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ABSTRACT

We introduce a nonparametric measure to quantify the degree of heteroskedasticity at a fixed quan-

tile of the conditional distribution of a random variable. Our measure of heteroskedasticity is based on

nonparametric quantile regressions and is expressed in terms of unrestricted and restricted expectations of

quantile loss functions. It can be consistently estimated by replacing the unknown expectations by their

nonparametric estimates. We derive a Bahadur-type representation for the nonparametric estimator of the

measure. We provide the asymptotic distribution of this estimator, which one can use to build tests for the

statistical significance of the measure. Thereafter, we establish the validity of a fixed regressor bootstrap

that one can use in finite-sample settings to perform tests. A Monte Carlo simulation study reveals that the

bootstrap-based test has a good finite sample size and power for a variety of data generating processes and

different sample sizes. Finally, two empirical applications are provided to illustrate the importance of the

proposed measure.
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1 Introduction

Regression errors in cross–section and time series models frequently exhibit heteroskedasticity. Even though

the latter was always viewed as a problem that one needs to treat to improve efficiency, some authors take a

different view and argue that the heterogeneity in the degree of heteroskedasticity can often have important

theoretical and substantive implications over and above those for accurate inference. Among others, Newey

and Powell (1987) argue that the change in the degree of heteroskedasticity in the conditional distribution

of the dependent variable might be viewed as a symptom of misspecification of the regression function [e.g.

indicates the presence of an omitted variable].1 In addition, Arabmazar and Schmidt (1981) study the

impact of the degree of heteroskedasticity in the error terms on the size of the inconsistency of the MLE

estimator. They show that the inconsistency is greater the greater the degree of heteroskedasticity. Others

have stressed the importance of understanding the economic meaning of heteroskedasticity when its degree

changes across the conditioning variables. For example, Meghir and Pistaferri (2004) among others point

out the relevance of allowing for variance of income to vary across different education levels for modelling

earnings distribution. Much research has been devoted to building tests of heteroskedasticity. However, to

the best of our knowledge, no research really develops measures of the degree of heteroskedasticity. The

present paper aims to propose a nonparametric measure of the degree of heteroskedasticity at a given fixed

quantile of the conditional distribution of a random variable. The measure can also be used to test for

heteroskedasticity.

Measuring the degree of heteroskedasticity might also help us to better understanding the relationship

between the latter and the efficiency of the estimates of regression coefficients. The presence of a strong

heteroskedasticity in the data negatively affects the performance (size and power) of classical tests such as

t–test and F–test. Several econometric textbooks and papers have reported that the available heteroskedas-

ticity consistent standard errors lead to tests/confidence intervals that deliver substantial under or over

size/coverage depending on the degree of heteroskedasticity; see Kennedy (1985), Dufour (2003), Cribari-

Neto (2004), Dufour and Taamouti (2010), Hausman and Palmer (2012), Cattaneo, Jansson, and Newey

(2018), among others. For a valid inference, different estimation techniques/tests might need to be applied

depending on the degree of heteroskedasticity. Senyo and Adjibolosoo (1989) argue that if the degree of

heteroskedasticity is not high, then the ordinary least squares (OLS) estimator might still perform better

than the generalized least squares (GLS) estimator. They stress the importance of developing measures

of the strength of heteroskedasticity, which can help researchers understand when to use either the OLS

estimator or the GLS estimator.

The above motivations illustrate the usefulness of providing measures of the degree of heteroskedas-

1Downs and Rocke (1979) provide some real examples that show how the degree of heteroskedasticity indicates that other

variables other than the ones considered in the analysis are needed for modelling the dependent variable of interest.
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ticity in the conditional distribution of the dependent variable. In this paper, we introduce a measure of

heteroskedasticity using nonparametric quantile regressions. This measure can quantify the degree of het-

eroskedasticity at a fixed quantile of the conditional distribution of the variable of interest. Unfortunately,

the existing heteroskedasticity tests fail to accomplish this task, because they only provide evidence on the

presence or the absence of heteroskedasticity, and statistical significance depends on the available data and

test power. A strong heteroskedasticity may not be statistically significant, and a statistically significant

heteroskedasticity may not be strong from an economic viewpoint. To the best of our knowledge, this is the

first measure of heteroskedasticity, which is based on nonparametric quantile regressions and expressed in

terms of unrestricted and restricted expectations of quantile loss functions. It is consistently estimated by

replacing the unknown expectations by their nonparametric estimates. Our theoretical results are proven

under the assumptions of dependent data, but they are still valid for cross-sectional data.

We also note that there is an abundant literature on nonparametric quantile regression when parametric

quantile regression function is not available. For example, Chaudhuri (1991), Yu and Jones (1998) and

Guerre and Sabbah (2012) consider nonparametric estimation of conditional quantiles for i.i.d. observations

by using local polynomial regression, while Honda (2000), Hall et al. (2002) and Kong et al. (2010) examine

the asymptotic properties of the estimator of Chaudhuri (1991) for strongly mixing stationary processes.

Nevertheless, none of the aforementioned estimators is designed to measure the degree of heteroskedasticity

of the conditional distribution of a random variable. Our paper fills this gap by suggesting a convenient

R2–type measure of heteroskedasticity at a fixed quantile based on the nonparametric quantile estimators.

Furthermore, we derive a Bahadur–type representation for the nonparametric estimator of the measure.

We provide its asymptotic distribution, which one can use to build tests for the statistical significance of

the measure. Moreover, since testing that the value of the measure is equal to zero is equivalent to testing

for homoscedasticity, another contribution of this paper consists in providing a test for heteroskedasticity

that is robust to the parametric misspecification of conditional location function. The existing parametric

specification-based tests for heteroskedasticity generally suffer from the model misspecification problem, and

require correct parametric specification of the regression function. Thereafter, we establish the validity of a

fixed regressor bootstrap that one can use in finite–sample settings to perform tests for different values of

the measure. A Monte Carlo simulation study reveals that the bootstrap test has a good finite sample size

and power for a variety of data generating processes and different sample sizes.

Two empirical applications are also provided to illustrate the importance of the proposed measure. In

the first application, we are interested in measuring the degree of heteroskedasticity of income conditional

on the years of education, and in the second application, we quantify the degree of heteroskedasticity for

30 stock returns. For the first application, our results show that the degree of income variation decreases

when the years of education increase. Thus, the income of highly educated people varies less compared with
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the income of those with low levels of education. Furthermore, we find that the degree of income variation

for females is generally smaller than the degree of income variation for males. For the second application,

the results confirm that all stock returns under consideration are conditionally heteroskedastic. In addition,

these results show that there is some heterogeneity in the degree of heteroskedasticity across the stocks.

To sum up, our contributions are threefold. Firstly, we propose a fully model–free measure to gauge the

degree of heteroskedasticity. Secondly, we show that the proposed measure can be used as a test to detect

heteroskedasticity. Our test is designed to be particularly robust to the misspecification in the conditional

mean and is able to capture various forms of conditional heteroskedasticity. Lastly, we propose an innovative

bootstrap procedure to implement the test.

This paper is organized in the following way. Section 2 presents the general theoretical framework that

underlies the definition of the measure of heteroskedasticity in the presence of constant and non-constant

means. In Section 3, we discuss the estimation of nonparametric quantile regressions and, consequently, of the

measure of heteroskedasticity based on the local polynomial estimation of the unrestricted and restricted

expectations of quantile loss functions. We derive a Bahadur-type representation for the nonparametric

estimator of the measure. We also provide the asymptotic distribution of this estimator, which one can

use to build tests for the statistical significance of the measure. In Section 4, we establish the validity of a

fixed regressor bootstrap that one can use in finite-sample settings to perform tests. Section 5 presents a

Monte Carlo simulation exercise to investigate the finite sample properties of the bootstrap-based test of the

measure of heteroskedasticity. Section 6 is devoted to an empirical application, and the conclusion relating

to the results is given in Section 7. The main assumptions of the paper and the proofs of the theoretical

results are presented in the appendices A.2.1 and A.2.2, respectively.

2 Framework

Let
{
(Yt,Xt) ∈ R× R

d≡ R
d+1, t ∈ Z

}
be a strictly stationary stochastic process in R

d+1 for a fixed known

integer d ≥ 1. We are interested in the conditional variance of Yt conditional on Xt, and we consider the

following nonparametric mean regression:

Yt = m (Xt) + σ (Xt) εt, (1)

where m (Xt) and σ (Xt) > 0 are some smooth and unknown functions for the conditional location (mean)

and the conditional scale (standard deviation), respectively, and εt is an error term independent of Xt and

its past. The conditional quantile functions of Yt conditional on Xt are then simply

Q(τ) (Yt|Xt) = m (Xt) + σ (Xt)D
−1 (τ) , for τ ∈ (0, 1) , (2)

where D (·) is the cumulative distribution function (CDF) of the error term ε.
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In the next sections, we provide measures of the degree of heteroskedasticity at a fixed quantile of the

conditional distribution of Yt conditional on Xt and across different ranges of the conditioning variable

Xt. In particular, we show how to measure the heteroskedasticity under different scenarios concerning the

conditional mean of Yt. We distinguish between the two scenarios: (1) the mean function m (Xt) is constant

and (2) the mean function m (Xt) is not constant. Furthermore, we show that these measures can be used to

build tests of homoscedasticity. Henceforth, whenever homoscedasticity holds, we shall use V ar (Yt|Xt) =

σ2(Xt) = σ2
0 almost surely (a.s.) to denote this case.

2.1 Constant mean

Here, we assume that m (Xt) = μ, where μ is an unknown constant that is equal to the unconditional mean

of Yt. Under this assumption and using Equation (2), the conditional τ -th quantile of Yt given Xt becomes

Q(τ) (Yt|Xt) = μ+ σ (Xt)D
−1 (τ)︸ ︷︷ ︸

=φ(Xt,τ)

= μ+ φ (Xt, τ) , for τ ∈ (0, 1) . (3)

From Equation (3), testing for homoscedasticity is equivalent to testing that the quantile function Q(τ) (Yt|Xt)

does not depend on Xt. In other words, the null hypothesis of homoscedasticity and the alternative hy-

potheses of heteroskedasticity can be expressed as follows:⎡⎢⎢⎢⎣
H0 : Q

(τ) (Yt|Xt) = μ+ σ0D
−1 (τ) = μ+ ξ (τ)

vs

HA : Q(τ) (Yt|Xt) = μ+ σ (Xt)D
−1 (τ) = μ+ φ (Xt, τ).

(4)

Observe that the hypothesis testing problem in (4) is equivalent to the problem of assessing model

adequacy in quantile regressions; see for example Noh et al. (2013). Thus, measures similar to the well-known

coefficient of determination R2, but for quantile regressions, can be used to measure/test heteroskedasticity.

Hence, to quantify the degree of heteroskedasticity at a given fixed quantile, we propose the following

measure, which we express in terms of unrestricted and restricted expectations of quantile loss functions

H (τ) = 1−
E
[
ρτ
(
Yt − μ− σ (Xt)D

−1 (τ)
)]

E [ρτ (Yt − μ− σ0D−1 (τ))]
= 1− E [ρτ (Yt − μ− φ (Xt, τ))]

E [ρτ (Yt − μ− ξ (τ))]
, (5)

where the check loss function ρτ (·) is defined as follows:

ρτ (u) ≡ (τ − 0.5)u + 0.5|u| = u(τ − I(u < 0)),

with I(u < 0) as an indicator function that takes the value 1 when u < 0 and the value 0 when u ≥ 0;

see Koenker (2005). To the best of our knowledge, this is the first time that the measure H (τ) has been

used to quantify heteroskedasticity. This measure, by construction, satisfies 0 ≤ H (τ) ≤ 1, as we have

0 ≤ E [ρτ (Yt − μ− φ (Xt, τ))] ≤ E [ρτ (Yt − μ− ξ (τ))] . In contrast, if φ (Xt, τ) is constant for a given τ ,
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then it can be seen that the measure H (τ) is equal to 0, which corresponds to the homoscedasticity case. On

the other hand, H (τ) > 0 corresponds to the heteroskedasticity case, and the larger the H (τ), the stronger

the degree of heteroskedasticity in regression (1). Thus, like the classical coefficient of determination R2,

H (τ) can be understood as an index of homoscedasticity adequacy.

