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Abstract

A Boundary Element Method formulation is developed for the solution of the two-dimensional anoma-
lous diffusion equation. Initially, the Riemann-Liouville Fractional derivative is applied on both sides of
the partial differential equation (PDE), thus transferring the fractional derivatives to the Laplacian. The
boundary integral equation is then obtained through a Weighted Residual formulation that employs the
fundamental solution of the steady-state problem as the weighting function. The integral contained in
the Riemann-Liouville formula is evaluated assuming that both the variable of interest and its normal
derivative are constant in each time interval. Five examples are presented and discussed, in which the
results from the proposed formulation are compared with the analytical solution, where available, oth-
erwise with those furnished by a Finite Difference Method formulation. The analysis shows that the
new method is capable of producing accurate results for a variety of problems, but small time steps are
needed to capture the large temporal gradients that arise in the solution to problems governed by PDEs
containing the fractional derivative ∂αu/∂tα with α < 0.5. The use of the steady-state fundamental
solution presents no hindrance to the ability of the new formulation to provide accurate solutions to
time-dependent problems, and the method is shown to outperform a finite difference scheme in providing
highly accurate solutions, even for problems dominated by conditions within the material and remote
from the domain boundary.

Keywords. Boundary Element Method; Riemann-Liouville Fractional derivative

1 Introduction

Fractional calculus is as old as standard calculus, its accepted origin dating back to 1695, when a mention of
fractional derivatives appears in the correspondence exchanged between Leibnitz and L’Hôpital: a historical
survey can be found, for instance, in Miller and Ross [1] and Ortigueira [2]. The next major developments
were in the 19th century, with contributions from renowned mathematicians, including Laplace, Fourier,
Abel, Liouville and Riemann.

Many applications of fractional calculus may be found in the literature. Examples include modelling
the transmission and spread of the Zika virus in Brazil and internationally to 32 countries [3], the vibration
analysis of a beam or plate resting on a viscoelastic soil foundation [4], and the simulation of solute transport
through porous media [5]. A recent survey of these, and many more, applications can be found in Sun et
al. [6]. Accurate and reliable numerical tools for solving these kinds of problems have also become necessary.
Finite Difference Method (FDM) formulations are commonly used, and these are seen, for instance, in
Meerschaert and Tadjeran [7], Murilo and Yuste [8], Li et al. [9], Çelic and Duman [10], Li and Li [11],
Sousa and Li [12], Tadjeran and Meerschaert [13], Murio [14] and Youste and Acedo [15]. Finite Element
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Method (FEM) formulations are rather less common; among them are Agrawal [16], Zheng et al. [17],
Deng [18], Roop [19], and Huang et al. [20]. Few works deal with Boundary Element Method formulations.
Dehghan and Safarpoor [21] used a dual reciprocity BEM formulation, and Katsikadelis [22] employed
the concept of an analog equation together with the BEM to solve two-dimensional fractional differential
equations. In Zafarghandi et al. [23] and Shirzadi et al. [24] other interesting approaches are used, involving
radial basis functions and a meshless formulation.

The anomalous diffusion problem is no longer Brownian and cannot be described by a second-order
diffusion equation (see, for instance, Yuste and Acedo [15]). Instead, it is described by a partial differential
equation that contains a fractional time derivative of order α, 0 < α < 1, instead of the usual first order time
derivative. The fractional differential operators are non-local, which means that when solving such problems,
the determination of a future state of the system depends on the current and previous states; that is, it
depends on the history. This aspect is quite similar to some time-dependent BEM formulations, e.g. Mansur
[25], Wrobel [26]. To solve the anomalous diffusion equation in 2D, a novel BEM formulation is developed
in this work. The formulation employs the fundamental solution related to the steady-state problem,
i.e. that related to the Laplacian operator. Consequently, the resulting formulation is of the type D-BEM,
with D indicating domain, as the basic BEM equation includes a domain integral term containing the time
derivative of the variable of interest. To avoid dealing directly with the fractional derivative, represented here
by the Caputo derivative [2], an inverse operation is performed using the Riemann-Liouville operator, thus
replacing the fractional time derivative by an ordinary derivative and transferring the fractional derivative
to the second order spatial derivatives. After doing so, a weighted residual equation is developed, in which
the Riemann-Liouville operator appears under both domain and boundary integrals. As a consequence
of evaluating the integral presented in the Riemann-Liouville operator, the solution of the problem for a
specific value of time, say tn+1, requires that all the previous values of the variables, up to the previous
time tn, must be taken into account, constituting the ‘history contribution’ of the analysis. This procedure
is explained in detail in the following sections. It is important to note that when α = 1, one obtains the
standard BEM formulation, without the requirement for a history contribution.

The formulation presented here could be called FD-BEM, with F meaning fractional, only to distinguish
it from the standard one. In this way, the D-BEM formulation is treated as a particular case of the FD-BEM
formulation, for which α = 1. In the text, for practical purposes, the results obtained by the FD-BEM
formulation will be referred to simply as BEM results.

Five examples are presented showing the performance of FD-BEM. The results are compared against
analytical solutions where they are available, otherwise we use reference solutions taken from refined Finite
Difference simulations. We use an explicit finite difference scheme as this is widely found in the literature.
These comparisons are favourable, though we note a strong dependence on the choice of time-step (but in
general the time-steps adopted in the BEM analyses are longer than those required in the FDM analyses).
Finally, it will be shown that the smaller the value of α, the smaller must be the value of the corresponding
time-step.

