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Abstract

In many applications of linear mixed-effects models to longitudinal and multilevel data espe-

cially from medical studies, it is of interest to test for the need of random effects in the model.

It is known that classical tests such as the likelihood ratio, Wald and score tests are not suitable

for testing random effects because they suffer from testing on the boundary of the parameter

space. Instead, permutation and bootstrap tests as well as Bayesian tests, which do not rely

on the asymptotic distributions, avoid issues with the boundary of the parameter space. In

this paper, we firstly develop a permutation test based on the likelihood ratio test statistic,

which can be easily used for testing multiple random effects and any subset of them in linear

mixed-effects models. The proposed permutation test would be an extension to both the test

of Fitzmaurice et al. 1 (Biometrics, 2007) and the test of Drikvandi et al. 2 (Biostatistics, 2013).

We secondly aim to compare permutation tests and Bayesian tests for random effects to find

out which test is more powerful under which situation. Nothing is known about this in the

literature, whilst this is an important practical problem due to the usefulness of both methods

in tackling the challenges with testing random effects. For this, we consider the Bayesian test

of Saville and Herring 3 (Biometrics, 2009), where we also propose a new alternative computa-

tion for this Bayesian test to avoid some computational issue it encounters in testing multiple

random effects. Extensive simulations and a real data analysis are used for evaluation of the

proposed permutation test and its comparison with the Bayesian test. We find that both tests

perform well, albeit the permutation test with the likelihood ratio statistic tends to provide a

relatively higher power when testing multiple random effects.

1



Keywords: Bayesian test; Longitudinal data; Linear mixed-effects models; Permutation test;

Random effects; Variance components.

1. Introduction

This paper firstly aims to develop a permutation test for random effects based on the likelihood

ratio test statistic, to be applicable for testing multiple random effects and any subset of them

in linear mixed-effects models. The proposed permutation test would be an extension to both

tests of Fitzmaurice et al. 1 and Drikvandi et al. 2 . We secondly aim to compare permutation

tests and Bayesian tests for random effects to find out which test is more powerful under which

situation. The importance and background of these two objectives are given in the following.

Longitudinal studies arise in many different domains, notably in medical studies, where

they help collect repeated measurements on individuals or subjects. Longitudinal data are

therefore useful for studying and understanding changes over time. For example, a study on

how alcohol consumption will affect the blood pressure can be conducted by comparing the

repeated measurements of blood pressure, taken over a certain period of time, between an

alcohol-consuming group and a control group.

Linear mixed-effects models4,5 are well suited for the analysis of longitudinal data, where

random effects are used to capture the between-subject variability due to unmeasured covariates

or unknown biological differences. Random effects are unobserved random variables that vary

across subjects. Testing for the need of random effects in linear mixed-effects models is important

both theoretically and practically. Several practical examples on testing random effects are

given in2,6, and moreover theoretical and computational investigations suggest to include only

necessary random effects in the model on the one hand, and on the other hand to not ignore

any important random effects7,8.

From a statistical perspective, to test for the need of random effects is equivalent to testing

whether the variance components of random effects equal zero. Denoting the covariance matrix

of random effects by Σ, we can express this test as follows


H0 : Σ = 0

H1 : Σ is a non-zero non-negative definite matrix.

(1)

This is a non-standard testing problem because the null hypothesis places the variances of ran-

dom effects on the boundary of the parameter space. Classical tests such as the likelihood ratio,
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Wald and score tests suffer from testing on the boundary of the parameter space, because the

regularity conditions do not hold under such situations. As a consequence, the usual asymptotic

chi-squared distribution of the likelihood ratio or score statistic is not valid. It is shown, under

some additional conditions, that the correct asymptotic distribution is a mixture of chi-squared

distributions under the null hypothesis6,9–11. However, the weights of the asymptotic mixture

distribution are unknown, except for some special cases. For instance, for testing a single ran-

dom effect, the correct asymptotic distribution is a 50 : 50 mixture of χ2
q and χ2

q−1 where q is

the total number of random effects in the model under alternative hypothesis. Also, for testing

k uncorrelated random effects (i.e., Σ is diagonal), the correct asymptotic distribution is given

by
∑k
m=0 2−k

(
k
m

)
χ2
m. Determining the mixture’s weights is very complex for a broad number

of cases, as shown by Shapiro 10 . In addition to this limitation, the tests based on the asymp-

totic mixture distribution are shown to have incorrect Type I error rate and low power in small

samples1,2,12.

Tests for random effects that avoid the boundary issue are therefore of great importance.

Permutation and bootstrap tests as well as Bayesian tests do not rely on asymptotic distribu-

tions and hence are more suitable for testing random effects in mixed-effects models. Sinha 13

suggested a bootstrap test based on the score statistic; however, his bootstrap procedure is

difficult to apply for testing multiple random effects or a subset of them. Fitzmaurice et al. 1

developed a permutation test, based on the likelihood ratio statistic, for testing a single random

effect, and Lee and Braun 14 extended their permutation test for testing all random effects.

