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ABSTRACT
Models of cold dark matter (CDM) predict that the distribution of dark matter in galaxy
clusters should be cuspy, centrally concentrated. Constant density cores would be strong
evidence for beyond CDM physics, such as self-interacting dark matter (SIDM). An observable
consequence would be oscillations of the brightest cluster galaxy (BCG) in otherwise relaxed
galaxy clusters. Offset BCGs have indeed been observed – but only interpreted via a simplified,
analytic model of oscillations. We compare these observations to the BAryons and HAloes
of MAssive Sysmtes (BAHAMAS)–SIDM suite of cosmological simulations, which include
SIDM and a fully hydrodynamical treatment of star formation and feedback. We predict that the
median offset of BCGs increases with the SIDM cross-section, cluster mass, and the amount
of stellar mass within 10 kpc, while CDM exhibits no trend in mass. Interpolating between
the simulated cross-sections, we find that the observations (of 10 clusters) are consistent with
CDM at the ∼1.5σ level, and prefer cross-section σ /m < 0.12(0.39) cm2 g−1 at 68 per cent
(95 per cent) confidence level. This is on the verge of ruling out velocity-independent dark
matter self-interactions as the solution to discrepancies between the predicted and observed
behaviour of dwarf galaxies, and will be improved by larger surveys by Euclid or Super-
pressure Balloon-borne Imaging Telescope (SuperBIT).

Key words: gravitational lensing: strong – gravitational lensing: weak – galaxies: clusters:
general – dark matter.

1 IN T RO D U C T I O N

The search for dark matter remains fruitless. As the dominant mass
component in our Universe, revealing its nature has become one of
the greatest questions of modern science. However, despite wide
efforts to detect it, for example at the Large Hadron Collider in
CERN (Kahlhoefer 2017), or directly at the Large Underground
Xenon (LUX) experiment (Akerib et al. 2016) the community
remains in the dark.

In an effort to diversify and broaden our search, physicists have
begun to consider new avenues, focusing on specific properties
of dark matter. In this paper, we address one such property, the
self-interaction cross-section. Dark matter is commonly assumed to
be collisionless. However, dark matter that exhibits a relatively
large self-interaction cross-section (σDM/m � 0.5 cm2 g−1 or
0.2 barn GeV−1) could potentially alleviate problems that exist
in the small-scale structure of the standard cold dark matter (CDM)
model. By reducing the central densities of dark matter haloes and
thus creating a core, it can ease the so-called core–cusp problem

� E-mail: harvey@lorentz.leidenuniv.nl

(where observations of dwarf galaxies suggest the existence of cored
density profiles where simulations of CDM predict cuspy ones;
Dubinski & Carlberg 1991; Yoshida et al. 2000; Davé et al. 2001;
Colı́n et al. 2002; Rocha et al. 2013). It remains unclear whether
these inconsistencies are due to unknown baryonic processes or
a breakdown in the CDM model. However, it is clear that by
constraining self-interacting dark matter (SIDM) we can rule it out
as a cause of the small-scale problems, or probe self-interactions in
the dark sector, something that is impossible with traditional dark
matter experiments.

Efforts to constrain the momentum transfer cross-section per
unit mass, σ DM/m have been concentrated mainly on clusters of
galaxies. Although some studies have looked at using dwarf galaxies
(Zavala, Vogelsberger & Walker 2013; Elbert et al. 2015; Robles
et al. 2017), it remains to be seen if these observables are completely
discriminative (Strigari, Frenk & White 2017; Harvey et al. 2018).
Galaxy clusters, on the other hand, are favourable laboratories in
which to probe dark matter self-interactions. The existence of large
quantities of dark matter results in strongly deformed space–time
meaning that both strong and weak gravitational lensing can be used
to infer its distribution.
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Methods that use clusters of galaxies to constrain σ DM/m can
be classified into two distinct cases, those using merging clusters
and those using relaxed ones. Although initially used due to their
apparent simplicity, studies using relaxed clusters suffered from the
lack of high-resolution simulations, and hence found it difficult to
place reliable constraints (e.g. Miralda-Escudé 2002). As a result, in
the past decade attention shifted to merging clusters. By comparing
the distribution of dark matter to the collisionless galaxies many
studies attempted to constrain the self-interaction cross-section
to σ DM/m � 1 cm2 g−1 (Markevitch et al. 2004; Randall et al.
2008; Harvey et al. 2015). However, subsequent studies have shown
that uncertainties associated with the modelling and measurement
interpretation can bias constraints (Robertson, Massey & Eke 2017;
Wittman, Golovich & Dawson 2018). It seems that the complex
nature of these clusters means that gaining insightful conclusions
will require high-resolution simulations and careful modelling.

