images, approxi-
mately 50% of the participants had the higher quality image 
reside on the left screen and approximately 50% on the right 
screen. After computing the percentage of participants that 
detected the higher quality image for each image pair when 
they selected the left screen and when they selected the right 
screen, and in order to establish the quality of the captured 
data, a correlation analysis between the success rates per 
selected screen for each image pair and for each lab was 
conducted. The PCC computed between the average success 
rate for each image pair for when the right or the left screen 
was selected at each lab is shown in Table 3. It would be 
expected that the difference in the success rates for the same 
pairs of images when the participants selected a different 
screen would be minimal, and thus the results between dif-
ferent screen selections would be strongly correlated. The 
results from UGhent exhibited a strong correlation between 
left and right screen selection, whereas a moderate correla-
tion was observed for the results from Intel and UWS.

In order to further examine the lower correlation for Intel 
and UWS between the results of the left and right screens 
for the same pairs of photos, a one-way ANOVA between 
the average success rate for each image pair for when the 
right or the left screen was selected at each lab was con-
ducted. Results showed that there was a statistically sig-
nificant difference ( p = 0.0109 ) between the left and right 
screen results for Intel, there was no statistically significant 
difference ( p = 0.3349 ) between the left and right screen 
results for UGhent and there was a statistically significant 
difference ( p = 0.0045 ) between the left and right screen 
results for UWS. These findings are consistent with the cor-
relation analysis above and further demonstrate the variation 
between the results for the same pairs of photos for Intel and 
UWS, when the higher quality photo is on a different screen.

Apart from the expected similarity between the success 
rates for the same image pairs when the higher quality image 
is on a different screen, it would be expected that the overall 
success rates (without examining the screen that the higher 
quality image resided) between labs would not differ signifi-
cantly, since given a sufficient number of participants in the 

study, the perception of image quality should statistically be 
similar. In order to investigate this argument, an ANOVA 
between the overall success rates per image pair for the three 
labs was conducted, resulting to a statistically significant dif-
ference ( p = 0.0111 ). The ANOVA results are also shown in 
Fig. 7 in the form of box plots.

The same procedure was then repeated twice; once for the 
average success rate per image pair for when the left screen 
of each lab was selected and once for the average success 
rate per image pair for when the right screen was selected. 
Results are shown in the form of box plots in Figs. 8 and 9 
for when the right and left screen was selected respectively, 
and showed that there was no statistically significant dif-
ference ( p = 0.8715 ) between the results of the three labs 

Table 3  Correlation between the results from when the left or the 
right screen was selected at each lab for the same pairs of images

*Statistically significant difference

Lab PCC Correlation ANOVA p

Intel 0.686 Moderate 0.0109*
UGhent 0.821 Strong 0.3349
UWS 0.624 Moderate 0.0045*

Fig. 7  One-way ANOVA results between all the results (both left and 
right screens) of each lab

Fig. 8  One-way ANOVA results between the results from the right 
screen of each lab
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when participants selected the right screen. Nevertheless, 
the ANOVA showed that there was a statistically significant 
difference ( p = 0.0002 ) between them, when participants 
selected the left screen.

Furthermore, an ANOVA was conducted between the 
overall success rates per image pair for each pair of labs 
(Intel vs. UGhent, Intel vs. UWS, UWS vs. UGhent), show-
ing that there was a statistically significant difference 
( p = 0.0046 ) between the results from UGhent and UWS, 
there was marginally ( p = 0.0595 ) no statistically significant 
difference between the results from Intel and UGhent, and 
there was no statistically significant difference ( p = 0.2618 ) 
between the results from Intel and UWS, as also shown in 
Table 4.

Evaluation of the impact of scene type

As explained in “Images” section, the images used for the 
experiments in this study consisted of three different scene 
types (i.e. indoor, landscape, and night shots). In order to 
evaluate whether the scene type had an impact on the par-
ticipants’ ability to correctly detect the higher quality image, 
the average percentage of correct selections was computed 

for each scene type and scene, as well as for all the images 
used. The mean correct selection percentage for each scene, 
as well as the standard deviations, are shown in Table 5 and 
Fig. 10, from where it is evident that scene type has lit-
tle effect on the participants ratings. A one-way ANOVA 

Fig. 9  One-way ANOVA results between the results from the left 
screen of each lab

Table 4  Results of the one-way ANOVA (p values) between the 
results of each lab (for both left and right screens)

*Statistically significant difference between the two results

Lab Intel UGhent UWS

Intel – 0.0595 0.2618
UGhent 0.0595 – 0.0046*
UWS 0.2618 0.0046* –

Table 5  Percentage of participants that selected the higher quality 
image per scene

SD computed between the three labs

Scene type Scene Mean SD

Indoor Beach 0.7810 0.1001
Bridge 0.7951 0.0408
Evac 0.7614 0.0218
Flowers 0.8022 0.0777
Fruit 0.8360 0.0628