Drikvandi et al. 2 proposed a more general permutation test for testing all random effects and

any subset of them, and with a different test statistic. In this paper, we will use the general

permutation procedure of Drikvandi et al. 2 to develop a permutation test based on the like-

lihood ratio test statistic, which can be easily applied for testing all random effects and any

subset of them in linear mixed-effects models. It should be mentioned that the permutation

procedure of Drikvandi et al. 2 coincides with that of Lee and Braun 14 for testing all random

effects; however, the permutation procedure of Drikvandi et al. 2 is more general and can be

easily used for testing any subset of random effects. Lee and Braun 14 pointed out that their

permutation test is able to test a subset of random effects; however, they have never shown or

investigated this in their paper.

It is also of interest to understand how permutation tests compare to the Bayesian tests, due

to the usefulness of both methods in testing random effects. Nothing is known about this in

the literature, and we investigate this problem to find out which test is more powerful. For this
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purpose, we will compare the proposed permutation test with the Bayesian test of Saville and

Herring 3 which was developed based on Bayes factors and a Laplace approximation to overcome

the boundary challenge. It should be emphasised that we propose a new alternative computation

for this Bayesian test to avoid some computational issue it encounters in testing multiple random

effects. Extensive simulations and a real data analysis are used for evaluation of the proposed

permutation test and its comparison with the Bayesian test of Saville and Herring 3 .

2. Linear mixed-effects model

Linear mixed-effects (LME) models incorporate random effects to capture the between-subject

variability due to unmeasured covariates or unknown biological differences between subjects.

This is an effective way to allow the parameters (e.g., intercepts and slopes) to vary across

subjects. As an example, in the study of changes in blood pressure, a random intercept model

can be used to allow the baseline blood pressure to vary across subjects in the study groups12.

Consider a longitudinal study with N subjects. Let Yij be the response variable for subject

i taken at measurement time j, j = 1, . . . , ni. Denoting Yi = (Yi1, . . . , Yini
)T , we can write the

LME model as follows4:

Yi = Xiβ +Zibi + εi, (2)

where Xi and Zi are, respectively, ni × p and ni × q design matrices associated with fixed

effects and random effects for subject i, β = (β0, β1, . . . , βp−1)T is a p × 1 vector of fixed-

effects parameters, bi = (bi1, . . . , biq)
T is a q × 1 vector of random effects for subject i, and

εi = (εi1, . . . , εini
)T is an ni × 1 vector of measurement errors for subject i. It is assumed that

bi ∼ N (0,Σ) and εi ∼ N (0, σ2
εIni), and further bi and εi are independent.

It is more convenient to stack the N response vectors into a single response vector Y =

(Y T
1 ,Y

T
2 , . . . ,Y

T
N )T , and also the fixed-effects and random effects design matrices into X =

[XT
1 , . . . ,X

T
N ]T and Z = Diag(Z1, . . . ,ZN ), respectively. Similarly, we write b = (bT1 , . . . , b

T
N )T

and ε = (εT1 , . . . , ε
T
N )T . Then, the LME model (2) can be rewritten as

Y = Xβ + Zb + ε.

Note that the covariance matrix of the random components b and ε is given by Cov
(
b, ε

)
=Σ⊗ INT

0

0 σ2
εINT

, where ⊗ is the Kronecker product and INT
is the identity matrix of order

NT , with NT =
∑N
i=1 ni.
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The marginal distribution of Y, after integrating out the random effects b over their assumed

distribution, would be N (Xβ,V) where V = Z(Σ⊗ INT
)ZT +σ2

εINT
5. Therefore, we can write

the marginal log-likelihood function of the model as follows

l(θ) = −NT
2

log(2π)− 1

2
log(|V|)− 1

2

(
Y −Xβ

)T
V−1

(
Y −Xβ

)
, (3)

where θ = (β, σ2
ε ,Σ) represents all the unknown parameters. The maximum likelihood estimates

of parameters θ are obtained by maximising the log-likelihood function (3). This can be done

using standard software such as the lmer function in R or the PROC MIXED in SAS.

3. The permutation test

To test for the need of a single random effect is equivalent to testing whether or not its variance

is 0. When we test multiple random effects we need to test if their corresponding covariance

matrix is 0. For instance, the null hypothesis for testing all random effects is H0 : Σ = 0, while

the alternative hypothesis says Σ is a non-zero non-negative definite matrix. As discussed in

the introduction, such tests for random effects require testing on the boundary of the parameter

space which causes difficulties in applying the classical tests.

In this section, we develop a permutation test for testing multiple random effects, which is an

extension to both the test of Fitzmaurice et al. 1 and the test of Drikvandi et al. 2 . It should be

clarified that the permutation test of Fitzmaurice et al. 1 was developed for testing only a single

random effect, and the permutation test of Drikvandi et al. 2 was constructed based on an ad

hoc non-parametric test statistic. As discussed in the introduction, the permutation procedure

of Drikvandi et al. 2 is more general than the permutation procedure of Lee and Braun 14 .