The key observable that this paper will concentrate on was first
proposed by Kim, Peter & Wittman (2017, hereafter K17). They
found that during the collision of two equal-mass clusters with cored
density profiles, the brightest cluster galaxy (BCG) would become
offset from the centre of the halo. A constant central density leads to
a gravitational potential that is quadratic in radius. An offset BCG
therefore experiences a harmonic oscillation long after the halo has
re-relaxed and virialized. It was hypothesized that this observation
would not be observed in CDM since the cuspy central region would
keep the BCG tightly bound to the centre.

Following this study, an observational paper looking at 10 relaxed
galaxy clusters attempted to observe this wobble (Harvey et al.
2017, hereafter H17). They used the parametric gravitational lensing
algorithm LENSTOOL to measure the positions of cluster-scale dark
matter haloes from the locations of multiply imaged background
galaxies, and then measured the separations between the dark matter
haloes and their corresponding BCGs. H17 found a wobble of Aw =
11.8+7.2

−3.0 kpc, where Aw is the amplitude of a harmonic oscillator that
parametrizes the distribution of dark matter–BCG offsets. Indeed
when compared to n-body simulations, which included realistic
baryonic feedback, there appeared to be a 3σ discrepancy with
simulations predicting little or no wobble.

Because of a lack of SIDM simulations, H17 were unable to test
for systematics associated with the harmonic oscillator model they
used to model BCG wobbling. Moreover, the predictions of offset
BCGs in K17 were from idealized, dark matter only simulations
of equal mass mergers, not cosmological simulations of relaxed
clusters. In this paper, we build on these two studies by using
cosmological simulations including baryonic physics of both CDM
and SIDM, allowing us to characterize the BCG wobbling signal
expected with CDM or with different SIDM models.

This paper is structured as follows. In Section 2, we outline
the data used, including a recap of the H17 sample, the suite of
simulations used, and how we select samples of simulated clusters.
The next section outlines how we analyse these samples and we
construct our model of the signal. In Section 4, we fit our model,
presenting our results, and in Section 5, we discuss our results and
give our conclusions.

2 DATA

2.1 Observations

In this paper, we will use the observations from H17 in an attempt
to measure the self-interaction cross-section of dark matter. H17
looked at 10 massive galaxy clusters (z̄ = 0.33), with at least

10 multiple images sourced from the Local Cluster Substructure
Survey (LoCuSS; Richard et al. 2010) and the Cluster Lensing And
Supernova survey with Hubble (CLASH; Zitrin et al. 2015). Using
fitted parametric models of the main cluster halo and BCG, they
used strong gravitational lensing to estimate the offset between the
two in the plane of the sky.

In order to quantify the measurement uncertainty in the position-
ing due to a finite number of strong lensing constraints, they took
the observed multiple images, derived source positions, then using
a known model, projected these sources back in to the image plane.
Using this new set of multiple images they measured the variance in
the estimate of the best-fitting model, finding an rms error of σ obs =
3.1 kpc. In this paper, we will adopt the offsets observed along with
its associated error estimate.

2.2 Simulations

Our simulations are those introduced in Robertson et al. (2018b),
which combined the galaxy formation code BAryons and HAloes
of MAssive Sysmtes (BAHAMAS; McCarthy et al. 2017) with the
SIDM code used in Robertson et al. (2017). They were run using a
Wilkinson Microwave Anisotropy Probe (WMAP) 9-yr cosmology1

(Bennett et al. 2013).
This paper uses simulations run with four different models of

dark matter: CDM (i.e. zero self-interaction cross-section) plus
SIDM0.1, SIDM0.3, and SIDM1 (which have velocity-independent
cross-sections of 0.1, 0.3, and 1 cm2 g−1, respectively). For each
model, we have a 400 h−1 Mpc box simulated with dark matter and
baryon particle masses of 5.5 × 109 and 1.1 × 109 M�, respectively.
For CDM and SIDM1 we also have high-resolution simulations
of a smaller volume, which we call CDM-hires and SIDM1-
hires. The Plummer-equivalent gravitational softening length is
4 h−1 kpc in physical coordinates below z = 3 and is fixed in
comoving coordinates at higher redshifts. These have a box size
of 100 h−1 Mpc and eight times better mass resolution than our
standard resolution simulations.