Moreover, notice that H (τ) can be used to build tests of homoscedasticity. Under the null of homoscedas-

ticity, we have φ (Xt, τ) = ξ (τ) with probability one:

E [ρτ (Yt − μ− φ (Xt, τ))] = E [ρτ (Yt − μ− ξ (τ))] ,

and thus, H (τ) = 0. Hence, testing homoscedasticity in regression (1) is equivalent to testing H (τ) = 0.

Finally, the above measure can generally be written as follows:

Hw (τ) = 1− E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)]

E [ρτ (Yt − μ− ξ (τ))w (Xt)]
, (6)

where w (·) is a non-negative weighting function that is continuous on a compact support. An interesting

example of the weighting function w (·) is given by the following:

w (Xt) = I [Xt ≤ qx (α)] =

⎧⎨⎩ 1 if Xt ≤ qx (α)

0, otherwise,
(7)

where qx (α) is the α-th quantile of Xt for α ∈ (0, 1) . By selecting w (·) as in (7), we can measure the degree

of heteroskedasticity of Y when X takes values below its unconditional lower quantile qx (α) . Similarly, a

measure of the degree of heteroskedasticity of Y when X takes values above its unconditional upper quantile

qx (1− α) is given by the following:

Hw (τ) = 1− E [ρτ (Yt − μ− φ (Xt, τ)) I [Xt ≥ qx (1− α)]]

E [ρτ (Yt − μ− ξ (τ)) I [Xt ≥ qx (1− α)]]
, (8)

where I [Xt ≥ qx (1− α)] is an indicator function that takes the value 1 if Xt ≥ qx (1− α) and 0 otherwise.

2.2 Non-constant mean

In the previous subsection, we assume that the conditional mean of Yt is constant (m (Xt) = μ). However,

if m (Xt) is not constant, then the above procedure for measuring heteroskedasticity is useless because both

under the null and alternative Q(τ) (Yt|Xt) will be a function of Xt, except if the conditional τ -th quantile

of Yt is zero. To overcome this situation, we propose the following two-stage procedure. Unlike the constant

mean case, we first need to filter out the effect of Xt on the mean of Yt. To this end, we consider the

transformed variable Y t = Yt −m (Xt) , and the nonparametric regression in (1) becomes

Y t = σ (Xt) εt.
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In practice, however, the functional form of m (Xt) is unknown. In the next section, we discuss the estimation

of m (Xt) and its effect on the asymptotic properties of the estimated measure of heteroskedasticity.

Next, under the assumption that εt is independent of Xt, the conditional τ -th quantile of Y t conditional

on Xt is given by the following:

Q
(τ) (

Y t

∣∣Xt

)
= σ (Xt)D

−1 (τ) = φ (Xt, τ) , for τ ∈ (0, 1) . (9)

From Equation (9), testing for the homoscedasticity in regression (1) is equivalent to testing that the

quantile function Q
(τ) (

Y t

∣∣Xt

)
does not depend on Xt. In other words, the null of homoscedasticity and

the alternative of heteroskedasticity for a given fixed quantile can be expressed as follows:⎡⎢⎢⎢⎣
H0 : Q

(τ) (
Y t

∣∣Xt

)
= ξ (τ)

vs

HA : Q
(τ) (

Y t

∣∣Xt

)
= φ (Xt, τ).

(10)

The testing problem in (10) is equivalent to the problem of assessing model adequacy in a nonparametric

quantile regression framework with the mere exception of the dependent variable now being Y t := Yt −

m (Xt). Thus, to quantify/test heteroskedasticity at a given fixed quantile, we propose the following measure

that is based on nonparametric quantile regressions and expressed in terms of unrestricted and restricted

expectations of quantile loss functions:

H (m, τ) = 1−
E
[
ρτ
(
Y t − φ (Xt, τ)

)]
E
[
ρτ
(
Y t − ξ (τ)

)] .

Observe that the measure H (m, τ) satisfies 0 ≤ H (m, τ) ≤ 1. On the one hand, if φ (Xt, τ) is constant

for a given τ , then it can be seen that H (m, τ) is equal to 0, which corresponds to the homoscedasticity case.

On the other hand, H (m, τ) > 0 corresponds to the heteroskedasticity case, and the larger the H (m, τ),

the stronger the degree of heteroskedasticity in regression (1).

Moreover, notice that H (m, τ) can be used to build tests of homoscedasticity. Under the null of ho-

moscedasticity, we have φ (Xt, τ) = ξ (τ) with probability 1:

E
[
ρτ
(
Y t − φ (Xt, τ)

)]
= E

[
ρτ
(
Y t − ξ (τ)

)]
,

and thus, H (m, τ) = 0. Hence, testing homoscedasticity in (1) is equivalent to testing H (m, τ) = 0.

Finally, as we saw in the previous subsection, the above measure can generally be written as follows:

Hw (m, τ) = 1−
E
[
ρτ
(
Y t − φ (Xt, τ)

)
w (Xt)

]
E
[
ρτ
(
Y t − ξ (τ)

)
w (Xt)

] ,

where w (.) is a non-negative weighting function that we define in (7). This measure allows us to quantify

the degree of heteroskedasticity of Y when X takes values below its unconditional lower quantile qx (α) for
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α ∈ (0, 1) . Similarly, a measure of the degree of heteroskedasticity of Y when X takes values above its

unconditional upper quantile qx (1− α) is given by the following:

Hw (m, τ) = 1− E [ρτ (Yt − μ− φ (Xt, τ)) I [Xt ≥ qx (1− α)]]

E [ρτ (Yt − μ− ξ (τ)) I [Xt ≥ qx (1− α)]]
,

where I [Xt ≥ qx (1− α)] is an indicator function that takes the value 1 if Xt ≥ qx (1− α) and 0 otherwise.

3 Estimation and asymptotic distribution

In this section, we introduce a nonparametric estimator for the measure of heteroskedasticity at a given fixed

quantile and we study its asymptotic properties in the presence of the constant and non-constant means of

Y . As we have seen in Section 2, the measure of heteroskedasticity is expressed in terms of unrestricted and

restricted expectations of quantile loss functions. It can be estimated by replacing the unknown expectations

of check loss functions by their nonparametric estimates from a finite sample. To obtain these nonparametric

estimates and due to its well-known advantages, we propose using the local polynomial approach as discussed

in Fan and Gijbels (1996).

3.1 Constant mean

Let
{
(Yt,Xt) ∈ R× R

d≡ R
d+1, t = 1, ..., T

}
be a sample of strictly stationary stochastic processes Y and

X. This sample will be used to estimate the following measure of heteroskedasticity at a given fixed quantile

τ :

Hw (τ) = 1− E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)]

E [ρτ (Yt − μ− ξ (τ))w (Xt)]
, for τ ∈ (0, 1) .

Hw (τ) can be estimated by replacing E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)] and E [ρτ (Yt − μ− ξ (τ))w (Xt)]

by their nonparametric estimates from a finite sample. To do this, we need to estimate the quantities

Yt −μ− φ (Xt, τ) and Yt −μ− ξ (τ) and replace the theoretical expectations by their empirical analogs. We

also need to assume that the conditional quantile function φ(x, τ) is continuously differentiable up to order

p+1. We then estimate φ(x, τ) using the following multivariate p-th order local polynomial approximation:

φ(z, τ) ≈
∑

0≤|r|≤p

1

|r|D
|r|φ(x, τ)(z − x)|r|,

where, for any r = (r1, · · · , rd), |r| =
∑d

i=1 ri, r! = r1!× · · · rd!, and

Drφ(x, τ) =
∂rφ(x, τ)

∂xr11 · · · ∂xrdd
, xr = xr11 × · · · × xrdd , and

∑
0≤|r|≤p

=

p∑
j=0

j∑
r1=0

· · ·
j∑

rd=0︸ ︷︷ ︸ .
r1+···+rd=j

Instead of estimating the scale σ (x), we estimate φ (x, τ) := σ (x)D−1 (τ) as a whole. This means that the

assumption that D−1 (τ) is known a priori is not required. Koenker and Zhao (1996) have also estimated
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φ (x, τ) as a whole in the context of ARCH models. Moreover, observe that if the innovations εt follow a

symmetric distribution, then φ (x, 0.5) will be equal to 0 for any x, and it will not be identifiable. Thus,

as long as the τ -th quantile of εt satisfies D−1 (τ) �= 0, the use of Hw (τ) to measure heteroskedasticity is

justified. For more details on local polynomial estimation, the reader can consult Fan and Gijbels (1996)

and Ruppert and Wand (1994), among others.

We next demean the dependent variable Yt using Ŷ t = Yt − μ̂, where the sample mean of Yt is given by

μ̂ = T−1
∑T

t=1 Yt. The nonparametric estimator of our measure, say Ĥw (τ) , is easily constructed through

the following three steps:

(i) Estimate the τ -th marginal quantile of Ŷ t, which we denote by ξ̂ (τ), through minimizing the empirical

check loss function T−1
∑T

t=1 ρτ

(
Ŷ t − θ

)
with respect to θ. Then, calculate T−1

∑T
t=1 ρτ

(
Ŷ t − ξ̂ (τ)

)
w (Xt).

(ii) Estimate the τ -th quantile regression of Ŷ t on Xt through minimizing

1

T

T∑
t=1

Kh (Xt − x) ρτ

⎛⎝Ŷ t −
∑

0≤|r|≤p

βr(Xt − x)r

⎞⎠ , (11)

where Kh(u) = h−dK(u/h) is a kernel for a d-dimensional product kernel function K : R
d → R, and

h ≡ hT ∈ R
+ is the usual bandwidth parameter converging to 0 at a proper rate when T tends to infinity.

Assumptions on the kernel function K and the bandwidth parameter h are discussed in Appendix A.2.1.

Denote by β̂r, for 0 ≤ |r| ≤ p, the minimizer of the function in (11). Then, the p-th order local polynomial

estimator of φ (x, τ) is given by φ̂(x, τ) = β̂0, where β̂0 is the first component of the vector β̂r. We obtain

T−1
∑T

t=1 ρτ

(
Ŷ t − φ̂−t (Xt, τ)

)
w (Xt), where φ̂−t (Xt, τ) denotes the leave-observation-t-out estimator for

φ (Xt, τ).

(iii) Finally, estimate the measure

Ĥw (τ) = 1−
(
T−1

T∑
t=1

ρτ

(
Ŷ t − φ̂−t(Xt, τ)

)
w (Xt)

)
/

(
T−1

T∑
t=1

ρτ

(
Ŷ t − ξ̂ (τ)

)
w (Xt)

)
. (12)

We are now ready to state two main results for the constant mean case. Their proofs are similar to, but

much simpler than, those of Theorems 3 and 4 below; therefore, they are omitted. Henceforth, we focus on

τ ∈ T with T = [a1, a2] for 0 < a1 < a2 < 1. The following theorem establishes an asymptotic Bahadur

representation of the estimator Ĥw (τ) in (12).

Theorem 1 Assume that the mean function m (Xt) in the regression (1) is constant and unknown. Suppose

Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2 − 1 and h = O(T−κ), with

1/(2p + 2 + d) < κ < 1/(2d), then for a given τ ∈ T , we have

√
T
(
Ĥw (τ)−Hw (τ)

)
= (1−Hw (τ))

1√
T

T∑
t=1

(et − ut) + op(1),
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where

et =
ρτ (Yt − μ− ξ (τ))w (Xt)− E [ρτ (Yt − μ− ξ (τ))w (Xt)]

E [ρτ (Yt − μ− ξ (τ))w (Xt)]
,

ut =
ρτ (Yt − μ− φ (Xt, τ))w (Xt)− E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)]

E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)]
.