We consider the likelihood ratio statistic as our test statistic which leads to a powerful

permutation test as shown in Section 5. The test statistic is defined as

R = 2l(θ̂)− 2l(θ̂0),

where θ̂0 is the ML estimates of parameters under the null hypothesis and θ̂ is the ML estimates

under the entire parameter space. As already discussed, the correct asymptotic distribution

of the likelihood ratio statistic is generally not available, so we use the general permutation

procedure of Drikvandi et al. 2 to approximate its finite-sample distribution for testing all random

effects and any subset of them.
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3.1. Likelihood-based permutation test for testing all random effects

We first consider the case of testing all random effects, with the null and alternative hypotheses

formulated in (1). It is straightforward to show that the likelihood ratio statistic for testing all

random effects is as follows

R = NT log(σ̂2
0ε)+

1

σ̂2
0ε

(
Y−Xβ̂OLS

)T (
Y−Xβ̂OLS

)
−log(|V̂|)−

(
Y−Xβ̂GLS

)T
V̂−1

(
Y−Xβ̂GLS

)
,

(4)

where σ̂2
0ε is the estimate of σ2

ε under the null hypothesis, V̂ is the estimate of V in the presence

of all random effects (i.e., under the alternative hypothesis), and

β̂GLS =
(
XT V̂−1X

)−1
XT V̂−1Y

β̂OLS = (XTX)−1XTY

(5)

are, respectively, the generalised least squares (GLS) and ordinary least squares (OLS) estimates

of β.

To approximate the null distribution of the likelihood ratio test statistic, we use the permu-

tation procedure of Drikvandi et al. 2 which they applied to a non-parametric test statistic. If

we define Y∗ = Y −Xβ then Y∗ = Zb + ε. Since under H0 : Σ = 0 all the random effects b

disappear from the model, we get Y∗ = ε under the null. Thus, all elements of Y∗ are i.i.d.,

and hence exchangeable, under the null hypothesis. The exchangeability allows us to perform

a permutation test using the adjusted data Y∗. However, Y∗ depends on the unknown param-

eters β which we need to estimate. We replace β with β̂GLS in (5) to get Ŷ∗ = Y −Xβ̂GLS ,

which are actually the residuals. The elements of Ŷ∗ are not i.i.d. anymore; however, they are

exchangeable under the null hypothesis2. Following Drikvandi et al. 2 , we permute the residuals

Ŷ ∗
ij among subjects for each measurement time j.

Using the likelihood ratio test statistic (4) and the above permutation procedure of Drik-

vandi et al. 2 , we set up the permutation test for testing all random effects as follows:
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1. Compute the likelihood ratio test statistic (4) for the original sample and denote it by Robs.

2. Obtain a permutation sample by randomly permuting the residuals Ŷ ∗
ij among subjects for

each j, and compute the test statistic (4) for the permutation sample.

3. Repeat the above step B times, to get B test statistics, say, R(b), b = 1, . . . , B.

4. Calculate the empirical p-value being the proportion of R(b) exceeding Robs.

5. Given the significant level α, reject reject H0 if the empirical p-value is smaller than α.

3.2. Likelihood-based permutation test for testing a subset of random

effects

It is often of interest to test whether or not a subset of random effects are needed in the

model. This is a more challenging testing problem because the boundary issue imposes additional

constraints and conditions for obtaining the weights of the asymptotic mixture distribution11.

Let us rewrite the LME model (2) as follows

Yi = Xiβ +Zi
(1)bi

(1) +Zi
(2)bi

(2) + εi, (6)

where bi
(1) and bi

(2) are, respectively, r× 1 and (q− r)× 1 vectors of random effects, and Zi
(1)

and Zi
(2) are ni × r and ni × (q − r) random-effects design matrices respectively. Also, let

Cov
(
bi

(1), bi
(2)
)

=

Σ11 Σ12

ΣT
12 Σ22

 .
To test whether the random effects bi

(2) can be left out from the model, whilst retaining the

random effects bi
(1), we need to perform the following test



H0 : Σ =

Σ11 0

0 0


H1 : Σ =

Σ11 Σ12

ΣT
12 Σ22


We again use the likelihood ratio statistic as our test statistic; however, we need to change the

definition of Y∗ in order to make the permutation procedure in the previous section applicable to
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the above test for testing a subset of random effects. For this, we define Y∗ = Y−Xβ−Z(1)b(1),

where Z(1) = Diag(Z
(1)
1 , . . . ,Z

(1)
N ) and b(1) = (b

(1)
1

T
, . . . , b

(1)
N

T
)T . Equivalently, this can be

written as Y∗ = Z(2)b(2) +ε, where Z(2) = Diag(Z
(2)
1 , . . . ,Z

(2)
N ) and b(2) = (b

(2)
1

T
, . . . , b

(2)
N

T
)T .