The subgrid physics to model the baryonic prescription within
the simulations was developed as part of the OWLS project (Schaye
et al. 2010). Specifically BAHAMAS includes radiative cooling
(Wiersma, Schaye & Smith 2009a), star formation (Schaye & Dalla
Vecchia 2008), stellar evolution and chemodynamics (Wiersma et al.
2009b), and stellar and active galactic nucleus (AGN) feedback
(Dalla Vecchia & Schaye 2008; Booth & Schaye 2009).

2.3 Matching simulations to observations

In order to sample match those clusters in the suite of simulations
and those used in H17 we must separate the relaxed clusters from
dynamically unrelaxed. To do so we first take a random sample of
150 friends-of-friends (FoF) clusters with masses 1014 < M200 <

3 × 1014 M� and all clusters with M200 > 3 × 1014 M� over five
different redshifts, z = 0, 0.125, 0.250, 0.375, and 0.5. We choose
this separation since there are very few large clusters, but many
smaller ones that would computationally take too long to analyse.
We then follow the same prescription as in H17 and take the ratio of
the X-ray gas emission within 100 and 400 kpc. This gives a proxy
for how compact the X-ray gas is, and in the case of relaxed halo
with a cool core, this will be high. Studies show that this is good

1With �m = 0.2793, �b = 0.0463, �� = 0.7207, σ 8 = 0.812, ns = 0.972,
and h = 0.700.
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Table 1. The sample selection of galaxy clusters from the simulations with
their corresponding dark matter cross-section. The third column gives the
total number of clusters extracted from the simulation, and the fourth column
gives the number of relaxed clusters after cuts. The final column gives the
mean halo mass of the cut sample.

Sample σDM/m (cm2 g−1) Ncl Neff 〈log (Mtot/M�)〉
CDM 0.0 1365 460 14.45
SIDM0.1 0.1 1344 731 14.32
SIDM0.3 0.3 1374 672 14.42
SIDM1 1.0 1330 645 14.40
Obs N/A 10 10 15.08

proxy for the dynamical state of a cluster with a cut at 0.2 as the
divide between relaxed and disturbed (Rasia, Meneghetti & Ettori
2013). Table 1 gives the pre-cut and effective cluster members after
we have made our selection.

Having dynamically matched the two samples, we now extract
the two components from the simulations: the dark matter and the
stellar matter. To do this we run SEXTRACTOR on the projected
density distributions. We note here that although this is not directly
comparable to observations that use strong gravitational lensing,
it does include many sources of error that are of importance.
These include the projection effect of cluster members shifting
the position, the physics associated with baryons and its coupling
to dark matter, the inclusion of outliers that may be included in
the sample, for example clusters that appear to be relaxed when
in fact they have experienced recent mergers, and any bias due to
cluster triaxiality and small haloes close to the centre shifting the
halo. Further aspects that are not captured by SEXTRACTOR will be
addressed in Section 3.2.

3 ME T H O D

K17 showed that the BCG of an SIDM galaxy cluster will oscillate
in the gravitational potential of a cored density profile. The size of
this oscillation should correlate with the core size and hence scale
with cross-section. However, this signal is degenerates with the
inherent measurement error associated with measuring the centre
of a dark matter halo. H17 proposed a solution by modelling the
distribution of dark matter–BCG offsets as the convolution of the
distribution expected from a harmonic oscillator (with amplitude
Aw) with Gaussian measurement errors. To break the degeneracy
between these two signals, H17 estimated the measurement errors
from fitting Navarro–Frenk–White (NFW) profiles to mock lensing
data, generated using known NFW profile lenses. Using this they
constrained Aw.

Instead of attempting to break the degeneracy between measure-
ment errors and genuine offsets, we note that the effect of SIDM
is simply to broaden the distribution of dark matter–BCG offsets,
whether it is wobbling or measurement error. We therefore choose
to ignore the physical reason and merely measure the distributions
from our simulations, add an additional noise component associated
with strong lensing that H17 calculated empirically and then
compare the final distributions with the observations.

