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Abstract

Whilst many numeric methods, such as AIC and deviance, exist for assessing or com-
paring model fit, diagrammatic methods are few. We present here a diagnostic plot, which
we refer to as a ‘Quantile Band plot’, that may be used to visually assess the suitability
of a given count data model. In the case of diagnosed model inadequacy, the plot has the
unique feature of conveying precise information on the character of the violation, hence
pointing the data analyst towards a potentially better model choice.

Keywords: count data regression, goodness-of-fit, Poisson-binomial distribution, mid-quantiles,
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1. Introduction

Consider univariate count data Y = {Y1, . . . , Yn}, possibly accompanied by associated co-
variate vectors xi ∈ Rp, i = 1. . . . , n. Any attempt at drawing inferential conclusions from
these observations will require, at first place, a choice of the response distribution, which
determines the likelihood function and hence impacts on all further analysis, whether this
is done in a Bayesian or frequentist framework. Typical choices for count data distributions
would be for instance the Poisson distribution (which describes the number of independent
events occurring at constant rate within a certain time interval), the Negative Binomial dis-
tribution (which can be considered as an overdispersed extension of the Poisson distribution),
the Poisson Inverse Gaussian distribution, the Zero-Inflated Poisson distribution, and many
more.

Despite the availability of this plethora of possible count data models, applied users will
generally strive for using the most simple model wherever possible, which, in this framework,
is the Poisson distribution. The immediate question is then whether a particular choice of
distribution is appropriate; which can be phrased as the question of whether the observed data
are ‘plausible’ given the properties of the count data distribution being postulated. One can
disassemble this question as asking whether the observed number of zeros is plausible given
the postulated count data model (in other words, whether the number of zeros is ‘consistent’
with the number of zeros predicted by this model), whether the number of ones is plausible
given the postulated model, and so on. Clearly, due to the inherent randomness of the system,
there will generally be more than one ‘number of counts k’ which is plausible, and henceforth
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the task will be to provide an appropriate range of plausible numbers of counts, as a function
of k. The methodology presented in this manuscript will do exactly this, and it will summarize
the information, for all count values k = 0, 1, 2, 3 . . ., in a novel diagrammatic tool.

The resulting diagnostic plot may be used to visually assess the suitability of a given count
data model. If it is determined that the model in question is not suitable, the plot has
the unique feature of conveying precise information on the character of the violation. For
instance, this tool will, at a glance, allow the user to detect not only the presence of zero-
inflation (more zeros than could be plausibly expected under the given count data model),
but also yet poorly explored features such as for instance ‘3-deflation’ (less observations of the
count 3 than would be expected under the count data model) or ‘10-inflation’. This turns out
to be highly relevant for assessing the presence of digit preference in a given count data set.
The insights gained through this diagnostic plot should also help the data analyst in making a
more informed model choice; for instance it is clear that in the case of detected zero-inflation
in a Poisson model, a zero-inflated Poisson (ZIP) model should be more adequate.

Denote the postulated response distribution by G(θi), where θi ∈ Rd is a multivariate parame-
ter vector, where each of the d components may or may not depend on covariates. It is helpful
to think of θi as being composed of a mean component, µi = E(Yi|xi), with xi ∈ Rp, and the
remaining (shape, scale, dispersion,...) parameters bundled in δi, so that θi = (µi, δi), though
it is not strictly necessary that any of the d components actually represents the mean. The δi
may depend on the same or other covariates as µi, but will often be assumed not to depend
on covariates at all. In the special case that G is the Poisson or geometric distribution, δi is
empty.

The question of interest is whether the data Y are plausible given the distributional assump-
tion G; that is, whether it can be plausibly assumed that Y have in fact been generated from
G. At some occasion, the parameters θi may be fixed and known (even if they depend on
i), but more often they will be unknown and need to be estimated from the data. We will,
initially, not distinguish between these two cases, that is we assume that routines to obtain
estimates θ̂i are readily available.

We would like to make the point that we do not consider the developed graphical tool as a
technique to test for the adequacy of the predictor specification; for instance, of the mean
component µi = E(Yi|xi). Obviously, this specification is an important part of the model,
but the overall distribution of the number of zeros, 1’s, etc, will generally not depend strongly
on it. Our concern is the suitability of the distribution G, given a certain choice of θi.

To fix the notation more precisely, denote pi(k) = P (k|θi) the probability of observing the
count k under covariate xi and model G, which can be estimated by p̂i(k) = P (k|θ̂i) from
the fitted model. For instance, in the special case that G(θi) corresponds to Pois(µi), one has
p̂i(k) = exp(−µ̂i)µ̂ki /k!. This scenario is discussed in Wilson and Einbeck (2018) with focus
on the case k = 0. This manuscript generalizes those ideas to general k and G and proposes
a generic diagrammatic tool.

Denote by N(k) the ‘counts of counts’, that is the number of occurrences of count k among the
data in Y, where

∑
k≥0N(k) = n. It is clear that, for fixed k, N(k) can be described by a sum

of n Bernoulli trials with success probabilities pi(k), i = 1, . . . , n. The resulting distribution, of
which one can think as a Binomial distribution with unequal success probabilities, is known as
a Poisson–Binomial distribution (Chen and Liu 1997), some properties of which we summarize
in Appendix A. Hence, for any choice of k and G, a range of plausible values of N(k) can be
obtained from this distribution, using fitted success probabilities p̂i(k) as model parameters.
By doing this for a range of values of k, one can draw diagrams which give envelopes for
plausible values of N(k) which can then be compared to the true values. For reasons that
will become clear in later sections, we refer to such diagrams as Quantile Band plots.