Landscape Autumn 0.7747 0.0813
Ghent 0.7543 0.0313
Green 0.8234 0.0599
Levi 0.7755 0.0414
Tree 0.8642 0.0303

Night Building 0.8077 0.0250
Corner 0.8265 0.0108
Mirror 0.7755 0.0247
Parking 0.7465 0.0377
Pipes 0.7261 0.0241

All scenes 0.7900 0.0447

Fig. 10  Percentage of users that selected the higher quality image per 
scene and scene type
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was also conducted between the results for the three scene 
types in order to establish whether there was a statistically 
significant difference on the participants ratings. Results 
showed that there was no statistically significant difference 
( p = 0.8273 ) between the ratings for each scene type, further 
supporting the argument that scene type had no significant 
effect on the ability of participants to correctly detect the 
higher quality image.

Estimation of minimum �
MOS

 required for detecting 
the higher quality image

The main goal of this study is to determine the minimum 
MOS delta ( �MOS ) between two images in order for a given 
percentage ( ph ) of people to be able to select the image 
with the higher quality. Each sample of the captured data 
consisted of the MOS delta between the two images shown 
to the participant along with the image and screen he/
she selected. A binary flag indicating whether the subject 
selected the higher quality image is then computed using 
these data, by assigning the value 1 when the higher quality 
image was selected or the value 0 otherwise.

Logistic regression with binomial distribution using 
all the captured data was used in order to estimate the 

function ph = f (�MOS) . The function obtained for the avail-
able MOS delta range, along with the confidence inter-
val and the aggregated samples is depicted in Fig. 11. An 
estimation of the percentage of subjects that will choose 
photo X over photo Y for a given MOS delta between X 
and Y, i.e. �MOS(X, Y) , can then be determined using the 
logistic function:

where �0 and �1 are the � parameters computed through 
logistic regression and are shown in Table 6 for all the avail-
able data, as well as for each individual lab. Through the 
same procedure we can establish the minimum MOS delta 
for achieving a required probability ph of choosing an image 
with a higher MOS between two images:

where

Furthermore, in order to evaluate the effect of the statis-
tically significant difference in the results between the labs 
participating in this study, the function ph = f (�MOS) was 
calculated three more times by using the results from each 
lab separately, whereas in order to examine the effect of 
the statistically significant difference between the results 
of the three labs when users selected the left screen, the 
function ph = f (�MOS) was calculated two more times by 
using the samples from all labs for which users selected 
the left and the right screen respectively. The obtained 
functions for the individual labs and for the overall model 

(1)ph = f
(

�MOS

)

=
1

1 + e−(�0+�1⋅�MOS)

(2)�MOS(ph) =
logit(ph) − �0

�1

(3)logit(x) = − ln

(

1

x
− 1

)

.

Table 6  � parameters, regression performance, and 95% confidence 
interval for the logistic regression using the data recorded by each lab

Lab �
0

�
1

RMSE MAE 95% CI

Intel 0.1928 1.8907 0.1436 0.1125 ± 0.1438 ± 0.0232
UGhent − 0.1578 2.8701 0.1810 0.1280 ± 0.1815 ± 0.0256
UWS 0.4590 1.2593 0.1543 0.1209 ± 0.1541 ± 0.0262
All 0.1678 1.9970 0.1340 0.0995 ± 0.1343 ± 0.0143
All-left 0.1857 1.8198 0.1363 0.1034 ± 0.1364 ± 0.0201
All-right 0.1498 2.1962 0.1424 0.1056 ± 0.1428 ± 0.0214

Fig. 11  The function of prob-
ability ph of choosing an image 
with a higher MOS between two 
images, depending on the MOS 
delta ( �MOS)
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for the available MOS delta range are shown in Fig. 12, 
while the regression parameters for all the created models 
are shown in Table 6.

The minimum MOS delta required to achieve various 
success rates for all the examined approaches is shown in 
Table 7. From Table 7 it is evident that while there is a small 
difference in the minimum MOS delta required depending 
on the data used for calculating the function ph = f (�MOS) , 
this difference can be considered as non significant since 
it cannot be perceived by users. For example, using the 
data from all the labs, the required MOS delta in order 
for 75% of subjects to detect the higher quality image is 
0.4661 ± 0.0143 . The data from each of the three labs sug-
gest that a noticeable threshold where 75% of users can see a 
difference is between 0.4378 ± 0.0256 and 0.5079 ± 0.0262 . 
For the 75% threshold, the difference of the MOS delta using 
all data to the MOS delta computed using the data from each 
individual lab is − 0.0130, 0.0283, and − 0.0418 for Intel, 
UGhent, and UWS respectively. Taking into consideration 
the confidence bounds for each prediction, the maximum dif-
ference of the model computed from all labs compared to the 
models computed by each individual lab becomes ≈ ±0.07 . 