Since the random effects b(2) vanish under H0 : Σ =

Σ11 0

0 0

, we get Y∗ = ε under the null

hypothesis. Thus, all elements of the new Y∗ are i.i.d., and hence exchangeable, under the above

null hypothesis. Because Y∗ involves β and b(1) which are unknown, we replace the fixed-effects

parameters β by β̂GLS and the random effects b(1) by their empirical Bayes estimates b̂(1) 5 to

obtain Ŷ∗ = Y −Xβ̂GLS − Z(1)b̂(1), which are also exchangeable under the null hypothesis2.

We then use the new Ŷ∗ to perform the permutation test for the subset of random effects bi
(2).

4. The Bayesian test

Saville and Herring 3 introduced a Bayesian test for testing random effects using Bayes factors

with Laplace approximation and suggested a reparameterisation to overcome the boundary issue.

They used the Nelder-Mead simplex algorithm15 to estimate the posterior mode for Laplace

approximation. This algorithm sometimes results in a saddle point instead of optimum point in

high dimensional approximations, which causes problems in testing multiple random effects. To

overcome this difficulty, we propose to use the bound constrained optimisation method of Byrd

et al. 16 which effectively avoids such problem in estimating the posterior mode. This is very

helpful for testing multiple random effects.

4.1. Reparameterisation of LME model for the Bayesian approach

Recall the LME model (2), where we again assume that the random effects bi = (bi1, ...., biq)
T

follow the multivariate normal distribution N (0,Σ). The following reparameterisation, which

involves a factorisation of the covariance matrix Σ, was suggested by Chen and Dunson 17 and

Saville and Herring 3

Σ = σ2
εD =


λ21σ

2
ε γ12σ

2
ε

√
λ1λ2 . . .

...
. . .

γ1qσ
2
ε

√
λ1λq λ2qσ

2
ε

 ,

where γjk represents the correlation between the j-th and k-th random effects, and the scaler

λh controls the contribution of the h-th random effect.
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The LME model (2) can then be decomposed and reexpressed as follows17:

Yi = Xiβ +ZiΛΓbi + εi, (7)

where Λ = Diag(λ1, ..., λq) and Γ is a q × q lower triangular matrix with 1 in the diagonal

entries and γjk in the lower off-diagonal entries. Note that ΛΓ is the lower triangular Cholesky

decomposition of D such that D = ΛΓΛTΓT .

4.2. Laplace approximation for calculation of the Bayes factor

Let θ = (ζ, b, σ2
ε) represent all the model parameters, where ζ = (β,λ,γ), in which λ =

(λ1, ..., λp) and γ = (γ12, ..., γq−1,q), contains all parameters other than the random effects b

and error variance σ2
ε . Centring and scaling each of the covariates xi by two times the standard

deviation of xi, Saville and Herring 3 suggested the following prior distributions:

β ∼ N (0, 10× I),

σ2
ε ∼ InvGamma(v, w),

λ ∼ logN
(
log(0.3)× 1, 2× I

)
,

γ ∼ N (0,1).

(8)

Suppose that Mk, k = 0, 1, represents the model under the null and alternative hypotheses,

respectively. Marginalising out bk and σ2
ε , we get the marginal likelihood as follows

P(Y |Mk) =

∫
P(Y |ζk,Mk)π(ζk|Mk)dζk. (9)

The marginal likelihood (9), needed for calculation of the Bayes factor, is generally not avail-

able in closed form for the LME model (7). Saville and Herring 3 used the following Laplace

approximation

P̂(Y |Mk) = (2π)
dk
2 |H̃k|

1
2P(Y |ζ̃k,Mk)π(ζ̃k|Mk), (10)

where dk is the dimension of integral in the marginal likelihood (9), and H̃k is the inverse

negative Hessian matrix of log
(
P(Y |Mk, ζk)π(ζk|Mk)

)
evaluated at the posterior mode ζ̃k.

They applied the Nelder-Mead simplex algorithm15 to calculate the posterior mode ζ̃k, but this

algorithm sometimes results in a saddle point instead of optimum point in high dimensional

approximations. As a consequence, the Laplace approximation (10) is undefined since the de-

terminant of H̃k is negative. We propose to use the bound constrained optimisation method of
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Byrd et al. 16 which effectively avoids such problem in estimating the posterior mode for testing

multiple random effects.

The Laplace approximation also fails when the posterior mode ζ̃k lies on the boundary18,19.

This is the case here because λ2h = 0 puts the true variance value on the boundary of the parame-

ter space. To overcome this issue, Saville and Herring 3 suggested to use the reparameterisation

λh = eφh . The diagonal matrix Λ then needs to be reconstructed as Λ = Diag(eφ1 , ..., eφq ).

Also, the prior for φ = (φ1, ..., φq) would be N (log(0.3)× 1, 2× I).

The approximated Bayes factor using the Laplace approximation would then be as follows

B̂F =
P̂(Y |M1)

P̂(Y |M0)
,

and we interpret it using the scale suggested by Jeffreys 20 and Wasserman 21 to conduct the

Bayesian test for random effects.