In order to do this we first infer the positions of the dark matter
and the baryonic components using the peak finding algorithm SEX-
TRACTOR on the projected surface density map of each component.
We then model the distribution of offsets between the dark matter
halo and the BCG, x with a lognormal probability density function,

Figure 1. The complete sample of offsets between the brightest cluster
galaxy and the dark matter halo for different cross-sections of dark matter.
We fit lognormal distributions to each sample and report the median in the
legend and the inset axis.

i.e.

f (x) = 1

xσ
√

2π
exp

(
− (ln x − ln μ)2

2σ 2

)
, (1)

where μ is the median offset and σ 2 its logarithmic variance. We find
the best-fitting μ and σ using the maximum likelihood estimator
function from SCIPY2,3.

It has been noted in previous studies that using a particular
algorithm to find the location of projected dark matter haloes can
have an impact on the final result (Robertson et al. 2017). This was
because in dynamically unrelaxed clusters can produce complex
projected dark matter distributions, where different isodensity
contours are centred on different points. As such, the position of
the dark matter halo changes as a function of the scale on which
the position is measured. Here we are dealing with relaxed clusters
and therefore should not experience the same effect, however, to
test the sensitivity of our results to the choice of algorithm, we
study how changing the size of the SEXTRACTOR kernel changes
the distribution of offsets. For each simulated cross-section we take
a sample of 150 clusters from the z = 0.25 snapshot, with masses
M200 > 3 × 1014 M�. We then measure μ for a variety of different
kernel sizes. We find that the best-fitting μ is insensitive to the
choice of kernel size and therefore we are confident that we are
measuring an underlying trend and not an artefact of our estimator.
Moreover the underlying trend should be independent of the choice
of algorithm to find the halo centres. We choose to use a Gaussian
kernel with a standard deviation of 9 kpc for the rest of the paper.

We now combine all of the offsets between the BCG and dark
matter for each cross-section and measure their lognormal median
and variance. Fig. 1 gives the resulting histograms with their best-
fitting lognormal distributions and the median of this in the legend
and the inset axis.

We find that CDM has the smallest median of μ = 3.8 ± 0.7 kpc,
SIDM0.1, μ = 4.9 ± 0.7 kpc, SIDM0.3, μ = 6.1 ± 0.7 kpc, and
SIDM1, μ = 8.6 ± 0.7 kpc.

2https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.lognorm
.html
3https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv conti
nuous.fit.html#scipy.stats.rv continuous.fit
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We find a strong correlation between μ and cross-section.
However, if we are to infer the cross-section of dark matter from the
observations, we must parametrize how the median offset depends
on the cross-section. To do this we follow a forward modelling
approach, whereby we take the simulations and apply know effects
in order to produce a distribution that can be directly compared to
simulations. We therefore state that the total, expected median offset
that would be observed, μTOT is some function of cross-section, σ /m
plus some other unknown parameters, i.e.

μTOT = g(σ/m, X), (2)

where X is a list of unknown parameters, which must be identified
and then marginalized over. Here we identify three major concerns
that will affect how we parametrize this function.

(i) Finite resolution effects. The results in Fig. 1 are very close
to the gravitational softening length of the simulations, where the
gravitational forces become non-Newtonian. In bid to maximize
the number of clusters available to the analysis, whilst minimizing
computational time, the chosen resolution was selected. However,
on scales r < 10 kpc, effects could manifest themselves that
impact the results. We therefore model any effects that the Plummer
softening length of the simulation, ε, may have, i.e.

μTOT = g(σ/m, ε). (3)

(ii) Simulation analysis does not match that of the observations
exactly. The offset between the BCG and dark matter is a combi-
nation of the physical wobble and the inherent error in measuring
the location of a dark matter halo with a constant density core.
In order to compare the simulations directly to the observations,
we must either forward model the simulations or deconvolve the
expected error distribution from the observations. Given that we
are attempting to forward model the simulations through g, we
must incorporate the expected effect of observations on the median
offset, μ,

μTOT = g(σ/m, ε, σ̂ ), (4)

where σ̂ is an operator that will apply observational effects to the
offset.

(iii) Baryonic effects. It has been recently shown that although
more massive dark matter haloes have larger cores (and hence
expected to have larger median offsets), those that harbour a larger
stellar mass will have a cuspier density profile (Kamada et al. 2017;
Robertson et al. 2018a). As such, the concentration of stellar mass
and the halo mass will likely impact the median offset given the
scales in question and hence we must incorporate in to our final
ansatz,

μTOT = g(σ/m, ε, σ̂ , M200, M�). (5)

The following sections will investigate each of these components
further.