2 The Anomalous Diffusion Problem

The governing equation for the anomalous diffusion problem is

∂αu

∂tα
−D

(
∂2u

∂x2
+
∂2u

∂y2

)
= 0, 0 < α < 1, (2.1)

where D is the diffusion coefficient, assumed to be constant. We aim to solve (2.1) for u(x, t), where t is
time, and point x = (x, y) lies in domain Ω with a boundary Γ = Γu ∪ Γq. The solution is to be found
subject to boundary and initial conditions:

u(x, t) = û(x, t), x ∈ Γu, (2.2)
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D
∂u

∂n
= q(x, t) = q̂(x, t), x ∈ Γq, (2.3)

u(x, 0) = u0(x). (2.4)

In equation (2.1), the fractional derivative of α-order in the Caputo sense is given by

∂αCu

∂tα
=

1

Γ (1− α)

∫ t

0

1

(t− τ)α
∂u(τ)

∂τ
dτ. (2.5)

where Γ(·) is the Gamma function, and is not to be confused with the domain boundary. The solution
of equation (2.1) becomes easier if one transforms the fractional time derivative on the left hand side into
an integer derivative of order 1. To do so, one can use the Riemann-Liouville (RL) fractional derivative,
defined as

RLα(u(t)) =
1

Γ (1− α)

d

dt

∫ t

0

u(τ)

(t− τ)α
dτ. (2.6)

Other definitions of fractional derivatives can be found in Ortigueira [2]. Note that, from the definitions given
by equations (2.5) and (2.6), the Caputo and Riemann-Liouville derivatives are seen to be integrodifferential
operators in which the sequence of integration and differentiation is inverted. When the initial conditions
are zero, both definitions coincide.

The Riemann-Liouville operator has the following property:

RL1−α
(
∂αu(t)

∂tα

)
=
∂u

∂t
. (2.7)

Applying the operator RL1−α to both sides of equation (2.1), one has

∂u

∂t
= DRL1−α

(
∂2u

∂x2
+
∂2u

∂y2

)
=

D

Γ (α)

d

dt

∫ t

0

1

(t− τ)1−α

(
∂2u(x, τ)

∂x2
+
∂2u(x, τ)

∂y2

)
dτ. (2.8)

Equation (2.8) is the equation to be solved by the Boundary Element Method and by the Finite Difference
Method.

3 The Boundary Element Method

The boundary integral equation used in the BEM may be obtained from the weighted residual approach,
e.g. Brebbia et al. [27], Zienkiewicz and Morgan [28]. The basic steps can be summarised as follows:
i) the fundamental solution of the steady-state problem plays the role of the weighting function, w, for
the domain residuals; ii) the weighting functions for the residuals at the boundaries Γu and Γq, denoted
here, respectively, as w and w, are determined as some functions that conveniently avoid unnecessary
approximation of the boundary conditions.

In the absence of a fundamental solution for the PDE under consideration, we propose the use of the
steady state fundamental solution in a time-dependent problem. This causes a domain integral to arise,
in which the integrand contains the time derivative of the variable of interest, i.e. u̇. For this reason, the
present formulation can be classified as a D-BEM type formulation.

The weighted residual equation is written as∫
Ω

(
DRL1−α

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂u

∂t

)
w dΩ +

∫
Γu

(u− û) w̄ dΓ +

∫
Γq

(q − q̂) ¯̄w dΓ = 0. (3.1)

Here, w = w (ξ,x), where ξ = (ξx, ξy), is the source point and x = (x, y) is the field point.
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After application of the divergence theorem, the domain integral in equation (3.1) can be rewritten as∫
Ω

(
DRL1−α

(
∂2u

∂x2
+
∂2u

∂y2

)
− ∂u

∂t

)
w dΩ =

∫
Γ

(
DRL1−α

(
∂u

∂x
nx +

∂u

∂y
ny

))
w dΓ−∫

Γ

(
DRL1−α(u)

(
∂w

∂x
nx +

∂w

∂y
ny

))
dΓ + (3.2)∫

Ω

(
DRL1−α(u)

(
∂2w

∂x2
+
∂2w

∂y2

))
dΩ−

∫
Ω

(
∂u

∂t

)
w dΩ.

From (3.2), q becomes

q = D
∂u

∂n
= D

(
∂u

∂x
nx +

∂u

∂y
ny

)
, (3.3)

and we define a similar quantity, Q, containing the derivative of the weighting function, as

Q = D
∂w

∂n
= D

(
∂w

∂x
nx +

∂w

∂y
ny

)
, (3.4)

where nx and ny are the components of the unit outward normal to the boundary.