The remainder of this exposition is organized as follows. The graphical tool will be presented
and explained in systematic form in Section 2, using an example involving digit preference
for illustrative purposes. Computational details of the methodology as well as the problem



Austrian Journal of Statistics 3

of parameter estimation are deferred to Section 3. Further examples, including real data
examples, follow in Section 4, before the paper is concluded in Section 5. Some complementary
technicalities and definitions are included in the Appendices.

2. Quantile band plots

Based on the principles outlined above, we propose here a diagnostic plot to visually assess the
suitability of a given model for the data. We firstly present the algorithm for the construction
of the plot.

2.1. Algorithm for plot construction

The first aspect to decide on is the range K = [kmin, kmax] of count values that is to be
assessed. Typical choices would be kmin = 0 and kmax = max(Y) (and this is what will
be used by the default in the graphical tool). Other choices may be preferable in specific
circumstances.

A diagnostic plot may be constructed as follows. (The items labelled by a * symbol are to be
understood as optional. While the Quantile Band plot as advocated in this work includes the
execution of these optional items, there may be certain situation when the data analyst might
prefer to omit them; for instance if the quantitative information on the count frequencies is
to be conveyed through the plot.)

Specification Determine the model G(θi) for the data Y. Obtain estimates θ̂i, i = 1, . . . , n
where required.

Computation For k in K

(i) compute p̂i(k) = P (k|θ̂i);
(ii) from the Poisson-Binomial distribution with parameters p̂i(k), i = 1, . . . , n, com-

pute lower and upper quantiles qα/2(k) and q1−α/2(k);

*(iii) compute also the median, m(k), and use it to compute shifted versions A(k) =
N(k)−m(k), bγ(k) = qγ(k)−m(k), for γ ∈ {α/2, 1− α/2}.

Create graph

(i) Plot the functions bα/2(k) and b1−α/2(k) versus k. Then add to the plot the ob-
served shifted counts, A(k), of the observed data Y. [If item (iii) above has not
been carried out, replace b and A by q and N , respectively, and in this case one
may optionally add m(k) to the plot.]

*(ii) Rotate the plot by 90 degrees, so that k is orientated along the vertical axis.

If the data is consistent with the distribution fitted, the curve A(k) [N(k), respectively] should
(largely) stay within the bands bα/2(k) and b1−α/2(k) [qα/2(k) and q1−α/2(k), respectively]. If
the data is not consistent with the distribution fitted then A(k) [N(k)] is likely not to stay
within these bands. Informally we will refer to the line representing the b(k)’s as the upper
and lower quantile bands, and the line representing the A(k)’s as the count-line.

Note that there are several possible choices of how exactly to compute quantiles for a discrete
distribution. For our purposes, the quantiles employed are the mid-quantiles, which are
discussed in Section 3.1.
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2.2. Illustration via digit preference

Digit Preference refers to the mis-reporting of some numbers in favour of “preferred numbers”.
An early example in the literature is Myers (2002) who reports a tendency in the the 1910,
1920, and 1930 U.S. censuses to report ages of 20 as 21 and ages of 31 as 30. Camarda,
Eilers, and Gampe (2002) provide an extensive list of references to literature concerning digit
preference, and report that maybe the most common form of the phenomenon is “heaping” of
data at multiples of 5.

We present here a hypothetical example that simulates a situation where the number of, say,
annual theatre visits follows a Poisson distribution with parameter 7, however in practice the
following occurs:

• visit counts of 0, 1 and 2 are correctly reported;

• visit counts that are a multiple of 5 are correctly reported;

• visit counts that are within 2 of a multiple of 5 are reported correctly with probability
φ and as that multiple of 5 with probability 1− φ.

Table 1: Reported numbers of theatre visits

Annual Visits 0 1 2 3 4 5 6 7 8
Frequency 1 5 9 20 32 106 69 64 57

Annual Visits 9 10 11 12 13 14 15 16
Frequency 35 55 22 9 4 4 6 2

Table 1 presents a sample of 500 such data, where 20% of non-multiples of 5 are mis-reported
as the nearest multiple of 5 (i.e. φ = 0.80). Note that the mean and variance of these data
are 7.01 and 7.33 respectively, thus, based solely on these statistics, a Poisson model appears
reasonable.

Table 2: Data of Table 1 with upper and lower quantiles for N(k) and A(k) (first 8 rows).

k N(k) q0.025(k) q0.975(k) m(k) A(k) b0.025(k) b0.975(k)

0 1 0.00 2.49 0.39 0.61 -0.39 2.10
1 5 0.05 7.21 3.01 1.99 -2.96 4.20
2 9 5.05 18.05 10.95 -1.95 -5.90 7.10
3 20 16.58 36.13 25.80 -5.80 -9.22 10.33
4 32 33.20 58.49 45.32 -13.32 -12.12 13.17
5 106 49.40 78.72 63.59 42.41 -14.19 15.13
6 69 59.12 90.39 74.30 -5.30 -15.18 16.09

The question of interest is whether the data could plausibly have been generated from a Pois-
son distribution. Therefore, the above procedure is applied to the data of Table 1, choosing
K = [0, 16] as the range of counts of interest, and omitting the two ‘starred’ items for now.