An immediate implication of Theorem 1 is that the nonparametric estimator Ĥw (τ) in (12) is consistent.

Furthermore, by applying the central limit theorem on the weakly dependent process {(et − ut)} (e.g., Gao,

2007), Theorem 1 can be used to construct confidence intervals for Hw (τ). However, when homoscedasticity

holds (Hw (τ) = 0), we see from the Bahadur representation that the asymptotic variance of Ĥw (τ) degen-

erates to zero. This implies that the asymptotic normality that we obtain when we use Theorem 1 and the

CLT is also degenerated and meaningless. Thus, unlike the cases where the degree of Hw (τ) is important

(i.e., the value of the measure is not zero and large), we should investigate the next leading term in the

Bahadur expansion in order to get a non-degenerated distributional result. Using the standard theory for

U–statistics, the next theorem provides the limiting distribution of Ĥw (τ) when homoscedasticity holds in

regression (1).

Theorem 2 Assume that the mean function m (Xt) in the regression (1) is constant and unknown. Suppose

Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2 − 1 and h = O(T−κ), with

1/(2p+2+ d) < κ < 1/(2d), then under the null hypothesis of homoscedasticity, for a given τ ∈ T , we have

Thd/2Ĥw (τ) →d N
(
0, σ2

0τ

)
,

with

σ2
0τ =

2τ2 (1− τ)2

r2τ

∫
K2 (u) du

∫
w2 (x)

f2
ε,X (0, x)

f2
X (x) dx,

where rτ = E [ρτ (Yt − μ− φ (Xt, τ))w (Xt)], fε,X (0, x) is the joint density of quantile error εt = Yt − μ −

φ (Xt, τ) and Xt evaluated at εt = 0, and fX (x) is the marginal density of Xt.

A consistent estimator of σ2
0τ is given by

σ̂2
0τ =

2τ2 (1− τ)2

r̂2τ

1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w2 (Xt)

f̂2
ε̂,X (0,Xt)

1

hd
K2

(
Xt −Xs

h

)
,

where

r̂τ =
1

T

T∑
t=1

ρτ

(
Yt − μ̂− φ̂−t(Xt, τ)

)
w(Xt)

is a consistent estimator of rτ and f̂ε̂,X (0, x) is the kernel density estimator of fε,X (0, x). Under the

homoscedasticity restriction, Theorem 2 implies that the standardized version Γ̂ (τ) := Thd/2Ĥw (τ) /σ̂0τ is

asymptotically normal N (0, 1). This result forms the basis for the following one-sided asymptotic test for
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testing the null hypothesis of homoscedasticity at a given τ -quantile. For a given significance level α, we

reject the null if Γ̂ (τ) > zα, where zα is the one-sided critical value, i.e., the upper α-th percentile from the

standard normal distribution. It is also worth noting that the result in Theorem 2 can be used to construct

a valid confidence interval for H (τ) without the need to check the null of homoskedasticity, whereas the

result in Theorem 1 can only be used when H (τ) �= 0.

Finally, the consistency and the sensitivity analysis of the test Γ̂ (τ) to certain types of local alternatives

are omitted, but the results for the case of the non-constant mean function m(·) are discussed in the next

subsection and can be found in Proposition 1 and Theorem 5, respectively.

3.2 Non-constant mean

We now provide an estimator for the measure of heteroskedasticity at a given fixed quantile in the presence of

non-constant and unknown meanm (Xt). In particular, we use the sample {(Yt,Xt)}Tt=1 to nonparametrically

estimate the following general measure of heteroskedasticity:

Hw (m, τ) = 1−
E
[
ρτ
(
Y t − φ (Xt, τ)

)
w (Xt)

]
E
[
ρτ
(
Y t − ξ (τ)

)
w (Xt)

] , for τ ∈ (0, 1) ,

where Y t = Yt − m (Xt) . In practice, however, the functional form of m (Xt) is unknown, but it can be

estimated using the Nadaraya (1964) and Watson (1964) estimator:

m̂NW (x) =
1

Tbd

∑T
t=1 K

(
x−Xt

b

)
Yt

1
Tbd

∑T
t=1 K

(
x−Xt

b

) , (13)

where b ≡ bT ∈ R
+ is a bandwidth parameter shrinking to 0 at a suitable rate as T diverges to infinity. We

can also replace the Nadaraya-Watson estimator with a local polynomial type estimator m̂LP (x) as the one

reported in Equation (11). It is worthwhile to mention that the bandwidth b needs to have a slower than

h rate to annihilate the pre-estimation effect arising from estimating regression function m (Xt) in the first

stage. The detailed assumptions on both bandwidth parameters can be found in Appendix A.2.1.

Once we obtain m̂ (Xt) , we then consider the feasible transformation of the dependent variable Yt that

will allow us to follow exactly the aforementioned procedure in Subsection 3.1. In other words, we use

the following feasible (estimated) dependent variable Ŷ t := Yt − m̂ (Xt) , where m̂ (Xt) can either be the

Nadaraya-Watson estimator m̂NW (Xt) or the local polynomial estimator m̂LP (Xt) . Next, the nonparamet-

ric estimator of our measure, say Ĥw (m̂, τ) , is easily constructed through the following three steps:

(i) Given the sample {(Yt,Xt)}Tt=1 and a nonparametric estimator of m(Xt), say m̂NW (Xt), we first generate

the filtered sample
{(

Ŷ t,Xt

)}T

t=1
for Ŷ t = Yt− m̂NW (Xt). We then estimate the τ -th marginal quantile of

Ŷ t, which we denote by ξ̂ (τ), by minimizing the empirical check loss function T−1
∑T

t=1 ρτ

(
Ŷ t − θ

)
with

respect to θ and compute the minimized value T−1
∑T

t=1 ρτ

(
Ŷ t − ξ̂ (τ)

)
w (Xt) for a given weight w (·).
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(ii) Estimate the τ -th quantile regression of Ŷ t on Xt by minimizing the following objective function:

1

T

T∑
t=1

Kh (Xt − x) ρτ

⎛⎝Ŷ t −
∑

0≤|r|≤p

βr(Xt − x)r

⎞⎠ . (14)

Like in (11), denote the local polynomial estimator of the unconstrained quantile regression function φ (x, τ)

by φ̂(x, τ) = β̂0(x). Then compute the minimized value by T−1
∑T

t=1 ρτ

(
Ŷ t − φ̂−t (Xt, τ)

)
w (Xt), where

φ̂−t (Xt, τ) denotes the leave-observation-t-out estimator for φ (Xt, τ).

(iii) Finally, estimate the measure

Ĥw (m̂, τ) = 1−
T−1

∑T
t=1 ρτ

(
Ŷ t − φ̂−t (Xt, τ)

)
w (Xt)

T−1
∑T

t=1 ρτ

(
Ŷ t − ξ̂ (τ)

)
w (Xt)

. (15)

We now state the main results when the mean function m(Xt) is not constant. The following Theorem 3

provides an asymptotic Bahadur representation for the estimator Ĥw (m̂, τ) in (15); see the proof of Theorem

3 in Appendix A.2.1.

Theorem 3 Assume that the mean function m (Xt) in the regression (1) is not constant and unknown.

Suppose Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2 − 1, h = O(T−κ), with

1/(2p + 2 + d) < κ < 1/(2d), then for a given τ ∈ T , we have

√
T
(
Ĥw (m̂, τ)−Hw (m, τ)

)
= (1−Hw (m, τ))

1√
T

T∑
t=1

(et − ut) + op(1),

where

et =
ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)− E

[
ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)

]
E
[
ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)

] ,

ut =
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)− E

[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
E
[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

] .

Using the Bahadur representation in Theorem 3, we can immediately see that the nonparametric es-

timator Ĥw (m̂, τ) in (15) is consistent. Furthermore, applying the central limit theorem on the weakly

dependent process {(et − ut)} , Theorem 3 can be used to construct confidence intervals for the measure

Hw (m, τ). However, when the homoscedasticity holds (Hw (m, τ) = 0), we see from the Bahadur repre-

sentation that the asymptotic variance of Ĥw (m̂, τ) degenerates to 0. Thus, the limiting distribution of

Ĥw (m̂, τ) degenerates under the null of homoscedasticity. Using the standard theory for U -statistics, the

next theorem provides the limiting distribution of Ĥw (m̂, τ) when homoscedasticity holds; see the proof of

Theorem 4 in Appendix A.2.1.
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Theorem 4 Assume that the mean function m (Xt) in the regression (1) is not constant and unknown.

Suppose Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2 − 1, h = O(T−κ), with

1/(2p+2+ d) < κ < 1/(2d), then under the null hypothesis of homoscedasticity, for a given τ ∈ T , we have

Thd/2Ĥw (m̂, τ) →d N(0, σ2
0τ ),

with

σ2
0τ =

2τ2 (1− τ)2

r2τ

∫
K2 (u) du

∫
w2 (x)

f2
ε,X (0, x)

f2
X (x) dx,

where rτ = E
[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
, fε,X (0, x) is the joint density of quantile error εt =

Yt −m (Xt)− φ (Xt, τ) and Xt evaluated at εt = 0, and fX (x) is the marginal density of Xt.

Likewise, a consistent estimator of σ2
0τ is given by

σ̂
2
0τ =

2τ2 (1− τ)2

r̂
2
τ

1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w2 (Xt)

f̂2
̂ε,X

(0,Xt)

1

hd
K2

(
Xt −Xs

h

)
,

where

r̂τ =
1

T

T∑
t=1

ρτ

(
Yt − m̂(Xt)− φ̂−t(Xt, τ)

)
w(Xt)

is a consistent estimator of rτ = E
[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
, and f̂

̂ε,X (0, x) is the kernel density

estimator of fε,X (0, x). It is worthwhile to remark that if we choose w (x) = fε,X (0, x), our expressions

for σ2
0τ and σ̂

2
0τ reduce respectively to those for σ2

0 and σ̂2
0 in Jeong et al. (2012, Theorem 3.1(i) and (ii))

apart from the normalizing constants r2τ and r̂
2
τ
2. The consistency of σ̂

2
0τ is shown in Appendix A.2.1.

Furthermore, it is worthwhile to note that under Assumptions C.1-C.10, the nonparametric estimation of

the mean function m (Xt) is not affecting the limiting distribution of Ĥw (m̂, τ). In particular, under the

assumption that the bandwidth parameter b in (13) converges to zero at a slower rate, the mean function

m(·) can be treated as if it was known. Similar observations can also be found in e.g. Chan and Zhang

(2011).

Under the homoscedasticity restriction, Theorem 4 implies that the standardized version Γ̂ (m̂, τ) :=

Thd/2Ĥw (m̂, τ) /σ̂0τ is asymptotically normal N (0, 1). This result forms the basis for the following one-

sided asymptotic test for testing the null hypothesis of homoscedasticity at a given τ -quantile. For a given

significance level α, we reject the null if Γ̂ (m̂, τ) > zα, where zα is the one-sided critical value, i.e., the

upper α-th percentile from the standard normal distribution. Recall that many other tests have been

proposed in the literature to test if the variance function σ (Xt) in Equation (1) is constant; see White

(1980), Godfrey (1978), Machado and Santos Silva (2000), among others. In contrast, for the parametric

quantile regression-based tests of heteroskedasticity, Koenker and Bassett (1982) and Newey and Powell

2Similar remarks hold for σ2
0τ and σ̂2

0τ in Theorem 2.
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(1987) among others have proposed tests based on comparing different quantiles or expectile estimates. On

the other hand, to name only a few, nonparametric regression-based tests of heteroskedasticity include the

following: (1) Dette and Munk (1998), who propose a test based on an L2 distance between the conditional

variance and the constant variance; (2) Liero (2003), who provides a test based on an L2 distance between

the two nonparametric estimates of variance under heteroskedasticity and homoscedasticity; and (3) Zhu et

al. (2001), who build a test of heteroskedasticity based on the integrated difference between the conditional

variance and the unconditional variance weighted by an indicator function of covariate.