Recalling that

RLα−1(u) =
1

Γ (α)

d

dt

∫ t

0

u(x, τ)

(t− τ)1−α dτ, (3.5)

and discretising time t into intervals of duration ∆t, one can consider the integral in equation (3.5) time-step
by time-step, over each of which we assume u to be constant, i.e.

d

dt

∫ t

0

u(x, τ)

(t− τ)1−αdτ
∣∣∣
t=(n+1)∆t

=
d

dt

∫ ∆t

0

1

(t− τ)1−αdτu(x,∆t)
∣∣∣
t=(n+1)∆t

+

d

dt

∫ 2∆t

∆t

1

(t− τ)1−αdτu(x, 2∆t)
∣∣∣
t=(n+1)∆t

+

d

dt

∫ 3∆t

2∆t

1

(t− τ)1−αdτu(x, 3∆t)
∣∣∣
t=(n+1)∆t

+ · · ·+

d

dt

∫ (n+1)∆t

n∆t

1

(t− τ)1−αdτu(x, (n+ 1)∆t)
∣∣∣
t=(n+1)∆t

. (3.6)

Equation (3.6) can be written in a more simplified way:

d

dt

∫ t

0

u(x, τ)

(t− τ)1−αdτ
∣∣∣
t=(n+1)∆t

=
d

dt

∫ ∆t

0

1

(t− τ)1−αdτu1

∣∣∣
t=(n+1)∆t

+

d

dt

∫ 2∆t

∆t

1

(t− τ)1−αdτu2

∣∣∣
t=(n+1)∆t

+

d

dt

∫ 3∆t

2∆t

1

(t− τ)1−αdτu3

∣∣∣
t=(n+1)∆t

+ · · ·+

d

dt

∫ (n+1)∆t

n∆t

1

(t− τ)1−αdτun+1

∣∣∣
t=(n+1)∆t

, (3.7)

where uk = u(x, tk) = u(x, k∆t).

A generic term in the previous equation can be written as

d

dt

∫ (j+1)∆t

j∆t

1

(t− τ)1−αdτuj+1

∣∣∣
t=(n+1)∆t

= ∆tα−1

[
1

(n+ 1− j)1−α −
1

(n− j)1−α

]
uj+1. (3.8)
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Introducing new notation for the term between brackets as

B(n+1)(j+1) :=

[
1

(n+ 1− j)1−α −
1

(n− j)1−α

]
. (3.9)

one has:

RL1−α(u)
∣∣∣
t=(n+1)∆t

=
∆tα−1

Γ (α)

un+1 +
n−1∑
j=0

B(n+1)(j+1)uj+1

 . (3.10)

Note that one can also write

RL1α(q)
∣∣∣
t=(n+1)∆t

=
∆tα−1

Γ (α)

qn+1 +
n−1∑
j=0

B(n+1)(j+1)qj+1

 . (3.11)

Substitution of equations (3.10) and (3.11) into equation (3.2), and recalling equations (3.3) and (3.4),
results in

∆tα−1

Γ (α)

∫
Γ

qn+1 +

n−1∑
j=0

B(n+1)(j+1)qj+1

wdΓ− ∆tα−1

Γ (α)

∫
Γ

un+1 +

n−1∑
j=0

B(n+1)(j+1)uj+1

QdΓ +

∆tα−1

Γ (α)

∫
Ω

un+1 +

n−1∑
j=0

B(n+1)(j+1)uj+1

D(∂2w

∂x2
+
∂2w

∂y2

)
dΩ− 1

D

∫
Ω
u̇n+1wdΩ +

∫
Γu

un+1wdΓ−
∫

Γu

ûn+1wdΓ +

∫
Γq

qn+1wdΓ−
∫

Γq

q̂n+1wdΓ = 0. (3.12)

As mentioned before, the weighting functions w and w can be chosen conveniently to avoid approximations
to the boundary conditions. This is done simply by taking

w =
∆tα−1

Γ (α)
Q, (3.13)

and

w = −∆tα−1

Γ (α)
w, (3.14)

The fundamental solution comes from the solution of the equation

D

(
∂2w

∂x2
+
∂2w

∂y2

)
= −δ (x− ξ) . (3.15)

Then, the first domain integral on the left hand side of equation (3.12) becomes

∆tα−1

Γ (α)

∫
Ω

un+1 +
n−1∑
j=0

B(n+1)(j+1)uj+1

D(∂2w

∂x2
+
∂2w

∂y2

)
dΩ = −∆tα−1

Γ (α)

un+1 (ξ) +

n−1∑
j=0

B(n+1)(j+1)uj+1 (ξ)

 .
(3.16)

Finally, u̇n+1 in the second domain integral on the left hand side of equation (3.12) is approximated using
a backward finite difference formula (see Smith [29]), i.e.

u̇n+1 =
un+1 − un

∆t
. (3.17)
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After (3.13), (3.14), (3.16) and (3.17) are substituted into (3.2), the basic BEM integral equation arises.
For ξ ∈ Γ, it can be written as:

c(ξ)un+1 (ξ) =

∫
Γ
qn+1wdΓ−

∫
Γ
un+1QdΓ− Γ (α)

∆tα

∫
Ω

(un+1 − un)wdΩ−

n−1∑
j=0

B(n+1)(j+1)

[
c(ξ)uj+1 (ξ) +

∫
Γ
uj+1QdΓ−

∫
Γ
qj+1wdΓ

]
, (3.18)

where the coefficient c(ξ) is the usual jump term coefficient from the standard BEM formulation. After
carrying out boundary and domain discretisation, the resulting system can be written in matrix form as Hbb 0

Hdb I


 ubn+1

udn+1

 =

 Gbb

Gdb

{ qbn+1

}
−

n∑
j=1

B(n+1)(j+1)


 Hbb 0

Hdb I


 ubn+1

udn+1


+

Γ (α)

∆tα

 Mbb Mbd

Mdb Mdd


 ubn+1 − ubn

udn+1 − udn

 . (3.19)

Here, I is the identity matrix and the superscripts b and d correspond to boundary and domain variables.
Double superscripts are interpreted as the first indicating the position of the source point and the second
the position of the field point. The null matrix shows that there is no dependence of the boundary values
upon the domain values.