3.1 Accounting for finite simulation resolution

Our initial analysis of the simulations shows that the expected
median dark matter–BCG offset is μ ∼ 10 kpc and is therefore in
proximity to the Plummer-equivalent gravitational softening length
of the simulations (ε = 4 h−1 kpc; Springel 2005). We therefore
investigate how sensitive these results are to the resolution of the
simulations. H17 found a significant difference between the low-
and high-resolution simulations for CDM, and hence the ∼4 kpc
offset observed in CDM could be just the sensitivity limit of the

Figure 2. Effect of finite resolution. We test whether high- and low-
resolution simulations of the same simulation produce similar results given
a similar mass distribution (red histogram) and sample size or similar stellar
to halo mass ratio (black histogram). Given that the low -resolution sample
has many more haloes than the high resolution we randomly sample the
same number of clusters as in the high resolution and measure μ. The dotted
vertical line shows the estimate from the hires simulation with the associated
error bar given by the shaded region. We find the estimated median in the
high resolution is underpredicted compared to that of the low resolution and
therefore must be modelled.

simulation, which could also be impacting the other simulations.
We therefore run two smaller, high-resolution boxes, one for CDM
and one for SIDM1, and compare the predicted signals.

To do this, we first measure the best-fitting μ for the CDM and
SIDM1-hires sample of ∼20 clusters, selected using the procedure
described in Section 2.3. We then generate a mass-matched sample
also of ∼20 clusters from the CDM and SIDM1 simulation, and
measure μ for these samples. Given the large volume of the low-
resolution simulations, we can generate many such samples, and
so we repeat this second step 300 times. Fig. 2 shows the results.
The red filled histograms show the measured distribution of μ from
the 300 CDM (top panel) and SIDM1 (bottom panel) samples.
The dotted vertical line and shaded region give the measured
value and error from the high-resolution sample. We find that the
high-resolution simulations in both situations have lower medians
compared to the low resolution.

Looking closely at the density profiles of each sample, we find
that the high-resolution haloes have denser stellar profiles than their
low-resolution counterparts. In galaxy clusters with SIDM, denser
stellar distributions lead to smaller dark matter cores (Robertson
et al. 2018a), so in order to understand the differences due to only
the resolution (and not due to differences arising from different
baryon distributions), we match the samples in stellar to halo
mass ratio (SHMR) and recalculate the distribution. The result is
the black solid histograms in Fig. 2. We find that by matching
the samples in SHMR, the agreement between the low- and
high resolution is improved, however there remains some residual
difference. We therefore apply very strict SHMR matching such
that there are equal number of clusters in each low- and high-
resolution sample and model the effect of the softening via the
ansatz,

μMEAS = (μγ

SIM + (αε)γ )
1
γ , (6)

where μMEAS and μSIM are the measured and intrinsic lognormal
medians for a particular cross-section, and ε is the softening length
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of the simulation. Using two different resolution simulations, from
two different cross-sections (i.e. high and low res for SIDM1 and
CDM), we are able to fit for the four parameters, γ , α, μSIM, CDM,
and μSIM, SIDM1. Once we have found γ and α, we are able to
calculate μSIM for any low- or high-resolution simulation (assuming
that these values are constant for other cross-sections and halo
masses).

3.2 Applying observational effects

In order to fully forward model the simulations in order to directly
compare with observations, we must add an additional source
of error. However carrying out a full mock gravitational lensing
analysis on the simulated clusters is beyond the scope of this paper
and therefore we choose to numerically modify μSIM.

Instead we convolve the effect of observational noise on to the
simulation data by numerically adding random Gaussian noise
to each radial offset in the measured lognormal distributions.
We then remeasure the lognormal distributions. Since we do this
numerically, to get accurate results it takes some time. Therefore in
order to speed this up we test whether this numerical method has an
analytical form. Given that in all sense this is just a convolution of
a lognormal radial and delta function with a Gaussian distribution,
it is not possible to calculate analytically. We therefore carry out
some mocks tests with a known lognormal, add on the observational
noise, and recalculate the median. As Fig. 3 shows, we find that the
resulting median is almost exactly the sum of the original median
and the width of the Gaussian, added in quadrature.

We therefore choose to model the effect of observational noise
on the median offsets by adding them in quadrature, i.e.