Our experience shows that an absolute difference of less than 
0.05 (up to 0.07 if confidence bounds are taken into consid-
eration) in MOS value can be considered insignificant since 
it cannot be perceived by users. Consequently, it is evident 
that the statistically significant difference detected between 
the results from each lab (refer to “Evaluation of captured 
data in terms of consistency across labs” section) does not 
affect their overall quality and descriptive power.

Regarding the models created using the samples for 
which only the left or only the right screen was selected, 
results from the left screen suggest that a noticeable MOS 
delta threshold where 75% of users can see a difference is 
0.5017 ± 0.0201 , whereas results from the right screen set 
this threshold to 0.4320 ± 0.0214 . It is evident that although 
a small difference exists between the two results (0.0697), it 
is not significant since it cannot be perceived by users. Fur-
thermore, the absolute difference from the minimum MOS 
delta computed by the overall model is even smaller (0.0356 
and 0.0341 for the left and right screen respectively), show-
ing that the statistically significant difference detected 
between the results of the three labs when users selected 
the left screen does not significantly affect the results of the 
proposed model.

Discussion

From the scattered plot in Fig. 11, it is evident that signifi-
cant scattering exists across the samples of this study. The 
MOS deltas of the image pairs were taken into consideration 
for creating the logistic regression model described above. 
As a result, different image pairs with the same MOS delta 
are considered as referring to the same case, thus the scat-
ter plot in Fig. 11 depicts the aggregated image pairs. Since 
different image pairs are included in the same MOS delta 
groups, the variability stemming from these differences is 
not taken into consideration. In order to examine the effect 
of scene in the probability of selecting the higher quality 
image, a non-aggregated scatter plot with samples grouped 
by image pair was plotted in Fig. 13. It is evident that the 
most extreme outliers belong to different scenes. Neverthe-
less, 2 out of the 4 most extreme outliers ( ph < 0.40 ), which 
are the most extreme and the second most extreme outliers, 
belong to the scene “Pipes”.

Fig. 12  The function of probability ph of choosing an image with a 
higher MOS between two images, computed using the data captured 
from each lab

Table 7  Minimum MOS delta required in order for a given percentage of subjects ( ph ) to detect the higher quality photo in relation to the data 
used

ph All All-left All-right Intel UGhent UWS

0.80 0.6102 ± 0.0143 0.6598 ± 0.0201 0.5630 ± 0.0214 0.6313 ± 0.0232 0.5380 ± 0.0256 0.7363 ± 0.0262
0.75 0.4661 ± 0.0143 0.5017 ± 0.0201 0.4320 ± 0.0214 0.4791 ± 0.0232 0.4378 ± 0.0256 0.5079 ± 0.0262
0.70 0.3403 ± 0.0143 0.3636 ± 0.0201 0.3176 ± 0.0214 0.3462 ± 0.0232 0.3502 ± 0.0256 0.3083 ± 0.0262
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In order to better understand the problem, the pairs 
showing the largest difference are shown in Figs. 14 and 
15. In these cases, it seems that the error comes from the 
crowd sourced experiment which allocated a higher score 
to lower quality images. For image Pipes.D (Fig. 14a) 
and Pipes.AA (Fig. 15a) we cannot see as much detail in 
the background, whereas there are obvious color errors 
since white colors are depicted as pink. Nevertheless, in 
the crowd sourced experiment, both images were given 
higher MOS than images Pipes.W (Fig. 14b) and Pipes.
DD (Fig. 15b) respectively. The conclusion that the error 
may originate from the crowd sourced ratings was fur-
ther supported by the MOS assigned to images Pipes.AA 
by UGhent during Phase 2 of the study, which was 3.297 
compared to 3.992 assigned through crowd sourcing. 
Assigning a MOS of 3.297 to Pipes.AA would change the 
success rate of the image pair in Fig. 15 to 79.12% instead 
of 20.88%. Unfortunately, ratings from the other labs are 
not available for image Pipes.AA since it was unique to 

Fig. 13  Percentage of subjects that selected the higher quality image 
in relation to �MOS and scene

Fig. 14  The most extreme case with �MOS = 0.400 and only 16.48% of subjects choosing Pipes.D. a Image Pipes.D, MOS: 4.196, b Image 
Pipes.W, MOS: 3.796

Fig. 15  The second most extreme case with �MOS = 0.603 and only 20.88% of subjects choosing Pipes.AA. a Image Pipes.AA, MOS: 3.992, b 
image Pipes.DD, MOS: 3.389
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UGhent for Phase 2 of this study. Similarly, ratings for the 
images Pipes.D, W, and DD are not available from any lab.