We next study the consistency and the power of the test Γ̂ (m̂, τ) against global and local alternatives.

The following proposition states the consistency of the test under a global alternative (see the proof of

Proposition 1 in Appendix A.2.1):

Proposition 1 Assume that the mean function m (Xt) in the regression (1) is not constant and unknown.

Suppose Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2−1 and h = O(T−κ), with

1/(2p+2+d) < κ < 1/(2d), then under the alternative hypothesis of heteroskedasticity [HA : Q
(τ) (

Y t

∣∣Xt

)
=

φ (Xt, τ)], for a given τ ∈ T , we have

Pr
{
Thd/2Ĥw (m̂, τ) /σ̂0τ > BT

}
→ 1,

for any non-stochastic sequence BT = o
(
Thd/2

)
.

Proposition 1 indicates that Γ̂ (m̂, τ) diverges to positive infinity under heteroskedasticity and, therefore,

is consistent against all global alternatives. We now examine the power of this test against Pitman local

alternatives that approach the null at a proper rate. Specifically, we consider the local alternatives:

H1T : σ (x) = σ0 +
1

T 1/2hd/4
ΔT (x) a.e., (16)

for some non-negative and non-constant continuous function ΔT (·) for every T ≥ 1. Notice that the for-

mulation of local alternatives in (16) depends on σ instead of σ2, which is slightly different from what is

considered in Hsiao and Li (2001) and Su and Ullah (2013). This formulation greatly facilitates our local

power analysis. The following Theorem 5 establishes the asymptotic local power property of the test Γ̂ (m̂, τ)

under the local alternatives in (16); see the proof of Theorem 5 in Appendix A.2.1.

Theorem 5 Assume that the mean function m (Xt) in the regression (1) is not constant and unknown.

Suppose Assumptions C.1-C.10 in Appendix A.2.1 hold. If, furthermore, p > d/2 − 1, h = O(T−κ) with

1/(2p + 2 + d) < κ < 1/(2d), then under the local alternatives H1T in (16), for a given τ ∈ T , we have

Thd/2Ĥw (m̂, τ)
d−→ N(γ, σ2

0τ ),

13
Electronic copy available at: https://ssrn.com/abstract=3653053



where rτ and σ2
0τ are defined in Theorem 4, and

γ = r−1
τ

(
D−1 (τ)

)2
lim
T→∞

E
[
Δ2

T (Xt)w (Xt) fε|X (0|Xt)
]
> 0,

with D−1 (τ) as the τ -th quantile of the error term εt in the regression (1).

Theorem 5 shows that the limiting distribution of the estimator Ĥw (m̂, τ) is non-trivially shifted as

γ > 0; therefore, the test Γ̂ (m̂, τ) is able to detect Pitman local alternatives that converge to the null at the

typical rate of Op

(
T−1/2h−d/4

)
. In particular, the local power of the test increases with the deviation of γ.

4 Bootstrap

The results in Theorems 2 and 4 are valid only asymptotically, and the asymptotic normal distribution might

not work well in finite samples. Particularly, for high-dimensional random variables, the asymptotic test

is subject to size distortion because of possible finite sample bias in the nonparametric estimation due to

the curse of dimensionality. Consequently, though it is asymptotically pivotal, the test Γ̂ (m̂, τ) is severely

distorted in finite samples when using standard normal critical values and is typically sensitive to the choice

of the bandwidth. To overcome these problems, we introduce a bootstrap-based procedure in this section

that approximates well the finite sample distribution of the test statistic Γ̂ (m̂, τ) under the null. Following

Su and Ullah (2013), we use a fixed regressor bootstrap method in the spirit of Hansen (2000), which does

not aim to reproduce the whole dependence structure of the stochastic processes that generate the original

sample but only a particular feature of it. The fixed regressor bootstrap is implemented as follows:

(1) For a given sample {(Yt,Xt)}Tt=1, perform a nonparametric regression of Yt on Xt and obtain the

nonparametric residuals Ŷ t = Yt − m̂ (Xt) for t = 1, . . . , T . Then, compute the test statistic Γ̂ (m̂, τ) =

Thd/2Ĥw (m̂, τ) /σ̂0τ , for a given τ ∈ (0, 1);

(2) For t = 1, . . . , T , obtain the bootstrapped errors Y
∗
t by random sampling with replacement from{

Ŷ s − μY , for s = 1, . . . , T
}
, where μY = T−1

∑T
s=1 Ŷ s is the sample average of Ŷ s. Then, generate the

bootstrap analog of Yt by holding Xt fixed: Y
∗
t = m̂ (Xt) + Y

∗
t , for t = 1, . . . , T ;

(3) Using the bootstrapped sample {(Y ∗
t ,Xt)}Tt=1, perform a nonparametric regression of Y ∗

t on Xt to

obtain the bootstrapped nonparametric residuals Ŷ
∗
t = Y ∗

t − m̂∗ (Xt) for t = 1, . . . , T . Then, compute

the bootstrapped test statistic Γ̂
∗
(m̂∗, τ) = Thd/2Ĥw∗ (m̂∗, τ) /σ̂

∗
0τ , where Ĥw∗ (m̂∗, τ) and σ̂

∗
0τ are defined

analogously to Ĥw (m̂, τ) and σ̂0τ with Ŷ t being replaced by Ŷ
∗
t ;

(4) Repeat steps (2)-(3) B times so that we get a sample of bootstrapped statistics as
{
Γ̂
∗
j (m̂j

∗, τ)
}B

j=1
;

(5) Compute the bootstrapped p-value using p∗ = B−1
∑B

j=1 1
(
Γ̂
∗
j (m̂j

∗, τ) > Γ̂ (m̂, τ)
)
, and for a given

significance level α, reject the null hypothesis if p∗ < α.
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The following Theorem 6 establishes the asymptotic validity of the above fixed regressor bootstrap-based

procedure (see the proof of Theorem 6 in Appendix A.2.1):

Theorem 6 Suppose that the assumptions in Theorem 4 hold. Then, for a given τ ∈ T , we have

Γ̂
∗
(m̂∗, τ) :=

Thd/2Ĥw∗ (m̂∗, τ)
σ̂
∗
0τ

d−→ N(0, 1)

conditionally on {(Yt,Xt)}Tt=1 as T → ∞, where σ̂
∗2
0τ is analogously defined as in Theorem 4.

The result in Theorem 6 provides an asymptotically valid approximation to the limiting null distribution

of Γ̂ (m̂, τ). This result holds regardless of whether the null hypothesis is true or not. In the next section,

we use Monte Carlo simulations to examine the performance of the bootstrap-based test in Theorem 6 for

small to moderate-sized samples. We also examine the performance of another type of bootstrap, which is

the smoothed local bootstrap; see Appendix A.2.1.

5 Monte Carlo simulations

We conduct a Monte Carlo simulation study to investigate the performance of the bootstrap-based test

in Theorem 6 for testing the statistical significance of the measure of heteroskedasticity at a given fixed

quantile. Since the non-constant mean case is the most relevant case in practice, in our simulations, we

focus on testing the null hypothesis H0 : H
w (m, τ) = 0.

Though the asymptotic-based test Γ̂ (m̂, τ) = Thd/2Ĥw (m̂, τ) /σ̂0τ , whose distribution is reported in

Theorem 4, is not time consuming and is easy to implement, in small samples, its empirical size may differ

significantly from the significance level. However, it is expected that the fixed regressor bootstrap-based test

will help eliminate or mitigate the asymptotically negligible higher order terms that may have substantial

adverse effects on the size of Γ̂ (m̂, τ). Thus, the objective is to assess the empirical size and power of the

bootstrap-based test using several data generating processes (DGPs) that we present in Table 1, which we

take from Su and Ullah (2013).

The six DGPs in Table 1 will be used to evaluate the empirical size and power of the bootstrap-based

test in Theorem 6. The first two DGPs [DGP S1 and DGP S2] are used to investigate the size property

since in these DGPs the null hypothesis (homoscedasticity) is satisfied. However, from DGP P1 to DGP P4,

the null is not satisfied; therefore, they serve to illustrate the power of our test. Some of these DGPs [DGP

S1, DGP P1, and DGP P2] can be viewed as if they represent cross-sectional data and others [DGP S2,

DGP P3, and DGP P4] correspond to time series data. The time series processes are strictly stationary and

ergodic. Furthermore, in DGP P4 we have Ut = Yt − 0.5Yt−1, which indicates that the dependent variable

Yt follows an AR-ARCH process. Following Su and Ullah (2013), in DGPs P1 to P4, we set δT = T−9/20 to

study the local power behavior of our test under the Pitman local alternatives H1T stated in (16).
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Table 1: Data generating processes

DGPs Variables of Interest Conditional Variance of Y

Yt Xt σ (Xt)

DGP S1 Yt = 1 +Xt + εt i.i.d. U(−
√
3,
√
3) 1

DGP S2 Yt = 0.5Yt−1 + εt Yt−1 1

DGP P1 Yt = 1 +Xt + σ (Xt) εt i.i.d. U(−
√
3,
√
3) 0.5 + δT (Xt − 1)2

DGP P2 Yt = 1 +Xt + σ (Xt) εt i.i.d. U(−
√
3,
√
3) 0.2 + δT exp(Xt)

DGP P3 Yt = 0.5Yt−1 + σ (Xt) εt Yt−1 0.1 + 5 exp(−δTY
2
t−1)

DGP P4 Yt = 0.5Yt−1 + σ (Xt) εt Yt−1 0.1 + 4δTU
2
t−1, where Ut = Yt − 0.5Yt−1

Note: This table summarizes the DGPs that we consider in the simulation study to investigate the properties (size

and power) of the nonparametric test of measure of heteroskedasticity at a given fixed quantile. We simulate Yt and

Xt, for t = 1, . . . , T, under the assumption that εt are i.i.d. N(0, 1) [we also consider the case where εt are i.i.d. t3]

and Xt⊥εt. The last column of the table reports the conditional variance of Y . When the latter is constant, then we

are in the presence of homoscedasticity; when it is not, this corresponds to heteroskedasticity.
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Table 2: Empirical rejection frequency of fixed regressor bootstrap when ε ∼ N(0, 1)

Quantiles DGPs

DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4

T = 50

τ = 0.25 6.2 4.2 40.4 51.6 56.5 43.6

τ = 0.75 4.8 3.4 55.2 66.4 70.0 56.7

T = 100

τ = 0.25 5.8 3.2 55.1 69.5 62.4 76.5

τ = 0.75 5.8 3.2 60.2 75.4 70.2 83.4

T = 200

τ = 0.25 5.0 3.0 71.6 87.2 75.7 80.4

τ = 0.75 5.2 3.0 75.2 88.3 77.8 85.2

Note: This table reports the empirical size and power of the fixed regressor bootstrap-based test, Γ̂
∗
(m̂∗, τ) , in

Theorem 6 for testing that the measure of heteroskedasticity at a given fixed quantile is equal to 0 [H0 : Hw (m, τ )= 0]

at α = 5% significance level. The number of simulations is equal to 500 and the number of bootstrap resamples is

B = 199. The error terms εt in regression (1) are i.i.d. N(0, 1).

The weight function w(·) in the estimator of the measure in Equation (15) is set to be equal to 1

everywhere, i.e., the trivial weight function, since we expect that the test’s performance will not depend

on this weight function. Furthermore, to estimate the nonparametric mean regression and the restricted

and unrestricted quantile regression functions, we take the univariate kernel function K(·) equal to the

standard normal density. Thereafter, we choose the two bandwidth sequences b and h by a “rule of thumb”.