5. Comparison of the permutation test and the Bayesian

test

In this section, we conducted simulations to evaluate the performance of the proposed permuta-

tion test and compare it with the Bayesian test of Saville and Herring 3 amended by the bound

constrained optimisation method of Byrd et al. 16 . Beneficially, our simulations concern both

testing all random effects and testing a subset of random effects in LME models. In the sim-

ulations we considered 4 cases of tests regarding random effects. We used the sample sizes of

N = 25, 50, 100, 200 and the number of repeated measurements ni = 5, and set the error vari-

ance σ2
ε to 1. We generated 1000 data sets, from the LME models considered in the following, to

compute the empirical power of the two tests. The Type I error of the two tests were evaluated

based on 2000 data sets.

Case 1: Testing a single random intercept

For this case, we considered the mixed ANOVA model:

Yij = β + λbi + εij ,
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where β is the population level fixed-effect intercept and bi ∼ N (0, σ2
ε) is a subject-specific

random intercept with λ ≥ 0 controlling the magnitude of bi so that the variance of the random

effect part is λ2σ2
ε . The hypothesis test for testing the random intercept here would be equivalent

to 
H0 : λ = 0

H1 : λ > 0.

We fixed β = 0.5 and considered several different values of λ = 0, 0.15, 0.3, 0.45, 0.6. We used

200 permutation samples in the simulations, as suggested by Fitzmaurice et al. 1 and Biard

et al. 22 , to conduct the permutation test at the significance level of α = 0.05. For the Bayesian

test, we chose β ∼ N (0, 10), σ2
ε ∼ InvGam(1, 1) and φ ∼ N (log(0.3), 2) in accordance with

the priors in (8) used for the reparameterised model. In our initial simulations (not reported

here), the Bayesian test with these priors showed a very low Type I error rate compared to

the permutation test, which makes the power comparison unfair. As suggested by a referee, we

modified the Bayesian test to have a more accurate Type I error rate. As shown by Saville and

Herring 3 , one can get a higher Type I error rate for the Bayesian test by choosing a smaller

mean for the prior distribution of φ. We found that the prior φ ∼ N (log(0.15), 2) works well

here. The simulation results, presented in Table 1, suggest that the Type I error rate of both

the permutation and Bayesian tests is at the nominal level 0.05, and the two tests have a very

similar power in this case. Both tests show higher power when the sample size N or the scale λ

increases.

Case 2: Testing a random intercept and a random slope simultaneously

For this case, we considered the following LME model with two random effects:

Yij = β1 + bi1 + (β2 + bi2)tij + εij (11)

where we assume the random intercept and random slope satisfy (bi1, bi2) ∼ N (0,Σ), in which

Σ =

σ2
1 γ12

γ12 σ2
2

. The hypothesis test for testing both the random intercept and the random

slope simultaneously is follows


H0 : σ2

1 = σ2
2 = 0

H1 : σ2
1 and σ2

2 are non negative and at least one of them is strictly positive.
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Table 1: Type I error rate and power of the permutation and Bayesian tests in testing a single
random intercept.

N = 25 N = 50

λ Bayes test Permutation test Bayes test Permutation test

λ = 0 4.6 4.8 4.5 4.8

λ = 0.15 8 8 9 8

λ = 0.3 10 9 11 9

λ = 0.45 23 21 23 23

λ = 0.6 49 49 71 72

N = 100 N = 200

λ Bayes test Permutation test Bayes test Permutation test

λ = 0 4.6 4.7 4.7 5.1

λ = 0.15 8 6 9 10

λ = 0.3 12 11 18 20

λ = 0.45 33 34 47 51

λ = 0.6 92 92 98 99

In the simulations, we fixed β1 = 1 ,β2 = 2, tij = j and set the covariance matrix to Σ =

0 0

0 0


(to evaluate the Type I error rate),

0.05 0.02

0.02 0.05

,

0.08 0.02

0.02 0.08

,

 0.1 0.05

0.05 0.1

,

 0.1 0.09

0.09 0.1


respectively to investigate the power of the permutation and Bayesian tests. We recall that,

following Saville and Herring 3 , for the Bayesian test we centred and scaled the repeated mea-

surement time tij by two times its standard deviation. Also, similar to Case 1, we considered

the prior φ ∼ N (log(0.15), 2) to have a more accurate Type I error rate for the Bayesian test.

The simulation results, shown in Table 2, indicate that the two tests have the correct Type I

error rate; however, the permutation test seems to be more powerful than the Bayesian test in

testing the two random effects here. The power of both tests increases when the sample size or

the variance parameters get larger.
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Table 2: Type I error rate and power of the permutation and Bayesian tests in testing a random
intercept and a random slope simultaneously.