The fundamental solution is given by

w = w (ξ,x) = − 1

2πD
ln r, (3.20)

where r is the distance between the field and source points. The fundamental solution is quite simple, making
the BEM formulation attractive and versatile. For example, the development of a BEM formulation for
the solution of the wave-diffusion equation, for which 1 < α < 2, is quite straightforward. This will be the
subject of a future article.

For anisotropic media, the governing differential equation (2.1) needs to be restated in terms of Dx and
Dy, different diffusion coefficients acting in the different directions. We have

∂αu

∂tα
= Dx

∂2u

∂x2
+Dy

∂2u

∂y2
. (3.21)

The development of a D-BEM formulation for the solution of (3.21) follows the same steps as those presented
above for isotropic media, though the fundamental solution becomes [30, 31]

w = w (ξ,x) = − 1

2π
√
DxDy

ln

√
(x− ξx)2 +

Dx

Dy
(y − ξx)2. (3.22)

The fundamental solution (3.20) for an isotropic medium can be looked upon as a particular case that for
an anisotropic medium, given by equation (3.22).

3.1 Finite Difference Method

In the absence of a known analytical solution for some of the examples presented here, and in order to
validate the BEM results, a Finite Difference Method formulation was also developed. It is presented
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briefly in what follows, always bearing in mind that the main purpose of the article is the development of
a BEM formulation.

The application of the forward finite difference formula to equation (2.6) enables one to write

∂u

∂t
=

D

Γ (α)

1

∆t

(∫ t+∆t

0

uxx (x, τ) + uyy (x, τ)

(t+ ∆t− τ)1−α dτ −
∫ t

0

uxx (x, τ) + uyy (x, τ)

(t− τ)1−α dτ

)
, (3.23)

where

uxx =
∂2u

∂x2
, uyy =

∂2u

∂y2
.

If, in equation (3.23), t = tn = n∆t, where n = 0, 1, . . . , the first integral on the right hand side of equation
(3.23) can be evaluated numerically by the backward rectangular rule, thus generating the expression∫ n∆t+∆t

0

uxx (x, τ) + uyy (x, τ)

(t+ ∆t− τ)1−α dτ =

n∑
k=0

uxx (x, k∆t) + uyy (x, k∆t)

(n+ 1− k)1−α ∆tα. (3.24)

For the evaluation of the second integral on the right hand side of equation (3.23), the expression is∫ n∆t

0

uxx (x, τ) + uyy (x, τ)

(t− τ)1−α dτ =

n−1∑
k=0

uxx (x, k∆t) + uyy (x, k∆t)

(n− k)1−α ∆tα. (3.25)

Substitution of (3.24) and (3.25) into (3.23) yields the expression

∂u

∂t
=

D

Γ (α)
∆tα−1

(
n∑
k=0

uxx (x, k∆t) + uyy (x, k∆t)

(n+ 1− k)1−α ∆tα −
n−1∑
k=0

uxx (x, k∆t) + uyy (x, k∆t)

(n− k)1−α ∆tα

)
, (3.26)

Equation (3.2) can be rearranged as follows

∂u

∂t
=

D

Γ (α)
∆tα−1 (uxx (x, n∆t) + uyy (x, n∆t)) +

D

Γ (α)

n−1∑
k=0

(
1

(n+ 1− k)1−α −
1

(n− k)1−α

)
(uxx (x, k∆t) + uyy (x, k∆t)) . (3.27)

This can be written in a simplified form, as

∂u

∂t
=

D

Γ (α)
∆tα−1

(
unxx + unyy +

n−1∑
k=0

Bnk

(
ukxx + ukyy

))
, (3.28)

where
ujxx = uxx (x, j∆t) , ujyy = uyy (x, j∆t) ,

Bnk =
1

(n+ 1− k)1−α −
1

(n− k)1−α . (3.29)

Note that the factor Bnk, defined in equation (3.29), is equivalent to the one already defined in the BEM
formulation, see equation (3.9). The difference in the index appears because the FDM formulation, as
developed here, is explicit, whereas the BEM formulation is implicit.