The values of N(k), q0.025(k) and q0.975(k), for k = 0, 1, . . . , 7 are given in Table 2; the full
table is given in Table 9 of Appendix D. From the left–hand part of this table one can construct
the diagnostic plot displayed in Figure 1. Clearly N(5) > q0.975(5) and N(10) > q0.975(10) as
is illustrated by the red line which represents the N(k) lying above the green line representing
the q0.975(k) for k = 5 and k = 10. Similarly the red line representing the N(k) lies beneath
the green line representing the q0.025(k) for some other values of k, indicating the unsuitability
of a Poisson model here.
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Figure 1: Diagnostic plot for the data of Table 1. We refer to plots in this form as raw
Quantile Band plots.

Whilst the plot of Figure 1 contains complete information, the range of N(k) leads to the
bands described by N(k), q0.025(k) and q0.975(k) being somewhat close. For data where the
range of N(k) is large, it frequently occurs that these bands become extremely close and
difficult to distinguish (examples of such plots are given in Figure 9 in Appendix E).

A superior plot may be obtained by including the ‘starred items’ from Section 2.1. After
subtracting the median from all other quantities we arrive at the information displayed in the
right part of Table 2, and hence the Quantile Band plot in the top panel of Figure 2. Similar
to the display of boxplots, which can be presented either vertically or horizontally, one may
display the Quantile Band plot in either orientation. We prefer the vertically rotated version,
as shown in the bottom panel of Figure 2, and will use this version throughout the remainder
of this paper. We acknowledge however that others may prefer the horizontal version, and
also that there are occasions when practical considerations such as availability of space in a
publication render the horizontal version preferable. One immediately concludes from this
plot that there is evidence of inflation of multiples of five, and also some evidence of deflation
of the counts four and nine (which is arguably an artifact of the former). Overall, this gives
evidence that the Poisson assumption is not adequate. We further discuss this example in
Section 4.1.

Enhanced interpretations on other diagnostic aspects can often be drawn from the specific
nature of the pattern; these will be discussed in the examples of Section 4. We will turn now
to the question of how exactly the quantiles of the distribution of N(k) are obtained.



6 A Graphical Tool For Assessing Count Regression Models

0 5 10 15

−1
0

0
10

20
30

40
Digit Preference Relative to Poisson Model

Reported Number of Visits (k)

A(
k)

=N
(k

)−
m

(k
)

−10 0 10 20 30 40

0
5

10
15

Digit Preference Relative to Poisson Model

A(k)=N(k)−m(k)

R
ep

or
te

d 
N

um
be

r o
f V

is
its

 (k
)

Figure 2: Construction of Quantile Band plots for simulated covariate-free data. Subtracting
the blue coloured median curve m(k) in the plot of Figure 1 from all other curves gives the
horizontal version of the plot (top), which after rotation leads to the vertical Quantile Band
plot (bottom).
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3. Technical details

3.1. Quantiles and mid-quantiles

We consider now the question of how exactly to compute the quantiles of the distribution
of N(k). Recall that for each (fixed) value of k, N(k) is described as a Poisson-Binomial
distribution with parameters p̂i(k), i = 1, . . . , n. We denote by F the distribution function of
N(k), that is F (t) = P (N(k) ≤ t). The γ–quantile of this distribution is traditionally defined
as

Qtrad(γ) = mint{F (t) ≥ γ},

where t is a non–negative real value. For the purposes of Section 2 one will have either
γ = α/2 or γ = 1 − α/2. For the Poisson-Binomial distribution, these quantiles can be
obtained straightforwardly from the package poibin (Hong 2013). However, as Ma, Genton,
and Parzen (2011) have pointed out, there are “many drawbacks” with using traditional
quantiles for discrete distributions. Firstly, the quantile function is discontinuous, leading
to unfavourable theoretical properties. Secondly, it causes interpretational problems: For
instance, for all observable values t′ ∈ N = {0, . . . n} of N(k), the sum of the (right-handed)
p-value and the left–handed quantile turns out to be larger than 1, since the probability mass
at t′ is ‘double-counted’.

The suggested improvement by Ma et al. (2011) is to split the probability mass at discrete
values accordingly, which gives rise to the definition of the mid-distribution function Fmid(t) =
F (t) − 0.5p(t), where p(t) is the corresponding point mass at t (which is equal to 0 for all
t 6∈ N ).

This concept then leads to the definition of mid-quantiles, and is also naturally related to
the notion of mid-p-values (Franck 1986). The mid-quantile–function, which we denote by
Qmid(γ) henceforth, is constructed so that, at the points of observable values t′, one has
Qmid(Fmid(t′)) = t′, and a piecewise linear interpolation in between (Ma et al, 2011). Since
the exact mathematical expression of mid-quantiles in itself is rather complicated, we have
deferred this alongside with a tutorial to Appendix B.

In all computations leading to Quantile Band plots in this paper, we have used for step (ii)
in Section 2 the convention qγ(k) = Qmid(γ), with the distribution F which gives rise to this
quantile being the distribution of N(k) corresponding to an underlying count distribution G.
Of course, also the medians m(k) are computed as ‘mid–medians’ in this manner. Wilson and
Einbeck (2018) constructed mid-quantiles in the special case k = 0 and G = Pois, and referred
to the resulting intervals [Qmid(α/2), Qmid(1−α/2)) as mid-quantile intervals (MQI). In this
spirit, we will also refer to tables which provide information as in the left half of Table 2 as
mid-quantile tables.