For the first stage nonparametric mean regression, the bandwidth parameter is given by the following:

b = 1.5c∗std(Xt)∗T−1/4. For the second stage restricted and unrestricted quantile regressions, the bandwidth

is given by the following: h = c ∗ std(Xt) ∗ T−1/3, where std(Xt) is the sample standard deviation of Xt.

We have reported the simulation results for c = 1. The results for c = 0.5 and c = 1.5 are not reported

(available upon request), but they are quantitatively similar to those obtained for c = 1.

Three sample sizes T = 50, 100, and 200 are considered and two different quantile levels are examined τ =

0.25, 0.75. For each DGP, we first generate T+200 observations and then discard the first 200 observations to
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minimize the potential adverse effects of the initial values. We use 500 simulations to compute the empirical

size and power. For each simulation, we use B = 199 bootstrap replications to approximate the finite sample

distribution of Γ̂ (m̂, τ) . Finally, we focus on the nominal size 5%.

Table 2 reports the empirical size and power of the test statistic Γ̂
∗
(m̂∗, τ) when the error terms εt

are i.i.d. N(0, 1). As expected, the fixed regressor bootstrap test controls its size well for both small and

moderate samples. Regarding the power, the test has reasonable power compared with various alternatives,

even when the sample size is equal to 50; it also increases with sample size.

To compare with the above results, we also consider the case of heavy-tailed innovations: εt ∼ i.i.d.

t3, where t3 is a Student’s t-distribution with three degrees of freedom. The new simulation results are

reported in Table 3. From this, we again see that the fixed regressor bootstrap test controls its size and

has reasonable power. This test is fairly robust to heavy-tailed distributions, and thus, it would be more

appropriate to apply it to detect and measure heteroskedasticity in financial variables (returns) that are

known to be leptokurtic.

Lastly, we perform additional simulations where the fixed regressor bootstrap is replaced by the smoothed

local bootstrap; see Paparoditis and Politis (2000). One major advantage of the smoothed local bootstrap

procedure is that it can preserve the unknown dependence structure in the stochastic processes generating the

original sample. The implementation of the smoothed local bootstrap-based test is described in Appendix

A.2.1, and the simulation results are reported in Table 4. Examining the results in Tables 2 and 4, we see

that the smoothed local bootstrap-based test does slightly better (in terms of size and power) than the fixed

regressor bootstrap-based test.

6 Empirical applications

We provide two empirical applications where our measures are applied to quantify the degree of heteroskedas-

ticity using real data on economic and financial variables. In the first application, we are interested in mea-

suring the degree of heteroskedasticity of income conditional on the years of education, and in the second

one, we quantify the degree of heteroskedasticity of 29 individual stocks and of the S&P 500 Index.

6.1 Application I: Heteroskedasticity of income conditional on the years of education

This first application aims to apply the measures introduced in the previous sections to quantify the degree

of heteroskedasticity of income conditional on the years of education for U.S. male and female workers. In

particular, we measure the degree of heteroskedasticity at a fixed quantile of income distribution conditional

on different ranges of years of education. The data used was from the March 2009 Current Population

Survey (CPS) conducted by the Bureau of Labor Statistics in the United States Department of Labor.
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Table 3: Empirical rejection frequency of fixed regressor bootstrap when ε ∼ t3

Quantiles DGPs

DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4

T = 50

τ = 0.25 6.1 4.8 50.4 51.3 54.5 46.6

τ = 0.75 3.7 5.3 55.5 65.7 71.2 57.6

T = 100

τ = 0.25 3.8 3.9 59.1 66.7 64.2 78.4

τ = 0.75 5.5 3.6 62.2 73.2 69.7 83.4

T = 200

τ = 0.25 5.3 4.8 71.5 85.3 73.5 82.5

τ = 0.75 5.1 4.6 75.6 89.5 78.6 82.8

Note: This table reports the empirical size and power of the fixed regressor bootstrap-based test, Γ̂
∗
(m̂∗, τ) , in

Theorem 6 for testing that the measure of heteroskedasticity at a given fixed quantile is equal to 0 [H0 : H (m, τ )= 0]

at α = 5% significance level. The number of simulations is equal to 500 and the number of bootstrap resamples is

B = 199. The error terms εt in regression (1) are i.i.d. t3, where t3 is a Student’s t-distribution with three degrees of

freedom.
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Table 4: Empirical rejection frequency of local smoothed bootstrap when ε ∼ N(0, 1)

Quantiles DGPs

DGP S1 DGP S2 DGP P1 DGP P2 DGP P3 DGP P4

T = 50

τ = 0.25 5.1 4.6 42.5 50.3 55.2 41.7

τ = 0.75 5.5 3.9 53.4 65.6 73.4 57.3

T = 100

τ = 0.25 4.8 4.2 56.6 67.9 64.5 75.8

τ = 0.75 4.7 5.2 62.3 76.7 74.6 84.5

T = 200

τ = 0.25 4.5 4.7 73.5 88.3 78.4 81.5

τ = 0.75 5.1 4.8 75.5 89.2 77.5 84.8

Note: This table reports the empirical size and power of the smoothed local bootstrap-based test [see Appendix A.2.1]

for testing that the measure of heteroskedasticity at a given fixed quantile is equal to 0 [H0 : H (m, τ)= 0] at α = 5%

significance level. The number of simulations is equal to 500 and the number of bootstrap resamples is B = 199. The

error terms εt in regression (1) are i.i.d. N(0, 1).
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The CPS provides data on labor force characteristics of the population, including the level of employment,

unemployment, and earnings. The variables of interest are average hourly earnings (AHE) and the number of

years of education (EDU). The sample comprises 2989 full-time U.S. workers (1658 males and 1331 females)

aged between 29 and 30 years and having between 6 and 18 years of education as of 2008. We assume that

the conditional mean of income is given by the following nonparametric regression:

ahei = m (edui) + σ (edui) εt,

where ahei is the average hourly earning of an individual i and edui is his/her education level.
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Figure 1: This figure provides the measure (degree) of heteroskedasticity at different quantiles of the con-

ditional distribution of U.S. male and female income conditional on all the years of education, which corre-

sponds to a weighting function w (Xt) = 1.

Figures 1 and 2 illustrate the results of estimating the measures of heteroskedasticity of income. We have

applied the bootstrap-based test in Theorem 6 to test for the statistical significance of the estimates of the

measures. The results were omitted as they indicate that all these estimates (at different quantiles of the

income distribution and different ranges of the years of education) are statistically significant even at 1%

significance level. On the one hand, the results in Figure 1 illustrate the case where the weighting function

w (Xt) is equal to 1. In other words, this shows the estimates of the degree of heteroskedasticity of income

conditional on all years of education. On the other hand, the results in Figure 2 present the estimates of

the measures of heteroskedasticity of income conditional on different ranges of the years of education.

Conditional on all years of education, Figure 1 shows that it is difficult to distinguish between the degrees

of measures of heteroskedasticity for males and females. However, when one considers different ranges of the

years of education, the difference in the degree of income variation for males and females becomes clearer,

especially for groups with low levels of education; see Figure 2. Furthermore, the degree of income variation
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(a) Education level lower than the 5th quantile

.00

.05

.10

.15

.20

.25

.30

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Quantile of Incom e

All
M ale
Fem ale

M
e
a
su
re
 (
D
e
g
re
e
) 
o
f 
H
e
te
ro
sc
e
d
a
st
ic
ity

(b) Education level lower than its 25th quantile
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(c) Education level lower than its 50th quantile
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(d) Education level higher than its 50th quantile
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(e) Education level higher than its 75th quantile
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(f) Education level higher than its 95th quantile

Figure 2: This figure provides the measure (degree) of heteroskedasticity at different quantiles of the condi-

tional distribution of U.S. male and female income conditional on different quantile ranges of the distribution

of years of education: (a) (0, 0.05), (b) (0, 0.25), (c) (0, 0.5), (d) (0.5, 1), (e) (0.75, 1), and (f) (0.95, 1).

The quantile ranges define the weighting function w (Xt). For example, for the quantile range (0, 0.05),

w (Xt) = I [Xt ≤ qx (0.05)].
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(a) 5th quantile of Income
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(b) 25th quantile of Income
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(c) 75th quantile of Income
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(d) 95th quantile of Income

Figure 3: This figure provides the measure (degree) of heteroskedasticity at each quantile of U.S. male and

female income (5%, 25%, 75%, and 95%) across different ranges of the distribution of years of education [in

the figure “Quantile of Education Level”].
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for females is generally smaller than the degree of income variation for males [see for example the sub-figure

(a) of Figure 2].

For a given fixed quantile of income distribution (5%, 25%, 75%, or 95% quantiles), Figure 3 illustrates

the degree of heteroskedasticity of income as a function of ranges of years of education. From this, we

see that the degree of income variation decreases when the years of education increase, which is true for

all quantiles under consideration. Thus, the income of highly educated people varies less compared to the

income of low educated people. This is more apparent for male workers compared with female workers.

6.2 Application II: Heteroskedasticity of 30 stock returns

In this second application, we use the proposed measures to quantify the degree of heteroskedasticity of

many stock returns. The dataset comes from Yahoo Finance and consists of 29 daily individual stocks

and daily S&P 500 Index with 2517 observations over the period from January 1, 2007 to December 31,

2016. The 29 individual stocks are as follows: American Express Company (AXP); Boeing Company (BA);

Bank of America Corporation (BAC); Caterpillar Inc. (CAT); Cisco Systems, Inc. (CSCO); Chevron

Corporation (CVX); E. I. du Pont de Nemours and Company (DD); Walt Disney Company (DIS); General

Electric Company (GE); Home Depot, Inc. (HD); Hewlett-Packard Company (HPQ); International Business

Machines Corporation (IBM); Intel Corporation (INTC); Johnson & Johnson (JNJ); JPMorgan Chase & Co.

(JPM); Coca-Cola Company (KO); McDonald’s Corp. (MCD); 3M Company (MMM); Merck & Co. Inc.

(MRK); Microsoft Corporation (MSFT); Pfizer Inc. (PFE); Procter & Gamble Co. (PG); AT&T, Inc. (T);

Travelers Companies, Inc. (TRV); UnitedHealth Group Incorporated (UNH); United Technologies Corp.

(UTX); Verizon Communications Inc. (VZ); Wal-Mart Stores Inc. (WMT); and Exxon Mobil Corporation

(XOM). For each stock, we compute the continuously compounded daily returns, say rt, by taking the

difference between the logarithm of the price at time t and the logarithm of the price at time t − 1. We

assume that the conditional mean of each stock return is given by the following nonparametric regression:

rt = m (rt−1) + σ (rt−1) εt,

where the conditional information is given by the past return rt−1.