μ2
TOT = μ2

SIM + σ 2
obs. (7)

3.3 The impact of baryons on the dark matter

Initial studies clearly showed the expected offsets were well within
the stellar distribution of the BCG. Thus subgrid physics models
that may affect the distribution of stellar matter will likely impact
the signal we observe. This hypothesis was backed up when we
noticed the difference in expect median offset between a mass-
matched sample and a sample matched in SHMR in the previous
section.

How the baryons impact our results will primarily depend on how
well the BAHAMAS simulation do at reproducing the observed
stellar mass distribution. The BAHAMAS simulations have been
tuned to return the correct stellar mass function, and as such the
observed H17 cluster sample SHMR relation should match the
simulated one. If this is the case, then constraints derived from
a representative sample should be unbiased. Using stellar masses
from Burke, Hilton & Collins (2015), we find that indeed this is
the case, and the SHMR of the observed clusters well matches the
simulated ones.

However, the stellar mass is measured up to ∼50 kpc, well
beyond the scales that are probed by this technique, which are
closer to ∼10 kpc. This is particularly important since although the
simulations have been tuned to give the correct total stellar mass,
the amount of stellar mass on the scales in question could be very
different. As such we look closer at the distribution of stellar mass
within ∼10 kpc. Using estimates from DeMaio et al. (2018), we
find that in fact the observed clusters have a much high density of
stellar mass within 10 kpc. As such we are motivated to model the
behaviour of the median offset as a function of halo mass and stellar

Figure 3. The effect of convolving a lognormal distribution with a Gaussian
of width σ obs = 3.1 kpc. The prediction is the simply the μSIM added in
quadrature with the observational noise.

mass within 10 kpc:

μSIM = X1 + X2 log10

(
M200

1014 M�

)

+X3 log10

(
M�(< 10 kpc)

1011 M�

)
, (8)

where the relation to cross-section could be either

Xi(σ ) = ai + bi log10

(
σ/m

1 cm2 g−1

)
for i = 1, 2 (9)

or

Xi(σ ) = ai + bi

(
σ/m

1 cm2 g−1

)
for i = 1, 2. (10)

Following this we carry out the second fit using a least squares
and a modified loss function to determine ai and bi;

χ2 =
nSim∑
i=0

(μ̃SIMi
− μSIMi

)2

σSIMi

, (11)

where μ̃SIMi
is the model median value and μSIMi

is the actual
measured median value for the ith cross-section. In the case where
we assume a log cross-section ansatz, we sum over only finite cross-
sections, whereas for a model linear in cross-section we include also
CDM.

In order to choose between a linear or log cross-section model, we
compute the Bayesian information criterion (BIC), which penalizes
any good fit by the number of parameters used in the model in an
attempt to reduce overfitting. The BIC can be computed by

BIC = −2 ln(L) + k ln(n), (12)

where L is the likelihood of the maximized model, n is the total
number of data points, and k is the number of parameters. We give
the corresponding BIC for each model in the fifth column of Table 3.
We find 
BIC = 4 between the two models, which corresponds to
a preference for the log model. We therefore adopt this model and
show it in Fig. 4 with individual models in the right-hand panel.

4 R ESULTS

Following the construction of our model, we have a total of 10
non-independent parameters:

θ = {μSIM,CDM, μSIM,SIDM1, α, γ, a1, b1, a2, b2, a3, b3}. (13)
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Figure 4. Our final model for the observed offset between the BCG and dark matter in relaxed clusters, as a function of the halo mass, stellar mass within
10 kpc (different lines), and self-interaction cross-section of dark matter, σDM/m = 0, 0.1, 0.3, 1.0 from left to right, in the absence of any experimental noise
(top) and with observational noise (bottom). For comparison we show the observations in the bottom row with a star and the colour representing the stellar mass
(also shown in the legend). Since we assume a model in log σ , where CDM is ill-defined, we show the effective cross-section of our model. This represents the
validity limit σ /m = 0.01 cm2 g−1.

Table 2. The fitted parameters to equation (6), where we model the effect
of the finite resolution of the simulation on our results. We also find that
α = 0.41+0.37

−0.01 and log10(γ ) = −0.02+0.61
−0.01.

Sample μMEAS, lo (kpc) μMEAS, hi (kpc) μSIM (kpc)

CDM 3.80 ± 0.7 2.0 ± 0.4 0.8+0.9
−0.8

SIDM1 5.0 ± 1.0 3.6 ± 0.9 2.3+1.8
−0.7

They are not independent since the estimate of the softening model
parameters will affect the following ai and bi. As such we carry out
the fit to the four softening model parameters first using a least-
squares algorithm. Table 2 gives the results of the fit.