3.2. Parameter estimation

The view taken in our approach is that the production of the Quantile Band plot succeeds
the parameter estimation. In other words, it is assumed that, once a user has specified a
certain count data model G(θi), a routine to estimate θi is readily available. The distribution
G and the estimated θ̂i then serve as input to the production of the Quantile Band plot. In
this sense, the estimation of the θi is not considered as an intrinsic part of the methodology
as such. Some words on parameter estimation still appear in order.

Usually, the θ̂i will be estimated through Maximum Likelihood (ML). A frequent scenario is
where θi = (µi, δi), where δi is some dispersion or shape parameter. This would be the case,
for instance, for the Negative Binomial (Type I or II), Neyman Type A, the Pòlya-Aeppli,
or the Poisson-Inverse Gauss distribution. For, say, the latter case one may consider a model
with constant dispersion index δi ≡ δ, and a log-link for the mean regression parameter, i.e.
log(µi) = xTi β, or equivalently µi = E(Yi|xi) = exp(xTi β), for some vector of predictors xi ∈
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Rp. The actual vector of parameters to estimate would then be (β, δ) ∈ Rp+1. But of course,
it is also possible to describe the dispersion or other parameters through appropriate linear
predictor terms, which may involve the same or different covariates as the mean function.
Having obtained the underlying estimates (β̂, δ̂), one can immediately obtain the estimates
θ̂i via the pre-specified predictor configurations, which then allows production of the p̂i(k) =
P (k|θ̂i), and hence execution of the machinery outlined in Section 2.

The actual calculation of the involved MLE’s will usually be carried out through software.
For instance, in the case that G corresponds to a Poisson or Binomial distribution, in which
cases d = 1, estimation of θi reduces to fitting a generalized linear model (McCullagh and
Nelder 1989) and hence can be carried out using the glm function in R. A wide range of further
multi–parameter count data distributions can be fitted using functionalities provided by the R
packages VGAM (Yee 2010) and gamlss (Rigby and Stasinopoulos 2005). Estimation routines
for some further count distributions, including the ones mentioned earlier in this subsection,
which are relevant for specific applications for instance in dosimetry, are provided in form of
R code in the supplementary material of Oliveira, Einbeck, Higueras, Ainsbury, Puig, and
Rothkamm (2016).

However, it needs to be pointed out at this occasion that Maximum Likelihood is not the
only way to estimate model parameters. For instance, it is long known that the ML estimate
of the Poisson mean, that is, the whole sample mean, can perform very poorly if the data
are zero-inflated or zero-deflated (or, to condense these two terms, ‘zero-modified’, see also
da Silva, Ribeiro, Conceiçáo, Andrade, and Louzada (2018)). In response to such problems,
Plackett (1953), Irwin (1959) and Ridout and C.B. (1992) present formulae for estimating the
Poisson parameter from the mean of the positive data values; that is from the zero-truncated
data. These estimators reduce the bias of the ML estimator of the mean parameter, but turn
out to be less precise than the maximum likelihood estimator. Wilson and Einbeck (2018)
went one step further and suggested (for scenarios in which zero-modification is expected or
suspected) to balance bias and variance of the Poisson mean estimate through a weighted
mean of the whole sample estimator and the zero-truncated estimator, with a weight of 2/3
for the whole sample mean performing favorably in simulation studies. In the case of actual
zero-modification, this ‘hybrid’ estimator will considerably reduce the bias, but in its absence
it will not behave notably differently than the whole sample estimator. It is emphasized that
the problem being solved through such measures is intrinsic to zero counts. For inflation or
deflation of higher counts k, the impact on the estimates of µi is much less severe since the
effects tend to cancel out over neighbouring counts. For multi-parameter distributions, the
second parameter can absorb the overdispersion created through the excess zeros to some
extent. Hence, in line with this reasoning, we use the hybrid estimation technique in the
applications in Section 4 only for one–parameter distributions, i.e. the Poisson and the ge-
ometric distribution. The example in Section 4.3 will illustrate the impact of the different
mean estimators on the Quantile Band plot explicitly.

3.3. Multiple testing issues

One may argue that due to the consideration of a sequence of mid-quantile intervals for
N(0), N(1), . . . one has to account for multiple testing issues. It is certainly true that the
count-line being outside of the mid-quantile bands at N(0) is equivalent to determining that
there is zero-modification relative to the null model, as in the test of Wilson and Einbeck
(2018), similar statements being possible for other N(k)’s, and that if several such tests were
performed simultaneously then multiple testing issues would arise. The pragmatic view is
that our proposed plot should not be considered as a testing procedure, but as a simple dia-
grammatic tool which supports the data analyst in identifying potential model inadequacies,
similar in spirit to a QQ plot.
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4. Applications

4.1. Digit preference revisited

We saw in Section 2.2 that a Poisson model is unsuitable for the data of Table 1. Whilst in
the introduction to that example the data generating mechanism is informally described, even
if this had not been the case the Quantile Band plots of Figure 2 clearly illustrate that the
observed numbers of multiples of five are considerably greater than is to be expected under
a Poisson model, and most other values somewhat less than would be expected, which would
lead the analyst to suspect that digit preference for multiples of five is a feature of the data.