N = 25 N = 50

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

[
0 0
0 0

]
4.5 5.2 4.6 5.1

Σ =

[
0.05 0.02
0.02 0.05

]
14 15 25 30

Σ =

[
0.08 0.02
0.02 0.08

]
23 22 35 38

Σ =

[
0.1 0.05
0.05 0.1

]
24 25 37 41

Σ =

[
0.1 0.09
0.09 0.1

]
35 38 47 50

N = 100 N = 200

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

[
0 0
0 0

]
4.7 5.0 4.8 4.9

Σ =

[
0.05 0.02
0.02 0.05

]
27 40 34 40

Σ =

[
0.08 0.02
0.02 0.08

]
51 59 52 58

Σ =

[
0.1 0.05
0.05 0.1

]
59 65 60 68

Σ =

[
0.1 0.09
0.09 0.1

]
70 74 72 77

Case 3: Testing a random slope in the presence of a random intercept

For this case, we again considered the LME model (11) which contains two random effects. The

hypothesis test for testing the random slope while the random intercept is present in the model

would be as follows 
H0 : σ2

2 = 0

H1 : σ2
2 > 0,

where we set σ2
1 = 1 in the simulations. For this test, we set the covariance matrix to Σ =1 0

0 0

 (to evaluate the Type I error rate),

 1 −0.045

−0.045 0.0225

,

 1 −0.09

−0.09 0.09

,

 1 −0.135

−0.135 0.2025

,
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 1 −0.18

−0.18 0.36

. Unlike Cases 1 and 2, we here used the prior φ ∼ N (log(0.3), 2) for the

Bayesian test. The simulation results, reported in Table 3, show that the two test have the cor-

rect Type I error rate, and the permutation test is relatively more powerful than the Bayesian

test.

Table 3: Type I error rate and power of the permutation and Bayesian tests in testing a random
slope in the presence of a random intercept.

N = 25 N = 50

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

[
1 0
0 0

]
4.4 5.3 4.7 5.1

Σ =

[
1 −0.045

−0.045 0.0225

]
7 8 7 6

Σ =

[
1 −0.09

−0.09 0.09

]
10 16 11 11

Σ =

[
1 −0.135

−0.135 0.2025

]
10 17 21 23

Σ =

[
1 −0.18

−0.18 0.36

]
15 21 25 25

N = 100 N = 200

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

[
1 0
0 0

]
4.5 4.9 4.5 5.0

Σ =

[
1 −0.045

−0.045 0.0225

]
9 12 6 11

Σ =

[
1 −0.09

−0.09 0.09

]
12 16 22 29

Σ =

[
1 −0.135

−0.135 0.2025

]
30 34 48 62

Σ =

[
1 −0.18

−0.18 0.36

]
51 56 71 83
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Case 4: Testing two random slopes in the presence of a random inter-

cept

For this case, we considered the following LME model with three random effects:

Yij = β1 + β2xij + bi1 + bi2zij1 + bi3zij2 + εij ,

where we assume the three random effects follow (bi1, bi2, bi3) ∼ N (0,Σ), in which Σ =
σ2
1 γ12 γ13

γ12 σ2
2 γ23

γ13 γ23 σ2
3

. The hypothesis test for testing the two random slopes while the random

intercept is present in the model would be as follows


H0 : σ2

2 = 0, σ2
3 = 0

H1 : σ2
2 and σ2

3 are non negative and at least one of them is strictly positive,

where we set σ2
1 = 1 in the simulations. For this test, we generated all the covariates xij , zij1

and zij2 from the uniform distribution U(0, 1). For simplicity in the simulations, we assumed

that the random intercept bi1 is uncorrelated with the random slopes bi2 and bi3 (i.e., γ12 =

γ13 = 0). We set the covariance matrix to Σ =


1 0 0

0 0 0

0 0 0

 (to evaluate the Type I error rate),


1 0 0

0 0.02 0.01

0 0.01 0.02

,


1 0 0

0 0.5 0.1

0 0.1 0.5

,


1 0 0

0 1 0.2

0 0.2 1

,


1 0 0

0 1 0.5

0 0.5 1

.

Similar to Case 3, we used the prior φ ∼ N (log(0.3), 2) for the Bayesian test. The simulation

results, shown in Table 4, suggest that the two tests have the correct Type I error rate. Also,

the permutation and Bayesian tests show a very similar power in this case. As expected, the

power of both tests increases when the sample size or the variance parameters become larger.

A referee pointed out that the power values are larger in Table 4 compared to Table 3, and a

possible reason might be that the random intercept was assumed to be independent from the

two random slopes. We note that the variances are larger in Table 4, and that we test two

random slopes in Case 4 compared to Case 3 where only one random slope is examined. In

other words, in Case 4 we test for the need of a 2 × 2 block of variance components, so when

that is not 0 the two tests are more powerful to detect it.
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Table 4: Type I error rate and power of the permutation and Bayesian tests in testing two random
slopes in the presence of a random intercept.