The first order time derivative on the left hand side of equation (3.23), computed at t = tn, and the
second order spatial derivatives with respect to x and y in equation (3.28) computed, respectively, at x = xi
and at y = yj , may be substituted into their finite difference formulae (Smith [29]), giving

∂u

∂t
=
un+1
i,j − uni,j

∆t
, uxx =

uni+1,j − 2uni,j + uni−1,j

∆x2
, uyy =

uni,j+1 − 2uni,j + uni,j−1

∆y2
.
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Finally, the FDM equation that corresponds to the equation (2.1) can be written as

un+1
i,j = uni,j +

D

Γ (α)

∆tα

∆x2

(
uni+1,j − 2uni,j + uni−1,j +

n−1∑
k=0

Bnk

(
uki+1,j − 2uki,j + uki−1,j

))
+

D

Γ (α)

∆tα

∆y2

(
uni,j+1 − 2uni,j + uni,j−1 +

n−1∑
k=0

Bnk

(
uki,j+1 − 2uki,j + uki,j−1

))
. (3.30)

Equation (3.30) is valid for n > 0. When n = 0, it becomes

u1
i,j = u0

i,j +
D

Γ (α)

∆tα

∆x2

(
u0
i+1,j − 2u0

i,j + u0
i−1,j

)
+

D

Γ (α)

∆tα

∆y2

(
u0
i,j+1 − 2u0

i,j + u0
i,j−1

)
. (3.31)

Naturally, anisotropic problems can be dealt with by simply substituting the diffusion coefficients, Dx and
Dy, in the second and third terms on the right hand side of equations (3.30) and (3.31), for D.

Note that equation (3.30) corresponds to an explicit forward time centred space (FTCS) scheme with
the direct integration of the Riemann-Liouville derivative. The same approach is followed by Yuste and
Acedo [29], but with the Grunwald-Letnikov discretisation of the Riemann-Liouville derivative.

4 Examples

A series of test examples are presented in this section to demonstrate the numerical performance of the
new BEM algorithm. The results are presented as functions of time for a selected domain point and as
functions of the spatial coordinates for chosen values of time. For α = 1.0, in all examples, the BEM results
are compared with the corresponding analytical solution. The time-step in the BEM and FDM analyses
will be referred to, respectively, as ∆tBEM and ∆tFDM . The examples are presented without units; any
consistent set may be used.

4.1 Domain under initial condition

In the first example we consider a rectangular domain defined in the region 0 ≤ x ≤ π and 0 ≤ y ≤ π
2 . The

boundary conditions are
u(0, y, t) = u(π, y, t) = 0 (4.1)

and the initial condition is
u(x, y, 0) = u0(x, y) = sinx (4.2)

so that this is a 1D problem. To simulate this problem through a 2D formulation, the following boundary
conditions are adopted at y = 0 and y = π

2 :

q(x, 0, t) = q
(
x,
π

2
, t
)

= 0. (4.3)

The analytical solution for fractional values of α, taken from Murilo and Yuste [8] and Ray [32], is

u(x, y, t) = Eα (−tα) sinx. (4.4)

in which Eα is the Mittag-Leffler function (see Haubold et al. [33]) and is defined as

Eα (z) =

∞∑
k=0

zk

Γ (1 + αk)
, (4.5)
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Figure 4.1: BEM mesh for examples 1, 2 and 3.

where z ∈ C. For the case α = 1, one has
E1(z) = ez, (4.6)

and equation (4.4) becomes the well-known analytical solution of the diffusion problem; this means that the
analytical solution for the diffusion equation can be looked upon as a particular case of that for anomalous
diffusion. We use the following notation in this paper to describe the BEM meshes: nΓ represents the
number of linear boundary elements, and nΩ represents the number of triangular linear cells. The BEM
mesh depicted in Figure 4.1, is of size nΓ = 48 and nΩ = 256. The analyses were carried out with D = 1.0,
for α = 1.0, 0.8 and 0.5. The results for u(π/2, π/4, t), 0 ≤ t ≤ 2 are depicted in Figure 4.2, whereas
the results for u(x, π/4, 0.25) and u(x, π/4, 1.0), 0 ≤ x ≤ π are depicted, respectively, in Figures 4.3 and
4.4. The required time-step duration, found through numerical tests, shows a strong dependence on the
parameter α, with smaller values of α requiring smaller time step ∆t. In this example, for α = 1.0 and
α = 0.8, ∆tBEM = 0.005, whereas for α = 0.5, a shorter time step ∆tBEM = 0.0025 was required.

The results presented in Figures 4.2, 4.3 and 4.4 show good agreement with the analytical solution for
this simple first problem.

4.2 Domain with Dirichlet boundary conditions

In the second example, a rectangular domain is defined on the region 0 ≤ x ≤ 2 and 0 ≤ y ≤ 1.

A zero initial condition, u(x, y, 0) = 0, is assumed and we prescribe the boundary conditions

u(0, y, t) = 10, u(2, y, t) = 0, q(x, 0, t) = q(x, 1, t) = 0. (4.7)

This problem can be interpreted as one of heat transfer from the material at x = 0 to x = 2.

The analyses were carried out with the same mesh as in the previous example, scaled to accommodate
the different domain size. The BEM results are compared with those obtained by FDM analyses, carried
out with the 1D version of equation (3.31). For D = 1.0, the analyses were carried out with α = 1.0, 0.8,
0.5, and 0.2.

The results at the mid-point, i.e. u(1, 0.5, t), for times 0 ≤ t ≤ 4, are presented in Figure 4.5. The results
at t = 0.25 and at t = 1.0 are shown, respectively, in Figures 4.6 and 4.7. The FDM analyses were carried
out with ∆x = 0.25. This value proved to be the best choice in order to obtain stable results, mainly when
α = 0.2.

For α = 0.2, we take ∆tBEM = 0.0001, while for the other values of α the analyses were carried out
with ∆tBEM = 0.005. For the FDM analyses, for α = 0.2, ∆tFDM = 0.00001, a very small value compared
with ∆tFDM = 0.001 for α = 1.0, 0.8, 0.5.
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Figure 4.2: Domain under initial condition: results for u(π/2, π/4, t).