When the role of the distribution G is taken by a Poisson model that incorporates digit
preference (φ = 0.8), that is a modified Poisson model with probability density function g
as given in Appendix C, one obtains the Quantile Band plot displayed in Figure 3. We note
that for k > 3 the quantile bands are wider at points corresponding to multiples of five,
and narrower at other points, reflecting the modified densities of the Poisson model which
incorporates digit preference. The count-line is now interior to the quantile bands at all points,
indicating that b0.025(k) < A(k) < b0.975(k), for all values of k, and hence the suitability of
the modified Poisson model.
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Figure 3: Quantile Band plot for modified Poisson model (incorporating digit preference)

The mid-quantile table corresponding to the Poisson model modified for digit preference is
given in Table 10, Appendix D.

4.2. Frequency of homicides

Agresti (2002) discusses the fitting of a variety of models to data concerning the responses to
the question: “Within the last twelve months, how many people have you known personally
that were victims of homicide?” The respondents were classified as Black or White according
to their race. The data is summarised here in Table 3.

The relative fits of Geometric, Poisson, Poisson Inverse Gaussian (PIG), Negative Binomial
(Type I), Negative Binomial (Type II) and Zero-Inflated Poisson (ZIP) models are shown
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Table 3: Number of victims of murder known in past year, by race

Response 0 1 2 3 4 5 6

Black 119 16 12 7 3 2 0
White 1070 60 14 4 0 0 1

in Table 4. (For the Geometric and Poisson models the mean is modelled by race using a
log-link, for the PIG and negative binomial models both parameters are modelled by race
using log-links, and for for the ZIP model, the mean and zero-inflation parameters are both
modelled by race using log and logit-links respectively.)

Table 4: Values of information criteria for several count regression models fitted to homicide
data.

Model AIC BIC

Poisson 1942.87 1953.23
Geometric 3115.99 3126.34

PIG 1007.20 1027.91
NBI 1000.56 1021.26

NBII 1000.56 1021.26
ZIP 998.74 1019.44

Quantile Band plots corresponding to the various models are illustrated in Figure 4, with the
corresponding mid-quantile tables provided in Appendix D (Tables 11 to 16). It is apparent
that the one parameter geometric and Poisson models are inadequate; we do see however from
the plots for the Poisson and geometric models that whilst both underestimate the numbers
of zeros, and overestimate the number of 1’s, the over-estimation of 1’s is not as severe for
the geometric model as it is with the Poisson, but the over estimation of larger values is
more severe under the geometric model than under the Poisson. It is most interesting to
compare the two-parameter models. In all cases the observed counts all fall within their
respective mid-quantile intervals, so it may be argued that all four are suitable. Reflecting its
position as the poorest of the two parameter models considered here by both AIC and BIC
criteria, it is noticeable that the PIG model considerably overestimates the number of 1’s, and
considerably underestimates the number of 2’s and 3’s. The Quantile Band plots for the two
types of negative binomial are identical; it is notable that the fits of the negative binomial
models and the zero-inflated Poisson models are similar under both the AIC and BIC criteria,
it is apparent however that the ZIP model slightly underestimates the numbers of 1’s, and
overestimates the numbers of 2’s compared to the observed data, the reverse being the case
for the negative binomial models.

We include in Figure 9, Appendix E the mid-quantile band plots obtained when Poisson and
PIG models are fitted to the data of Table 3. These plots illustrate the superiority of the
median–adjusted plots of Figure 4.

4.3. Choosing between Poisson and ZIP models

In Section 3.2 we discussed the estimation of model parameters, and mentioned three esti-
mators of the parameter of a Poisson model that have been proposed in the literature. We
present here an example that further explores this issue, and illustrates the usefulness of
Quantile Band plots as a tool in determining the appropriateness of a given model, under
consideration of different possible estimates of the model parameters.

Consider the data of Table 5, which are generated by concatenating 200 zeros to a sample of
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800 data drawn from a Pois(0.5) distribution, thus the data are zero-inflated by construction.
The mean of these data is 0.435 and the variance 0.484, indicating at first glance that a
Poisson model may not be unreasonable.

Table 5: Simulated data with zero-inflation

0 1 2 3 4 5

663 256 67 12 1 1

This is now a situation as touched upon in Section 3.2, where the Poisson mean estimate is
possibly affected by the presence of zero-inflation. Hence, we consider in this example the
application of three different estimators of the Poisson mean, which are the whole sample
mean (µ̂W ), zero-truncated mean (µ̂T ), and hybrid mean (µ̂H), respectively. Table 6 gives
the corresponding three estimates along with the log–likelihoods of the Poisson models when
using those estimates. It is apparent that, under the log-likelihood criterion, the Pois(µ̂W )
model has the best fit (indeed, as µ̂W is the maximum likelihood estimator this must be the
case), the fit of the Pois(µ̂H) model is only slightly poorer, and that of the Pois(µ̂T ) model
more so. The log-likelihood statistics on their own however do not say anything about the
suitability of the models: it is possible that all or none are compatible with the observed data.

Table 6: Model fits using whole sample mean (µ̂W ), zero-truncated mean (µ̂T ), and hybrid
mean (µ̂H), respectively.

µ̂ log–likelihood

µ̂W = 0.435 −873.0
µ̂T = 0.534 −882.9
µ̂H = 0.468 −874.2

Therefore, we proceed with the production of Quantile Band plots, which are depicted for the
three Poisson models as well as the ZIP model in Figure 5. The two plots in the top row show,
interestingly, that both a Poisson model with mean parameter of 0.435 and a ZIP model are
compatible with the data. What has happened here is that the presence of extra zeros has
reduced the value of µ̂W (the whole sample mean) to a value which renders the numbers of
observed zeros and 1’s compatible with a Pois(µ̂W ) model. There is no contradiction here, and
both statements are correct: a zero-inflated model with small mean parameter is simply hard
to distinguish from a Poisson model with even smaller mean parameter (note that the Poisson
mean estimate under the ZIP model is 0.533 and the estimated zero-inflation parameter is
0.184).