N = 25 N = 50

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

1 0 0
0 0 0
0 0 0

 5.4 4.8 5.3 5.2

Σ =

1 0 0
0 0.02 0.01
0 0.01 0.02

 12 11 16 16

Σ =

1 0 0
0 0.5 0.1
0 0.1 0.5

 42 35 47 44

Σ =

1 0 0
0 1 0.2
0 0.2 1

 63 63 83 79

Σ =

1 0 0
0 1 0.5
0 0.5 1

 73 69 82 86

N = 100 N = 200

Σ Bayes test Permutation test Bayes test Permutation test

Σ =

1 0 0
0 0 0
0 0 0

 4.8 4.8 5.2 5.1

Σ =

1 0 0
0 0.02 0.01
0 0.01 0.02

 23 23 24 25

Σ =

1 0 0
0 0.5 0.1
0 0.1 0.5

 62 60 85 87

Σ =

1 0 0
0 1 0.2
0 0.2 1

 93 94 100 100

Σ =

1 0 0
0 1 0.5
0 0.5 1

 98 100 100 100

6. Real data application

We apply both the permutation test and the Bayesian test to a real data set, collected from

a study of hyperglycemia and relative hyperinsulinemia conducted in the Pediatric Clinical

Research ward of the University of Colorado Medical Centre23,24. During the study, standard
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Figure 1: Individual profiles for the control patients (blue), non-hyperinsulinemic obese patients
(green) and hyperinsulinemic obese patients (red) in the plasma data.

glucose tolerance tests were given to three groups of patients: 13 control patients, 12 non-

hyperinsulinemic obese patients and 8 hyperinsulinemic obese patients. For each patient, the

plasma level (plasma inorganic phosphate) was measured repeatedly from blood samples taken

at 0, 0.5, 1, 1.5, 2, 3, 4, 5 hour after the glucose test. The main purpose was to study the changes

of plasma level over time and see if they are treatment-dependent. The data are presented in

Figure 1. The individual profiles show that the patients have different plasma levels at baseline

(before the glucose test) as well as different plasma levels over time (after the glucose test). This

suggests the use of a mixed-effects model with random intercepts and random effects to account

for such heterogeneity among patients.

As suggested by Drikvandi et al. 2 , since the plasma level shows as a quadratic function of
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time (see Figure 1), we consider the following mixed-effects model for the data:

Yij =


(β1 + bi1) + (β2 + bi2)tij + (β3 + bi3)t2ij + εij , if control,

(β4 + bi1) + (β5 + bi2)tij + (β6 + bi3)t2ij + εij , if non-hyperinsulinemic obese,

(β7 + bi1) + (β8 + bi2)tij + (β9 + bi3)t2ij + εij , if hyperinsulinemic obese,

where Yij is the plasma level for patient imeasured at time tij , β = (β1, β2, β3, β4, β5, β6, β7, β8, β9)T

is the vector of fixed-effects parameters, εij ∼ N (0, σ2
ε) is the error term, bi1 is a random inter-

cept, and bi2 and bi3 are random slopes for linear and quadratic time effects.

Assuming the multivariate normal distribution for the random effects (bi1, bi2, bi3), we obtain

the maximum likelihood estimate of the random-effects covariance matrix as follows

Σ̂ =


σ̂2
1 γ̂12 γ̂13

γ̂12 σ̂2
2 γ̂23

γ̂13 γ̂23 σ̂2
3

 =


0.334 −0.064 0.007

−0.064 0.063 −0.009

0.007 −0.009 0.001

 ,

where the random intercept bi1 has a larger estimated variance compared to the two random

slopes bi2 and bi3.

First, we test if random effects are needed in the model or a model without any random

effects is more suitable for analysing the plasma data. The null and alternative hypotheses for

this test are


H0 : σ2

1 = σ2
2 = σ2

3 = 0

H1 : All of {σ2
1 , σ

2
2 , σ

2
3} are all non negative and at least one of them is strictly positive.

Unlike the simulations, we here use 1000 permutations for the proposed permutation test. The

permutation test, with the likelihood ratio test statistic of 144.469, gives a p-value less than

0.001 based on 1000 permutations. So the permutation test rejects the null hypothesis at the

significance level of 0.05. The Bayesian test of Saville and Herring 3 , with the priors specified

in (8) and with σ2
ε ∼ InvGam(0.01, 0.01), produces an approximated Bayes factor of 6.452265×

1028, which implies that there is very strong evidence in favour of the alternative hypothesis.

Therefore, both the permutation and Bayesian tests conclude the suitability of a model with

random effects for the plasma data.

Next, because the estimates of variances of the random slopes bi2 and bi3 are small, we

test if a model with only random intercepts bi1 is adequate to explain the between-patient
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heterogeneity. For this, we test


H0 : σ2

2 = σ2
3 = 0

H1 : σ2
2 and σ2

3 are non negative and at least one of them is strictly positive.

For this test, the permutation test, with the likelihood ratio test statistic of 10.6359, produces a

p-value of 0.019 based on 1000 permutations. Hence, the test rejects the null hypothesis at the 5%

significance level. The Bayesian test of Saville and Herring 3 gives an approximated Bayes factor

of 14.3, which provides a strong evidence in favour of the alternative hypothesis. Therefore, both

the permutation and Bayesian tests confirm that there is also significant heterogeneity among

patients over time.