We show the final model in Fig. 5. The top row shows the best-
fitting model for the three finite cross-sections. In each panel we
show the model estimate μ̃SIM as the solid lines and the actual
measured estimate μSIM as the data points to which the model is
fitted, as a function of halo mass and stellar mass within 10 kpc.
The bottom row shows the total, expected model, μTOT after adding
observational noise. We estimate the median offset of the H17
sample of clusters finding that μobs = 3.9 ± 1.2 kpc. We show
this estimate as the star in each panel, where the colour of the
star and legend gives the estimated stellar mass. The corresponding
model parameters can be found in Table 3.

Figure 5. The cumulative probability distribution of the observations given
our model (assuming equation 9), folding in errors associated with the
parameters in equation (6). We give the 1σ and 2σ limits of the observations
that correspond to σDM/m < 0.12(0.39) cm2 g−1 at 68 per cent (95 per cent)
confidence limit. Given that in this model CDM (σ /m = 0 cm2 g−1) is
undefined, we estimate the validity limit of the model, and the sensitivity
limit of the simulations. The CDM offsets can be interpreted as σCDM =
0.01 cm2 g−1 and is given by the shaded region. We find that 15 per cent of
the probability of the observations lie in this region, hence showing that the
observations are in tension with CDM at the ∼1.5σ level.
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Table 3. The fitted coefficients to equations (9) and (10), where we model the BCG–dark matter offset as a function of mass, stellar mass, and cross-section.
The sixth column shows the Bayesian information criterion (BIC) that allows a comparison of the two models. With a 
BIC = 4 there is a preference for a log
cross-section model.

Model a1 b1 a2 b2 a3 b3 BIC
(kpc) (kpc) (kpc) (kpc) (kpc) (kpc)

Log 4.5 ± 0.4 2.7 ± 0.8 3.6 ± 0.2 2.0 ± 0.4 −3.3 ± 0.4 −0.9 ± 0.7 62
Linear 1.9 ± 0.4 2.6 ± 0.7 1.4 ± 0.2 2.4 ± 0.3 −2.1 ± 0.3 −1.3 ± 0.6 66

Given that CDM (σ DM/m = 0) is not defined in this logarithmic
model, however, gives a finite offset, we calculate what the effective
cross-section the offsets predict in this model. This cross-section
represents the sensitivity and validity limit of the simulations.
We find that the effective cross-section of CDM is σ DM/m =
0.01 ± 0.007 cm2 g−1.

4.1 Constraints on the self-interaction cross-section

We now use the fitted models to directly constrain the cross-section
of dark matter. In order to do this we must fold in the uncertainties
of our model mainly driven by the softening model, since all
subsequent parameters are derived from these. To do this we carry
out the following prescription.

(i) We first draw a sample randomly from the estimates of μSIM, lo

and μSIM, hi (from Table 2), sampling from Gaussian distributions
centred on the quoted means and with widths (standard deviations)
given by the quoted errors.

(ii) From these estimates, we rederive the four softening model
parameters (equation 6).

(iii) Using the newly generated softening model we refit for μSIM

via equations (8) and (11) and add observational noise to get a model
of μTOT.

(iv) Assuming a Gaussian probability density distribution in μobs,
we calculate the cumulative density distribution (CDFs) in σ /m
using our new model of μTOT, adopting stellar mass estimates from
DeMaio et al. (2018).

(v) Repeating 103 times, we generate multiple CDFs and then
take the mean to get the final CDF.

The final mean CDF can be found in Fig. 5 corresponding to
an upper limit of σ DM/m < 0.12 (0.39) cm2 g−1 68 per cent
(95 per cent). We find that 15 per cent of the probability lies below
the sensitivity threshold of the simulations (σ DM/m < 0.01 cm2 g−1),
and is therefore consistent with CDM. This limit is illustrated by
the shaded region.