The bottom plots show that Poisson models with larger mean parameters, as obtained through
the truncated and hybrid estimators, are not compatible with the data. Also these are true
statements: The plots simply assert that Poisson models with means of 0.468 and 0.534,
respectively, are incompatible with the data. However, arising from this is the interesting
question which of the three Poisson-based plots tells the most meaningful story in terms of
the data generating mechanism. From this angle, the hybrid and the truncated estimators do
the more useful job, by producing Poisson mean estimates which are closer to the true value
(of 0.5), allowing for the indication of the presence of inflation of zeros relative to the Poisson
model.

Finally, it is worth noting that, while the count-line of the top-left diagram of Figure 5
corresponding to the Pois(µ̂W ) model remains within the quantile bands b0.025 and b0.975,
it does hint that somewhat more zeros and considerably less 1’s than expected under the
Poisson model are present in the observed data. This pattern drawn by the count-line is a
characteristic of zero-inflation, which may lead the analyst to speculate that the data is in fact
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Table 7: Frequency of dicentric chromosomes after acute homogeneous in vitro exposure to
doses between 0 and 4.5Gy of Cobalt-60 γ-rays. (This corresponds to data set A1 in the
notation of Oliveira et al. (2016), where also the reference for the data source is provided.)

Frequency of counts
dose 0 1 2 3 4 5

0.00 2591 1 0 0 0 0
0.25 2185 8 0 0 0 0
0.75 2550 44 1 0 0 0
1.00 2231 54 2 0 0 0
1.50 1712 96 3 0 0 0
2.50 1196 123 7 1 0 0
3.00 1070 320 41 6 1 0
4.50 895 360 110 25 5 1

zero-inflated, and hence to proceed with fitting a ZIP model which then delivers the nicely
behaved Quantile Band plot as in the top right panel.

4.4. Biodosimetry data

We consider data consisting of n = 14430 chromosome aberration counts previously studied
by Oliveira et al. (2016). The covariate dose, with values between 0 and 4.5Gy, gives the
radiation dose applied in vitro to blood sample cells, causing DNA damage in form of double-
strand breaks. When incorrectly repaired by the cellular DNA-damage response mechanism,
this can lead to dicentric chromosomes which can be counted under a microscope. That is,
each examined blood sample cell contributes, for known covariate dose, exactly one count
observation. For this data set, the counts take values in the range from 0 to 5. Data of this
type have been fitted traditionally through Poisson regression models, though deviation from
the Poisson property, and specifically the presence of excess zero counts, has been regularly
reported in the literature, see e.g. Puig and Barquineiro (2011).

Table 7 displays the data under investigation, and Figure 6 contains the Quantile Band
plots obtained when Poisson and zero-inflated Poisson models, using a log–link and quadratic
polynomial for dose, but constant zero-inflation parameter in the ZIP case, are fitted to these
data. The left hand plot clearly indicates the unsuitability of the Poisson model, whereas the
right hand plot indicates that ZIP is suitable.

Oliveira et al. (2016) carried out an extensive analysis of this data set, applying several
statistical tests and model selection criteria in order to decide for an adequate modelling
strategy. Specifically, they found that a Negative Binomial type 2 (hereafter NB2) model
returned the lowest AIC (7489.1), closely followed by a ZIP model (AIC=7490.4). Other
models considered included the Poisson as reference model (AIC=7504.7), and a Poisson
Inverse Gaussian (PIG; AIC=7495.2).

The two plots in Figure 7 corresponding to the NB2 and PIG models, respectively, illustrate
cases where the adjusted observed data line, A(k), remains close to the centre line. For the
NB2, all observations lie between the 43% and 57% quantiles of their respective Poisson–
Binomial distribution. Hence, there is less random variation amongst observed counts than
would be expected under the NB2 model, most likely indicating that the variance of the fitted
model is inflated in order to accommodate the number of observed zeros. A similar effect is
observed for the PIG model. In summary, these plots suggest that the ZIP model is the
most adequate model for these data, deviating from what would be concluded by looking at
a single–number model selection criterion such as AIC.
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Figure 4: Quantile Band Plots for the homicide data (Table 3). For ease of comparisons, the
horizontal axes for the one parameter Poisson and geometric models are drawn to the same
scale, and the horizontal axes for the four two-parameter models are drawn to the same scale.
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Figure 5: Quantile Band plots for the simulated data of Table 5.
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Figure 6: Quantile Band plots for biodosimetry data, with the hypothesized distribution G
corresponding to Poisson and ZIP, respectively.
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Figure 7: Quantile Band plots for biodosimetry data, with the hypothesized distribution G
corresponding to NB2 and PIG, respectively.
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5. Conclusion