Figure 4 illustrates the results of estimating the measure of heteroskedasticity for each of the 30 stock

returns and for different quantiles of their conditional distributions. We use the bootstrap-based test in

Theorem 6 to test for the statistical significance of the estimates of the measures. We find (results are

not reported but available upon request) that most of the bootstrapped p-values are close to zero, which

confirms that stock returns are conditionally heteroskedastic. In addition, Figure 4 shows that there is some

heterogeneity in the degree of heteroskedasticity across the 30 stocks under consideration.
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(a) Stocks: AXP, BA, BAC, CAT, CSCO, and CVX
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(b) Stocks: DD, DIS, GE, HD, HPQ, IBM, and INTC
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(c) Stocks: JNJ, JPM, KO, MCD, MMM, MRK, and

MSFT
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(d) Stocks: PFE, PG, SP500, T, TRV, UNH, UTX,

VZ, and WMT

Figure 4: This figure provides the measure (degree) of heteroskedasticity at different quantiles of the con-

ditional distributions of 30 daily stock returns (including the S&P 500 Index returns) conditional on their

past returns. The weighting function w(Xt) = 1.
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7 Conclusion

We introduced a measure to quantify the strength of heteroskedasticity at a given fixed quantile of the

conditional distribution of a random variable conditional on the support or sub-support of other random

variables. Our measure of heteroskedasticity is based on nonparametric quantile regressions and is expressed

in terms of unrestricted and restricted expectations of quantile loss functions. It can be consistently estimated

by replacing the unknown expectations by their nonparametric estimates. We derived a Bahadur-type

representation for the nonparametric estimator of the measure. We provided the asymptotic distribution of

this estimator, which one can use to build tests for the statistical significance of the measure. Thereafter, we

established the validity of a fixed regressor bootstrap that one can use in finite-sample settings to perform

tests. A Monte Carlo simulation study revealed that the bootstrap-based test has a good finite sample

size and power for a variety of data generating processes and different sample sizes. Finally, two empirical

applications were provided to illustrate the importance of the proposed measure. In the first application,

we were interested in measuring the degree of heteroskedasticity of income conditional on the years of

education, and in the second one, we quantified the degree of heteroskedasticity of 30 stock returns. For

the first application, our results showed that the degree of income variation decreases when the years of

education increase. Thus, the income of highly educated people varies less compared with the income of

those with low levels of education. Furthermore, we found that the degree of income variation for females

is generally smaller than the degree of income variation for males. For the second application, the results

confirmed that all stock returns under consideration are conditionally heteroskedastic. In addition, these

results showed that there is some heterogeneity in the degree of heteroskedasticity across the stocks. Finally,

for all 30 stocks we used, we found that the degree of heteroskedasticity is high at the extremes of the

conditional distribution of returns.
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A Appendix

In this appendix, we describe the implementation of smoothed local bootstrap test as an alternative to

fixed-regressor bootstrap test. We also provide our assumptions and sketch proofs of the theoretical results.
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A.1 Smoothed local bootstrap-based test

Here, we describe how a smoothed local bootstrap-based test for testing the null hypothesis H0 : H
w (m, τ) =

0 can be implemented. We first need to consider the following notations. In the sequel, X ∼ fX means

that the random variable X is generated from a density function fX . Let L1, L2 and L3 be three kernels

(standard normal density) and h∗ be a bandwidth parameter for the bootstrap. The local smoothed bootstrap

is implemented in the following four steps:

(1) Draw a bootstrapped sample {(Y ∗
t ,X

∗
t )}Tt=1. We first draw X∗

t−1 using its nonparametric density

X∗
t−1 ∼ 1

Th∗d

T∑
s=1

L1

(
Xs−1 − x

h∗

)
.

Then conditional on X∗
t−1, we draw X∗

t , and conditional on X∗
t we draw Y ∗

t independently from the following

two non-parametric conditional probability densities:

X∗
t ∼ 1

h∗d
∑T

s=1 L1

(
Xs−1−X∗

t−1

h∗

)
L2

(
Xs−x
h∗

)
/
∑T

s=1 L1

(
Xs−1−X∗

t−1

h∗

)
,

Y ∗
t ∼ 1

h∗
∑T

s=1 L1

(
Xs−X∗

t
h∗

)
L3

(
Ys−y
h∗

)
/
∑T

s=1 L1

(
Xs−X∗

t
h∗

)
;

(2) Based on the bootstrapped sample {(Y ∗
t ,X

∗
t )}Tt=1, we compute the bootstrapped version of the test

statistic: Γ̂
∗
LS (m̂∗, τ) = Thd/2Ĥ∗(m̂∗,τ)

̂σ
∗
0τ

;

(3) Repeat the steps (1)-(2) B times so that we get Γ̂
∗
LS,j (m̂

∗, τ), for j = 1, . . . , B;

(4) Compute the bootstrapped p-value using p∗ = B−1
∑B

j=1 1
(
Γ̂
∗
LS,j (m̂

∗, τ) > Γ̂ (m̂, τ)
)
, where Γ̂ (m̂, τ) =

Thd/2Ĥw(m̂,τ)
̂σ0τ

is the test statistic based on the original sample {(Yt,Xt)}Tt=1, and for a given significance level

α, we reject the null hypothesis if p∗ < α.

A.2 Assumptions and proofs of main results

In this appendix, we include our main assumptions and sketch proofs of the theoretical results. For the

asymptotic properties, we only include the proofs for the non-constant mean case, as the proofs of Theorems

1 and 2 are similar but much simpler than those of Theorems 3 and 4.

A.2.1 Technical assumptions

Here, we provide the necessary assumptions needed to derive the theoretical results in the paper. These

assumptions mainly deal with the time series data with certain dependence structure, but our results still

valid for cross-sectional data. We consider a set of standard assumptions that have been widely used in the

literature; see for example Kong et al. (2010) and Noh et al. (2013) among others.

Let {(Xt, Yt)} be a strongly mixing stationary process with γ(k) its strong mixing coefficient satisfying:

γ(k) = sup
A∈F0

−∞,B∈F∞
k

|P (AB)− P (A)P (B)| → 0 as k → ∞,
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with Fb
a = σ

(
{(Xt, Yt)}bt=a

)
, where σ(·) means the smallest sigma algebra. Furthermore, let Vx be an open

convex set in R
d. Define ϕ (u, τ) = τ1 (u ≥ 0)+(τ − 1) 1 (u < 0) = τ −1 (u < 0) to be the piecewise constant

derivative of the loss function ρτ (u), with 1(·) the indicator function. We now consider the assumptions:

C.1. The processes {(Xt, Yt)} are strongly mixing with mixing coefficients γ(k) satisfying

∞∑
k=1

kαγ (k)1−2/ν , for some ν > 2 and α > (p+ d+ 1) (1− 2/ν) /d.

C.2. All partial derivatives of φ (x, τ) up to order p + 1 exist and are continuous for all x ∈ Vx, and there

exists a constant C > 0 such that |Drφ (x, τ) | ≤ C for all x ∈ Vx and r = p+ 1.

C.3. The marginal density of εt = Yt −m (Xt)− φ (Xt, τ) is bounded and E (ϕ (εt, τ) |Xt) = 0.

C.4. For all e in a neighbourhood of zero, the conditional density fε|X (e|x) of εt = Yt −m (Xt)− φ (Xt, τ)

given Xt = x satisfies ∣∣fε|X (e|x1)− fε|X (e|x2)
∣∣ ≤ Ke‖x1 − x2‖,

where Ke is a positive constant depending on e. Further, the conditional density is positive for e = 0

for all values of x ∈ Vx, and its first partial derivative with respect to e, D1fε|X (e|x), is bounded for

all x ∈ Vx and e in a neighbourhood of zero.

C.5. The weight function w(x) is continuous, and its supportD ⊂ Vx is compact and has non-empty interior.

C.6. The kernel function K(·) has a compact support and
∣∣∣Hj(x1)−Hj(x2)

∣∣∣ ≤ ‖x1 − x2‖ for all j with

0 ≤ j ≤ 2p+ 1, where Hj(x) = xjK(x).

C.7. The marginal density function of Xt, fX (x), is positive and bounded with bounded first-order deriva-

tives on Vx. The joint density of (X1,Xl+1) satisfies f (x1, x2; l) ≤ C < ∞ for all l ≥ 1.

C.8. The conditional density fX0|X1
of Xt given Xt+1 exists and is bounded. The conditional density

function f(X1,Xl+1)|(X2,Xl+2) of (X1,Xl+1) given (X2,Xl+2) exists and is bounded for all l ≥ 1.

C.9. The distribution function of Yt, FY (·), has bounded second derivative in a neighbourhood of m (Xt)+

φ (Xt, τ) and fY
(
m (Xt) + φ (Xt, τ)

)
> 0, where fY (·) is the marginal density function of Yt.

C.10. The bandwidth sequences h and b satisfy h → 0, Thd+2(p+1)/ log T = O(1), b → 0, and Tb → ∞ as

T → ∞. Furthermore, we assume Th2d/(log T )3 → ∞, and h = o(b).
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A.2.2 Proofs

This appendix shows the proofs of the main theoretical results developed in Sections 3 and 4. The proofs of

Theorems 1 and 2 are similar to but simpler than those of Theorems 3 and 4 and therefore they are omitted.

First of all, recall that when the function m(·) is unknown, the nonparametric estimator of our weighted

measure of heteroskedasticity at a given fixed quantile τ is defined by

Ĥw (m̂, τ) = 1−
T−1

∑T
t=1 ρτ

(
Yt − m̂ (Xt)− φ̂−t (Xt, τ)

)
w (Xt)

T−1
∑T

t=1 ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)

, for τ ∈ (0, 1) ,

where m̂ (Xt), ξ̂ (τ), and φ̂−t (Xt, τ) are respectively the nonparametric estimators for the conditional mean

function m (Xt), the τ -th marginal quantile of Yt − m (Xt), and the τ -th conditional quantile function of

Yt−m (Xt) given Xt leaving observation t out. In addition, let φ̂ (x, τ) denote the estimator when evaluating

on the general x. Four auxiliary lemmas which are useful to prove our main results are given below. The

first two lemmas establish the Bahadur representations of ξ̂ (τ) and φ̂ (x, τ), respectively.

Lemma 1: Let f ′
Y (y) be bounded in a neighbourhood of m(Xt)+ ξ (τ). Then, with probability one, we have

ξ̂ (τ)− ξ (τ) = −
FY T

(
ξ (τ)

)
− τ

fY
(
ξ (τ)

) +R∗
T ,

where FY T (y) = T−1
∑T

t=1 1(Yt ≤ y) is the empirical distribution function and R∗
T = op

(
T−3/4+δ log T

)
,

for some δ ∈ (0, 1/4).

Proof of Lemma 1: See the proofs of Theorems 1 and 2 of Sun (2006).

Lemma 2: Let e1 be an N×1 vector with its first element given by 1 and all others 0. Suppose Assumptions

C.1-C.10 hold and h = O(T−κ) with κ > 1/(2q + 2 + d). Then, with probability one, we have

φ̂ (x, τ)− φ (x, τ) = −e′1
H−1

T

Thd
S−1
T,p (x)

T∑
t=1

Kh (Xt − x)ϕ (εt)μ (Xt − x) +R∗
T (x) ,

where εt = Yt−m (Xt)−φ (Xt, τ) is the unrestricted quantile error and R∗
T (x) = op

((
Thd

)−1/2
)
uniformly

in x ∈ D and D is the compact support of the weighting function w (·).

Proof of Lemma 2: This follows by the standard results for M -regression using local polynomial methods

in Kong et al. (2010).

The next two lemmas provide the Bahadur representations of the check loss functions ρτ (·) involving

ξ̂ (τ) and φ̂ (Xt, τ), respectively. They are needed to prove Theorems 3 and 4.

Lemma 3: Suppose Assumptions C.1-C.10 hold. Then,

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)− E

[
ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)

]
=

1

T

T∑
t=1

ρτ
(
Xt −m (Xt)− ξ (τ)

)
w (Xt)− E

[
ρτ
(
Xt −m (Xt)− ξ (τ)

)
w (Xt)

]
+ op(T

−1/2).
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Proof of Lemma 3: The proof of Lemma 3 is omitted, because it can be regarded as a similar case of

the following Lemma 4, with the estimated conditional quantile function φ̂ (Xt, τ) replaced by the estimated

marginal sample quantile ξ̂ (τ). Then, combining the Bahadur representation of ξ̂ (τ) in Lemma 1 and that

of m̂(Xt) will prove Lemma 3.

Lemma 4: Suppose Assumptions C.1-C.10 hold, furthermore, p > d/2− 1 and h = O(T−κ) with 1/(2p+

2 + d) < κ < 1/(2d). Then,

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− φ̂−t (Xt, τ)

)
w (Xt)− E

[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
=

1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)− E

[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
+ op(T

−1/2).