Figure 4.3: Domain under initial condition: results for u(x, π/4, 0.25).
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Figure 4.4: Domain under initial condition: results for u(x, π/4, 1.0).

Table 4.1: Time steps, ∆t suggested by equation (4.8) for FDM grid size ∆x = 0.25.

α ∆t

1.0 3.125× 10−2

0.8 1.105× 10−2

0.5 4.883× 10−4

0.2 1.863× 10−9

Yuste and Acedo [15] provide a stability criterion,

D∆tα

∆x2
≤ 1

22−α (4.8)

and the values suggested by this formula for ∆x = 0.25 are shown in Table 4.1.

For α = 0.5 and α = 0.2 the values computed according to equation (4.8) are more conservative than
those used in the FDM analyses. However, the same criterion is more flexible for α = 1.0 and α = 0.8. For
the BEM, the development of a stability criterion is an open subject for further research.

As is evident from Figures 4.5-4.7, good agreement is observed between BEM and FDM results for this
problem, though again we see some discrepancy between the BEM and FDM in capturing the extreme
temporal gradients in the solution for small α in the initial time steps.

4.3 Domain with oscillatory Dirichlet boundary condition

In this section, the same domain and mesh as those in the previous example are considered, under a zero
initial condition and subject to the following boundary conditions:

u(0, y, t) = 0, u(2, y, t) = 1− cos 2πt, q(x, 0, t) = q(x, 1, t) = 0. (4.9)
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Figure 4.5: Domain with Dirichlet boundary conditions: results for u(1, 0.5, t).

Figure 4.6: Domain with Dirichlet boundary conditions: results for u(x, 0.5, 0.25).
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Figure 4.7: Domain with Dirichlet boundary conditions: results for u(x, 0.5, 1.0).

Table 4.2: Time steps used for the example in section 4.3

α ∆tBEM ∆tFDM
1.0 0.0125 0.001

0.8 0.0125 0.001

0.5 0.00315 0.000125

This is a very interesting diffusion example, with an oscillatory solution resulting from the oscillatory
boundary condition. Ochiai et al. [34], and Carrer et al. [35] also analysed this problem, with the latter
also providing the analytical solution for the case α = 1.0.

In this example, a finite difference grid size ∆x = 0.0125 was used, more refined than that used the
previous example.

The results for u(1, 0.5, t), 0 ≤ t ≤ 4, are presented in Figure 4.8, and the results at t = 0.25, t = 1.0,
and t = 1.75 are shown, respectively, in Figures 4.9, 4.10 and 4.11. For the analyses carried out with
D = 1, 0 and α = 1.0, 0.8, 0.5, the BEM and FDM time-step sizes are shown in Table 4.2.

As in the previous examples, BEM analyses enable the use of larger time steps ∆t. This is as expected,
since the BEM formulation as developed in this work is an implicit scheme, whereas the FDM formulation
is explicit and therefore subject to stability constraints on the time step.

The BEM results for α = 0.5, presented in Figure 4.10, do not show good agreement with the FDM
results. Even with the adoption of a smaller time-step, little change was observed. In spite of this exception,
the other results can be considered acceptable and in good agreement with those produced by the FDM.

4.4 Square Domain with Linear Initial Condition

The fourth example is presented to demonstrate the ability of the proposed scheme to handle problems
involving anisotropic media. We consider a square domain lying in the region 0 ≤ x, y ≤ L. In a smaller,
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Figure 4.8: Domain with oscillatory Dirichlet boundary condition: results for u(1, 0.5, t).

Figure 4.9: Domain with oscillatory Dirichlet boundary condition: results for u(x, 0.5, 0.25).
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Figure 4.10: Domain with oscillatory Dirichlet boundary condition: results for u(x, 0.5, 1.0).

Figure 4.11: Domain with oscillatory Dirichlet boundary condition: results for u(x, 0.5, 1.75).
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Figure 4.12: Square Domain with Initial Condition: description of the problem.

square sub-domain Ω0, defined by 2L/5 ≤ x, y ≤ 3L/5, as shown in Figure 4.12, an initial condition varies
linearly from u = C0 in the centre of Ω0 to zero on its borders. We take the values L = 10 and C0 = 10,
and prescribe the boundary conditions to be

u(0, y, t) = u(L, y, t) = u(x, 0, t) = u(x, L, t) = 0. (4.10)

This problem can also be interpreted as one of heat transfer from a small region inside the domain to the
remaining domain, which has a temperature of zero at its outer boundary.

Two cases are considered. In the first case, the medium is assumed to be isotropic with D = 1.0. The
second case considers an anisotropic medium, with Dx = 1.0 and Dy = 0.1. We consider α = 1.0, 0.8 and
0.5 for both isotropic and anisotropic cases.