Whilst the principal purpose of the Quantile Band plots presented here is, as indicated in the
title of this paper, to assess the suitability of a count regression model to a given data set,
not to determine the ‘best’ model, the plots are an extremely useful tool to help answer the
question: ‘what is the best model?’. It is sometimes overlooked that the purpose of fitting a
model to a given sample of data is not to find the model that ‘best fits’ the sample, but to
attempt to discover a model that is, to paraphrase George Box, probably incorrect but of use
as a model for the data from which the sample was taken. Whilst likelihood–based methods
such as log–likelihood, AIC, BIC and various other ‘information criteria’ have an enormous
role to play in determining and estimating the coefficients of ‘the most suitable model’, the
fact that they frequently disagree on the nature of that model illustrates that none of them
are perfect arbitrators. The graphical tool presented in this paper is an alternative approach
to assessing model fit, which may be used on its own, or in conjunction with other methods.
Its unique feature is that it enables the user to determine whether the observed frequency of a
given count in the data is compatible with that to be expected under a given distribution; as
stated in Section 2 if the majority of the frequencies of observed counts are indicated as being
compatible with the model under consideration (i.e. they lie within the mid-quantile bands),
then the model is likely to be appropriate for the data. Of course, under this procedure
several models may be deemed ‘appropriate’. This is well illustrated by Figure 4 which
indicates that all four of the two parameter models considered are appropriate. A strength of
the plots is that if they indicate non-suitability of a model, they also indicate the nature of
the unsuitability, for example the top two plots of Figure 4 show that Poisson or geometric
models are unsuitable as they severely underestimate the amounts of zeros, and overestimate
the amount of 1’s. Exactly the same information is contained in the horizontal and vertical
forms of the plot. Raw Quantile Band plots (for example Figure 1) actually contain more
information than the median-adjusted forms, but frequently are impractical (see Figure 9).

Quantile Band plots contain more information however than whether the observed counts are
compatible with the stated model. As discussed in the various examples of Section 4 they
indicate which values of k are over- or underestimated by the model; the example of Section
4.3 shows how the plots may be used to help determine the most suitable parameter for a
model, which may differ from the maximum likelihood estimate. In the example of Section
4.4 the count-lines of the Quantile Band plots for the negative binomial and PIG models of
Figure 7 indicate very little variation of the observed counts about the median values, possibly
indicating that the counts exhibit less random variation than expected under these models,
leading the researcher to speculate as to the reason for the possibly larger than necessary
estimates of the dispersion parameter.

Whilst the authors advise the use of mid-quantiles as outlined in Section 3.1 for the con-
struction of the quantile bands, other forms of quantiles may also be adopted. An attractive
alternative may also be the use of expectiles, especially with view to their uniqueness property
for discrete data (Eilers 2013). At present the plots are only proposed for use with univariate
count models, but could be extended to continuous models by binning data, or to multivariate
models by increasing the dimension of the plots.

R Code for the production of Quantile Band plots (in all three versions; that is with or
without the starred items from Section 2.1) will be made available as supplementary material
accompanying this publication.
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Appendices

The Poisson-binomial distribution

LetX1, X2, . . . , Xn be n independent Bernoulli random variables with parameters p1, p2, . . . , pn,
respectively, and S =

∑n
i=1Xi. The distribution of S is known as a Poisson-Binomial distri-

bution (Chen and Liu, 1997), with probability mass function

P (S = s) =

{
n∏
i=1

(1− pi)

} ∑
i1<···<is

wi1 · · ·wis (1)

where wi = pi
1−pi , i = 1, 2, . . . , n, and the summation is over all possible combinations of

distinct i1, i2, . . . , is from {1, 2, . . . , n}. It has the properties E(S) =
∑n

i=1 pi and Var(S) =∑n
i=1 pi(1− pi).

In the special case that pi ≡ p, i = 1, . . . , n, the Poisson-Binomial distribution reduces to
the Binomial distribution, Bin(n, p). Hence, expectation and variance of S also reduce to the
well-known expressions np and np(1− p), respectively.

The R package poibin (Hong 2013), implements both exact and approximate methods for
computing the cdf of the Poisson-Binomial distribution. It also provides the pmf, quantile
function and random number generation for the Poisson-Binomial distribution.

Note that this distribution is not a compound Poisson distribution, and hence it is not to
be interpreted as the distribution of a Poisson sum of Binomial distributions. Daskalakis,
Diakonikolas, and Servedio (2012) remark that “It is believed that Poisson was the first to
consider this extension of the Binomial distribution, and the distribution is sometimes referred
to as ‘Poisson’s binomial distribution’ ” (An example of an actual compound distribution that
we have seen earlier in this manuscript is the negative Binomial distribution, which can be
written as a Poisson sum of lognormal distributions).

Mid-quantiles

Let X be a discrete random variable with distinct values vj , j = 0, . . . , d (one usually will

have vj ≡ j). Let P (X = vj) = pj and πj =
∑j−1

i=0 pi + pj/2. The mid-quantile function for a
probability γ is defined as (notation adapted from Ma et al. (2011))

Qmid(γ) = F−1mid(γ) =



v0 if γ < p0/2

vj if γ = πj , j = 0, . . . , d

λvj + (1− λ)vj+1 if γ = λπj + (1− λ)πj+1

0 < λ < 1, j = 0, . . . , d− 1

vd if γ > πd.

As a brief tutorial on he construction of mid-p-values, consider the random variable X ∼
Bin(7, 0.35). The probability mass function of X is then given by the second row in Table
8, and the resulting values of πj are given in the third row. This leads to the graphical
representation of the mid-quantile function in Figure 8.