Proof of Lemma 4: Notice that for any x and y, we have

ρτ (x− y)− ρτ (x) = (−y)ϕ (x) + 2 (y − x) [1 (y > x > 0)− 1 (y < x < 0)] ,

where ϕ (x) := ϕ (x, τ) = τ−1 (x < 0) is the piecewise constant derivative of ρτ (x). Let d̂ (x) = m̂ (x)−m (x)

and d̂ (x) = φ̂ (x, τ)− φ (x, τ). Then,

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− φ̂−t (Xt, τ)

)
w (Xt)−

1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

=− 1

T

T∑
t=1

d̂ (Xt)w (Xt)ϕ (εt)−
1

T

T∑
t=1

d̂ (Xt)w (Xt)ϕ (εt)

− 2

T

T∑
t=1

{
εt −

[
d̂ (Xt) + d̂ (Xt)

]}{
1
(
d̂ (Xt) + d̂ (Xt) > εt > 0

)
− 1

(
d̂ (Xt) + d̂ (Xt) < εt < 0

)}
w (Xt)

≡AT +BT + CT .

We first deal with the term BT . From Lemma 2, we have

BT =− 1

T (T − 1)

∑
t�=s

w (Xt) e
′
1

H−1
T

hd
S−1
T,p(Xt)Kh(Xs −Xt)μ(Xs −Xt)ϕ(εt)ϕ(εs) + op

(
T−1/2

)
:=B1T + op

(
T−1/2

)
.

Following similar arguments to those used in the proof of Lemma 3 of Noh et al. (2013), one can prove that

B1T = op
(
T−1/2

)
.

Next, by following the same steps for proving the asymptotic negligibility of B1T and combining the

asymptotic Bahadur representation for the nonparametric estimator m̂ (·) - for instance the Nadaraya-

Watson kernel estimator m̂NW (·)- we have

m̂NW (x)−m (x) = b2BiasT (x) +
1

E
[
f̂X (x)

] 1
T

T∑
t=1

Kb (Xt − x)σ (Xt) εt +R∗
T (x) ,
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where the error terms εt are defined in (1), BiasT (x) is a deterministic bias term, and supx∈D |R∗
T (x) | =

Op

(
(Tbd)−1 log T

)
= op

(
T−1/2

)
. Thus, with the appropriate choice of the bandwidth b in Assumption C.10,

we can show that AT = op
(
T−1/2

)
.

Finally, we deal with the term CT . We first define I (w) = {t : Xt ∈ D, t = 1, . . . , T}. As for the term

CT , notice that

|CT | ≤
2

T

T∑
t=1

(
|εt|+

∣∣∣d̂ (Xt) + d̂ (Xt)
∣∣∣) 1(|εt| < ∣∣∣d̂ (Xt) + d̂ (Xt)

∣∣∣)w (Xt)

≤ 2

T

T∑
t=1

(
|εt|+

∣∣∣d̂ (Xt)
∣∣∣+ ∣∣∣d̂ (Xt)

∣∣∣) 1(|εt| < ∣∣∣d̂ (Xt)
∣∣∣+ ∣∣∣d̂ (Xt)

∣∣∣)w (Xt)

≤ 4

T

T∑
t=1

(∣∣∣d̂ (Xt)
∣∣∣+ ∣∣∣d̂ (Xt)

∣∣∣) 1(|εt| < ∣∣∣d̂ (Xt)
∣∣∣+ ∣∣∣d̂ (Xt)

∣∣∣)w (Xt)

≤ 4 max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)max
x∈D

w(x)
1

T

T∑
t=1

1

(
|εt| < max

s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)) .

Using the Glivenko-Cantelli Theorem for strictly stationary sequences, we have

|CT | ≤4 max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)max
x∈D

w(x)

{
Pr

(
|ε| < max

s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣))+Op

(
T−1/2

)}
=4 max

s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)max
x∈D

w(x)

{
Fε

(
max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣))
−Fε

(
− max

s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣))}+ 4 max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)max
x∈D

w(x)×Op

(
T−1/2

)
≤8 sup

e∈E
fε(e)max

x∈D
w(x)

{
max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)}2

+ 4 max
s∈I(w)

(∣∣∣d̂ (Xs)
∣∣∣+ ∣∣∣d̂ (Xs)

∣∣∣)max
x∈D

w(x) ×Op

(
T−1/2

)
,

where the third step follows from the first order Taylor expansion of Fε (e) , with Fε the distribution function

of ε and fε the corresponding density function. Now, from the uniformly bounded density fε, uniformly

bounded weight function w (x) over the support D in Assumption C.5., and

max
t∈I(w)

∣∣∣d̂ (Xt)
∣∣∣ = Op

(
log T

Tbd

)3/4

= op

(
log T

Thd

)3/4

,

under h = o(b) in Assumption C.10., and

max
t∈I(w)

∣∣∣d̂ (Xt)
∣∣∣ = Op

(
log T

Thd

)3/4

,

from Kong et al. (2010) [Theorem 1, p.1536], it follows that

CT = Op

((
log T

Thd

)3/2

+ T−1/2

(
log T

Thd

)3/4
)

= op

(
T−1/2

)
under Assumption C.10. Combing the asymptotic negligibility of AT , BT and CT proves Lemma 4.
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Proof of Theorem 1: The proof of Theorem 1 is similar to but slightly simpler than that of Theorem 3

and therefore it is omitted.

Proof of Theorem 2: The proof of Theorem 2 is similar to but slightly simpler than that of Theorem 4

and therefore it is omitted.

Proof of Theorem 3: Theorem 3 can be proven using the two asymptotic representations in Lemmas 3

and 4 and the equality â/b̂ = a/b+ b̂−1
[
(â− a)−

(
b̂− b

)
(a/b)

]
.

Proof of Theorem 4: Under the null hypothesis of homoskedasticity, the first order asymptotic result in

Theorem 3 is degenerated. To establish the null limiting distribution of Ĥ (m̂, τ), we need to investigate

the higher order terms of an analogous decomposition in Lemma 4. To this end, recall that for x and y,

ρτ (x − y) − ρτ (x) = (−y)ϕ(x) + 2(y − x)[1(y > x > 0) − 1(y < x < 0)]. Denote εt = Yt − m (Xt) − ξ (τ)

and εt = Yt−m (Xt)−φ (Xt, τ) , respectively the restricted (under the null) and the unrestricted (under the

alternative) quantile errors. Note that under the null hypothesis, εt = εt almost surely (a.s.) and we obtain

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)−

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− φ̂−t (Xt, τ)

)
w (Xt)

=

{
1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)−

1

T

T∑
t=1

(
d̂ (Xt) + d̂

)
w (Xt)ϕ (εt)

− 2

T

T∑
t=1

{
εt −

[
d̂ (Xt) + d̂

]}{
1
(
d̂ (Xt) + d̂ > εt > 0

)
− 1

(
d̂ (Xt) + d̂ < εt < 0

)}}
w (Xt)

−
{

1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)−

1

T

T∑
t=1

(
d̂ (Xt) + d̂ (Xt)

)
w (Xt)ϕ (εt)

− 2

T

T∑
t=1

{
εt −

[
d̂ (Xt) + d̂ (Xt)

]}{
1
(
d̂ (Xt) + d̂ (Xt) > εt > 0

)
− 1

(
d̂ (Xt) + d̂ (Xt) < εt < 0

)}}
w (Xt)

=
1

T

T∑
t=1

d̂ (Xt)w (Xt)ϕ (εt)− d̂
1

T

T∑
t=1

w (Xt)ϕ (εt)

+
2

T

T∑
t=1

{
εt −

[
d̂ (Xt) + d̂ (Xt)

]}{
1
(
d̂ (Xt) + d̂ (Xt) > εt > 0

)
− 1

(
d̂ (Xt) + d̂ (Xt) < εt < 0

)}
w (Xt)

− 2

T

T∑
t=1

{
εt −

[
d̂ (Xt) + d̂

]}{
1
(
d̂ (Xt) + d̂ > εt > 0

)
− 1

(
d̂ (Xt) + d̂ < εt < 0

)}
w (Xt)

≡DT + ET + FT +GT ,

with d̂ (x) = m̂ (x)−m (x), d̂ = ξ̂ (τ)−ξ (τ), and d̂ (x) = φ̂ (x, τ)−φ (x, τ), where the second equality follows

using εt = εt a.s.

First of all, recall that FT = CT = Op

((
log T
Thd

)3/2
+ T−1/2

(
log T
Thd

)3/4)
= op

((
Thd/2

)−1
)
. Following

similar steps, we can also show that GT = Op

((
log T
Thd

)3/2
+ T−1/2

(
log T
Thd

)3/4)
= op

((
Thd/2

)−1
)
.

In the subsequent analysis, we show that (i) Thd/2DT converges in distribution to a zero mean normal
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variable with proper asymptotic variance; (ii) ET = op

((
Thd/2

)−1
)

under our assumptions in Appendix

A.2.1. We start by proving point (ii). Observing that

ET =
1

T

{√
T d̂
}
×
{

1√
T

T∑
t=1

w (Xt)ϕ (εt)

}
=

1

T
×Op(1) ×Op(1) = Op

(
1

T

)
,

where
√
T d̂ =

√
T
[
ξ̂ (τ)− ξ (τ)

]
= Op(1) follows immediately from the Bahadur representation in Lemma

1. On the other hand, the asymptotic normality of 1√
T

∑T
t=1 w (Xt)ϕ (εt) with zero mean follows from

Assumptions C.3 and C.5. and the null hypothesis which implies that E[ϕ(εt)|Xt] = 0. Thus, ET =

Op (1/T ) = op

((
Thd/2

)−1
)
. Now, we need to prove point (i). Let fX (x) and fε|X (0|x) denote the marginal

density of Xt and the conditional density of ε given Xt and evaluated at ε = 0, respectively. By Lemma 2,

we have

DT =− 1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w (Xt) e
′
1

H−1
T

hd
S−1
T,p (Xt)Kh (Xs −Xt)μ (Xs −Xt)ϕ(εt)ϕ(εs) + op

((
Thd/2

)−1
)

=
1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w (Xt)

fε|X (0|Xt) fX (Xt)
Kh (Xt −Xs)ϕ(εt)ϕ(εs) + op

((
Thd/2

)−1
)

≡D1T + op

((
Thd/2

)−1
)
,

where the second equality follows by applying the notion of “equivalent kernel” representation for local

polynomial estimator [see Fan and Gijbels, 1996, pp.63-64],

We can now rewrite Thd/2D1T into a classical U -statistic form with a symmetrized varying kernel which

depends on the sample size T through the bandwidth h, i.e.

Thd/2D1T =
2

T − 1

∑
1≤t<s≤T

UT (χt, χs),

where χt = (Xt, εt), UT (χt, χs) = ηT (χt, χs) + ηT (χs, χt), and

ηT (χt, χs) =
w(Xt)

2fε|X(0|Xt)fX(Xt)

1

h
d
2

K

(
Xt −Xs

h

)
ϕ(εt)ϕ(εs).