The BEM analyses were carried out with three meshes, designated simply as mesh 1, with nΓ = 40
and nΩ = 200, mesh 2, with nΓ = 80 and nΩ = 800, and mesh 3, depicted in Figure 4.13, with nΓ = 160
and nΩ = 3200. For α 6= 1, the BEM results are compared with those from FDM analyses, which were
carried out by employing three meshes, in each of which the points were at the same positions as those
in the corresponding BEM meshes. Consequently, for mesh 1, we have ∆x = ∆y = L/10, for mesh 2,
∆x = ∆y = L/20, and finally, for mesh 3, ∆x = ∆y = L/40. For α = 1.0, the convergence of the numerical
results to the analytical, or reference, solution is studied through the computation of the relative L2 error
norm, E2, as follows:

E2 =
||uref − unum||L2(Ω)

||uref ||L2(Ω)
(4.11)

where unum represents either the BEM or the FDM results and uref represents the analytical (or some
other) reference solution. For α 6= 1, the reference solution comes from FDM analyses carried out with a
more refined mesh, that can be called mesh 4, in which ∆x = ∆y = L/80.

Based on the work by Yuste and Acedo [15], the authors developed an expression for the critical time
step for 2D problems, as

∆tα ≤ ∆x2∆y2

22−α(Dx∆y2 +Dy∆x2)
(4.12)
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Figure 4.13: Square Domain with Initial Condition: BEM mesh.

Table 4.3: Critical time steps for the 2D problem (isotropic media)

α ∆tmesh1 ∆tmesh2 ∆tmesh3 ∆tmesh4

1.0 2.500× 10−1 6.250× 10−2 1.563× 10−2 N/A

0.8 1.487× 10−1 2.628× 10−2 4.650× 10−3 8.212× 10−4

0.5 3.125× 10−2 1.953× 10−3 1.221× 10−4 7.630× 10−6

For the regular meshes adopted in this example, this becomes

∆tα ≤ ∆L2

23−αD
, for isotropic media (4.13)

∆tα ≤ ∆L2

22−α(Dx +Dy)
, for anisotropic media (4.14)

where ∆x = ∆y = ∆L. Table 4.3 presents the critical time steps obtained from (4.13) for isotropic media.
Very small time steps are seen to be required, and we note also that for small α the number of time steps
necessary to reach even moderate times can become prohibitively large.

In all the analyses presented, the same time step was chosen regardless of the medium being isotropic
or anisotropic, although from expression (4.12) one can notice that for the anisotropic medium larger time
steps could be used.

For α = 1.0, BEM and FDM analyses employed the same time step, equal to half the values in the first
line of Table 4.3. Figures 4.14 and 4.15 present, respectively, the results for the L2 error norm, E2, at t
= 1.0 for the cases of an isotropic and an anisotropic medium. For α = 0.8, the adopted time steps are
displayed in Table 4.4 and the convergence comparison between BEM and FDM, in terms of E2, is shown in
Figures 4.16 and 4.17 for isotropic and anisotropic materials respectively. For the reference solution, we take
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Figure 4.14: Square domain: BEM and FDM convergence for α = 1.0 with isotropic medium.

Figure 4.15: Square domain: BEM and FDM convergence for α = 1.0 with anisotropic medium.
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Table 4.4: Time steps for the 2D problem

∆tBEM ∆tFDM
mesh 1 0.05 0.05

mesh 2 0.025 0.01

mesh 3 0.0125 0.001

Figure 4.16: Square domain: BEM and FDM convergence for α = 0.8 with isotropic medium.

∆t = 5 × 10−4. The results shown in Figures 4.14 to 4.17 show the proposed BEM scheme to outperform
(considerably) the finite difference method. It is particularly interesting that in this problem the diffusion is
driven by conditions within the material and remote from the domain boundary, and this BEM formulation
remains very capable of delivering accurate solutions even using the steady-state fundamental solution.

For α = 0.5, the computation of the error norm E2 was made infeasible due to the requirement of a
very small time step to obtain the reference results. For this reason, the results corresponding to the FDM
for α = 0.5 were obtained with the use of mesh 3 and ∆t = 1.0× 10−4, in accordance with Table 4.3.

The BEM results obtained with mesh 3 are presented in Figures 4.18, 4.19 and 4.20, respectively, for
α = 1.0, 0.8, 0.5. As the analytical (α = 1) and the FDM (α = 0.5, 0.8) results are both visually almost
indistinguishable from the BEM results, only the BEM results are shown.

The results at the central point (L/2, L/2) for the first and the second cases are presented, respectively,
in Figures 4.21 and 4.22.

4.5 Dirichlet problem on a circular domain

For our final example, we consider a circular domain to demonstrate the BEM performance for a problem
that would present difficulties using the FDM. Due to the geometry of the problem, it is conveniently
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Figure 4.17: Square domain: BEM and FDM convergence for α = 0.8 with anisotropic medium.

Figure 4.18: BEM results u(x, y, 1) for α = 1.0: isotropic medium (left) and anisotropic medium (right).
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Figure 4.19: BEM results u(x, y, 1) for α = 0.8: isotropic medium (left) and anisotropic medium (right).

Figure 4.20: BEM results u(x, y, 1) for α = 0.5: isotropic medium (left) and anisotropic medium (right).
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Figure 4.21: Square domain: results u(L/2, L/2, t) for the isotropic medium.

Figure 4.22: Square domain: results u(L/2, L/2, t) for the anisotropic medium.
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described in the polar coordinate system (r, θ); thus, this problem is defined in the domain: 0 ≤ r ≤ R, 0 ≤
θ ≤ 2π.