4.2 Future prospects

This study has shown that with only a small number of strong lensing
galaxy clusters we are able to place tight constraints on the self-
interaction cross-section of dark matter. With future studies soon to
come online we investigate how this method scales statistically. To
this end we calculate the predicted 95 per cent constraints for two
future studies: Super-pressure Balloon-borne Imaging Telescope
(SuperBIT), a balloon-borne telescope that will image 200 galaxy
clusters (Romualdez et al. 2016), and Euclid (Laureijs et al. 2011),
a space-based telescope that will image ∼103–105 clusters. We
calculate the constraints as a function of the average error in a
single cluster, σ obs. To do this we take the H17 value and error and
reduce the error by a factor of

√
Ncl, and shift the median, μ, for

different values of σ obs. Fig. 6 shows the results. Each dotted line

Figure 6. Forecasted 95 per cent confidence limits for future surveys
as a function of the number of clusters and the precision of a single
cluster estimate. SuperBIT and Euclid will observe of order 102 and 105

clusters, respectively. The solid black line is the precision found in H17,
for observations of strong gravitational lensing by 10 clusters. We find that
although SuperBIT will yield a factor of ∼2 improvement, large surveys like
Euclid will only bring diminishing returns. Interestingly, even weak lensing
observations with a precision on dark matter astrometry of only ∼10 kpc
may be able to place discriminating constraints in the future.

is a study with increasing precision on a single cluster. The solid
cyan line is the sensitivity of this study, and the sensitivity regions
of each survey are given in pink (cyan) for SuperBIT (Euclid). We
find that although an initial increase in sample size will improve
the constraints by a factor of ∼2, further improvements would be
moderate. As such, this experiment would be ideal for a survey the
size of SuperBIT. A precision on dark matter astrometry of ∼10 kpc,
which can be achieved with weak gravitational lensing, will place
discriminatory constraints and therefore could be of interest in the
future.

5 D I S C U S S I O N A N D C O N C L U S I O N S

We have used cosmological simulations of CDM and SIDM that
include realistic baryonic physics to constrain the velocity indepen-
dent, elastic, self-interaction cross-section of dark matter.

It is predicted that during the collision of two galaxy clusters that
harbour cored density profiles, the BCG will be initially offset from
the centre of the halo. Long after the relaxation of the cluster, this
offset can persist with the BCG tracing out the motion of a harmonic
oscillator (K17). In CDM, the central density profile is cuspy and
hence the BCG will be bound tight to the centre of the dark matter
halo, however, in models of dark matter that predict cores this will
be a clear signal for a non-standard model of dark matter.

In a recent paper, the distribution of offsets between the BCG and
dark matter halo was estimated in 10 galaxy clusters. Fitting a two-
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component model they estimated that the wobble amplitude, Aw ∼
11 kpc (H17), in close agreement with previous studies (Newman
et al. 2013). They compared this to high-resolution simulations of
CDM and found a discrepancy at the ∼3σ level.

In this paper, we have extended this comparison to include simu-
lations with velocity-independent dark matter self-interactions. The
simulations were run with four different cross-sections: σ DM/m =
0 (CDM), 0.1, 0.3, and 1.0 cm2 g−1. Modelling the distribution of
BCG–dark matter offsets as a lognormal, we found that the median
offset, μ, increased with cross-section: μCDM = 3.8 ± 0.7 kpc,
μ0.1 = 4.9 ± 0.7 kpc, μ0.3 = 6.1 ± 0.7 kpc, and μ1.0 = 8.6 ± 0.7 kpc.

In order to infer the cross-section of dark matter from the
simulations, we construct a model that relates the median offset
to the cross-section. We identify three clear concerns that are folded
into this model:

(i) the effect of the close proximity of the signal to the finite
smoothing length of the simulation;

(ii) the effect of observational noise on the signal;
(iii) the impact of baryons in the core of the cluster.

Parametrizing each, we estimate the final cross-section of dark
matter, finding that σ DM/m < 0.12 (0.39) cm2 g−1 68 per cent
(95 per cent). Under the assumption that the model scales with the
log of the cross-section, CDM is undefined. We therefore use the
CDM simulations to estimate the validity limit of this model and the
sensitivity limit of the simulations. We find that the offsets observed
in CDM are interpreted as an effective cross-section of σ /m =
0.01 cm2 g−1. Given our observations, we find that 15 per cent of
the probability lies within this region and hence the observations
are consistent with CDM to within ∼1.5σ .

The consequence of this limit is that models of SIDM that
can significantly alter the structure of dwarf galaxy dark matter
haloes would require a cross-section that varies with the relative
velocity between dark matter particles. With observations of just
10 galaxy clusters, this method is almost at the precision necessary
to discriminate between (and potentially rule out) otherwise viable
models of dark matter. Future surveys, such as observations by
SuperBIT of weak lensing around ∼200 clusters, will soon have the
power to make dramatic impact.
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