Another example of large difference between the model 
probability and the obtained probability is presented in 
Fig. 16 and in Fig. 17. In these cases, even with relatively 
small MOS difference, only 2 out of 91 subjects made an 
error for the first pair ( �MOS = 0.311 ), while 7 out of 91 
subjects made an error for the second pair ( �MOS = 0.293 ). 
For Fig. 16, image Pipes.I has evident color and focus 
problems, thus making it easy for subjects to select image 
Pipes.BB as having higher quality. In the case of Fig. 17, 
it seems that the slightly richer colors of image Tree.O 
(Fig. 17a) led most of the subjects to correctly select it. 
Furthermore, the MOS acquired during Phase 2 from 
UGhent for image Tree.O is similar to the one acquired 
through crowd sourcing (4.500 vs. 4.517). MOS ratings 
for the other images in Figs. 16 and 17 are not available 
from any lab.

The scattering of the obtained results can be caused by 
many different factors. In general, comparing two different 
images and scoring the quality are two different cognitive 
processes. Therefore, to obtain a more precise but less prac-
tical function given by Eq. 1, one has to use exactly the same 
images with different distortions. Nevertheless, the variabil-
ity in image sources and capturing conditions enables the 
proposed model to provide a generalized “rule-of-thumb” 
for establishing a minimum difference between the MOS of 
two images in order for a certain percentage of people to be 
able to select the higher quality image.

It can be argued that when comparing similar non-simu-
lated images, multiple factors apart from quality affect the 
users decision on which image has the higher quality. Fac-
tors like aesthetics, colors, content, etc. play an important 
role in users’ image quality perception. Nevertheless, the use 
of simplified models that only take into consideration met-
rics that can be acquired through automated procedures is 

Fig. 16  Extremely correct case where even with small MOS difference �MOS = 0.311, 97.80% of the subjects chose Pipes.BB. a Image Pipes.BB, 
MOS: 2.807, b Image Pipes.I, MOS: 2.496

Fig. 17  Extremely correct case where even with small MOS difference �MOS = 0.293, 92.31% of the subjects chose Tree.O. a Image Tree.O, 
MOS: 4.517, b Image Tree.Q, MOS: 4.224
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a practical necessity. No-reference image quality tools, e.g. 
VIQET [18], can produce MOS ratings for images without 
requiring user ratings. As a result, the time needed to acquire 
image quality ratings is significantly reduced. Interpreting 
the MOS acquired by such tools poses a difficult challenge, 
since there is no definite analytical way to determine when 
the actual users will be able to tell which image has the 
highest quality out of group of similar images with varying 
MOS. In this work, we attempted to provide a solution to 
this problem and proposed a model that provides a MOS 
threshold for indicating when a certain percentage of users 
can detect the higher quality image. In addition, the use of 
a very diverse image dataset that resembles “real-world” 
photography use scenarios, including images acquired by 
multiple consumer products (phones, tablets, compact cam-
eras, and DSLRs), increases the reliability of the acquired 
results and their practical usefulness.

Conclusion

In this work, the authors examined the problem of deter-
mining the minimum MOS difference required between two 
images in order for a given percentage of people to be able 
to identify the higher quality, in terms of MOS, image. A 
noticeable-differences subjective study was conducted by 
three labs, using non-simulated image stimuli created for 
the VIQET study, with all the images annotated with a MOS 
score acquired through crowd sourcing. The acquired rat-
ings were evaluated in terms of agreement with the crowd 
sourced study, as well as in terms of agreement between the 
different labs conducting the experiments. Results showed 
that the acquired MOS correlated well with the crowd 
sourced data, while a small disagreement detected between 
the results for the left and the right screen of two of the labs 
had minimal effect on the conclusions of this study. Fur-
thermore, while there was a small variation across different 
scenes in the percentage of participants that successfully 
detected the higher quality image from each pair, there was 
no statistically significant difference between the results for 
different scene types (indoor, landscape, night). Logistic 
regression was employed in order to compute the percentage 
of people that would successfully detect the higher quality 
image, as a function of the MOS difference between two 
images. Using this function, the minimum MOS difference 
required in order for a for a given percentage of people to be 
able to identify the higher quality image can be computed. 
Following this procedure, it was concluded that a MOS dif-
ference of 0.4661 ± 0.0143 is required in order for 75% of 
the people to be able to detect the higher quality image.

While the focus of this study was to create a general-
ized “rule-of-thumb” for determining a minimum MOS 
difference between two non-simulated images in order for 

the majority of users to be able to detect the higher quality 
image, it can be argued that other variables affect the users’ 
perception of quality. Factors like aesthetics, artistic value, 
depicted content, angle of capture, color saturation, light-
ning, etc. also affect the decision of users regarding image 
quality. To this end, future work will examine the use of 
more complex models that will take into consideration more 
image characteristics than just the MOS.
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