Note that, under AssumptionC.3., we have E[UT (χt, χs)] = E[ηT (χt, χs)] = E[UT (χt, χs)|χt] = E[ηT (χt, χs)|χt] =

0. Thus, the latter U -statistic is in fact a degenerated second order U -statistic. Under our Assumptions

C.1, C.3, C.6, and C.9, one can check that the conditions of Theorem A.1 in Gao (2007) for second order

degenerated U -statistic with strongly mixing processes are satisfied for the previous kernel UT (χt, χs) so

that we can establish a central limit theory for the term Thd/2D1T with asymptotic variance given by

σ̃2
0τ = lim

T→∞
2EtEs

[
U2
T (χt, χs)

]
= lim

T→∞
2EtEs

[
ηT (χt, χs)

2 + ηT (χs, χt)
2 + 2ηT (χt, χs)ηT (χs, χt)

]
= 2τ2 (1− τ)2

∫
K2(u) du

∫
w2(x)

f2
ε|X(0|x) dx := r2τσ

2
0τ ,
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where Et denotes the expectation with respect to χt, and rτ = E
[
ρτ
(
Yt −m(Xt)− ξ(τ)

)]
. The previous

expression of asymptotic variance follows from a straightforward calculation of conditional expectation by

combining integration, standard techniques of change of variables with Assumptions C.7 and C.9. For

instance, to calculate the first conditional expectation, it follows that

lim
T→∞

EtEs

[
ηT (χt, χs)

2
]
=

1

4
τ2 (1− τ)2 lim

T→∞

∫ ∫
w2(x1)

f2
ε|X(0|x1)f2

X(x1)

1

hd
K2

(
x1 − x2

h

)
fX(x1)fX(x2) dx1 dx2

=
1

4
τ2 (1− τ)2

∫
K2(u) du

∫
w2(x)

f2
ε|X(0|x) dx.

Therefore, the CLT for the U -statistic form Thd/2D1T together with the expression of asymptotic variance

σ̃2
0τ shows that Thd/2DT = Thd/2D1T + op(1)

d−→ N
(
0, σ̃2

0τ

)
.

Finally, we have

Thd/2Ĥw (m̂, τ) =
1

T−1
∑T

t=1 ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)

[
Thd/2DT + op (1)

]
d−→ N

(
0, σ2

0τ

)
,

where σ2
0τ = σ̃2

0τ/r
2
τ . The last step follows naturally from Lemma 3 and the Slutsky’s Theorem. Observe

that a consistent estimator of σ̃2
0τ is given by

̂̃σ2
0τ = 2τ2 (1− τ)2

1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w2(Xt)

f̂2
ε|X(0|Xt)f̂2

X(Xt)

1

hd
K2

(
Xt −Xs

h

)
.

Like the term D1T , the estimator ̂̃σ2

0τ can also be re-expressed as a U -statistic form

̂̃σ2

0τ =
2

T (T − 1)

∑
1≤t<s≤T

HT (Xt,Xs) + op(1),

with the following symmetrized kernel:

HT (Xt,XS) = τ2 (1− τ)2
(

w2(Xt)

f2
ε|X(0|Xt)f2

X(Xt)
+

w2(Xs)

f2
ε|X(0|Xs)f2

X(Xs)

)
1

hd
K2

(
Xt −Xs

h

)
.

However, in contrast to D1T , the second order U -statistic ̂̃σ2

0τ is a non-degenerated one. By applying a

standard Hoeffding decomposition on the previous expression, one can show that ̂̃σ2
0τ = σ̃2

0τ + op(1). This

concludes the proof of Theorem 4.

Proof of Proposition 1: Using the convergence (in probability) result implied by the Bahadur represen-

tation in Theorem 3, one can readily see that if the alternative hypothesis HA of heteroskedasticity is true,

then on the one hand we have: (i) Ĥw (m̂, τ) = Hw (m, τ) + op(1), where H (m, τ) > 0. On the other hand,

following arguments similar to those we used in the proof of the consistency of the asymptotic variance

estimator ̂̃σ2
0τ in Theorem 4, we can show that (ii) σ̂

2
0τ = Op(1) under heteroskedasticity. Proposition 1

follows then from (i) and (ii).
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Proof of Theorem 5: It is similar to the proof of Theorem 4, thus we only provide a sketch. Define

HT =
1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)−

1

T

T∑
t=1

ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt) .

Then, using the same steps as in the proof of Theorem 4, under H1T we have the decomposition:

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)−

1

T

T∑
t=1

ρτ

(
Yt − m̂ (Xt)− φ̂−t (Xt, τ)

)
w (Xt)

≡DT + ET + FT +GT +HT .

Here, following the same arguments as in the proof of Theorem 4, Thd/2DT → N(0, σ̃2
0τ ) in distribution,

ET = FT = GT = op

((
Thd/2

)−1
)
. However, by the law of large numbers and the second order Taylor

expansion of E[ρτ (·)], the remaining term HT becomes

HT =E
[
ρτ
(
Yt −m (Xt)− ξ (τ)

)
w (Xt)

]
− E

[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
+ op (1)

=E

[
ρτ

(
Yt −m (Xt)− φ (Xt, τ) +

D−1 (τ)

T 1/2hd/4
ΔT (Xt)

)
w (Xt)

]
−E

[
ρτ
(
Yt −m (Xt)− φ (Xt, τ)

)
w (Xt)

]
+ op (1)

=
D−1 (τ)

T 1/2hd/4
E [ΔT (Xt)w (Xt)ϕ(εt)]−

(
D−1 (τ)

T 1/2hd/4

)2

E
[
Δ2

T (Xt)w (Xt) g (Xt)
]
+ op (1)

=

(
D−1 (τ)

T 1/2hd/4

)2

E
[
Δ2

T (Xt)w (Xt) fε|X (0|Xt)
]
+ op (1) ,

where g (x) = ∂E [ϕ (Xt − θ) |Xt = x] /∂θ = −fε|X (0|x), and the last step follows from the fact that

E [ϕ(εt)|Xt] = 0 and the law of iterated expectation. By the preceding information, Lemma 3 and the

Slutsky’s theorem, we have

Thd/2Ĥw (m̂, τ) =
Thd/2DT + Thd/2HT

T−1
∑T

t=1 ρτ

(
Yt − m̂ (Xt)− ξ̂ (τ)

)
w (Xt)

× [1 + op (1)]

= r−1
τ

{
Thd/2DT +

(
D−1 (τ)

)2
E
[
Δ2

T (Xt)w (Xt) fε|X (0|Xt)
]}

× [1 + op (1)]

d−→ N
(
γ, σ2

0τ

)
where γ := r−1

τ

(
D−1 (τ)

)2
limT→∞E

[
Δ2

T (Xt)w (Xt) fε|X (0|Xt)
]
> 0 is the non-zero mean term and σ2

0τ =

σ̃2
0τ/r

2
τ the asymptotic variance. Therefore, we have shown that Thd/2Ĥw (m̂, τ) → N(γ, σ2

0τ ) in distribution

under the local alternatives H1T in (16).

Proof of Theorem 6: Conditionally on
{
(X ′

t, Yt)
′}T

t=1
, Theorem 6 can be proved using similar arguments

to the ones we used in the proof of Theorem 4. Analogously, let ε∗t = Y ∗
t − m̂ (Xt) − ξ

∗
(τ) and ε∗t =

Y ∗
t − m̂ (Xt)− φ

∗
(Xt, τ) , respectively, the restricted and the unrestricted quantile errors conditional on the

original sample
{
(X ′

t, Yt)
′}T

t=1
. Let E∗(·) denote the expectation and op∗(1) the convergence in probability
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under the bootstrap law. The notation Op∗(1) is similarly defined. We have

1

T

T∑
t=1

ρτ

(
Y ∗
t − m̂∗ (Xt)− ξ̂

∗
(τ)
)
w (Xt)−

1

T

T∑
t=1

ρτ

(
Y ∗
t − m̂∗ (Xt)− φ̂

∗
−t (Xt, τ)

)
w (Xt)

=
1

T

T∑
t=1

d̂
∗
(Xt)w (Xt)ϕ (ε∗t )− d̂

∗ 1
T

T∑
t=1

w (Xt)ϕ (ε∗t )

+
2

T

T∑
t=1

{
ε∗t −

[
d̂∗ (Xt) + d̂

∗
(Xt)

]}{
1
(
d̂∗ (Xt) + d̂

∗
(Xt) > ε∗t > 0

)
− 1

(
d̂∗ (Xt) + d̂

∗
(Xt) < ε∗t < 0

)}
w (Xt)

− 2

T

T∑
t=1

{
ε∗t −

[
d̂∗ (Xt) + d̂

∗]}{
1
(
d̂∗ (Xt) + d̂

∗
> ε∗t > 0

)
− 1

(
d̂∗ (Xt) + d̂

∗
< ε∗t < 0

)}
w (Xt)

≡D∗
T + E∗

T + F ∗
T +G∗

T ,

where D∗
T , E

∗
T , F

∗
T and G∗

T are the bootstrap analogue of DT , ET , FT and GT , and d̂∗ (x) = m̂∗ (x)− m̂ (x),

d̂
∗
= ξ̂

∗
(τ)− ξ

∗
(τ), and d̂

∗
(x) = φ̂

∗
(x, τ)− φ

∗
(x, τ).

Noting that maxt∈I(w)

∣∣∣d̂∗ (Xt)
∣∣∣ = op∗

(
log T/

(
Thd

))3/4
, maxt∈I(w)

∣∣∣d̂∗ (Xt)
∣∣∣ = op∗

(
log T/

(
Thd

))3/4
, and

d̂
∗
= Op∗

(
T−1/2

)
under our assumptions, the proof of E∗

T = op∗(1), F ∗
T = op∗(1) and G∗

T = op∗(1) is

analogous to that of ET , FT and GT in the proof of Theorem 4 and is thus omitted.

We can show that

Thd/2D∗
T

=
hd/2

(T − 1)

T∑
t=1

T∑
s=1,s �=t

w (Xt)

fε∗|X (0|Xt) fX (Xt)
Kh (Xt −Xs)ϕ(ε

∗
t )ϕ(ε

∗
s) + op∗ (1)

=
1

T − 1

∑
1≤t<s≤T

(
w(Xt)

fε∗|X(0|Xt)fX(Xt)

1

h
d
2

K

(
Xt −Xs

h

)
ϕ(ε∗t )ϕ(ε

∗
s)

+
w(Xs)

fε∗|X(0|Xs)fX(Xs)

1

h
d
2

K

(
Xt −Xs

h

)
ϕ(ε∗t )ϕ(ε

∗
s)

)
+ op∗ (1)

≡Thd/2D∗
1T + op∗ (1) .

Noting that Thd/2D∗
1T is a second order degenerate U -statistic and ε∗t ’s are i.i.d. with τ -th quantile 0 and

satisfying E∗(ε∗t |Xt) = 0, conditional on the original sample. We can apply the central limit theorem for

second order degenerate U -statistic for i.i.d. observations (e.g., Hall, 1984) and conclude that conditional

on the original sample, Thd/2D∗
1T

d−→ N(0, σ̃∗2
0τ ), where the asymptotic variance is

σ̃∗2
0τ = 2τ2 (1− τ)2

∫
K2(u) du

∫
w2(x)

f2
ε∗|X(0|x) dx,

with a consistent estimator of σ̃∗2
0τ given by

̂̃σ∗2
0τ = 2τ2 (1− τ)2

1

T (T − 1)

T∑
t=1

T∑
s=1,s �=t

w2(Xt)

f̂2
ε∗|X(0|Xt)f̂2

X(Xt)

1

hd
K2

(
Xt −Xs

h

)
.
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Therefore, the bootstrapped measure Ĥw∗(m̂∗, τ) satisfies

Thd/2Ĥw∗ (m̂∗, τ) =
Thd/2D∗

1T

T−1
∑T

t=1 ρτ

(
Y ∗
t − m̂∗ (Xt)− ξ̂

∗
(τ)
)
w (Xt)

+ op∗ (1)
d−→ N

(
0, σ∗2

0τ

)
,

where σ∗2
0τ = σ̃∗2

0τ/r
∗2
τ and r∗τ = E

[
ρτ

(
Y ∗
t − m̂ (Xt)− φ

∗
(Xt, τ)

)
w (Xt)

]
. Finally, conditional on the data,

we conclude that the bootstrapped test statistic Γ̂
∗
= Thd/2Ĥw∗ (m̂∗, τ) /σ̂

∗
0τ

d−→ N (0, 1), where σ̂
∗2
0τ =̂̃σ∗2

0τ/r̂
∗2
τ and r̂

∗
τ is the sample analogue of r∗τ .
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