For the developments in this manuscript, the role of the random vector X will be taken by
the random vector N(k). Notably, we are not concerned with the distribution of N(k) over
different values of k, but with the possible, discrete, values of N(k) for fixed k, with values
in v0 = 0, . . . , vd = n.
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Table 8: Elements of the computation of mid-quantiles, for the binomial toy example

vj=j 0 1 2 3 4 5 6 7

pj 0.049 0.185 0.298 0.268 0.144 0.047 0.008 0.001
πj 0.0245 0.1415 0.383 0.666 0.872 0.9675 0.9695 0.9995
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Figure 8: Illustration of (traditional) quantile and mid-quantile function for B(7,0.35) distri-
bution.
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R code for the computation of mid-quantiles from any probability mass function will be
provided by the authors as supplementary material.

Density of Poisson model modified for digit preference

This probability mass function was used for generating data under digit preference in Section
2.2.

g(x, µ, φ) =



e−µµx

x! x = 0, 1, 2

φ e
−µµx

x! x = 3, 4, 6, 7, 8, 9, 11 . . .

e−µµx

x!
+ (1− φ)

(
x−1∑
t=x−2

e−µµt

t!
+

x+2∑
t=x+1

e−µµt

t!

)
x = 5, 10, 15, . . .

0 otherwise

Mid-quantile tables

Table 9: Mid-quantile table: Poisson model for digit preference data (Table 1)

k q0.025(k) N(k) q0.975(k) m(k)

0 0.00 1 2.49 0.39
1 0.05 5 7.21 3.01
2 5.05 9 18.05 10.95
3 16.58 20 36.13 25.80
4 33.20 32 58.49 45.32
5 49.40 106 78.72 63.59
6 59.12 69 90.39 74.30
7 59.19 64 90.48 74.38
8 50.81 57 80.42 65.14
9 37.93 35 64.49 50.69
10 24.69 55 47.34 35.47
11 13.97 22 32.30 22.54
12 6.56 9 20.80 13.10
13 2.27 4 12.87 6.98
14 0.18 4 7.84 3.43
15 0.00 6 4.81 1.54
16 0.00 2 2.97 0.62
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Table 10: Mid-quantile table: Modified Poisson model for digit preference data (Table 1)

k q0.025 N(k) q0.975 m(k)

0 0.00 1 1.96 0.39
1 0.34 5 6.51 3.01
2 5.9 9 16.86 10.95
3 13.61 20 28.42 20.61
4 27.03 32 6.20 36.22
5 92.78 106 123.08 107.68
6 47.80 69 71.70 59.41
7 47.87 64 71.77 59.47
8 41.15 57 63.72 52.08
9 30.80 35 50.97 40.52
10 53.74 55 78.71 65.89
11 11.46 22 25.36 18.00
12 5.47 9 16.24 10.45
13 2.02 4 9.95 5.56
14 0.20 4 5.97 2.71
15 0.92 6 7.70 3.86
16 0.00 2 2.34 0.50

Table 11: Mid-quantile table: Poisson model for homicide data (Table 3)

k q0.025 N(k) q0.975 m(k)

0 670.35 1189 741.01 705.74
1 402.01 76 468.83 435.20
2 113.25 26 156.35 134.29
3 17.93 11 38.43 27.56
4 0.50 3 8.89 4.14
5 0.00 2 2.68 0.46
6 0.00 1 1.09 0.05

Table 12: Mid-quantile table: Geometric model for homicide data (Table 3)

k q0.025 N(k) q0.975 m(k)

0 415.35 1189 481.21 448.08
1 253.09 76 311.41 281.88
2 159.97 26 209.26 184.15
3 103.08 11 144.46 123.25
4 66.93 3 101.61 83.71
5 43.38 2 72.46 57.35
6 27.91 1 52.23 39.47
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Table 13: Mid-quantile table: PIG model for homicide data (Table 3)

k q0.025 N(k) q0.975 m(k)

0 1165.33 1189 1205.59 1185.93
1 71.32 76 106.65 88.45
2 11.28 26 28.46 19.27
3 2.17 11 12.66 6.80
4 0.04 3 7.12 2.97
5 0.00 2 4.71 1.47
6 0.00 1 3.42 0.76

Table 14: Mid-quantile table: Negative Binomial (type II) model for homicide data (Table 3)

k q0.025 N(k) q0.975 m(k)

0 1167.58 1189 1207.62 1188.08
1 65.35 76 99.57 81.91
2 13.79 26 32.24 22.42
3 3.06 11 14.37 8.08
4 0.16 3 7.77 3.38
5 0.00 2 4.82 1.55
6 0.00 1 3.34 0.74

Table 15: Mid-quantile table: Negative Binomial (type I) model for homicide data (Table 3)

k q0.025 N(k) q0.975 m(k)

0 1167.57 1189 1207.62 1188.08
1 65.34 76 99.56 81.91
2 13.79 26 32.24 22.42
3 3.06 11 14.37 8.08
4 0.16 3 7.77 3.38
5 0.00 2 4.82 1.55
6 0.00 1 3.34 0.74

Table 16: Mid-quantile table: ZIP model for homicide data (Table 3).

k q0.025 N(k) q0.975 m(k)

0 1168.67 1189 1208.62 1189.13
1 56.58 76 88.97 72.22
2 20.32 26 41.64 19.27
3 4.94 11 17.81 10.77
4 0.21 3 7.90 3.50
5 0.00 2 3.81 0.97
6 0.00 1 1.96 0.27



22 A Graphical Tool For Assessing Count Regression Models

Raw quantile band plots

These plots are included here to illustrate the advisability of subtraction of the raw information
N(k) by the median of their distribution. The supplementary material includes R code to
produce such Raw Quantile Band plots.
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Figure 9: Raw Quantile Band plots for Poisson and PIG models for the data of Table 3
(Homicide data).
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