Finally, since the estimate of σ2
3 is much smaller than the estimate of σ2

2 , we are interested

in testing whether or not the random slope bi3 for quadratic time effects can be removed from

the model. The null and alternative hypotheses for this test are as follows


H0 : σ2

3 = 0

H1 : σ2
3 > 0.

The permutation test, with the likelihood ratio test statistic of 3.77, gives a p-value of 0.044

based on 1000 permutations. So it rejects the null hypothesis at the significance level of 0.05.

The Bayesian test of Saville and Herring 3 produces an approximated Bayes factor of 9.34, which

provides some evidence in favour of the alternative hypothesis; however, it is not very strong.

We also notice that the likelihood ratio test can be applied to this specific hypothesis for which

the asymptotic distribution of the likelihood ratio statistic for testing 2 random effects versus 3

random effects is a 50 : 50 mixture of χ2
2 and χ2

3
9. It produces a p-value of 0.22 suggesting that

the null hypothesis may not be rejected.

We emphasise that the likelihood ratio test is not easily applied to the first two tests con-

sidered above because the weights of the asymptotic mixture distribution are unknown. Note

also that the permutation tests of Fitzmaurice et al. 1 and Lee and Braun 14 cannot be applied

to the above tests on testing subsets of random effects.

The above analysis using the permutation and Bayesian tests suggests the following LME
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model for the plasma data

Yij =


(β1 + bi1) + (β2 + bi2)tij + β3t

2
ij + εij , if control,

(β4 + bi1) + (β5 + bi2)tij + β6t
2
ij + εij , if non-hyperinsulinemic obese,

(β7 + bi1) + (β8 + bi2)tij + β9t
2
ij + εij , if hyperinsulinemic obese.

7. Conclusions and discussion

The last two paragraphs of the introduction clarify the importance and novelty of our proposed

permutation test based on the likelihood ratio statistic, as well as the need for its comparison

with the Bayesian test of Saville and Herring 3 that we amended using the bound constrained

optimisation method of Byrd et al. 16 We have found both permutation and Bayesian tests ef-

fective and powerful for testing random effects in linear mixed-effects models, especially with

multiple random effects. Both tests effectively avoid the issues with testing on the boundary

of the parameter space. The permutation test avoids the boundary issue by approximating

the finite-sample distribution of the likelihood ratio statistic via permuting the residuals un-

der null hypothesis. The Bayesian test bypasses the boundary problem by reparameterising

both the LME model and the random-effects covariance matrix and leads to a low dimensional

approximation of the Bayes factor using Laplace approximation.

The findings and results of our simulations are summarised below. We should emphasise

that these results essentially apply to the range of scenarios considered.

• Testing a single random effect: Both permutation and Bayesian tests perform equally

well and produce reasonably high powers in detecting a significant random effect.

• Testing all random effects: While the two tests show high power in detecting significant

random effects, the permutation test is relatively more powerful than the Bayesian test for

testing all random effects.

• Testing a single random effect in the presence of other random effects: The

permutation test is relatively more powerful than the Bayesian test, though both tests

perform well in finding a significant random effect in the presence of other random effect.

• Testing multiple random effects in the presence of other random effects: Both

permutation and Bayesian tests perform equally well and produce reasonably high powers

in detecting significant random effects.
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Overall, the permutation test showed at least as good and sometimes superior power to the

Bayesian test, at least within the range of scenarios considered. We note that it is essential to

calibrate the Type I error rate of the Bayesian test (via prior distributions) to be close to the

nominal level. This complication may provide an argument for using the permutation test in

practice, as the permutation test does not require a simulation study in order to calibrate the

Type I error rate.

It should be pointed out that both tests require distributional assumptions which should

be carefully checked when applying these tests. The permutation procedure itself does not

need any distributions, however calculating the likelihood ratio statistic requires the normality

assumption. For the permutation test, the appropriateness of the normality assumption on

random effects can be checked by the diagnostic tools recently developed by Drikvandi et al. 8

and Efendi et al. 25 . For the Bayesian test, the sensitivities of the test result to the assumed

priors can be assessed using a sensitivity analysis, as explained in Saville and Herring 3 .

While the Bayesian test is already extended to multilevel models by Saville et al. 26 , it would

be of interest to generalise the permutation test to multilevel models. In the paper, we mainly

studied the two-level longitudinal data, however the permutation procedure can be extended

to situations when we have longitudinal data with three or more levels, as also suggested by

Fitzmaurice et al. 1 . The idea would be, when testing the variability within each level, one simply

permutes the indices corresponding to that level. A referee pointed to grouped or clustered

data, such as data collected from a multicenter trial, where there is no measurement time j.

For such situations, the interest is usually in testing the between-cluster variability, so one can

implement the permutation test by randomly permuting the individuals between clusters while

keeping the number of individuals within a cluster the same as in the original sample. Note that

the extension of the permutation procedure may not be transparent to more complex situations

such as nested data structures with crossed random effects models1.

Finally, we have implemented both the permutation test and the Bayesian test in R and

produced efficient codes for users. The R codes for all our simulations and real data analysis

are available at “https://github.com/spaghettidog/thesis”.
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