We assume the problem to be fully axisymmetric, so the solution is independent of the angular coordinate
θ, allowing the governing PDE (2.1) to be rewritten as:

∂αu

∂tα
= D

(
∂2u

∂r2
+

1

r

∂u

∂r

)
, 0 < α < 1 (4.15)

If the problem to be solved has a zero initial condition u(r, θ, 0) = 0, and is subject to a boundary condition

u(R, θ, t) = û (4.16)

then the analytical solution uan for the case α = 1 is that given by Greenberg [36] as

uan(r, t) = û− 2û

R

∞∑
n=1

J0(λnr)

λnJ1(λnR)
e−Dλ

2
nt (4.17)

where J0(·) and J1(·) are Bessel functions of the first kind and orders zero and one, respectively, and the
parameters λn are the positive roots of the equation

J0(λnR) = 0 (4.18)

The analyses were carried out with the parameters D = 1, R = 10 and û = 10. Three meshes were employed
to investigate the convergence of the BEM results to the analytical solution. The first mesh, depicted in
Figure 4.23, has nΓ = 16 and nΩ = 144. The second mesh was generated by refining the angular and radial
discretisation of the first mesh. It has nΓ = 32 and nΩ = 544, and is depicted in Figure 4.24. The third
mesh was generated by following the same procedure and is of size nΓ = 64 and nΩ = 2368, as shown in
Figure 4.25. These meshes will be called, respectively, mesh 1, 2 and 3.

Figure 4.23: BEM mesh 1 for the circular domain

The convergence of the BEM results to the analytical solution can be studied through the computation
of the relative L2 error norm, E2, from (4.11). For the case α = 1, we take the reference solution uref = uan
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Figure 4.24: BEM mesh 2 for the circular domain

Figure 4.25: BEM mesh 3 for the circular domain
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from (4.17). Figure 4.26 presents the results for the error norm E2 at t = 4, 8, 12, and 20, obtained with
∆t = 0.8 for mesh 1, ∆t = 0.4 for mesh 2, and ∆t = 0.2 for mesh 3. The model refinement produces a
reduction in the error, verifying the convergence of the numerical results to the analytical solution. It is
also noticeable that larger errors are found at the beginning of the analysis, but as time increases and the
problem approaches the steady-state condition, the errors reduce.

A comparison between analytical and BEM results, obtained with mesh 3, at selected instants of time,
is shown in Figure 4.27. Good agreement is observed between them, with only minor discrepancies at the
early times t = 1, 4 at coordinates r < 5. This observation is in agreement with Figure 4.26, which shows
larger errors at the beginning of the analysis.

Figure 4.26: Circular domain: convergence for case α = 1.

In the absence of an analytical solution for the case α 6= 1, we make use of the fact that this is an
axisymmetric problem and take our reference solution to be the results of a refined axisymmetric finite
difference scheme which requires discretisation only in the radial direction. For our BEM analysis for the
case α = 0.8, we adopt time steps ∆t = 0.4, 0.2, 0.1 for meshes 1, 2, 3 respectively. The corresponding time
steps for the case α = 0.5 are ∆t = 0.1, 0.05, 0.025. The convergence of the BEM scheme for these two
values of α is presented in Figures 4.28 and 4.29.

The evolution of u over a radial cross section with time is shown in Figures 4.30 and 4.31 for the cases
α = 0.8, 0.5 respectively. As for the case α = 1, only minor discrepancies with the reference solution are
seen at early times, t, and for small r.

The results at r = 2, 4, 6, 8, as a function of time, are depicted in Figure 4.32 for the case α = 1 and
show excellent agreement with the analytical solution. Similar plots (not shown for reasons of brevity)
demonstrate similar congruence with the reference solution for the cases α = 0.8 and α = 0.5.

5 Conclusions

The main novelty of this work is the D-BEM formulation developed for the solution of the anomalous
diffusion equation. The formulation was developed using the Riemann-Liouville operator, with the integral
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Figure 4.27: Circular domain: evolution of results with time, α = 1.

Figure 4.28: Circular domain: convergence for case α = 0.8.
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Figure 4.29: Circular domain: convergence for case α = 0.5.

Figure 4.30: Circular domain: evolution of results u on a radial section, α = 0.8.
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Figure 4.31: Circular domain: evolution of results u on a radial section, α = 0.5.

Figure 4.32: Circular domain: evolution of results with time.
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that appears in this operator being computed under the assumption that the variable of interest and its
normal derivative are constant within each time step. The formulation is capable of providing reliable
results for values of the fractional derivative of order α ≥ 0.5. In the second example, we present results for
α = 0.2. However, for values of α < 0.5 small time steps are required to capture the large temporal gradients
in the solution immediately after t = 0, causing the analysis to become time-consuming. As a suggestion
to overcome such a difficulty, the use of variable time steps seems to be very promising: beginning the
analysis with very small values, greater values can be used as the time increases, in order to improve the
computational efficiency. Another approach might be the use of more sophisticated interpolation functions.

Notwithstanding the above comments relating to computational efficiency for small α, it has been
demonstrated that the D-BEM formulation is capable of producing accurate results for problems of anoma-
lous diffusion characterised by governing PDEs containing a fractional calculus operator. The formulation
has been shown to produce results of high accuracy, outperforming a finite difference approximation.
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